
One-Touch Access to Music on Mobile Devices

Dominik Schnitzer1,2,Tim Pohle1, Peter Knees1, and Gerhard Widmer1,2

1Department of Computational Perception, Johannes Kepler University Linz, Austria
2Austrian Research Institute for Artificial Intelligence (OFAI)

dominik.schnitzer@jku.at

ABSTRACT

We present an approach that offers the user a convenient
and meaningful way to access her music on a mobile de-
vice. By exploiting information on acoustic similarity and
community-based music labels, a music collection is auto-
matically structured and described to allow for easy orien-
tation and navigation within the collection. To this end,
the complete collection is arranged along a circular playlist
path such that similar sounding pieces are grouped together.
As a consequence, regions of musical styles emerge. Fur-
thermore, we propose two approaches to derive informative
descriptors that are displayed on the different regions, al-
lowing an overview of the whole collection at a glance. For
demonstration, we implemented our prototype interface on
an Apple iPod.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User
Interfaces; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval—Clustering, Selection pro-
cess

General Terms

Algorithms, Design

Keywords

Mobile Music Information Retrieval, community-based artist
clustering, automatic music collection organisation

1. INTRODUCTION
Thanks to advancements in information technology, the

amount of music that can be stored on portable players keeps
on growing. However, with more music available, the ques-
tion of how to conveniently access the music en-route gets
more and more important. Looking at the way music is ac-
cessed today on mobile players, it gets apparent that current

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MUM’07, December 12–14, 2007, Oulu, Finland.
Copyright 2007 ACM 978-1-59593-916-6/07/0012 ...$5.00.

Figure 1: Implementation of our interface prototype
on an Apple iPod.

techniques still leave space for improvements. State-of-the-
art interaction is either based on random shuffling (result-
ing in very inconsistent, and thus unfitting playlists) or on
artist–album categorisations. As a consequence of the lat-
ter, the user needs to know exactly which kind of music she
wants to listen to in advance. Furthermore, such a navi-
gation concept makes it necessary to pay relatively much
attention to the player during the selection process, which
is not desirable in many situations.

In [14, 12], we proposed an approach that addresses some
of these problems. The content of a music collection is ana-
lysed and arranged along a circular path (“The Wheel”) such
that similar sounding music is grouped together. Thus, the
complete music collection can be accessed by simply turn-
ing a knob. As the collection is sorted according to acoustic
similarity, also subsequently played pieces, i.e. the playlist,
fit together automatically. However, this approach has at
least two disadvantages: First, the user has to learn from
experience where to expect which kind of music, and sec-

ond, due to the applied techniques, very similar music could
possibly be found in different regions.

In this work, we tackle these limitations by enhancing
the purely audio-based approach from [14, 12] with music-
related community data. Using this community data, we
can not only improve the consistency of music piece group-
ing along the wheel, but also advance the user interface such
that it provides an intuitive overview over the complete col-
lection at a glance. This is accomplished by automatically
labeling the different regions of the wheel with musically
meaningful tags. In addition, we present an implementation
of the resulting interface on an Apple iPod (cf. Figure 1).

The remainder of this paper is organised as follows: In
the next section, we sketch the basic idea of our approach
and review related work. In Section 3, we describe the tech-
niques underlying our proposed approach. In Section 4, we
evaluate our techniques on a small collection of 1,440 tracks.
Finally, we report on implementation details of our proto-
type interface on an Apple iPod in Section 5.

2. BASIC IDEA AND RELATED WORK
As stated above, the idea behind our interface is to offer

the user a convenient and meaningful way to access her mu-
sic on a mobile device. To this end, we adopt the metaphor
of “The Wheel” from [14, 12]. In this approach, each posi-
tion on a circular (playlist) path is associated with a track
in the collection by applying a Traveling Salesman Problem
(TSP) algorithm to the collection’s full audio distance ma-
trix. This matrix is obtained by building a statistical model
for each music piece and calculating pairwise distances be-
tween all models. As a result of the TSP, similar tracks, i.e.
tracks with a small distance, are grouped together, so that
certain regions of the wheel can be associated certain musi-
cal styles. This allows the user to select the kind of music
she wants to listen to by simply turning the wheel into a
certain region.

