
UNIVERSITÄT LINZ
JOHANNES KEPLER JKU

Technisch-Naturwissenschaftliche
Fakultät

Accurate Audio-to-Score Alignment –
Data Acquisition in the Context of

Computational Musicology

DISSERTATION

zur Erlangung des akademischen Grades

Doktor

im Doktoratsstudium der

Technischen Wissenschaften

Eingereicht von:

Dipl.-Ing. Mag. Bernhard Niedermayer

Angefertigt am:

Institut für Computational Perception

Beurteilung:

Univ.-Prof. Dipl.-Ing. Dr. Gerhard Widmer (Betreuung)
Dipl.-Ing. Dr. Alois Sontacchi

Linz, Februar 2012

Acknowledgements I

Acknowledgements

First, I want to thank Gerhard Widmer. He did not only supervise this thesis, but

also gave me the chance to work at his lab at the Johannes Kepler University of

Linz. He was able to provide funding granted by the Austrian Science Fund (FWF)

throughout the whole period of time I was working on this thesis, which is remarkable

when taking the general economic situation during the last years into account. More

precisely, the majority of the work presented here has been conducted within the scope

of the projects Computational Music Performance Research, Applied (TRP 109-N23)

and Computational Performance Style Analysis from Audio Recordings (P19349-N15).

In addition, I want to thank Gerhard Widmer for maintaining a perfect balance between

giving me the freedom to focus on research questions according to my own interests

and to direct my efforts towards the respective project objectives.

Thanks in advance go to Alois Sontacchi for taking the time to assess this thesis and

to act as examiner in its defense.

I also want to thank my colleagues at the lab, not only for the countless number of

valuable discussions, but also for the great working atmosphere. It is a pleasure to

work in an environment where, literally, all doors are open, and everyone is open to

share one’s thoughts one current research questions, latest results of one’s own work,

or simply a ”nice-to-have” shell script.

I acknowledge my gratitude to Gerhard Widmer, Simon Dixon, and Werner Goebl who

acquired the corpus of Mozart sonatas in the context of a project at OFAI (the Austrian

Research Institute for Artificial Intelligence in Vienna). An adapted version of this data

corpus is used for the evaluation throughout this thesis.

Finally, I want to thank my family for giving me the support and the environment to

pursue an education at the university level which has now led to the completion of this

thesis. Special thanks go to Birgit for accepting my increasingly long night shifts spent

in front of screen and keyboard.

Kurzfassung II

Kurzfassung

Die Aufgabenstellung die dieser Dissertation zu Grunde liegt ist, bestehende Systeme

zum automatischen Synchronisieren von elektronischen Notentexten zu entsprechenden

Audio-Aufnahmen so weit zu verbessern, dass sie zur halb-automatischen Extraktion

der genauen Anschlagzeiten aller Noten in einem Klavierstück verwendet werden kön-

nen. Der Fokus liegt dabei auf der Minimierung der Anzahl an Korrekturen, die ein

Benutzer am Ergebnis vornehmen muss.

Bestehende Synchronisationssysteme behandeln eine beliebige Anzahl an Noten, die

als gleichzeitig notiert sind, als ein einzelnes Ereignis. Die Konsequenz daraus ist,

dass jede dieser Noten durch eine einheitliche Anschlagzeit beschrieben wird. Ein

wesentlicher Beitrag dieser Arbeit ist es, Strategien zu Verfeinerung vorzustellen, die

diese, musikalisch unbegründete, Vereinfachung beseitigen. Durch diesen Schritt wird

die korrekte Behandlung von Asynchronizitäten und Akkord-Zerlegungen möglich.

Zur genauen Extraktion der Anschlagzeiten einzelner Noten wird ein Audio-Merkmal

eingeführt, welches die Aktivierungsenergie einzelner Töne beschreibt. Es beruht auf

einer modellbasierten Faktorisierung des Spektrogram und kann daher, im Gegensatz

zu filterbasierten Methoden, an den musikalischen Kontext einer Note angepasst wer-

den. Basierend auf diesen Techniken werden Anwendungen im Bereich der comput-

ergestützten Musikwissenschaft diskutiert. Dabei stellt ein Software-Werkzeug zum

Inspizieren und Korrigieren automatisch erstellter Annotationen eine nötige Grundlage

dar. Genaue Transkriptionen einer Interpretation können dann visualisiert oder zum

Ableiten von Interpretations-Modellen verwendet werden.

Die Evaluierung der vorgestellten Methoden wird auf einem Korpus klassischer Klavier-

musik durchgeführt. Dieser umfasst mehr als 100.000 Noten und eine Spielzeit von

ungefähr vier Stunden. Durch den Einsatz eines computergesteuerten Konzert-Flügels

konnten korrekte Annotationen zu den Audio-Aufnahmen gewonnen werden. Somit ist

es möglich, die zeitliche Abweichung der automatisch extrahierten Anschlagzeit einer

Note von der tatsächlichen zu messen. Im Rahmen dieser Arbeit ist es gelungen ein

System zu entwickeln, bei dem der Median dieser Abweichungen über den gesamten

Evaluierungskorpus kleiner als 10 Millisekunden ist.

Abstract III

Abstract

The objective of this thesis is to introduce enhancements to existing Audio-to-Score

Alignment systems which allow for a semi-automatic annotation of note onsets within

audio recordings of different performances of classical piano pieces. The main focus

is put on minimizing the number of note onsets a human annotator would need to

correct.

If an arbitrary number of notes is notated concurrently, it is treated as one single

event by current state-of-the-art systems. Consequently, such a set of notes is assigned

a common onset time. As one of the main contributions of this thesis, refinement

strategies which resolve this simplification are proposed. This important step allows

for dealing with stylistic details such as arpeggiations and asynchronies.

For the accurate extraction of an individual note’s onset, a feature is introduced that

represents the activation energy of a single pitch. It relies on a model-based factorization

of the spectrogram and can, in contrast to filter based approaches, be tuned to the

musical context of a note.

Based upon these techniques, a number of applications in the domain of computational

musicology are discussed. Here, a prerequisite is an annotation tool, where the user

can inspect and correct the automatically computed alignments. Accurate performance

transcriptions can, then, be used for visualization of performer specific characteristics

or the generation of respective performance models.

The evaluation of the proposed methods is performed on a corpus of classical piano

music comprising more than 100,000 notes and a performance time of about four hours.

An exact ground truth annotation corresponding to the audio recordings was obtained

by using a computer controlled grand piano. This allows us to measure the deviation

between the actual and the automatically extracted onset times. Within the scope of

this thesis, a system was developed for which the median of these time deviations is

below 10 milliseconds over the entire evaluation corpus.

