

Tutorial Cross-Modal Music Retrieval and Applications

Part II: Fingerprinting Approaches

Meinard Müller

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

Andreas Arzt, Stefan Balke

Johannes Kepler University andreas.arzt@jku.at, stefan.balke@jku.at

Overview (Part II)

- An Application Scenario: Flexible Music Tracking
- Automatic Music Transcription
 - Task Description
 - Recent Developments
- Fingerprinting
 - The "Shazam" Algorithm
 - Generalized Fingerprinting
- Flexible Music Tracking Re-visited

Application Scenario

MUSIC TRACKING

What is Music Tracking (Score Following)?

Why is Music Tracking Difficult?

[Arzt, Widmer: SMC 2010]

Music Tracking System

Demo: An Automatic Page Turner

[Arzt, Widmer, Dixon: ECAI 2008]

Demo: Music Tracking in the Concertgebouw

[Arzt, Frostel, Gadermaier, Gasser, Grachten, Widmer: IJCAI 2015]

Flexible Music Tracking?

Fast Music Retrieval Based on Short Excerpts

- Matching in the Audio Domain:
 - long queries needed (15-20 seconds)
 - computationally costly

- Matching in the Symbolic Domain:
 - more compact, reduced to the essential information
 - fast algorithms

- How to transfer data to the symbolic domain?
- How to perform fast lookup?

Retrieval via Automatic Music Transcription and Fingerprinting

Output: Rachmaninoff Prelude Op.23 No. 5

AUTOMATIC MUSIC TRANSCRIPTION

Task

- Given: Audio Recording of a Piece of Music
- Goal: Create Sheet Music (or some symbolic representation) of the recording

Task

- Given: Audio Recording of a Piece of Music
- Goal: Create Sheet Music (or some symbolic representation) of the recording

Automatic Music Transcription: Key Challenges

- Polyphonic music is a mixture of multiple simultaneous sources with different pitch, loudness and timbre. Inferring musical attributes (e.g., pitch) from the mixture signal is an under-determined problem.
- The harmonics of overlapping sound events often overlap in frequency, making the separation of the voices even more difficult.
- Timing of musical voices is governed by the regular metrical structure of the music. This violates the assumption of statistical independence between sources.
- Annotation of ground-truth transcriptions for polyphonic music is very time consuming and requires high expertise.

Automatic Music Transcription: Nonnegative Matrix Factorization

adapted from [Benetos, Dixon, Duan, Ewert: IEEE SPM, 2019]

Automatic Music Transcription: Neural Networks

[Böck, Schedl: ICASSP 2012]

Automatic Music Transcription: Neural Networks

- Needed: Annotated Training Data
- (Large enough) Datasets for General Music Transcription are virtually non-existent
- Exception: Piano Music Transcription
 - MAPS Dataset [Emiya, Bertin, David, Badeau: TR 2012]
 - MAESTRO Dataset [Hawthorne, Stasyuk, Roberts, Simon, Huang, Dieleman, Elsen, Engel, Eck: CoRR 2018]

Automatic Music Transcription: Neural Network Architectures

[Böck, Schedl: ICASSP 2012]

Automatic Music Transcription: Neural Network Architectures

[Hawthorne, Elsen, Song, Roberts, Simon, Raffel, Engel, Oore, Eck: ISMIR 2018]

Automatic Music Transcription: Neural Network Architectures

[Kelz, Böck: ICASSP 2019]

Automatic Music Transcription: Examples

Original Audio

Re-synthesized Transcription

Examples produced using the algorithm presented in [Hawthorne, Elsen, Song, Roberts, Simon, Raffel, Engel, Oore, Eck: ISMIR 2018] (https://magenta.tensorflow.org/onsets-frames)

Automatic Music Transcription: Examples

Yefim Bronfman playing the Cadenza from Rachmaninov's Piano Concerto No. 3 [https://www.youtube.com/watch?v=yh4_63ugeho]

FINGERPRINTING

Audio Fingerprinting

Task

- Given: Short Excerpt of Audio Recording of a Piece of Music
- Goal: Find Corresponding Instance in Database of Pieces (Audio Recordings) of Music

Idea

- Describe Sequences via so-called "Fingerprints"
 - local, translation-invariant, robust, compact and discriminative features
- Common Approach: Use a "Constellation Map" as basis for the Fingerprinting Algorithm → "Landmark-based Fingerprinting"

Constellation Map from Peaks in the Audio

Constellation Map from Peaks in the Audio

Constellation Map from Peaks in the Audio

The "Shazam" Algorithm: Basic Idea

For all Items in the Database

- compute constellation map (Shazam: spectral peaks)
- create local pairs from points in the constellation map
- describe the pairs in a compact fashion (via hashes)
- store them in a fast database (hash table)

For the Query

- compute constellation map (Shazam: spectral peaks)
- create local pairs from points in the constellation map
- describe the pairs in the same compact fashion (hashes)
- query the database for matching pairs
- find consecutive sequences of matching pairs
- return item which contains the best matching sequence of pairs

[Wang: ISMIR 2003]

The "Shazam" Algorithm

The "Shazam" Algorithm

The "Shazam" Algorithm

The "Shazam" Algorithm: Lookup

Scatterplot of Matching Hash Locations of Query with Instance in Database

The "Shazam" Algorithm: Lookup

Scatterplot of Matching Hash Locations of Query with Instance in Database **Match (Diagonal)**

The "Shazam" Algorithm: Lookup

Scatterplot of Matching Hash Locations of Query with Instance in Database **No Match (No Diagonal)**

The "Shazam" Algorithm

- Industry-strength Algorithm for Music Identification from Audio, scales well to Millions of Audio Files
- Invariant to
 - noise
 - most distortions
- Not Invariant to
 - tempo variations
 - transpositions
 - different instrumentations
 - **—** ...
- → The Shazam Algorithm can only detect exact duplicates (regarding the musical content)

[Wang: ISMIR 2003]

- Apply Fingerprinting to
 - audio representations and
 - symbolic representations
- Add Invariances
 - to transpositions
 - to tempo
 - to instrumentation (given a good-enough transcription algorithm exists)

Constellation Map from Symbolic Representation

Constellation Map from Symbolic Representation

Constellation Map from Symbolic Representation

- Relative Representations lead to Tempo- and Transposition-Invariance
- Number of Events per Fingerprint-Token: Trade-off between Discriminative Power and Robustness
 - e.g. Quad-based Fingerprinting [Sonnleitner, Widmer: TASLP 2016]
- Can be used to identify different Performances of the same Piece ("Cover Versions")
- ... and to identify the (symbolic) Score a Performance is based on!

Fast Performance-to-Score Matching

Demo: Fast Performance-to-Score Matching

Evaluation (Tempo-invariant Fingerprinting)

- Database Size: more than 1,000,000 notes
 - Mozart, Chopin, Beethoven, ...
- For queries with a length of 25 notes:
 - 91% correct piece as top match
 - 0.16 sec. mean execution time
- For queries with length 50 notes (using shingling and other extensions):
 - 98% correct piece as top match
 - 0.49 sec. mean execution time
- With additional transposition-invariance, length 50 notes:
 - 92% correct piece as top match
 - 3.21 sec. mean execution time

Application Scenario

FLEXIBLE MUSIC TRACKING RE-VISITED

Flexible Music Tracking

Flexible Music Tracking Re-visited