In [12, 5], we also presented an approach to improve the
quality of the generated playlists by incorporating Web-
based data. Using the artist information found in the mp3
files’ ID3 tags, queries are sent to Google to obtain related
Web pages. Based on the retrieved Web pages, a tf×idf vec-
tor is calculated for each artist. In the next step, these artist
vectors are clustered using a Self-organising Map (SOM).
The resulting map is used to determine which artists can
be considered to be similar. This definition of artist simi-
larity is then used to modify the audio distance matrix, in
such a manner that the distances of pieces of artists that
are not similar (according to the clustering) are artificially
increased. Thus, for the TSP algorithm, it is less attractive
to select transitions between tracks of dissimilar artists. We
found indication that this modification leads to less noisy
playlists, i.e. playlists that do not switch between genres as
frequently as playlists created from audio information only.
However, while this enhancement leads to better playlists in
terms of genre consistency, it does not improve the quality
of the user interface. Still, the user has to learn from expe-
rience which regions on the wheel represent which kind of
music. Thus, it may require some time to find music from a
momentarily desired style.

In contrast, in this paper, we present an enhanced ap-
proach that allows for intuitive navigation and orientation
within large music collections by displaying meaningful de-
scriptors along the playlist. Based on the descriptions, the

user can easily find music she wants to listen to by browsing
the complete collection with one touch. The data neces-
sary to obtain the displayed descriptors is retrieved from
last.fm/Audioscrobbler. One major advantage of this data
source over the Google-based approach from [12, 5] is that
for each contained artist only one Web request has to be
made instead of 51. Furthermore, as the last.fm community
data can be used to perform a clustering of artists prior to
the playlist generation step, our approach avoids calculation
of a TSP on the complete collection.

Finally, we want to give an overview over other related
work. In [9], Self-organising Maps are utilized for brows-
ing of music collections and intuitive playlist generation on
portable devices. Having the music pieces arranged on a 2-
dimensional map (where similar sounding pieces are grouped
together), the user can simply create playlists by drawing ar-
bitrary paths on the map with a pen. In [4], Baumann et al.
put a focus on socio-cultural settings and different modal-
ities of song similarity. For ease of use, they present an
implementation of a music recommender on a PDA, where
multiple dimensions of similarity can be accessed via a joy-
stick. In [17], the similarity of artists is visualised on mobile
devices by means of graph-drawing algorithms.

Beside other approaches to automatic playlist generation
(e.g. [1, 3, 7]), especially methods that allow for dynamic
playlist generation [11, 16] are of interest in regard to this
paper, as they are particularly suited for implementation on
mobile devices. The basic idea is to incorporate explicit feed-
back given by the user, more precisely, rejections of songs
(“skips”). Based on the skips performed, the rest of the
playlist is modified to (presumably) better match the user’s
expectations. In future work, these approaches could be
used to complement the interface we present in this paper.

3. PROPOSED METHOD
In this section, we briefly describe the techniques used to

build our interface, namely retrieval of artist-related commu-
nity data, calculation of audio similarity between individual
music pieces, and construction and labeling of a circular
playlist.

3.1 Last.fm-based Artist Clustering
In a first step, we aim at obtaining descriptors from last.fm

for all artists in the collection. Last.fm1 is a music informa-
tion service that integrates into music player software and
keeps track of each user’s listening habits. Additionally, the
users can tag their tracks and artists with arbitrary labels.
Using the information from the tags together with know-
ledge on users’ collections, services like personalized radio
stations or recommendation of similar music are provided.
One aspect that is highly valuable for research and other ap-
plications is that large parts of the collected data are made
available via a Web service2.