Contents IV

Contents

1. Introduction 1

1.1. Motivation . 1

1.2. Objectives and Contribution . 2

1.2.1. Problem Description . 3

1.2.2. Contributions . 4

1.3. Outline . 5

2. Evaluation 7

2.1. Data Corpus . 8

2.1.1. The Bösendorfer SE 290 . 9

2.1.2. The Mozart Sonatas . 11

2.2. Test Bench Environment . 12

2.2.1. Matching Score MIDI to Performance MIDI 12

2.2.2. Matching Performance MIDI to Audio 14

2.3. Evaluation Criteria . 15

2.3.1. Timing . 15

2.3.2. Loudness . 19

2.3.3. Other Evaluation Criteria . 19

2.4. A Detailed Analysis of Possible Data Sources 20

2.4.1. Alternative Audio Sources . 20

2.4.2. Performance Aspects . 25

2.5. Conclusions and Consequences for this Thesis 29

3. Feature Extraction for Audio Alignment 30

3.1. Time-Frequency Transformations . 31

3.1.1. Short Time Fourier Transform 31

3.1.2. Constant Q Transform . 35

3.1.3. Wavelet Transform . 37

3.1.4. Gabor Analysis . 38

3.1.5. Filter Banks . 39

3.1.6. Discussion . 40

3.2. Chroma Vectors . 42

3.2.1. Distance Weighting . 43

3.2.2. Spectral Peak Selection . 44

Contents V

3.2.3. Harmonic Frequencies . 44

3.2.4. Pre- and Post-processing Methods 45

3.3. Onset-based Features . 47

3.4. Pitch Activation . 48

3.4.1. Non-negative Matrix Factorization 49

3.4.2. Non-negative Least Squares Factorization 52

3.4.3. Tone models . 54

3.5. Extraction of Score Features . 59

3.6. Conclusions and Consequences for this Thesis 60

4. Audio-to-Score Alignment Techniques 62

4.1. Dynamic Time Warping . 63

4.1.1. Similarity Measure . 63

4.1.2. Minimal Cost Calculation . 64

4.1.3. Path Backtracking . 66

4.1.4. Enhancements of the DTW Algorithm 67

4.2. Graphical Score Models . 68

4.2.1. Note and Chord Duration Modeling 68

4.2.2. Tempo Modeling . 70

4.2.3. Observation Probability Distribution 72

4.2.4. Modeling of Asynchronies . 72

4.2.5. Model Training and Decoding . 73

4.3. Quasi-Transcription . 74

4.3.1. The Symbolic Domain . 74

4.3.2. Local Distances . 76

4.4. Onset Matching . 77

4.5. Conclusion and Consequences for this Thesis 79

5. Alignment Optimization Techniques 81

5.1. Optimization towards Computational Costs 81

5.1.1. Static global Constraints . 81

5.1.2. Online Audio Alignment . 82

5.1.3. Path Pruning . 83

5.1.4. Shortcut Paths . 84

5.1.5. Multi-Scale DTW . 84

5.1.6. Divide & Conquer . 86

5.2. Optimization towards Robustness . 86

5.2.1. Short-Time Statistics . 87

5.2.2. Robustness to Structural Changes 88

5.2.3. Plausibility Estimation . 89

5.3. Optimization towards Accuracy . 94

5.3.1. Implicit Accuracy Improvement 94

Contents VI

5.3.2. Score-guided Audio Transcription 95

5.3.3. Single-Pass Post-processing Methods 98

5.4. Conclusion and Consequences for this Thesis 101

6. A System for Accurate Audio-to-Score Alignment at the Note Level103

6.1. Initial Alignment . 103

6.2. Anchor Note Selection . 104

6.2.1. Candidate Extraction . 105

6.2.2. Candidate Selection . 107

6.3. Between-Anchor Refinement . 109

6.3.1. Beta distribution . 109

6.3.2. Onset estimation . 111

6.4. Refinement of Notes concurrent to Anchors 113

6.5. Evaluation Results . 114

6.6. Conclusion . 115

7. Applications 117

7.1. Graphical Annotation Tool . 117

7.2. Musical Performance Research . 119

7.2.1. Performance Visualization . 120

7.2.2. Expressive Performance Rendering 123

7.3. Audio-to-Audio Alignment and Structural Analysis 125

7.4. Version Detection . 128

7.4.1. Acoustic Characteristics of Musical Automata 129

7.4.2. Version Detection System . 130

7.4.3. Feature Extraction . 131

7.4.4. Segmentation . 132

7.4.5. Alignment and Similarity Measurement 133

7.4.6. Data Merging . 134

7.4.7. Experimental Results . 135

7.5. Other Applications of Audio Alignment 136

7.5.1. Desoloing . 136

7.5.2. Query-by-Humming and Music Retrieval 137

8. Conclusion 138

8.1. Summary . 138

8.2. Discussion . 139

8.3. Future Developments . 140

A. Performance Statistics 142

A.1. Tempo . 142

A.2. Dynamics . 144

A.3. Micro-Timings . 145

Contents VII

B. Alignment Results 147

Bibliography 191

Curriculum Vitae 206

List of Figures VIII

List of Figures

2.1. Overview of the test bench used for the evaluation of Audio-to-Score

Alignment results . 15

2.2. Timing error of an example alignment measured in terms of beats . . . 17

2.3. Spectra of a C3 as played on the Bösendorfer grand piano (a) and syn-

thesized by timidity (b) and the VSL (c) 23

3.1. Tone model of the note A4 . 55

3.2. Tone model of the note A[4 trained from a sample recording 58

3.3. Example Pitch Activation . 58

4.1. Alignment cost matrix and path . 66

4.2. Possible constraints for steps allowed during a DTW computation . . . 67

4.3. Topology of an HMM for note duration modeling 70

5.1. Two-scale DTW . 85

5.2. Hough transform of two feature sequences calculated from performances

of the same piece of music (a) and the recordings of two pieces different

from each other (b). 92

6.1. Overview of the proposed Audio-to-Score Alignment system 104

6.2. Onset expectation strength modeled as a Beta-distribution 111

6.3. Refinement of notes between two anchors 112

6.4. Refinement of notes concurrent to anchors 114

7.1. Screen-shot of the annotation tool . 117

7.2. Screen-shot of the annotator tool, showing an aligned score 119

7.3. Comparison between actual performed and automatically extracted tempo121

7.4. Combined Tempo- and Dynagram representation as extracted automat-

ically (a) and the Tempogram computed from the ground truth data

(b) . 123

7.5. Overview of the structure of the Bayesian model used in the YQX system125

7.6. Screen-shot of a music player with integrated piece structure analysis . . 127

7.7. The ending of the same theme from Mendelssohn’s oratorio Elias played

by two different musical boxes. 130

7.8. Calculation of the similarity measure . 131

List of Figures IX

B.1. Time Deviations k.279-1 . 152

B.2. Time Deviations k.279-2 . 153

B.3. Time Deviations k.279-3 . 154

B.4. Time Deviations k.280-1 . 155

B.5. Time Deviations k.280-2 . 156

B.6. Time Deviations k.280-3 . 157

B.7. Time Deviations k.281-1 . 158

B.8. Time Deviations k.281-2 . 159

B.9. Time Deviations k.281-3 . 160

B.10.Time Deviations k.282-1 . 161

B.11.Time Deviations k.282-2 . 162

B.12.Time Deviations k.282-3 . 163

B.13.Time Deviations k.283-1 . 164

B.14.Time Deviations k.283-2 . 165

B.15.Time Deviations k.283-3 . 166

B.16.Time Deviations k.284-1 . 167

B.17.Time Deviations k.284-2 . 168

B.18.Time Deviations k.284-3 . 169

B.19.Time Deviations k.330-1 . 170

B.20.Time Deviations k.330-2 . 171

B.21.Time Deviations k.330-3 . 172

B.22.Time Deviations k.331-1 . 173

B.23.Time Deviations k.331-2 . 174

B.24.Time Deviations k.331-3 . 175

B.25.Time Deviations k.332-1 . 176

B.26.Time Deviations k.332-2 . 177

B.27.Time Deviations k.332-3 . 178

B.28.Time Deviations k.333-1 . 179

B.29.Time Deviations k.333-2 . 180

B.30.Time Deviations k.333-3 . 181

B.31.Time Deviations k.457-1 . 182

B.32.Time Deviations k.457-2 . 183

B.33.Time Deviations k.457-3 . 184

B.34.Time Deviations k.475-1 . 185

B.35.Time Deviations k.475-2 . 186

B.36.Time Deviations k.475-3 . 187

B.37.Time Deviations k.533-1 . 188

B.38.Time Deviations k.533-2 . 189

B.39.Time Deviations k.533-3 . 190

List of Tables X

List of Tables

2.1. Overview of pieces used for evaluation 12

2.2. Score-performance deviations by insertions and deletions 13

2.3. Performance of a simple Audio-to-Score Alignment and an onset detector

on the datasets generated using different rendering methods 25

2.4. Absolute and relative time the pedal was pressed for the individual move-

ments . 26

2.5. Intra-chord dynamics deviations according to the degree of polyphony . 27

2.6. Time spreads between the earliest and the latest note of a chord disre-

garding ornamentations . 28

2.7. Time spreads between the earliest and the latest note of a chord including

ornamentations . 28

2.8. Performance of the example algorithms on the datasets exhibiting all

aspects of expressive variations (a) and with suppressed micro timings (b) 29

3.1. Interval in semitones between the fundamental frequency and the har-

monics and the respective offsets in terms of pitch classes 45

6.1. Comparison between Pitch Activation and Selective Bandpass Filtering 107

6.2. Alignment result of the proposed system on the entire evaluation corpus 115

7.1. Rank of the corresponding version of the same piece within the list of

candidates . 136

A.1. Tempo indication, time signature, and performed tempo of the 1st move-

ments . 142

A.2. Tempo indication, time signature, and performed tempo of the 2nd move-

ments . 143

A.3. Tempo indication, time signature, and performed tempo of the 3rd move-

ments . 143

A.4. Intra-chord dynamics deviations within the 1st movements 144

A.5. Intra-chord dynamics deviations within the 2nd movements 144

A.6. Intra-chord dynamics deviations within the 3rd movements 144

A.7. Intra-chord asynchronies within the 1st movements disregarding orna-

mentations . 145

List of Tables XI

A.8. Intra-chord asynchronies within the 2nd movements disregarding orna-

mentations . 145

A.9. Intra-chord asynchronies within the 3rd movements disregarding orna-

mentations . 145

A.10.Temporal spreads of ornamented chords within the 1st movements . . . 146

A.11.Temporal spreads of ornamented chords within the 2nd movements . . . 146

A.12.Temporal spreads of ornamented chords within the 3rd movements . . . 146

B.1. Overall Alignment Results . 148

B.2. Overall Alignment Results: First Movements 149

B.3. Overall Alignment Results: Second Movements 150

B.4. Overall Alignment Results: Third Movements 151

B.5. Alignment Results k.279-1 . 152

B.6. Alignment Results k.279-2 . 153

B.7. Alignment Results k.279-3 . 154

B.8. Alignment Results k.280-1 . 155

B.9. Alignment Results k.280-2 . 156

B.10.Alignment Results k.280-3 . 157

B.11.Alignment Results k.281-1 . 158

B.12.Alignment Results k.281-2 . 159

B.13.Alignment Results k.281-3 . 160

B.14.Alignment Results k.282-1 . 161

B.15.Alignment Results k.282-2 . 162

B.16.Alignment Results k.282-3 . 163

B.17.Alignment Results k.283-1 . 164

B.18.Alignment Results k.283-2 . 165

B.19.Alignment Results k.283-3 . 166

B.20.Alignment Results k.284-1 . 167

B.21.Alignment Results k.284-2 . 168

B.22.Alignment Results k.284-3 . 169

B.23.Alignment Results k.330-1 . 170

B.24.Alignment Results k.330-2 . 171

B.25.Alignment Results k.330-3 . 172

B.26.Alignment Results k.331-1 . 173

B.27.Alignment Results k.331-2 . 174

B.28.Alignment Results k.331-3 . 175

B.29.Alignment Results k.332-1 . 176

B.30.Alignment Results k.332-2 . 177

B.31.Alignment Results k.332-3 . 178

B.32.Alignment Results k.333-1 . 179

B.33.Alignment Results k.333-2 . 180

B.34.Alignment Results k.333-3 . 181

List of Tables XII

B.35.Alignment Results k.457-1 . 182

B.36.Alignment Results k.457-2 . 183

B.37.Alignment Results k.457-3 . 184

B.38.Alignment Results k.475-1 . 185

B.39.Alignment Results k.475-2 . 186

B.40.Alignment Results k.475-3 . 187

B.41.Alignment Results k.533-1 . 188

B.42.Alignment Results k.533-2 . 189

B.43.Alignment Results k.533-3 . 190

Introduction 1

1. Introduction

Music is the universal language of mankind.

Henry Wadsworth Longfellow, (in Outre-Mer)

1.1. Motivation

When listening to individual performances of a piece of classical music, it is likely

that we hear differences in terms of dynamics, global and local tempo, or articulation.

While it is relatively easy to get an intuition of a performer’s style and to describe

it qualitatively, it is difficult to obtain quantitative measurements of the expressive

details of a performance. A major subfield of Computational Musicology concerns

itself with the automated extraction and description of quantifiable aspects of musical

performances.

To measure and understand how a performer uses the available degrees of freedom to

give a piece a certain expression, a prerequisite is that those parameters, such as tim-

ing and loudness of individual notes, are known. A valuable source of such information

are computer-monitored musical instruments. One example of a corpus obtained this

way is the entire solo piano work of Frédéric Chopin performed by the Russian pianist

Nikita Magaloff in 1989 on a Bösendorfer SE grand piano in Vienna. The resulting

transcriptions of these performances, comprising precise measurements of every key and

pedal action, have been extensively studied in the course of the Magaloff Project (see

[Flossmann et al., 2010] for a report). Interesting findings do not only concern perfor-

mance errors, between-hand asynchronies, and tempo rubato, but also the shaping of

certain rhythmic passages.

However, transcriptions from computer-monitored instruments are rarely available for

performances of famous artists. In contrast, audio recordings of professional perfor-

mances can easily be obtained. The problem arising from using audio material as a

data source is to extract an annotation at a level of accuracy which allows for the

analysis of musical expression. Considering that the human auditory system is able to

Introduction 2

recognize temporal displacements of down to a few milliseconds, it is obvious that a

manual annotation of large corpora is very time-consuming and expensive.

An alternative would be the automatic transcription of recorded music. While this

problem is considered to be solved for monophonic pieces, it remains an open problem

for polyphonic music. In the context where different performances of a known piece are

analyzed, however, one is not primarily interested in extracting the performed melodies

or harmonies which are inherently determined by the score. Here, the problem of Blind

Audio Transcription can be reduced to estimating the expressive parameters, such as

relative loudness or articulation, for each note. Extracting each score note’s timing

in particular yields a synchronization between the score and the audio recording of a

performance which is called Audio-to-Score Alignment. In comparison to audio tran-

scription, state-of-the-art algorithms for such Audio-to-Score Alignments are relatively

robust.

In order to be able to obtain annotations of recorded music which can be used in

performance research, one has to achieve an adequate alignment accuracy. Therefore,

the main focus of this thesis is placed on refining Audio-to-Score Alignments such

that a human annotator’s job can be reduced to the task of inspecting and correcting

automatically generated timing annotations.

1.2. Objectives and Contribution

A long-term objective is to build an entirely automatic tool to align arbitrary audio

recordings to their corresponding scores, including the extraction of the exact timing

and loudness of each note while reporting playing errors or deviations from the score.

However, while trained listeners are able to follow the score when listening to a per-

formance or can even transcribe heard music, it is questionable if they are able to

distinguish between different levels of loudness of individual notes of a chord. Further-

more, when looking at a sound’s waveform, i.e., the representation of music available

to computational processing, it seems to be impossible for humans to even tell apart

musical content from speech, a mixture of both, or just noise.

MIR-research cannot per-se rely on high-level concepts as perceived by the human

auditory system, such as pitch, note onsets, or timbre. Although considerable advances

towards equaling the human perceptual capabilities have been achieved during the last

30 years, the extraction of each mid- or high-level representation of music is prone to

errors or imprecisions. Therefore, even when the score of a performed piece is known,

Introduction 3

accurately synchronizing it with a corresponding audio recording remains a difficult

task.

1.2.1. Problem Description

This thesis concerns itself with Audio-to-Score Alignment in the context of classical

piano music. Classical music is predestined for this task since, in general, the score as

well as numerous performances by various pianists are known and publicly available.

Piano is a musical instrument with limited degrees of freedom and therefore relatively

easy to model. A note onset, for example, is always a sudden transient after which

the loudness of the tone is subject to decay of the strings’s oscillation and cannot

be increased any more. Also, computer controlled mechanical instruments able to

reproduce the full range of expressive variations are available and can be used to obtain

highly accurate ground-truth data. The piano is therefore the subject of numerous MIR

research activities.

The resulting alignment system is intended to be used as an annotation tool. For each

note of the score, the exact onset time within a corresponding audio recording has

to be measured while requiring as few user interactions (i.e., manual corrections) as

possible. Hence, the critical factor is the accuracy of note onsets, while other aspects

such as note durations or their loudnesses are neglected. The objective is to maximize

the number of notes where the deviation of the extracted onset time from the real one

is not noticeable. It is desirable that notes where this goal is not attained, are still

aligned within a second, wider tolerance range. However, since in such cases a manual

correction is required anyway, the overall robustness with respect to such a threshold

is only a secondary objective in this context.

A second auxiliary goal is to keep computational costs low. The task at hand is an

optimization problem, where many of the algorithms used have an asymptotic com-

plexity of O(n2) or even worse in space as well as in time. Increasing accuracy by

providing additional features or features calculated at higher resolutions is limited by

such computational constraints.

One possible approach for Audio-to-Score Alignment is to extract the same features as

calculated from the audio recording from the score as well. In such cases, the problem

at hand is an Audio-to-Audio Alignment. Due to the inherent similarities between these

two subfields, the term audio alignment will be used in situations where a discrimination

is not necessary.

Introduction 4

1.2.2. Contributions

While the original ideas of audio alignment and also its online correspondent, score

following, date back several decades, the contributions of this thesis comprise several

new approaches and improvements of existing methods concerning all stages of the

alignment process.

Feature Extraction A new audio feature – Pitch Activation – which can be under-

stood as a rudimentary multiple pitch estimator is introduced. It is calculated

by factorizing a spectrogram using pre-trained tone models and a non-negativity

constraint. In analogy to a (comb-)filter bank it also accounts for a fundamental

frequency’s harmonics. However, in contrast to filter banks, the musical context

can be taken into account by training the tone models on a certain instrument and

considering only those models corresponding to notes which are expected to be

played within a certain time window under consideration. The Pitch Activation

feature will be described in Section 3.4.

Global Alignment The literature describes two approaches for the alignment between

the symbolic score and audio recordings. One is based on decoding a graphical

model of the score when certain audio data is observed. The other one, extracts

audio features from the score, either directly or by synthesizing it, yielding a

second audio recording. Here, the third alternative, next to these audio-only and

mixed domain approaches, is explored. Based on a quasi-transcription of the audio

recording, the actual alignment is performed in the symbolic domain. Although

we found that this method cannot compete with state-of-the-art systems in terms

of accuracy, it achieves a significant data reduction and is, therefore, valuable for

the processing of very long pieces. This system will be described in Section 4.3.