For a specified artist, the tag data takes the form of a
list of words with associated (normalised) weights. Based
on this information, we cluster artists into (e.g., five) main
clusters. Tracks with unknown artist as well as tracks from
artists that can not be found on last.fm, are put into the
best-matching cluster based on audio similarity (cf. Sec-
tion 3.2). Using this procedure, each cluster is also as-

1http://www.last.fm
2http://www.audioscrobbler.net

signed a label that describes what is common to the con-
tained artists. We present two approaches for this cluster-
ing/labeling step, as outlined next.

3.1.1 Tag Frequency Binning

A simple method to group artists can be easily imple-
mented using the acquired data: In a first step, each artist is
joined with artists sharing the same top ranked last.fm tag.
Besides this initial assignment, each artist is also weighted
by the number of associated songs in the collection. That
way, weighted tag-bins of artists are formed. In a next step,
the bin with the smallest weight is removed and its artists
are spread among the remaining bins according to their sec-
ond highest ranked tag. After that, again, the bin with the
smallest weight is broken up. This procedure is repeated
iteratively until the desired number of groups is found.

An obvious drawback of this simple technique is that not
all artists can be directly related to one of the main clusters
since some artists are not assigned one of the top tags at
all. The tracks by those artists can again be associated with
a group using music similarity (cf. Section 3.2). Further-
more, this method can only work well when preprocessed,
normalized and weighted tags (like the tags from last.fm)
are available. In the next section, we present a more general
approach to generating the initial grouping.

3.1.2 NMF-Based Approach

As some of the artist tags consist of more than a single
word and some of these words also appear in various flec-
tions (e.g., b-boy and b-boying, or oldie and oldies), we chose
to break all tags into unigrams and apply stemming. Each
of the newly obtained unigrams inherits the weight of the
original last.fm tag. Weights of tags that appear more than
once for one artist are summed up.

The resulting data is analyzed for common “topics” (in
our case, musical concepts) using Non-Negative Matrix Fac-
torization (NMF) [6] (cf. [18, 13]). This is accomplished
by constructing a matrix of size number of artists × num-
ber of terms containing the weights of each term for each
artist. The resulting decomposition yields an a-priori de-
fined number of topics. The initial artist descriptors can
then be transformed into a representation that reflects the
degree of relatedness to each topic. We observe that in most
cases, each artist is mainly associated with one of these top-
ics. Thus, we simply assign each artist to the topic/cluster
it is most related to.

3.2 Audio Similarity
For calculating music similarity based on the audio con-

tent, we apply the algorithm from [15], which is a modified
version of the algorithm proposed in [10]. Pairwise distances
between all music tracks in the collection are determined.
For each piece of music, Mel Frequency Cepstral Coefficients
(MFCCs) are computed on short-time audio frames to char-
acterize the frequency distribution of each frame and hence
model aspects of timbre. Following [2], the i-th MFCC is
defined as:

ci =
1

2π
×

ω=+π
∫

w=−π

log(S(ejω)) · ejω·n
∂ω (1)

On each frame, 25 MFCCs are computed. Ignoring the
temporal order of frames, each song is then represented as

a Gaussian Mixture Model (GMM) of the distribution of
MFCCs. Using a Single Gaussian Model with full covariance
matrix is sufficient for representation, facilitating computa-
tion and comparison of the models [8]. A distance measure
is calculated on these models, denoted by DGauss.

To complement the MFCC-based similarity component,
also Fluctuation Patterns (FPs) are computed. This can be
considered an abstract description of the temporal succes-
sion of frequency activations. A track is represented as a 12-
band spectrogram and for each band, a Fast Fourier Trans-
formation (FFT) of the amplitude is taken over a window
of six seconds. The resulting matrix of size number of bands
× number of FFT components describes one song and is re-
ferred to as the Fluctuation Pattern of the song. The FPs of
two songs are compared by calculating the cosine similarity
between them, denoted by DFP . Furthermore, two addi-
tional FP-related features are computed: Bass (FPB) and
Gravity (FPG). These two features are scalar and the dis-
tance between two songs is calculated by subtracting them,
denoted by DFPB and DFPG. To obtain an overall similar-
ity value measuring the similarity of two songs, all described
similarity measures are z-normalized and then combined by
a simple arithmetic weighting.