Aiming at computational efficiency as well, we also describe an automated di-

vide & conquer version of the Dynamic Time Warping algorithm. Based on an

initial alignment calculated at low feature resolutions, notes are identified for

which an exact timing can be extracted with a high confidence. Then the algo-

rithm – which is of complexity O(n2) – is performed at higher feature resolutions

on each individual segment between two such notes. This method will be de-

scribed in Section 5.1.6.

Note-level Alignment A vast majority of state-of-the-art approaches to Audio-to-Score

Alignment considers all events notated concurrently – single notes as well as whole

chords – as one single object. Hence, they are matched to the same timestamp

within the audio recording. In the domain of computational musicology and

performance analysis such as conducted in the context of the Magaloff project

Introduction 5

(cf. [Flossmann et al., 2010]), however, exact timing information is required for

each individual note. Therefore, post-processing methods aimed at refining each

note’s onset time individually are proposed. This is the main contribution of this

thesis and will be described in Chapter 6.

Evaluation We evaluate the described algorithms using various configurations on a

unique dataset comprising more than 100.000 notes. The data was obtained

from a live performance of a professional pianist on a computer monitored grand

piano, yielding the exact parameters for each played note. This allows for large

scale evaluation at the note-level. Also, we present a detailed analysis of audio

material produced by software synthesizers to give us an idea about how our

results compare to those of other authors using such audio sources. Evaluation

issues will be discussed in Chapter 2.

Applications Finally, an annotation tool incorporating an automatic Audio-to-Score

Alignment functionality is presented in Section 7.1. For the user’s convenience,

he can choose between a fast and computationally efficient algorithm and our

proposed system which is tuned towards high accuracy. We also demonstrate the

use of the acquired data as well as the application of developed algorithms to

related tasks in the context of computational musicology, such as the automatic

extraction of tempo curves and corresponding visualizations, structural analysis,

and version detection. These applications will be described in Chapter 7.

1.3. Outline

This thesis is structured as follows. In Chapter 2, the evaluation of Audio-to-Score

Alignment is discussed. There, not only the used data corpus as well as chosen evalua-

tion metrics and adequate result plots are described. An issue which is also covered is

the comparability of results obtained from different audio material, such as synthesized

MIDI in general, or data synthesized from symbolic music representations covering

expressive variations in varying richness. Experiments are conducted that show that

when using synthesized data for audio alignment experiments, natural micro-timings

are most crucial to obtain meaningful results.

Chapter 3 concerns itself with the feature extraction process. Since a vast majority

of current alignment systems rely on audio features computed in the spectral domain,

transforms of the audio signal into a time-frequency representation which are relevant

in this context are reviewed. Based upon these foundations, state-of-the-art features are

Introduction 6

explained as well as the Pitch Activation feature computed by spectrogram factorization

proposed by us.

According to the processing chain, Chapter 4 focuses on alignment techniques. Here,

Dynamic Time Warping (DTW) and Hidden Markov Models (HMMs) are the methods

commonly used the literature. In addition to these approaches, where the first works

in the domain of audio features and the latter relates audio features to information in a

symbolic representation, we present and evaluate a novel alignment system where both

the audio and the score data are represented in the symbolic domain.

For reasons explained in Section 4.5 we decided to focus on the Dynamic Time Warping

approach for Audio-to-Score Alignment. In Chapter 5, we, therefore, present a number

of strategies optimizing DTW towards computational costs, robustness, and accuracy.

Examples of such approaches are the divide & conquer method, our automatically ob-

tained plausibility measure, and multi-scale DTW.

The main contribution of this thesis is the subject of Chapter 6. There, we propose

a multi-pass system for the accurate Audio-to-Score Alignment. A main difference to

the vast majority of related systems is that based upon an initial alignment each note

is refined individually, such that intra-chord timing deviations can be resolved. We

show that all our refinement steps improve the result for each individual piece of our

evaluation corpus and that our refinement method outperforms a reference system.

Audio-to-Score Alignments can be considered to be annotations of audio recordings of

specific musical performances. Such annotations are a valuable data source for musi-

cologists. In Chapter 7 an alignment editor is introduced, where a computed alignment

can be compared to the respective spectrogram in order to allow for manual correc-

tions. Assuming correct as well as accurate alignments, visualizations of performance

aspects can be computed. To show the versatility of the techniques described earlier,

their application to tasks different from audio alignment is discussed. One example

of such a task is the identification of versions of the same piece of music played by

different historical automata (e.g., flute works or musical boxes). Another example is

the automatic recognition of a song’s structure.

Chapter 8 concludes this thesis. In addition to a discussion of insights gained through-

out this work, some ideas for future research activities are sketched.

Evaluation 7

2. Evaluation

The focus of this thesis is the development of accurate Audio-to-Score Alignment meth-

ods. In order to be able to measure if and to which extent this objective is achieved,

a systematic evaluation is essential. In this chapter an adequate framework will be

established such that each of the later described approaches can be benchmarked on an

equal basis. The test data comprise audio recordings of classical piano music played on

a computer-monitored grand piano. Thus, exact symbolic transcriptions are available

and are used as ground truth data. Further, meaningful evaluation criteria are chosen.

At the end of this chapter, alternative data sources are reviewed.

The detailed discussion on test data and evaluation methods is inevitable, since the

MIR community has not yet established a common evaluation model and an according

data set for (offline) Audio-to-Score Alignment. While open evaluation campaigns had

already been established in fields such as text based information retrieval, the ISMIR

2001 Resolution on the Need to Create Standardized MIR Test Collections, Tasks, and

Evaluation Metrics for MIR Research and Development was not drafted before 2001

[Urbano, 2011]. In 2005, the first Music Information Retrieval Evaluation eXchange

(MIREX)1 was carried out. Although the campaign’s remarkable value to the research

community is out of question, the selection of evaluation tasks is limited.

Audio-to-Score Alignment was proposed as a MIREX task in 2006, but has been

dropped and never considered again. However, the closely related topic Real-Time

Audio-to-Score Alignment (a.k.a. Score Following) was part of the 2006 evaluations

and is still on the schedule for the MIREX 2011. From this fact, one can eliminate

a lack of royalty-free audio material including ground truth annotations as a possible

reason for the disregard of offline Audio-to-Score Alignment as a MIREX task. One

can argue that annotations at the chord level – as used for Score Following – are not

sufficiently accurate for the evaluation of offline alignment results. Nevertheless, in

the author’s opinion, offline Audio-to-Score Alignment is not carried out as a MIREX

task due to a low community interest for a uniform evaluation. A plausible reason are

the divergent objectives behind audio alignment research. While this thesis focuses

on alignment accuracy within a constrained environment, other authors aim for ro-

1http://www.music-ir.org/mirex/wiki/MIREX HOME

http://www.music-ir.org/mirex/wiki/MIREX_HOME

Evaluation 8

bustness or computational efficiency, such as [Müller et al., 2004], [Müller et al., 2006],

[Pardo and Sanghi, 2005], [Raphael, 2001], or [Salvador and Chan, 2004].

2.1. Data Corpus

Computational music perception heavily relies on methods from Artificial Intelligence

and Machine Learning. In these fields, a typical evaluation procedure is based on

multiple independent data sets. A classifier is initially adapted to a given training set.

To avoid over-fitting and to achieve the ability to generalize, an additional validation

set is used to terminate learning algorithms as soon as the classification performance

on these unseen data decreases. Another approach to obtain a classifier with a good

generalization behavior is to execute pruning as a post-processing step. Finally, the

resulting classifier is evaluated on a test set, which is not involved in any phase of the

training.

In this thesis, however, instead of applying machine learning algorithms, algorithms

and models are developed based on musically well-founded assumptions. Therefore,

there is no necessity for separate training and validation sets and the evaluation of the

described methods can be performed on the sole basis of one corpus of test data.

The chosen genre is classical piano music, for several reasons. On the one hand, clas-

sical music is highly relevant for Audio-to-Score Alignment from an applications point

of view. A set of well known pieces – where the scores are generally available – is

performed by numerous artists, each of them exhibiting an individual style. The work

described here was conducted within the context of two projects concerned with in-

vestigations into such expressive elements. Detailed and accurate annotations are an

essential prerequisite for the analysis and description of different interpretations of a

piece and the respective expressive details. However, symbolic records of performances

by great artists are notably rare, which calls for a means to derive such data from

commonly available audio material.

On the other hand, audio transcription and similar tasks, such as Audio-to-Score Align-

ment, for polyphonic pieces are an open research problem. The fundamental difficulty

is to identify individual partials within a complex audio signal and correctly relate them

to a certain pitch. From a different point of view, this task can be reduced to decid-

ing which combination of pitches is the most likely cause for a certain observation of

weighted partials. Due to overlapping partials, inharmonicity of musical instruments,

and the presence of noise, this task is highly complex and error prone. A common

Evaluation 9

strategy is therefore to restrict the audio material to recordings of one certain type of

instrument, thus avoiding the additional problems of different timbres.

In the context of musical signal processing, restrictions towards the piano are a

common choice (see [Abdallah and Plumbley, 2004], [Arifi et al., 2003], [Dixon, 2000],

[Dressein et al., 2010], [Poliner and Ellis, 2007], or [Schwarz et al., 2004], for example).

Due to limited expressive freedom, it produces a relatively consistent sound. Note on-

sets, for example, are inherently characterized by a transient attack (in contrast to ’soft’

onsets of string or wind instruments where the signal energy can increase continuously

during a certain span of time). Such an unambiguous onset event is not only relevant

for musical signal processing systems but also for their evaluation.

2.1.1. The Bösendorfer SE 290

Although the grand piano Model 290 ”Imperial”2 was first built around 1900, it is still

Bösendorfer’s top model. With its length of 290 cm it is also the company’s most

voluminous grand piano. Additionally, distinguishing it from other grand pianos, it has

a range of 97 tones (from C0, i.e., MIDI pitch 12, to C8, i.e., MIDI pitch 108), covering

eight full octaves.

The SE recording and reproduction technology was developed by the engineer Wayne

Stahnke, who is also acknowledged in the name SE – i.e., Stahnke Electronics. Bösendor-

fer licensed the system and delivered the first prototype to the MIT Artificial Intelli-

gence Laboratory in 1985. A year later, the SE system for the Model 290 was launched

as an official product.

The recording technology is based on optical sensors – i.e., pairs of fixed LEDs and

photo-transistors in combination with aluminum shutters attached to the keys and

hammers. The adjustment is such that a key event is triggered the instant the cor-

responding key is pressed perceptibly (having a play of about 2 mm). The shutter

mounted at the hammer has an arm with a width of only a few millimeters which

passes the beam of light between LED and photo-transistor before the shutter itself

discontinues the lighting after a hammer movement of exactly 5 mm, thus providing

two events. The setup is such that the second event occurs the moment the hammer is

about to hit the strings. The sensor’s values are sampled using a frequency of 800 Hz,

yielding a time resolution of 1.25 ms. While the event when the hammer hits the strings

is taken as the note onset, the note offset is determined by the key release. Pedal po-

sitions are also measured at lower time resolutions and quantized using a range of 256

values (cf. [Goebl, 2003] and [Moog and Rhea, 1990]).

2http://www.boesendorfer.com/en/model-290-imperial.html

http://www.boesendorfer.com/en/model-290-imperial.html

Evaluation 10

The sensor information is not only used to determine the exact note timings, but also

to calculate the final hammer velocity (FHV) based on the time interval between the

two hammer events. For this purpose a much higher sampling rate of 25.6 kHz is used.

The number of samples it took the hammer to cover these final 5 mm is defined to be

the inverse hammer velocity (IHV). The FHV in [m/s] is then obtained as

FHV = 25600× 0.005× 1

IHV
=

128

IHV
(2.1)

In order to be represented in MIDI format, from the IHV as stored in Bösendorfer’s

proprietary file format, corresponding key velocitys vkeyn have to be obtained. To this

end the FHV is logarithmically mapped while also considering a pitch dependency, as

vkeyn(FHV) = 52 + 25 log2(FHV) +
n− 60

12
(2.2)

where n is the MIDI note number. An FHV value of 4.26m/s – which is an upper limit

for a typical piano performance (see [Goebl, 2001]) – translates to a MIDI velocity of

104. The lowest possible hammer speed, corresponding to a MIDI velocity of 0, is

0.236m/s. This accounts for the fact that if the hammer velocity is below a certain

threshold, the hammer will not reach the strings any more, resulting in a silent note.

The reproduction on the SE system relies on special solenoids specific to the speed,

accuracy, and size requirements. Each key has its own actuator attached in a way such

that it only interferes with the key while the instrument is in playback mode. The same

holds for the pedals. The controller and its firmware are responsible to account for the

variable time delay between the initial key actuation and final hammer strike which

can account for as much as 100 ms [Moog and Rhea, 1990][Goebl, 2003].