D = 0.7 · D
Norm
Gauss + 0.1 ·

(

D
Norm
FP + D

Norm
FPB + D

Norm
FPG

)

(2)

where DNorm
x is the value of Dx after normalization. De-

tails can be found in [10, 15]. The similarity measure is used
to determine the order in which tracks are arranged within
a cluster, as described in the next section, and also to assign
tracks with no last.fm data available to one of the top-level
clusters.

3.3 Playlist Generation
Once the top-level clusters are defined, and the association

of each track to a particular cluster has been accomplished,
two steps need to be performed in order to create a circu-
lar arrangement of the collection. First, the placement of
individual tracks within a particular cluster must be deter-
mined. Second, the different clusters have to be connected.

3.3.1 Arranging Tracks in a Cluster via TSP

All tracks within a region should be arranged based on
their audio similarity to obtain a smooth transition between
consecutive tracks and subregions of similar tracks within
a given cluster. In [14, 12], a Traveling Salesman Prob-
lem (TSP) algorithm is applied to organise a given music
collection. Here, we adopt this procedure. The “cities” to
visit are the tracks, while distances between the tracks are
calculated with the audio-based music distance function de-
scribed in Section 3.2. We use the Minimum Spanning Tree
(MST)-based algorithm as proposed in [12]. From the dis-
tance matrix of the tracks in a cluster, an MST is created.
The tree is traversed in a depth-first order, and the tracks
are written into a list in the order they are first visited. Fi-
nally, the first track is visited again to form a closed route.
Thus, all tracks are ordered into a circular playlist within
each cluster.

3.3.2 Connecting the Intra-Cluster Playlists

Having a circular playlist for the tracks within each top-
level cluster we are in need of a strategy to optimally connect
them. The idea is to find an arrangement of clusters that

reflects the similarity of the contained music. Furthermore,
we need to determine those tracks that are best suited as
links between the clusters.

We decided to use a greedy approach: The output of the
previous step is n circular routes, where n is the number
of clusters. To merge them, each of the n circular playlists
is broken at the largest “distance” (i.e., the two consecu-
tive tracks in the playlist with the largest audio distance
between them is searched). These two tracks become the
endpoints of the (now linear) playlist. To connect these n

linear playlists, the two most similar endpoints (according
to audio similarity) from different clusters are connected,
yielding n − 1 linear playlists. This procedure is repeated
until all intra-cluster playlists are merged to one long circu-
lar playlist containing all tracks in the collection.

3.4 Automatic Region Labeling
To support a more easy orientation within the music col-

lection, the playlist created in the preceding steps is visu-
alised and augmented with meaningful descriptors. For this
purpose, we align the whole playlist along a sliding bar that
is colored according to the distribution of the previously
identified clusters. Thus, different kinds of music are rep-
resented as different colors on the bar. Between clusters,
colors are faded to support the impression of smooth tran-
sitions. Furthermore, the labels of the top-level clusters are
displayed in the center of the corresponding cluster region
on the color bar. While browsing, also additional tags that
describe the currently viewed track are displayed. This al-
lows for an immediate overview of the complete collection.

4. EVALUATION
In order to evaluate the usefulness of combining last.fm

data with content-based audio similarity, we compiled a
small test collection containing 1,440 tracks by 959 artists
from 21 genres. Last.fm tags were available for 834 artists
(87%). Using the simple Tag Frequency Binning approach,
135 artists could not be assigned to one of the top-level
clusters, i.e. in total, only 73% of the artists could be pre-
clustered. As a result, 1,128 tracks (78%) can be assigned
to a cluster without any information on the audio similar-
ity. Using the NMF-based clustering approach, this can be
accomplished for 1,299 tracks (90%).