In [Goebl and Bresin, 2003] and [Goebl, 2003], the recording and reproduction accura-

cies of the Bösendorfer SE 290 as well as the Yamaha Disklavier were studied. It is

shown that both systems suffer from a systematic error concerning clock timing. The

result is that when recording, there is a linearly increasing anticipation of events, i.e.,

a time compression. However, this timing error is canceled out during playback. The

residual reproduction error after a recording-playback cycle was found to be smaller for

the Bösendorfer SE system. The mean time deviation was 0.2 ms at a standard devi-

ation of 2.1 ms, while the corresponding values for the Yamaha Disklavier were 1.4 ms

and 3.8 ms respectively. It also became apparent that the SE system tends to recognize

louder tones later than softer ones. This tendency is reversed during reproduction,

where a mean timing deviation of -0.1 ms at a standard deviation of 1.3 ms was ob-

Evaluation 11

served (as opposed to -0.3 ms and 5.5 ms for the Disklavier). In general, Bösendorfer’s

SE system is significantly more robust to outliers than the Disklavier. The complete

recording and reproduction cycle produced only very rare timing errors larger than

±3 ms, while the largest time displacements on the Disklavier are almost ten times as

large. Concerning dynamic accuracy, the SE system outperformed the Disklavier as

well. This is due to the Disklavier’s inability to reproduce very loud as well as very soft

tones – an effect that could not be observed at the Bösendorfer piano.

In general, the Bösendorfer SE 290 is a high end grand piano featuring an accurate

recording and reproduction technology introducing timing errors of only a very small

number of milliseconds. Its output is in a proprietary file format, which can, however,

be converted to the MIDI format. Since 2005, Bösendorfer has been shipping the next

generation model of its reproduction system under the name Ceus3. While the basic

functionality of this system equals that of the SE system, the company claims that the

upper limit for reproduction timing errors has decreased from about 3 ms to 2 ms.

2.1.2. The Mozart Sonatas

The data corpus used throughout this thesis comprises performances of the Fantasia

in c minor (K. 475) and 12 out of the 18 piano sonatas by Wolfgang Amadeus Mozart.

Since the fantasia was published in conjunction with the 14th sonata (c minor, K. 457)

we will refer to the whole set of pieces as the Mozart sonatas. They were composed

in the years between 1775 and 1788 – i.e., during the Classical era. All of them are

consistent with the characteristic form having three movements.

The recordings originate from a performance of the complete Mozart piano sonatas by

Roland Batik – a professional Viennese pianist – on a Bösendorfer SE 275 in 1990. The

internal Bösendorfer performance files were converted into MIDI as described above.

Also, corresponding audio material was obtained from a playback made by Werner

Goebl on an SE 290 at the Bösendorfer company in 2001. Recordings were made at

44.1 kHz using a single high-quality microphone near the corpus of the piano and a

DAT recorder. An overview of the sonatas, listing the number of score notes and the

respective performance time for the individual movements, is given in Table 2.1.

This material is of special value, since it does not only describe the pianist’s actions

including note timings, dynamics, and also the exact pedal pressure at any time during

the performance, but also the corresponding audio recording are obtained from a high

end concert piano. They are, therefore, subject to effects such as room acoustics or

oscillations of the instrument body.

3http://www.boesendorfer.com/en/ceus-reproducing-system.html

http://www.boesendorfer.com/en/ceus-reproducing-system.html

Evaluation 12

piece
1st movement 2nd movement 3rd movement all
notes time notes time notes time notes time

k.279 2803 4:55 1705 6:49 2890 4:36 7398 16:20
k.280 2497 4:48 1141 5:41 2442 4:33 6080 15:02
k.281 2651 4:29 1522 5:42 2228 4:26 6401 14:37
k.282 1899 7:35 1744 4:22 1928 3:02 5571 14:59
k.283 3304 5:22 1983 8:08 2602 4:06 7889 17:36
k.284 3707 5:17 1506 4:56 7565 15:55 12778 26:08
k.330 3160 6:14 1456 6:40 2977 5:43 7593 18:37
k.331 6160 13:35 2673 5:50 2804 3:26 11637 22:51
k.332 3474 6:02 1278 5:04 3997 6:56 8749 18:02
k.333 3782 6:44 1978 7:22 3090 6:29 8850 20:35
k.457 3003 6:15 1750 7:30 2175 4:35 6928 18:20
k.475 1308 4:58 1318 3:23 1276 3:44 3902 12:05
k.533 4348 8:25 1601 6:58 2678 7:01 8627 22:24

all 102403 3.57:36

Table 2.1.: Performance time and number of score notes (repeated sections are counted
twice) of the 13 Mozart sonatas used for evaluation throughout this thesis

2.2. Test Bench Environment

The Audio-to-Score Alignment systems examined here, require a MIDI file represent-

ing the score (referred to as Score MIDI) and a monaural audio recording sampled at

44.1 kHz in waveform format (wav). The output is a MIDI file which is time aligned

to the performance. This result (referred to as Performance MIDI) can then be com-

pared to the ground truth data obtained from the Bösendorfer SE system. However,

due to expressive variations and playing errors, the notes played, i.e., MIDI events

contained in the performance data, do not precisely match the score. As described in

[Flossmann et al., 2010], this makes an automatic matching error-prone, even if it is

carried out in the symbolic domain.

2.2.1. Matching Score MIDI to Performance MIDI

Scores for the Mozart sonatas are publicly available in numerous editions. A well known

one, which is offered online and free of charge for personal study and educational use, is

the Digital Mozart Edition4 by the Internationale Stiftung Mozarteum. For the task of

Audio-to-Score Alignment itself, one would derive the score MIDIs from such an edition.

However, for the evaluation of alignment results, for each score note the corresponding

events in the performance MIDI have to be identified. The parameters of these events

4http://dme.mozarteum.at/DME/nma/start.php?l=2

http://dme.mozarteum.at/DME/nma/start.php?l=2

Evaluation 13

are the target values which an alignment or annotation system is expected to extract,

i.e., the ground truth.

Assuming a performance without note insertions, deletions, or substitutions, the match-

ing between a score MIDI and the performance MIDI could be easily done by relating

notes of the same pitch to each other based on their temporal order. However, in a

real performance of a demanding piece of music, the artist will most likely introduce

expressive variations and make some playing errors, i.e., play incorrect notes, leave

some notes out, or insert other ones. The classification of such variations is ambiguous

in numerous cases, making an automatic matching between a score and the performed

notes error-prone.

error
1st movement 2nd movement 3rd movement all
count rel count rel count rel cnt rel

Insertions 1411 3.3% 1414 6.1% 1367 3.4% 4192 3.9%
Deletions 92 0.2% 20 0.1% 84 0.2% 196 0.2%

Table 2.2.: Playing errors made during the performance of the Mozart sonatas (wrong
notes are represented as a deletion of the correct note plus an insertion of the wrong
note). The percentage of insertions is calculated relative to the number of performed
notes while the fraction of deletions is relative to the score notes.

As can be seen from Table 2.2, there are almost 4500 errors when counting a wrong

note as both, the deletion of the correct note and the insertion of a different one. While

there are relatively few deletions, the number of insertions is surprisingly high. Further

examination showed that this effect is not caused by insertions of individual notes at a

time, but by introducing bridge passages or additional trills.

Another interesting observation in this context is that the number of deletions is signif-

icantly lower for the second movements. The slower tempo of these movements leads to

the assumption that the pianist might have dropped notes during fast and technically

challenging passages in order to keep the pace. The average tempos, given in beats

per minute, over an entire movement of a sonata are shown in Table A.1 – Table A.3.

There, for movements with a time signature of 2/2 (alla breve), the quarter note is

considered to be the beat. In doing so, the resulting median tempo is 126 bpm and

138 bpm for the first and the third movements respectively, while this value is only

52 bpm for the second movements.

For evaluation purpose, the correct correspondence between score notes and performed

notes, i.e., the target values an alignment system is expected to extract , as well as the

classification of deviations as insertions or deletions of certain notes had been corrected

manually and was stored to files for later usage. Also, erroneous events reported by

Evaluation 14

the SE system which were due to hammer bounces were removed from the performance

records. This work was not only conducted by the author but mainly by Gerhard

Widmer, Werner Goebl, and Simon Dixon. The file format used to store the matches

between score and performance notes is purely text-based. Each matched pair is rep-

resented as a description of the score note, including, amongst other data, an ID, its

pitch, score time, and note value, and information about the performed note, such as its

exact timing, loudness, and duration. In addition, meta information can be specified,

e.g., respective score, MIDI, and audio files, the musical key, or the time signature.

2.2.2. Matching Performance MIDI to Audio

The performance MIDI serves as the ground truth transcription of a performance.

However, MIDI data converted from Bösendorfer’s internal format suffers from the

systematic timing error of the SE system, as reported in [Goebl and Bresin, 2003].

In addition, there is an offset between the beginning of the audio recording and the

playback on the Bösendorfer SE 290.

To resolve these problems, a manual detection of the first onset within each audio file

was performed to eliminate the offset between the beginning of the audio recording and

the start of the playback. Furthermore, with regard to audio recordings as commonly

available on the retail market, we treated the individual movements of the sonatas

separately.

The general timing error was corrected by performing a linear time stretch. To this

end, the onset time of the last notes were manually detected as well and the MIDI times

were scaled accordingly.

An overview of the resulting test bench environment is presented in Figure 2.1. The

score MIDI, the performance MIDI, i.e., the ground truth annotation of a certain per-

formance, and the correspondence between individual notes within those two records

are stored within a single file. The Audio-to-Score Alignment system is then executed

(upper part of Figure 2.1). It uses the score MIDI and the audio recording of a corre-

sponding performance to compute an estimation of the performance MIDI (blue). At

the evaluation step (lower part of Figure 2.1), this result is compared to the performance

MIDI, i.e., the ground truth data, which is not presented to the system until then. At

this stage, the pre-established match between score notes and the performance MIDI

is used, such that for each aligned note its respective target parameters are known.

To guarantee that this correspondence is not lost during the alignment step, unique

identifiers are assigned to the score notes beforehand.

Evaluation 15

Figure 2.1.: Overview of the test bench used for the evaluation of Audio-to-Score
Alignment results: The upper part shows the alignment step. Here, only the score
MIDI (red) and the audio signal are shown to the Audio-to-Score Alignment system.
The performance MIDI and the correspondence between score and performance MIDI
are only known to the evaluation system which is shown in the lower part. Here, the
result of the alignment system can be compared to the ground truth.

2.3. Evaluation Criteria

Given an annotated data corpus and a task specific test bench, appropriate evaluation

criteria have to be selected. Adequate measures are a prerequisite in order to achieve

validity of an evaluation experiment. Criterion validity itself aside, [Urbano, 2011]

describes construct validity as the requirement of the measured variables to closely cor-

respond to the concept they are supposed to quantify. A similar demand, that those

variables are not influenced by factors unaccounted for is named internal validity. Also,

a criterion should agree with other measures it is, in theory, related to (convergent valid-

ity) and allow for justified conclusions (conclusion validity). (For a detailed discussion

on MIR meta-evaluation in general the reader is referred to [Urbano, 2011].)

Validity aspects have been taken into account when discussing the following evaluation

criteria. Although this thesis focuses on timing accuracy, measures aiming at other

aspects, such as loudness of individual notes, are briefly introduced.

2.3.1. Timing

Audio-to-Score Alignment can be described as identifying each score note within an

audio recording. In doing so, the accurate extraction of the notes’ onset times is essen-

tial. On the one hand, inter-onset intervals play a major role in the human perception

of music. [Friberg and Sundberg, 1992] show that within a series of notes played at a

Evaluation 16

certain frequency, timing displacements of down to a few milliseconds can be recognized

by human listeners. On the other hand, a correct onset time is a prerequisite for the

extraction of other note parameters, such as duration or loudness.

Graphical Representation

In general, timing accuracy is measured in terms of (absolute) timing deviations between

the actual onset times and the onset times reported by the alignment system. The

resulting values can be plotted against the notes or on the performance time as proposed

by [Müller, 2011]. The advantage of this presentation of results is that passages showing

large time deviations become obvious and can be directly accessed in the score and the

audio files respectively. In addition, not only can verified ground truth data serve as

basis for an evaluation, but a result can also be compared to an alignment obtained

using a different algorithm.

We propose two extensions to this representation. First, we add a histogram showing

the distribution of time displacement values. The motivation is that while the deviation

curves clearly exhibit general trends, i.e., sections of accurate or failed alignment, the

overall quality of an alignment does not become apparent. The histogram, in contrast,

shows not only the variance of displacements, but also if an algorithm generally tends

to predict note onsets too early or too late.

Secondly, assuming the score is presented to the system in a proper format, the time in-

terval measured in the unit of beats between arbitrary pairs of notes can be determined.

From this information, local tempo estimates can be calculated for an alignment. Since

the same absolute time displacement is more noticeable during a playback of fast pas-

sages, we propose a tempo-relative deviation measure in the unit of score time – i.e.,

beats. The resulting values do not only reflect on how similar a playback of the aligned

score would sound to the original audio recording, but also allow for error analysis in

the score domain.

An example of such a plot is shown in Figure 2.2. The plot on the left shows the timing

error for each note measured in beats, i.e., a relative tempo unit. The histogram on

the right shows the distribution over the magnitudes of timing deviations which will, in

most cases, approximate a Gaussian. However, by observing the mean and the modus,

one can draw conclusions about the tendency of an algorithm to report note onsets

early or delayed. In addition, the cumulative distribution function of the timing errors

is plotted. Since the maximum of this function is a known value, the plot is scaled such

that entire available space is used.

Evaluation 17

Figure 2.2.: Timing error of an example alignment measured in terms of beats

Average Time Displacement

More compact than graphical representations, are statistical figures. The probably

most obvious ones are the mean time displacement and the corresponding standard de-

viation. Calculated on the signed values, the mean time deviation shows to which

extent an aligned score runs ahead or behind the actual performance. Consider-

ing the absolute values, the result is the average error. This evaluation criterion is

commonly used in the literature – see [Dannenberg and Hu, 2003], [Dixon, 2005a], or

[Ewert and Müller, 2009], for example.

Also, from 2006 – where the closely related task of online Audio-to-Score Alignment, i.e.,

score following, was carried out as part of MIREX for the first time – the average timing

error and the respective variance were used as assessment metrics for the evaluation

campaign [Cont et al., 2007].

Methods to obtain criteria more robust to outliers, are to disregard the highest 10%

amongst all timing deviations or to consider alignments of sections where the time

displacement exceeds a certain threshold to be failed and evaluate such segments sepa-

rately. An evaluation based on such a criterion can be found in [Niedermayer, 2009b],

for example.

Percentiles

A major drawback of averaging errors is that the result is not robust to even relatively

small numbers of outliers. Systems yielding a majority of highly accurate alignments

Evaluation 18

and a few outliers – such as an alignment failure at the end of a piece – might not be

distinguishable from algorithms of a generally mediocre alignment accuracy. Assessing

alignments by means of percentiles overcomes this flaw.

Calculating the median instead of a mean timing deviation makes the evaluation crite-

rion robust to outliers. It is therefore an alternative to the mean of the best 90% of all

timing deviations or the mean over ”succeeded” alignments. However, in the author’s

opinion, evaluation based on the median timing deviation is more clean from a method-

ical point of view, since it does not involve the arbitrary selection of a cutoff ratio. The

median time deviation criterion is also, for example, used in [Dixon and Widmer, 2005]

or [Shalev-Schwartz et al., 2004].

In addition to the median, we propose to also consider the 75th and the 95th percentile

as well as the maximum. Those criteria give a better understanding of the time dis-

placement behavior and robustness of a system. The maximum time displacement is

likely to occur either at the end of the piece or in conjunction with long pauses where

the alignment fails at a local level due to a lack of additional cues about the musical

context. Therefore, only a very small number of notes is affected by such errors. Under

these premises, the percentiles illustrate a soft error margin, which is not exceeded by

the majority of time displacement values.

Tolerance Ranges

An alternative to calculating statistics on time deviation values, is to measure the num-

ber of events aligned more accurately than a predetermined threshold. Such a tolerance

range was used in the MIREX 20065 evaluation of score following. There, notes with an

absolute offset (in the context of score following the offset denotes the timing deviation

plus the latency of the system) greater than 2000 ms were assessed as missed notes.

Later an absolute error threshold of 300 ms was proposed by [Cont et al., 2007].

Nevertheless, even the tighter tolerance range of 300 ms is too indulgent. A more

adequate threshold is the 50 ms range, well known from the field of Onset Detection

(see [Bello Correa et al., 2005], [Dixon, 2006], or [Eyben et al., 2010], for example). An

even stricter evaluation basis is an allowed timing error of 10 ms initially proposed in

[Niedermayer, 2009a]. This range is motivated by the human ability to recognize time

deviations of tones played at a constant tempo. In [Friberg and Sundberg, 1992] this

just noticeable difference was found to be 10 ms for short inter-onset intervals and about

5% of the note duration for notes longer than 240 ms.

5http://www.music-ir.org/mirex/wiki/2006:Score Following Proposal

http://www.music-ir.org/mirex/wiki/2006:Score_Following_Proposal

Evaluation 19

The tolerance range of 10 ms is of particular interest when the objective is to develop

a semi-automatic Audio-to-Score Alignment system where the user manually corrects

errors, i.e., ”too large”timing deviations, within a generated alignment. In this scenario,

each note with an alignment error not recognizable by a human listener would not

require correction of its onset time. Misaligned notes, in contrast, would need to be

post-processed independent of the actual value of error, which becomes secondary in

this context.

An extension to this approach is used for the evaluation in [Dixon and Widmer, 2005],

where the percentage of notes aligned more accurately than an iteratively increas-

ing threshold is presented. Starting from the number of notes aligned to the exactly

matching audio frame, the tolerance range in terms of frames is increased up to a

span which covers 99.9% of all notes. A similar evaluation method is also applied in

[Macrae and Dixon, 2010], where, in the context of online, real-time alignment, larger

tolerance thresholds between 100 ms and 2000 ms were used.

2.3.2. Loudness

While timing accuracy is a well studied aspect of audio alignment, the automatic ex-

traction of dynamics information is widely neglected. Although this is not an issue

specific to Audio-to-Score Alignment, but also relevant to the field of audio transcrip-

tion, Scheirer (see [Scheirer, 1997]) is the only author describing an approach for the

extraction and evaluation of loudness information from audio signals for individual

notes. MIDI velocities were estimated from the energy within the frequency bands

relating to the fundamental and the harmonic frequencies of a certain note. The eval-

uation criterion applied was the correlation between the estimates MIDI velocities and

the corresponding ground truth data obtained from a computer-monitored Yamaha

Disklavier.

2.3.3. Other Evaluation Criteria

Timing and dynamics are essential aspects in musicology and performance research.

However, this is not the only information contained in audio signals. Note durations

and the use of pedals, playing style and articulation, or timbre of the specific musi-

cal instruments used for a performance are other details one might be interested in.

Nevertheless, these issues will not be addressed here.

An aspect which, in contrast, affects each automatic system is computational effi-

ciency. There, several approaches have been described and also evaluated in the lit-

Evaluation 20

erature. The efficiency of an algorithm is measured by means of asymptotic complex-

ity, fraction of theoretically possible pairwise comparisons which had to be made, or

computational speedup (see [Niedermayer, 2009b], [Niedermayer and Widmer, 2010b],

[Müller et al., 2004], [Müller et al., 2006], or [Salvador and Chan, 2007], for exam-

ple).

2.4. A Detailed Analysis of Possible Data Sources

Due to the lack of a publicly available test database suitable for the in-depth evaluation

of Audio-to-Score Alignment, a large variety of different data corpora is described

in the literature. In addition to the Bösendorfer SE system, the Yamaha Disklavier

and hardware as well as software synthesizers are commonly used for data acquisition.

However, not only the source of audio material differs between individual publications,

but also the richness of expressive variations as a crucial element of a natural musical

performance. In [Niedermayer et al., 2011a], we presented a study on the effect of these

different sources of evaluation data on the actual results and their comparability. The

main results are recapitulated in the remainder of this chapter.

2.4.1. Alternative Audio Sources

Audio-to-Score Alignment is a task which requires an evaluation at the note level in

order to draw an accurate picture of an alignment system. However, corpora such

as the one described and used here are rarely available and depend on the access

to expensive computer controlled musical instruments (already assuming that such a

computer monitoring system exists at all for a certain instrument).

Considering the vast variety of musical performances by world class artists which are

(commercially) available, an obvious method to obtain performance data would be to

manually annotate arbitrary recordings. However, this approach is not feasible for

two reasons. On the one hand, manual annotations are very expensive. Even trained

listeners will most likely need to hear each single note several times in order to be certain

about how to set the parameters. One should bear in mind that timing deviations, for

example, are measured at the millisecond level. On the other hand, there is reasonable

doubt if certain expressive nuances can be distinguished by human listeners at all.

Examples are intra-chord micro timings, i.e., asynchronies and arpeggiations, or the

exact loudnesses of individual chord notes.

Evaluation 21

Considering the yearly held MIREX6 [Downie et al., 2010] algorithm evaluation, there

is a clear preference towards human annotated ground truth data for note- or beat-level

evaluation tasks. The testing of systems in the domains of Audio Onset Detection, Real-

Time Audio-to-Score Alignment, Audio Melody Extraction, Audio Chord Estimation,

and Audio Beat Tracking solely relies on manually annotated data. Only Multiple f0

Estimation and Tracking is evaluated based on a corpus also comprising recordings

from a Yamaha Disklavier and synthesized audio.

Synthesizing audio from a given performance representation, i.e., a known ground truth,

is the third approach to yield adequate data corpora. Respective performance MIDI

files can be obtained from MIDI instruments or found on the Internet. In contrast to

manual annotations, highly accurate data can be generated at low to moderate costs.

However, it is not clear how natural and lifelike synthesizer-generated audio material

will be and if such an evaluation base will interfere with the results.

We, therefore, examined audio data originating from two different software synthesizers.

To this end an Audio-to-Score Alignment was performed on the respective audio signals

and also on the recordings from the Bösendorfer SE 290. The evaluation results were

then compared to each other.

Timidity

The first examined synthesizer was timdity++7 (referred to as timidity) by Masanao

Izumo. Versions for various platforms are distributed under the GNU General Public

License8. Due to this availability free of charge, it is a common choice in the MIR liter-

ature (see [Hu et al., 2003], [Dannenberg and Hu, 2003], and [Tzanetakis et al., 2003]

for example).

Timidity can generate audio using arbitrary sound fonts in GUS/patch format. Per

default it is delivered in combination with a set of free instrument samples provided by

the Freepats9 project.

6Music Information Retrieval Evaluation eXchange
7http://timidity.sourceforge.net
8http://www.gnu.org/licenses/gpl-3.0.html
9http://freepats.zenvoid.org

http://timidity.sourceforge.net
http://www.gnu.org/licenses/gpl-3.0.html
http://freepats.zenvoid.org

Evaluation 22

Vienna Symphonic Library

The Vienna Symphonic Library10 (VSL) is a Vienna based commercial vendor of high

quality instrument samples. The provided samples do not only cover a wide range

of musical instruments but also an extensive repertory of different playing styles on

the individual instruments. In addition, a proprietary sequencer plug-in analyses the

stream of MIDI events, detects repeated notes or other transition patterns, and either

relies on according samples of that very transition or adapts the articulation in real-

time. An example, where note transitions are sampled as well in order to yield more

natural sounds, are legato passages on wind or string instruments.

The VSL product version used here was a Special Edition – Standard including the

Bösendorfer 290 ”Imperial” – i.e., the same type of grand piano as described above fea-

turing the SE system. This is of special value, since it allows for an in-depth comparison

between original audio recordings and audio material generated using the corresponding

instrument samples. However, the fact that the VSL also offers an additional Vienna

Imperial library, comprising a sampling of the Bösendorfer 290 with up to 1200 samples

per key (including different pedal positions, note duration dependent decays, and dif-

ferent microphone positions), suggests that using the Special Edition – Standard for the

rendering will result in slight deviations from the sound of the real instrument. From

the reduced number of available samples, one can conclude that a number of acoustic

nuances are generated by interpolation.

The VSL is a sample library including special purpose software to select the most

appropriate instrument samples in real-time during playback. However, it is not a

MIDI sequencer software on its own. Therefore, Garage Band11 was used here.

Influence on Audio-to-Score Alignment Evaluation

In [Niedermayer et al., 2011a] the influence of these different rendering methods on the

results of Audio-to-Score Alignment evaluation has been studied. Audio recordings of

the first movements of the Mozart sonatas were generated using the described synthe-

sizers – timidity and the VSL. Alignments were calculated according to the state-of-

the-art approach based upon Chroma vectors and Dynamic Time Warping as described

in Chapter 3 and Chapter 4, respectively. An aligned note onset was considered to be

correct if its absolute time displacement with respect to the actual onset time was less

than 50 ms.

10http://vsl.co.at
11http://www.apple.com/ilife/garageband

http://vsl.co.at
http://www.apple.com/ilife/garageband

Evaluation 23

(a)

(b)

(c)

Figure 2.3.: Spectra of a C3 as played on the Bösendorfer grand piano (a) and synthe-
sized by timidity (b) and the VSL (c) calculated applying a Blackman-Harris window
of length 8192 starting 50 ms after the note onset

We could observe that the ”real” audio from the SE 290 (cf. Section 2.1.2) yielded the

best results (see Table 2.3 right-hand side). Examination of the spectra of individual

notes generated by all three rendering methods (see Figure 2.3) revealed an increasing

noise level in the higher frequency bins of the sound obtained from timidity. Since the

used Chroma feature is calculated on the entire spectrum of a frame, this noise is carried

over to the feature values. This phenomenon was observed to be consistent throughout

the whole pitch range and is therefore a likely explanation why the system was not able

to benefit from the allegedly low complexity of the audio material. When comparing

Evaluation 24

the spectra of individual notes generated by the VSL, a deviation, with respect to

the recordings from the Bösendorfer grand piano, concerning the weights of the tones’

harmonics (cf. the spectral peaks shown in Figure 2.3) can also be observed.

To obtain a deeper insight into the significance of these findings, a second algorithm was

evaluated using the same three data sets. Onset Detection was chosen as a represen-

tative task, which also has an impact on Beat Tracking, Tempo Estimation, or Audio

Transcription. As the specific algorithm the one which ranked 1st in the MIREX 2010

evaluation campaign was chosen. It is based on a neural network classifier computing a

pseudo-probability of an onset for each frame. The actual onsets are then determined

by thresholding and peak picking (see [Eyben et al., 2010] for details).