To gain insights into the effects of community-based pre-
clustering and audio similarity-based arrangement within
the clusters we investigate the consistency of the generated
playlists (according to the genre information). Figure 2 de-
picts the distribution of the 21 genres along the playlists for
three different approaches — NMF pre-clustering with ran-
dom placement of tracks within the clusters (top), NMF pre-
clustering with TSP-based track placement (middle), and
Tag Frequency Binning pre-clustering with TSP-based track
placement (bottom). Dark segments indicate a high agglom-
eration of tracks from one genre. The genres are ordered by
the index where most pieces of that genre are accumulated.
(In the optimum case, a playlist would thus tend to result
in a diagonally descending sequence of black bars.)

One can see that already the community-based pre-clus-
tering alone has a very positive impact on the structure of
the playlist. Incorporating audio similarity information by
applying a TSP algorithm to the tracks in the clusters im-
proves the consistency even further. This impression can be
confirmed by calculating the entropy of the genre distribu-

metal, heavi, hard
altern, indi, rock

punk, rock, punkrock
hiphop, rap, rnb

rock, classic, hard
pop, femal, vocalist

Random (with pre−clustering)

rock
new age

alternative
comedy
hip−hop

r&b
folk
pop

christian
classical

reggae
latin

dance/electro
childrens

blues
world

soundtracks
jazz

holiday & misc
country

easy listening

rock, classic, hard
altern, indi, rock

punk, rock, punkrock
pop, femal, vocalist

hiphop, rap, rnb
metal, heavi, hard

TSP (NMF clustering)

pop
classical

folk
new age

alternative
world

comedy
reggae

easy listening
jazz

blues
soundtracks

country
latin

christian
dance/electro

hip−hop
r&b

holiday & misc
childrens

rock

country
classic rock

rnb
pop

hip hop
rock

TSP (Tag Frequency Binning clustering)

world
comedy
country

christian
folk

reggae
pop

blues
r&b

dance/electro
easy listening

jazz
classical
hip−hop

alternative
rock

new age
childrens

holiday & misc
soundtracks

latin

Figure 2: Genre distributions in playlists gener-
ated on our test collection with three different ap-
proaches. Vertical lines represent top-level cluster
boundaries.

tion for each approach. To this end, we investigate short
sequences of the playlists and count how many of t consec-
utive tracks belong to each genre. The normalised result is
then interpreted as a probability distribution on which the
Shannon entropy can be calculated as

H(X) = −

∑

x

p(x) log2 p(x) (3)

where p(x) is the relative frequency of genre x and
log2 p(x) = 0 if p(x) = 0.

In Figure 3, the entropy values for t = 2...12 averaged
over the whole playlist are given, i.e. each track of the
playlist was chosen once as the starting track for a sequence
of length t. Obviously, both audio supported playlist gener-
ation methods perform better than the random distribution
of tracks within a top-level cluster. The two different clus-
tering approaches yield comparable results.

2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

Playlist segment lenght

E
n
tr

o
p
y

Complete Shuffle

Random (with pre−clustering)

TSP (NMF clustering)

TSP (Tag Freq. Binning clustering)

Upper bound

Figure 3: Average entropy values for short se-
quences of the playlists. (Lower values are better.)

5. PROTOTYPE IMPLEMENTATION
To demonstrate and test how the proposed interface ef-

fectively works, we brought the whole idea to life on an
Apple iPod Video. The iPod platform was selected as its
scroll-wheel offers an intuitive input device for navigation
and thus fits well for the browsing interface presented here.

As the iPod is a closed platform, developing plugins or
modifying parts of the player-application is not possible. So
it was necessary to use an open, third party, development
environment to prototype the interface. We selected Rock-
box3, a GPL-licensed Open-Source DAP firmware.4

5.1 The User Interface
Our implementation of the music browsing interface di-

rectly integrates in the main mobile audio playback applica-
tion and makes easy changing of music style possible, even
during playback. Figure 4 shows the finished prototype im-
plementation and describes its main elements.

To understand how the player is used, the main focus
should be put on the continuous color bar in the center of
the screen. The color bar shows the six main music labels
which were found to describe the collection. The labels are
weighted and color-coded according to Section 3.4. As such,
the color bar alone allows a quick and coarse first glance on
the music collection currently loaded. For clarity the num-
ber of labels displayed is limited to a maximum of six.