The performance of the algorithm is determined analogously to the MIREX Onset

Detection evaluation. The reported onsets are compared to the ground truth allowing

a timing deviation of ±50 ms. The quality of the result is then given in terms of the

f-measure. It should be remarked that the evaluation presented here deviates from the

one performed at MIREX in one aspect, which is, however, justified by the nature of

the ground truth data. Merged onsets, i.e. two adjacent onsets which are reported

as one single onset, are not penalized here. Since onset times are considered at the

note-level instead of the chord-level, it occurs that there is more than one onset within

a single or two adjacent audio frames. Such onsets cannot be distinguished without

also transcribing the notes’ pitches.

The results of the experiments are shown in Table 2.3 (left-hand side). Here, the

performance on the data synthesized using the Vienna Symphonic Library is the highest

on all individual pieces with only one exception – k.283-1 – where the signal from

the SE 290 yields the highest f-value. On the other hand, the audio data obtained

from timidity results in the lowest f-measure for each piece, which is consistent with

the observations made in the audio alignment task. The confirmation of this effect

contradicts the possible speculation that lower quality synthesizers (instrument patches)

would produce somehow ”artificial” sounds and in doing so reduce the complexity of the

resulting audio file. On the contrary, the experiments show a very strong tendency of

low quality audio samples (at least those used by timidity) to produce lower accuracy

values in an algorithm evaluation.

However, when comparing the results obtained from the VSL data and the recordings

from the Bösendorfer SE 290 respectively, there is no such general trend. While the

onset detector performs better on the VSL dataset, the accuracy of the alignment is

higher on the Bösendorfer data. We, therefore, conclude that it cannot be determined

from the data source, if an evaluation data set is generally ”hard” or ”easy”. Instead,

Evaluation 25

piece # notes
Onset Detection Audio-Score Alignment

SE 290 VSL timidity SE 290 VSL timidity

k.279-1 2803 96.31 98.00 92.11 90.37 85.52 87.73
k.280-1 2491 98.08 98.80 95.64 85.27 79.37 85.47
k.281-1 2648 95.83 97.83 92.20 88.37 85.08 86.48
k.282-1 1907 97.70 98.87 96.42 76.68 71.93 74.93
k.283-1 3304 97.08 96.53 92.45 93.89 85.05 90.89
k.284-1 3700 94.82 98.58 93.40 92.08 90.35 86.97
k.330-1 3160 97.19 99.32 95.50 95.13 90.03 90.19
k.331-1 6123 98.02 98.50 95.55 73.00 66.62 70.70
k.332-1 3470 94.84 98.26 94.01 87.61 83.52 81.07
k.333-1 3774 96.83 98.31 93.13 93.51 93.19 92.29
k.457-1 2993 95.92 96.80 92.33 88.31 79.45 80.09
k.475-1 1284 96.69 98.29 95.60 61.21 59.04 43.04
k.533-1 4339 95.30 98.11 94.06 92.90 87.14 89.91

all 41994 96.51 98.18 94.00 86.85 81.93 82.99

Table 2.3.: Performance of a simple Audio-to-Score Alignment and an onset detector
on the datasets generated using different rendering methods

this depends on the specific behavior or the fine tuning of a respective algorithm. The

summarized results are shown in Table 2.3.

2.4.2. Performance Aspects

For the comparison of different audio generation methods, the original performance

records in MIDI format including all expressive variations were used. However, in

practice such rich data is not always available. Therefore, the influence of individual

stylistic elements – usage of the pedals, changing dynamics, and micro-timing, i.e.,

arpeggiations and asynchronies – are also an issue.

Pedal Usage

The SE system monitors the exact pressure the pianist puts on the pedals of the grand

piano. To get an idea of the influence of pedal usage on the performance of the state-

of-the-art alignment algorithm, audio material was generated while neglecting all pedal

information. The chosen synthesizer was timidity, due to its application in numerous

research activities. Also, it must be expected that the VSL’s proprietary software,

choosing different rendering parameters depending on the musical context, would in-

terfere with the experiment.

Evaluation 26

In [Niedermayer et al., 2011a] no significant differences of the respective evaluation re-

sults including or neglecting pedal usage could be reported neither for the onset detector

nor for the alignment. A possible explanation is that, in contrast to music of the ro-

mantic era, such as the piano works of Frédéric Chopin, the pedal plays a minor role

in the Mozart sonatas, especially during the first movements due to their general style.

Table 2.4 shows the absolute and relative time the sustain and the soft pedal were

pressed during the individual movements. A pedal is assumed to be pressed if the

according sensor value exceeds 40, i.e., about 15% of the maximum. This threshold

might seem to be relatively low. However, a clustering of all values reveals a good

class separation around this value. The sostenuto pedal was disregarded due to its

minor musical importance. While the usage of the soft pedal is relatively consistent

amongst the individual movements, the amount of time the sustain pedal is pressed is

significantly higher for the second movements.

pedal
1st movement 2nd movement 3rd movement all
time rel time rel time rel time rel

Sustain 32:26 35.9% 44:53 57.7% 26:13 35.6% 103:32 42.8%
Soft 34:05 37.7% 29:00 37.3% 29:13 39.6% 92:18 38.2%

Table 2.4.: Absolute and relative time the pedal was pressed for the individual move-
ments

Dynamic Variations

Dynamics is an important means of expression and a crucial element of a natural per-

formance. In contrast to its contribution to the listening experience, it may impede

MIR algorithms due to the resulting differences in absolute feature values. Although

most state-of-the-art approaches to music signal processing apply some kind of nor-

malization, varying dynamics remains a problem. While loud and soft passages can

be equalized using means such as moving averages, different loudnesses of notes played

approximately simultaneously are hard to resolve from the spectrogram. Dominant

notes can mask soft notes, especially when they share a considerable amount of their

harmonics.

Table 2.5 shows that there is a relatively consistent mean MIDI velocity deviation of

about 30% for degrees of polyphony greater than two. An in-depth analysis reveals

that there is a significant tendency towards larger average velocity deviations in the

second movements (see Tables A.4 – A.6 in Appendix A.2 for details).

However, in analogy to the pedal pressure, dynamic variations turned out to have only

insignificant influence on the evaluation results in our experiments. Even in conjunction

Evaluation 27

all movements
poly. count min mean (stddev) max

1 37737 – – – –
2 16206 0.000 22.823 (14.593) 94.203
3 6782 0.000 29.295 (13.814) 97.917
4 2047 1.887 32.688 (14.665) 94.915
5 452 0.000 30.776 (12.126) 85.714
6 127 8.696 32.761 (10.667) 63.415
7 22 22.472 41.444 (14.109) 91.919
8 32 14.286 29.539 (7.880) 50.000

Table 2.5.: Intra-chord dynamics deviations according to the degree of polyphony
(poly.), measured as the relative difference of the softest note’s MIDI velocity (m)
and the loudest note’s MIDI velocity (M) (calculated as 100 M−m

M)

with suppressing the usage of the pedals, deliberately “cleaning” the symbolic perfor-

mance record from this expressive device by setting the velocity value of each note to a

constant, did not interfere with the performance of the audio alignment as well as the

onset detection.

Micro-Timings

The third expressive degree of freedom examined here are micro-timings. Human pi-

anists will inherently not be able to play polyphonic pieces without any asynchronies.

On the one hand, it is a well known phenomenon that melody notes – or in general,

notes representing an emphasized voice – are played louder and, by trend, also about

30 ms earlier. [Goebl, 2001] shows that this melody lead is a direct consequence of the

notes being played with different loudness, i.e., the pianist’s fingers hit the keys at the

same time, but due to different key and hammer velocities the strings are struck at

different points in time.

On the other hand, stylistic elements such as arpeggiations or grace notes loosen up

individual notes’ timing constraints. While at least one of the notes which are simul-

taneous to each other in the score is played at its dedicated time to keep the tempo

and rhythm, others are deliberately early or delayed. In Table 2.6 and Table 2.7 the

magnitude of these chord spreads is illustrated. Even when disregarding ornamenta-

tion notes, such temporal spreads regularly account for several hundredth of a second.

When ornamentation notes which do not have a dedicated timing but are related to a

chord are included, those chords spread over up to one second.

Again, this expressive detail was removed from the symbolic performance record. To

this end, the notes of each chord were given a uniform onset time, determined as the

Evaluation 28

all movements
poly. count min mean (stddev) max

1 38243 – – – –
2 16171 0.000 0.016 (0.020) 0.447
3 6563 0.000 0.020 (0.021) 0.514
4 1899 0.000 0.030 (0.038) 0.435
5 315 0.002 0.051 (0.059) 0.330
6 63 0.005 0.081 (0.068) 0.215
7 7 0.010 0.023 (0.013) 0.051
8 16 0.006 0.137 (0.144) 0.366

Table 2.6.: Time spreads (in seconds) between the earliest and the latest note of a chord
(even if it has a notated arpeggio) according to the respective degree of polyphony
(poly.), disregarding ornamentations, i.e., grace notes and trills

all movements
poly. count min mean (stddev) max

1 103 – – – –
2 532 0.000 0.033 (0.042) 0.248
3 369 0.001 0.070 (0.080) 0.478
4 196 0.007 0.139 (0.108) 0.691
5 148 0.014 0.243 (0.133) 0.637
6 65 0.090 0.227 (0.119) 0.621
7 15 0.090 0.337 (0.156) 0.598
8 16 0.092 0.194 (0.210) 1.001

Table 2.7.: Time spreads (in seconds) between the earliest and the latest note of a chord
including ornamentations, where auxiliary notes without a dedicated timing in the score
(e.g., trills, gracenotes, mordents) are compared to the note their are ornamenting and
auxiliary notes with a notated timing are compared to other notes having the same
score time

mean over all individual onsets. In contrast to pedal usage and dynamic variations,

asynchronies exhibit a significant influence on MIR evaluation results. For Audio-to-

Score Alignment, a major improvement was achieved at each individual piece. Espe-

cially in those examples where the alignment on the original data performs worst, the

unified onsets caused remarkable improvements of alignment accuracy. For the piece

k.475-1, the percentage of well aligned onsets almost doubled from 43% to 81% (see

Table 2.8).

In contrast, the onset detector could not improve on each piece but, for some examples,

underperformed on the modified data. An in-detail inspection showed that the unified

onsets cause such exceptionally high peaks within the detection function, that onsets

of notes played one at a time are likely to be masked out.

Evaluation 29

piece
Onset Detection Audio Alignment
full time full time

k.279-1 92.11 98.10 87.73 95.33
k.280-1 95.64 99.30 85.47 95.19
k.281-1 92.20 82.53 86.48 91.66
k.282-1 96.42 92.55 74.93 96.89
k.283-1 92.45 97.15 90.89 99.64
k.284-1 93.40 99.52 86.97 98.57
k.330-1 95.50 89.56 90.19 96.52
k.331-1 95.55 98.49 70.70 99.11
k.332-1 94.01 99.15 81.07 99.17
k.333-1 93.13 99.73 92.29 96.88
k.457-1 92.33 99.32 80.09 95.07
k.475-1 95.60 91.56 43.04 80.58
k.533-1 94.06 92.24 89.91 97.29

all 96.51 96.01 82.99 96.61

Table 2.8.: Performance of the example algorithms on the datasets exhibiting all aspects
of expressive variations (full) and with suppressed micro timings (time)

2.5. Conclusions and Consequences for this Thesis

From this analysis we draw two main conclusions. First, the kind of data source does

not have a universal influence on the difficulty of an MIR task. Particularly, the as-

sumption that synthesized audio material yields better results than “real” recordings is

not valid. On the other hand, it became evident that audio alignment, especially when

based upon standard algorithms which cannot differentiate between individual chord

notes and assign a single timestamp to each chord, remarkably benefits from removed

asynchronies. Despite this seeming simplification of the task, algorithms which are not

designed for this type of data might fail due to the unnatural characteristics of the

resulting audio material.

For this thesis, the implication of these findings is that we do not include any synthesized

data in our evaluation. In principle, this would be a means of obtaining a larger

corpus of audio material with a corresponding ground truth transcription. However,

we lack additional performance MIDI files, i.e., transcriptions of performances by skilled

pianists, and have, therefore, decided to rely on the Mozart corpus as described above

instead of generating artificial performances.

Also, including synthesized versions of the performances of the Mozart sonatas into

the evaluation set is unlikely to reveal new insights. As shown in Table 2.3, piece and

performance have a greater influence on the accuracy of an alignment result than the

audio source. Again, we decided to rely on the data corpus as described above.

Feature Extraction for Audio Alignment 30

3. Feature Extraction for Audio

Alignment

In this chapter, the extraction of meaningful descriptors from audio signals as well

as from the MIDI representation of the score is described. Since the latter is in a

symbolic format, this step can basically be reduced to simple mappings of this high-

level representation into the respective feature domain. The audio recording, on the

other hand, is a digitized representation of sound waves and – analogous to a printout

of a plotted waveform – as such not intuitive. Timbre, pitch, dynamics, and note

timings as well as durations are high level concepts which are unconsciously processed

by the human auditory and perceptive system but, in contrast, not obvious to computer

systems.

Several MIR fields, such as Onset Detection, Multi-Pitch Estimation, or Audio Tran-

scription, concern themselves with the extraction of high level descriptions from audio

signals. While some approaches yield good results in constrained environments, they

are in general not robust enough to describe arbitrary audio signals. In the MIREX

20101 algorithm evaluation the highest f-measures were below 0.8 for Onset Detection

and below 0.6 for piano-only Multi-f0 Tracking, where a note was assumed correct if

the pitch was correct and its onset time was allowed to be within a tolerance range of

±50 ms centered around the real onset. The same tolerance of ±50 ms was applied for

the evaluation of the onset detectors.

What makes these tasks difficult, is to decide if evidence for an onset or a pitch is sig-

nificant or results from noise or interference patterns. The decision making is generally

implemented as a peak picking routine or by classification, based on machine learning

techniques. Both approaches, however, are often fragile and prone to errors. Therefore,

most audio alignment systems prefer features which can be calculated without such

a decision process and accordingly do not require any training or parameter tuning

step.

1http://www.music-ir.org/mirex/wiki/2010:MIREX HOME

http://www.music-ir.org/mirex/wiki/2010:MIREX_HOME

Feature Extraction for Audio Alignment 31

In this chapter, three features are presented. Two of them – Chroma vectors and onset

based features – are generally known and used in the initial alignment step of our

proposed Audio-to-Score Alignment system (see Chapter 6). The system’s refinement

stage uses the third feature – Pitch Activation. We initially proposed this feature

for audio alignment in [Niedermayer, 2009a] and have, then, further investigated into

adaptations and improvements.

3.1. Time-Frequency Transformations

The vast majority of audio features relevant for Audio-to-Score Alignment – in particu-

lar all variants of the Chroma vectors described later in this section – are extracted from

the frequency domain representation of a signal. Since temporal information is crucial

to sound and music computing, for example, a Cosine transform of the entire signal

is not sufficient. Instead, a two-dimensional time-frequency representation is needed.

This section gives an overview of the corresponding methods applied throughout this

work and described in the Audio-to-Score Alignment literature.

3.1.1. Short Time Fourier Transform

The Short Time Fourier Transform (STFT) is the time-frequency transform most com-

monly used in the MIR literature. It is based on the Discrete Fourier Transform (DFT)

of a discrete periodic signal xn with a period of length N defined as

DFT (x) := Xk =
N−1∑
n=0

xne
−i 2π kn

N , (3.1)

where k ∈ [0, N). The vectors ei
2π kn
N form an orthogonal basis with resulting coefficients

Xk being complex numbers. According to Euler’s formula they represent sinusoidal

components of amplitude

Ak =
√
<(Xk)2 + =(Xk)2 (3.2)

Feature Extraction for Audio Alignment 32

and phase

ϕk = arctan

(
=(Xk)

<(Xk)

)
(3.3)

The calculation of the DFT according to Equation 3.1 has an asymptotic complexity

of O(n2). A computationally efficient method to obtain the DFT is the Fast Fourier

Transform (FFT) which reduces the complexity to O(N log N). Although the idea

of the FFT dates back to Carl Friedrich Gauss (cf. [Heideman et al., 1984]), the first

algorithm was proposed in [Cooley and Tukey, 1965]. It requires that the length of the

signal’s period can be factorized into small primes – ideally it is a power of 2. The

so called radix-2 FFT then recursively splits the input signal into a sequence of even-

indexed samples and a remainder sequence of odd-indexed samples. After calculating

the DFT on the subsequences, the individual results are combined in order to obtain

the transform of the whole signal. The processing follows a tree, where the root is

the entire signal and at each node the remainder signal is split into two. After the

calculation of the DFT at the leaves, which are sequences consisting of two samples

each, the tree is traversed postorder, joining the results at each node. A method

for rearranging the samples of the signal, such that the order resembles that of the

leaves, is to move each sample to its bit-wise reversed index. This variant is called a

decimation-in-time FFT, in contrast to decimation-in-frequency FFT algorithms, where

the transform is performed first and then a rearrangement takes place. Throughout this

work, the FFTW library ([Frigo and Johnson, 2005]), which offers several variants of

the FFT computation which are applied depending on the problem size as well as on

the machine, is used the obtain the DFT of a signal.

To obtain a time-frequency representation an additional mechanism is needed. The

DFT yields a spectrum of the input signal but no time information, i.e., no differen-

tiation if a frequency is present during the whole signal or only at certain sections.

Therefore, the signal is split into short fragments which are assumed to be approxi-

mately stationary and a spectrum is calculated for each of these frames. The resulting

2-dimensional representation is called spectrogram. For a large number of applications

the log-power variant of the spectrogram, based on

Âk = 20 logAk (3.4)

is utilized in accordance with the human auditory system.

Feature Extraction for Audio Alignment 33

Calculating the DFT on one signal chunk of length M at the time can be rephrased

as

STFT (x)w := Xk,w(τ) =

∞∑
n=−∞

xnwn−τe
−i 2π kn

N (3.5)

where

wn =

1 if n ≤ M−1
2

0 else
(3.6)

and τ = tMhop is an integer multiple of the hop size Mhop.

The used window function represents a rectangular window, which is a simple, never-

theless unfavorable option. The transient cutoffs at the window boundaries will most

likely conflict with the periodicity assumption of the DFT. Also, inspecting the window

in the frequency domain, where the convolution in Equation 3.5 becomes a multipli-

cation, shows that the frequency response of the window has non-zero values not only

at the main lobe centered around the corresponding frequency but also at side lobes.

Those side lobes are responsible for the duplication of spurious energy content from

adjoining frequency bins – an effect which is called spectral leakage. This leakage effect

is inherent to the STFT. However, different window functions differ in how fast the

magnitudes of the side lobes decay.

Common choices for window functions are the Hamming window, defined as

wn := 0.54− 0.46 cos

(
2πn

M − 1

)
(3.7)

and the Hann window, defined as

wn := 0.5

(
1− cos

(
2πn

M − 1

))
(3.8)

While the Hamming window has a clearer separation between the main lobe and the

first side lobe of more than -40 dB, the Hann window shows a faster general decay of the

side lobes’ magnitudes of about -18 dB per octave. For a description of other common

Feature Extraction for Audio Alignment 34

window functions, the interested reader is referred to the signal processing literature,

such as [Oppenheim and Schafer, 2007].

A second trade-off, besides the choice of the window function, is the adequate selection

of the window size M . While a large window yields a good frequency resolution, small

windows give the advantage of a higher time resolution. In the literature, common win-

dow sizes vary between 512 and 8192 samples. At a sampling frequency of 44.1 kHz this

results in windows lengths of 11.6 ms up to 185.8 ms. The corresponding frequency res-

olutions, i.e., the differences between two adjacent bins’ center frequencies, are 43.1 Hz

and 2.7 Hz respectively. In comparison, the two lowest tones of standard grand pianos

– the A0 and the A]0 – have a frequency difference of 1.636 Hz only. Accordingly, the

window of size 8192 has a fine enough frequency resolution to distinguish pitches from

F]1 upwards. Frequency differences of around 40 Hz cannot be found between pitches

lower than F4.

Two methods which seemingly increase the attainable time-frequency resolution are

zero-padding and overlapping windows. Padding zeros at the begin and the end of each

windowed signal chunk yields an STFT result having a higher number of frequency

bins. However, the relating coefficients do not contain additional information, but are

”blurred” such as when interpolating between a limited number of values.

Overlapping windows, on the other hand, are a necessary means to avoid data loss.

Since common window functions, except from the rectangular window, converge towards

zero or very small values as the index approaches the boundary, the signal samples

multiplied by those resulting values are almost canceled out. To avoid this effect,

overlap ratios of 50% or more are beneficial. However, decreasing the hop size beyond

a certain threshold will not yield more information but, again, result in an interpolation-

based oversampling.

There is no principled way of finding an optimal window size. A well known ap-

proach to circumvent this decision is to use several spectrograms calculated at different

time-frequency resolutions in parallel (see [Eyben et al., 2010], for example). A similar

method is to use different window lengths depending on the frequency bands under

consideration. This approach leads to the idea behind the constant Q transform, which

will be discussed later.

In applications where only the peak frequencies are of interest, the effective frequency

resolution can be further improved independent from the actual time-frequency trans-

form. In [Gómez, 2006] a quadratic spectral interpolation based on the peak value,

the values of its two adjacent bins, and the assumption that those three points lie

on a parabola is performed. Alternatively, the phase information contained in the

Feature Extraction for Audio Alignment 35

STFT coefficients can be used to calculate the instantaneous frequency, as described

in [Flanagan and Golden, 1966], [Boashash, 1992], or [Goto and Hayamizu, 1999]. The

complex coefficient Xk(τ) is rearranged as Xk(τ) = ak(τ) + i bk(τ). Then the instanta-

neous frequency f̂k is calculated as

f̂k(τ) = fk +
fs

2πMhop

b(τ)(a(τ +Mhop)− a(τ))− a(τ)(b(τ +Mhop)− b(τ))

a(τ)2 + b(τ)2
(3.9)

or when considering an individual frame, as

f̂k = fk +
fs

2πMhop

b∆a− a∆b

a2 + b2
(3.10)

where fk is the kth bin’s center frequency and fs is the sampling frequency.

3.1.2. Constant Q Transform

An inherent property of the Short Time Fourier Transform and the Discrete Fourier

Transform in general, is that the frequency bins are linearly spaced. However, this

linear partitioning of the frequency scale does not correspond to the human auditory

system and the way humans perceive pitch. Considering the standard pitch range of

a piano, the frequency difference between its two lowest tones (MIDI pitches 21 and

22) is 1.635 Hz. It then increases by a factor of 2
1
12 for each consecutive interval up to

a frequency difference of 234.9 Hz (between the MIDI pitches 107 and 108). Applying

a DFT is problematic, since only very long windows are able to yield a frequency

resolution high enough to discriminate individual pitches at the low frequency bands.

This high resolution is maintained at the higher, sparse frequency bands, however, at

the cost of a low time resolution.

A time-frequency transform more adapted to the human pitch percep-

tion is the Constant Q Transform (CQT, see [Brown and Puckette, 1992],

[Schörkhuber and Klapuri, 2010], or [Velasco et al., 2011], for example). The quo-

tient Q represents the relation between a bin’s center frequency fk and its bandwidth

Feature Extraction for Audio Alignment 36

∆f as Q = fk/∆f . A constant value of Q implies that the center frequencies are

geometrically spaced. The transform is defined as

CQT (x) := Xk =
N−1∑
n=0

xne
−i 2π n fk

fs (3.11)

where

fk = fmin 2
k

12a (3.12)

and a is the number of frequency bins per semitone on the equal tempered scale. The

number of frequency bands must be chosen in such a way that the highest resulting

frequency fkmax is below the Nyquist frequency.

[Brown and Puckette, 1992] propose a computationally efficient algorithm for the cal-

culation of the CQT. To this end, the windowing step is included into Equation 3.11

and the result is rearranged as

Xk,w(τ) =

M−1∑
n=0

xna
∗
k(n− τ) (3.13)

with

a(n) =
1

Nk
w(

n

Nk
)e
−i 2π n fk

fs (3.14)

and a∗k(n) being the complex conjugate of the atoms ak(n). The sizeNk of the respective

windows is inverse to the center frequency fk and adapted for each bin, such that the

quotient Q remains constant. The window function w(n) is supported in the interval

[0, 1]. According to Parseval’s theorem,

N−1∑
n=0

xna
∗
k(n) =

N−1∑
m=0

X(m)A∗k(m) (3.15)

where X(m) and Ak(m) denote the DFTs of x(n) and ak(n) respectively. The spectral

kernels A∗k can be precalculated and stored, reducing the computation of the CQT to

Feature Extraction for Audio Alignment 37

performing an FFT and a matrix multiplication according to Equation 3.15 for each

frame. The matrix multiplications are computationally cheap due to the sparseness of

the kernels.

An inverse CQT and additional performance enhancements were proposed by

[Schörkhuber and Klapuri, 2010]. By processing one octave at a time, considerable

differences in the lengths of the required windows can be avoided. This modification

does not only improve the sparseness of the kernels but also allows for longer hop

sizes in the lower frequency regions. An alternative computation of the inverse con-

stant Q transform is presented in [Velasco et al., 2011] based on non-stationary Gabor

frames.