In the original Rockbox and Apple iPod player the scroll
wheel is mainly used for controlling the playback volume.
For our purpose we remapped the input of the scroll wheel
to allow circular movement of the continuous color bar to
select a specific area to play. A static pin overlaying the
bar indicates the currently selected area. In addition to
this, a textfield displays last.fm subtags which were found
to describe the selected region.

3http://www.rockbox.org
4The modified Rockbox implementation and player ap-
plication skin are available on the project homepage at
http://www.cp.jku.at/projects/intelligent-ipod/

Figure 4: The different elements of the browsing in-
terface. A continuous color bar shows six main mu-
sic styles discovered for a collection of 1,440 songs
(2). The bar can be slid to the left or to the right
using the scroll wheel (4). Additional information
about a subregion is displayed in a textfield (1) and
updated while moving the color bar. To start play-
ing the music of a specific area, one can simply scroll
to that area and press the select button (5). The
currently played song is displayed in (3).

As soon as the user selects a position on the color bar
for playback, the selection is extrapolated on a song in the
precomputed TSP playlist (see Section 3.3). Since all songs
in this playlist are arranged according to their maximum
audio similarity, successive songs should fit together nicely,
making the interface perfect for quick but matching on-the-
go playlists.

5.2 Usage Scenario
To use the proposed interface on the iPod, three items

need to be generated and uploaded on the mobile audio
player: First, a playlist, generated by the means of the ar-
rangement algorithm presented in Section 3.3. Second, a
text file, containing the region and sub-region labels of the
playlists extracted from last.fm, and third, a pre-generated
color bar image, as described in Section 3.4.

Since it is computationally very intensive to compute op-
timal playlist arrangements, analyze audio content and pro-
cess huge loads of last.fm tags, these computations can not
be performed on a mobile device. An actual usage scenario
would definitely have to include a desktop or server com-
puter, synchronizing the required data to the mobile player.

6. DISCUSSION AND FUTURE WORK
We presented an intelligent mobile music interface that

allows for intuitive navigation and orientation within large
music collections. By visualising the different music styles
via different colors and displaying meaningful descriptors
along the generated playlist, the user can easily find music
she wants to listen to with one touch.

In general, feedback from people we asked to play around
with the interface was very positive. People were happily
surprised by the simple possibility to explore and listen to
a music collection by just scrolling and clicking. Also the
arrangement of tracks has been mentioned to be very fit-
ting. The easy selection process of musical styles was con-
sidered to be very practical when being en-route (although
not actually tried in a real-life scenario). Regarding the two
different clustering approaches proposed, although the dis-
covered concepts were very similar, we had the impression
that the tag frequency binning approach resulted in slightly
more intuitive clusters.

As for future work, as mentioned before, the incorporation
of dynamic playlist generation based on skipping behaviour
(cf. [11]) seems to be very promising. Currently, the col-
lection is organised in a static way which could be tedious
after some time. Hence, taking user feedback, i.e. skipping
of currently undesired tracks, into consideration would make
the listening experience more interactive and interesting.

In addition, we plan to investigate further options to en-
able a more detailed selection of tracks within the music col-
lection. To this end, we will explore methods that provide
position-based level-of-detail adaptation, e.g. an automatic
magnification mode. We are also confident that the simplic-
ity of our approach allows us to easily transfer the interface
to other mobile platforms such as the Nokia S60 series or
the upcoming iPod Touch. In general, we believe that the
capabilities of such platforms will offer a playground for new
and cool approaches to interact with music.

7. ACKNOWLEDGMENTS
This research is supported by the Austrian Fonds zur För-

derung der Wissenschaftlichen Forschung (FWF) under pro-
ject number L112-N04. The Austrian Research Institute for
Artificial Intelligence acknowledges financial support by the
Austrian ministries BMBWK and BMVIT.

8. REFERENCES
[1] M. Alghoniemy and A. Tewfik. A Network Flow

Model for Playlist Generation. In Proceedings of the
IEEE International Conference on Multimedia and
Expo (ICME’01), Tokyo, Japan, 2001.

[2] J.-J. Aucouturier and F. Pachet. Music similarity
measures: What’s the use? In Proceedings of the 3rd
International Conference on Music Information
Retrieval (ISMIR’02), Paris, France, 2002.

[3] J.-J. Aucouturier and F. Pachet. Scaling Up Music
Playlist Generation. In Proceedings of the IEEE
International Conference on Multimedia and Expo
(ICME’02), Lausanne, Switzerland, 2002.

[4] S. Baumann, T. Pohle, and V. Shankar. Towards a
socio-cultural compatibility of MIR systems. In
Proceedings of the 5th International Conference on
Music Information Retrieval (ISMIR’04), Barcelona,
Spain, 2004.

[5] P. Knees, T. Pohle, M. Schedl, and G. Widmer.
Combining Audio-based Similarity with Web-based
Data to Accelerate Automatic Music Playlist
Generation. In Proceedings of the 8th ACM SIGMM
International Workshop on Multimedia Information
Retrieval (MIR’06), Santa Barbara, CA, USA, 2006.

[6] D. D. Lee and H. S. Seung. Learning the parts of
objects by non-negative matrix factorization. Nature,
401:788791, 1999.

[7] B. Logan. Content-Based Playlist Generation:
Exploratory Experiments. In Proceedings of the 3rd
International Conference on Music Information
Retrieval (ISMIR’02), Paris, France, 2002.

[8] M. Mandel and D. Ellis. Song-level features and
support vector machines for music classification. In
Proceedings of the 6th International Conference on
Music Information Retrieval (ISMIR’05), London,
UK, 2005.

[9] R. Neumayer, M. Dittenbach, and A. Rauber.
PlaySOM and PocketSOMPlayer, Alternative
Interfaces to Large Music Collections. In Proceedings
of the 6th International Conference on Music
Information Retrieval (ISMIR’05), London, UK, 2005.

[10] E. Pampalk. Computational Models of Music
Similarity and their Application in Music Information
Retrieval. PhD thesis, Vienna University of
Technology, Austria, March 2006.

[11] E. Pampalk, T. Pohle, and G. Widmer. Dynamic
Playlist Generation Based on Skipping Behaviour. In
Proceedings of the 6th International Conference on
Music Information Retrieval (ISMIR’05), London,
UK, 2005.

[12] T. Pohle, P. Knees, M. Schedl, E. Pampalk, and
G. Widmer. “Reinventing the Wheel”: A Novel
Approach to Music Player Interfaces. IEEE
Transactions on Multimedia, 9(3):567–575, 2007.

[13] T. Pohle, P. Knees, M. Schedl, and G. Widmer.
Building an interactive next-generation artist
recommender based on automatically derived
high-level concepts. In Proceedings of the 5th
International Workshop on Content Based Multimedia
Indexing (CBMI 2007), Bordeaux, France, 2007.

[14] T. Pohle, E. Pampalk, and G. Widmer. Generating
similarity-based playlists using traveling salesman
algorithms. In Proceedings of the 8th International
Conference on Digital Audio Effects (DAFx-05), 2005.

[15] T. Pohle and D. Schnitzer. Striving for an Improved
Audio Similarity Measure. In 4th Annual Music
Information Retrieval Evaluation Exchange, 2007.

[16] D. Schnitzer. MIRAGE – High-Performance Music
Similarity Computation and Automatic Playlist
Generation. Master’s thesis, Vienna University of
Technology, 2007.

[17] R. van Gulik, F. Vignoli, and H. van de Wetering.
Mapping music in the palm of your hand, explore and
discover your collection. In Proceedings of 5th
International Conference on Music Information
Retrieval (ISMIR’04), Barcelona, Spain, 2004.

[18] W. Xu, X. Liu, and Y. Gong. Document clustering
based on non-negative matrix factorization. In
Proceedings of the 26th ACM SIGIR, Toronto,
Canada, 2003.