3.1.3. Wavelet Transform

An operation similar to the Constant Q Transform is the Discrete Wavelet Trans-

form (DWT). As in the Fourier analysis, the signal is projected linearly on a function

base. However, in contrast to the sine and cosine functions which are supported on R,

wavelets, i.e., the basis functions of the DWT, exhibit only short ranges in which their

values are different from zero. Individual wavelets are constructed based on either a

mother wavelet ψ(t) or a scaling function φ(t). The simplest such wavelet is the Haar

wavelet defined as

ψ00(t) := f(t) =

1 0 ≤ t < 1

2

−1 1
2 ≤ t < 1

0 otherwise

(3.16)

The wavelets most commonly used in the literature are the ones of the Daubechies family

(see [Daubechies, 1988]) which are recursively constructed from the Haar wavelet. They

were proven to have a number of beneficial properties such as orthogonality and the

highest possible number of vanishing moments. The actual DWT is then defined as

DWT (x)ψ := Xk,ψ =
∑
j

∑
n

xn2−j/2ψ(2−jk − n) (3.17)

where the mother wavelet ψ(t) is only contracted and dilated by powers of 2.

Feature Extraction for Audio Alignment 38

[Mallat, 1989] introduces a computationally efficient algorithm of an asymptotic com-

plexity of O(n) to compute the DWT of a signal. To this end, a pair of quadrature

mirror filters corresponding to a certain wavelet are constructed such that one is a

low-pass whereas the other one is a high-pass filter. In each iteration of the algorithm,

the two respective filters are applied to the remainder signal and according outputs are

downsampled by a factor of 2. The high frequency part of the signal is kept as the de-

tail information at the level corresponding to the current iteration. The low frequency

part is further decomposed using the next pair of filters. In doing so, at each step

the frequency resolution is doubled – because the frequency range of the input signal

is divided into a high frequency and a low frequency part – while the time resolution

is set to the half – due to the downsampling. Therefore, the result is similar to the

outcome of a CQT (cf. [Bayram and Selesnick, 2009], [Brown and Puckette, 1992], or

[Tzanetakis et al., 2001]).

3.1.4. Gabor Analysis

The Gabor analysis can be seen as a generalization of the STFT. Instead of dividing the

time-frequency space into a fixed grid according to the window and hop sizes applied

in an STFT, Gabor analysis is based on time-frequency atoms which are derived from

a single prototype g(t) by translation, i.e., time shifts, and modulation, i.e., frequency

shifts. Given these two operators, defined as

Tk f(t) := f(t+ k) (3.18)

and

Ml f(t) := e−i
2π lt
L (3.19)

respectively, the signal x can be expressed as a linear combination of multiple instances

of the atom g(t) shifted in the time-frequency space

xn =
∑
t,k∈Z

Xt,kMkbTtag(n) (3.20)

where a represents the width of a time shift and b the width of a frequency shift.

The atom g(t) is a function, such as the Gaussian. It is the equivalent to the window

Feature Extraction for Audio Alignment 39

function applied during the computation of an STFT. To compute the coefficients Xt,k,

the set of shifted atoms must form a frame, i.e., a basis, however, without the linear

independence constraint. In addition an inner product 〈., .〉 must be defined on the

time-frequency space. Then there exists a corresponding dual frame Mbk Tat γ, such

that

Xt,k = (〈x,Mbk Tat γ〉)t,k (3.21)

While shifting the atom along a fixed grid according to the parameters a and b does not

offer much advantage in comparison to the STFT, the concept of Multiple Gabor Frames

does. [Dörfler, 2002] describes the idea to have not only a single atom, but various

prototypical functions according to the expected signal content at certain regions of the

time-frequency space. At times where note onsets are expected, frequency resolution

is not critical, especially for instruments where a note onset causes a transient energy

burst throughout the whole spectral range. In such cases an atom aiming at accurate

time resolution can be applied. On the other hand, during the sustain phase of a note,

atoms designed for higher frequency resolution can be applied.

However, as for all time-frequency transforms, the capabilities of Gabor analysis in

terms of time-frequency resolution are limited by Heisenberg’s uncertainty principle.

Placing the atoms too dense within the time-frequency space, results in the same effects

as can be observed when zero-padding or highly overlapping windows are applied during

an STFT computation [Dörfler, 2002][Dörfler, 2004].

3.1.5. Filter Banks

While the above described methods are direct transforms of a signal into the frequency

domain, digital audio filters are no such transform per-se. However, an adjusted bank of

bandpass filters can separate the components of a signal in a fashion similar to Fourier

analysis. On the other hand, designing a filter bank offers more flexibility than the

application of, for example, an STFT. When, instead of bandpass filters, comb filters

are used, the energy contribution of a certain pitch including not only its fundamental

frequency but also its harmonics can be obtained in a single transform step.

In [Müller et al., 2004] a bank of 88 bandpass filters corresponding to the fundamen-

tal frequencies of the notes available on a standard piano is applied. The filters are

implemented as 8th-order elliptic filters having a rejection of 50 dB in the stop-band.

To keep the computational costs low, the signal is downsampled such that the high,

Feature Extraction for Audio Alignment 40

medium, and low frequency content is computed based on three versions of the signal

at a respective sampling rate.

A time-frequency representation is obtained from the filter output by calculating the

short-time root-mean-square power (STRMS power) for each of the frequency bands.

Depending on the sampling frequency at which a certain filter output was computed,

a window function with an according interval of support is applied.

Other commonly applied filterbanks are based on auditory models, such as proposed by

[Patterson et al., 1992], simulating the human perception of sound, i.e., the behavior of

the cochlea and the basilar membrane. A basic concept is the partition of the audible

frequency range into 24 critical bands according to the Bark scale. Frequencies within

such a band are subject to a conjoined analysis which can result in masking effects. The

actual filters are commonly implemented as 4th-order gammatone filters due to their

cutoff characteristics and computational efficiency (cf. [Painter and Spanias, 2000], for

example).

Another approach is described by [Cheveigné, 1993], reviewing a method for the de-

tection of pitches present in a signal by tuning comb filters to narrow pass bands at

the fundamental and harmonic frequencies of a pitch. This is similar to the dictionary

based spectral factorization described in Section 3.4, however instead of performing a

time-frequency transform first and then decomposing the signal, comb filters are applied

directly on the time domain signal.

3.1.6. Discussion

In the sections above, some of the most commonly applied time-frequency transforms

have been briefly described. While for some of them, such as the STFT and the CQT,

the inherent differences are apparent, others, such as filter banks, are flexible instru-

ments that can be used interchangeably with other approaches. In such cases, consid-

erations concerning computational efficiency or appropriateness of data representations

become determining.

In numerous preliminary experiments, we found the short-time Fourier transform with

a relatively high window overlap ratio to be best suited for most algorithms described

within this thesis. One might argue that it is not adequate for the processing of musi-

cal audio due to its linear spacing of frequency bands, which disregards the logarithmic

frequency spacing of pitches as perceived by human listeners. While this reasoning

is sound in principle, it neglects the fact that a pitch is not only represented by its

fundamental frequency but also by its harmonics. Not considering the small inhar-

Feature Extraction for Audio Alignment 41

monic deviations characterizing a certain instrument, harmonic frequencies are integer

multiples of the fundamental frequency. While the interval between the fundamental

and the first harmonic frequency is an octave, the same absolute frequency difference

equals less than a semitone between the 16th and the 17th harmonic. While most sys-

tems described in the literature do not consider harmonics of such a high order, this

figure, nevertheless, demonstrates that partials of a signal become more compact on

a pitch scale in higher frequency ranges. While the geometrical spacing of frequency

bins of the CQT accommodates the fundamental frequencies of notes it disregards the

harmonics and the discrimination between partials of different tones. This also holds

for the Discrete Wavelet transform.

A second argument is computational efficiency. To not lose data at the high frequency

bins of the CQT, where the window sizes are relatively short, the hop size must be

accordingly small. However, this results in highly overlapping windows at the low fre-

quencies, which require very long windows which are computationally expensive. When

using an STFT one can obtain an additional spectrogram aimed at the recognition of

low notes in an efficient way from an accordingly downsampled version of the input sig-

nal. Nevertheless, we use the CQT in certain refinement steps of our proposed system,

where we are not interested in the tonality of a frame but in the exact energy at the

fundamental frequencies of individual pitches.

Comparing the STFT to the more general multiple Gabor frames, the STFT is more

efficient again. While the multiple Gabor frames approach is a self-contained, orderly

mathematical framework, from an algorithmic point of view, it is cheaper to compute

several spectrograms at different constant time-frequency resolutions instead of deter-

mining adequate resolutions for each segment of the input signal. In addition, in an

analysis-only setting, where the accurate resynthesis of the signal is not an issue, some

of the constraints introduced by the Gabor analysis framework can easily be dropped.

Also, the equally spaced lattice of the STFT benefits computational processing due to

its straightforward data structure. Gabor atoms with centers of gravity at arbitrary

points within the time-frequency space are, for example, not usable for transformations

by means of matrix multiplication, but would require adapted routines.

Filter banks can be implemented very efficiently. However, to gain additional benefits

in comparison to the described transforms, an in-depth filter design is required. Comb

filters, which are intended to take all partials of a certain tone into account, would need

to be adjusted to the exact tuning and inharmonicity of a certain instrument. In accor-

dance with numerous other authors we have decided on performing a straightforward

transform and concentrating our efforts on subsequent processing step in the frequency

domain.

Feature Extraction for Audio Alignment 42

The FFT implementation used throughout this work is the FFTW 2 – an open source

C library developed at the MIT and distributed under the GNU GPL3. The FFTW

contains a number of FFT algorithms and yields high performance due to automatic

selection of the appropriate algorithm depending on the data and other runtime self-

optimization techniques (see [Frigo and Johnson, 2005]).

3.2. Chroma Vectors

Chroma vectors, also known as Pitch Class Profiles, are the probably most commonly

used feature for audio alignment tasks. Although the first name is used more frequently

in the current literature, it was only introduced in [Bartsch and Wakefield, 2001], while

the same idea had already been proposed in [Fujishima, 1999]. The Chroma feature

has been used in numerous systems, not only for Audio-to-Score Alignment and Score

Following, but also for solutions involving audio alignment as an intermediate step, such

as in the fields of Version Detection, Structural Analysis, or Content-based Retrieval.

In this very context of Content-based Retrieval, [Hu et al., 2003] presents a comparison

between Chroma Vectors, Pitch Histograms and two MFCC-based approaches showing

that Chroma vectors significantly outperform the other features.

Another evaluation is presented in [Joder et al., 2010a], where Chroma features ob-

tained from different time-frequency representations are compared to spectral models

and semitone energy features. The authors showed that while the spectral model based

approached performed significantly worse than the others, there is no such significant

difference between the results obtained using Chroma variants or features considering

the energy of each individual semitone. Chroma vectors are, therefore, preferred, due to

their compactness and efficiency. In addition, a comparison of different types of Chroma

features is compared within the context of Chord Detection in [Jiang et al., 2011]

The basic idea behind Chroma features is to not consider a single pitch’s contribution

to the spectral energy of a frame, but the energy of a whole pitch class (i.e., all C,

C]/D[, D, D]/E[, etc. without taking the actual octave into account). In doing so,

octave errors, which account for a considerable percentage of the overall error rate in

multi-pitch detection (see [Brossier, 2006], for example), are avoided. Also, by mapping

all pitches into one octave, the amount of data is significantly reduced.

The probably easiest way of obtaining a chroma vector from an audio frame starts

by mapping each bin’s center frequency fk into a certain octave by multiplication by

the factor of 2n, where n ∈ N is the number of octaves by which fk is adjusted. The

2http://www.fftw.org
3http://www.gnu.org/copyleft/gpl.html

http://www.fftw.org
http://www.gnu.org/copyleft/gpl.html

Feature Extraction for Audio Alignment 43

resulting frequency f̂k is then compared to the fundamental frequencies of the 12 pitches

within the reference octave. The kth bin is then assigned to the pitch class c with its

prototypical fundamental frequency nearest to f̂k. The class index can be calculated

by

c(fk) =

[
12 log2

fk
440

+ 12n+ 9

]
mod 12 (3.22)

where n is an integer factor which has to be chosen such that the term within the

brackets is positive and the addition of 9 shifts the result such that the pitch class C

has an index of 0.

3.2.1. Distance Weighting

Mapping a frequency bin directly to a pitch class can be problematic. It would result in

each frequency bin contributing to exactly one pitch class with is entire energy indepen-

dent of how accurate the folded center frequency f̂k matches the nearest prototypical

fundamental fci . However, in cases where f̂k lies in between two pitch class prototypes,

i.e., its distance

di(f̂k) =

∣∣∣∣∣12 log2

f̂k
fci

∣∣∣∣∣ (3.23)

to the nearest fci in semitones is close to 0.5, the energy contribution should be divided

among the respective pitch classes. From another point of view, one can argue that

energy contributions of bins which cannot be accurately mapped to any pitch class

should be down-weighted. To this end, a weighting function with a support interval

of length l centered around a di value of zero is introduced. [Gómez, 2006] proposes a

cosine squared weighting function defined as

w(di) =

cos2
(
π
2
di(f̂k)
0.5l

)
if d ≤ 0.5l

0 otherwise
(3.24)

Feature Extraction for Audio Alignment 44

3.2.2. Spectral Peak Selection

In contrast to taking each frequency bin into account, a different method to compute

the chroma vector is to only consider frequencies where the spectrum forms a peak.

In doing so, one avoids energy contributions which are due to noise and concentrates

on sinusoids which are supposed to be meaningful. By additionally calculating the

instantaneous frequency at the spectral bins, the feature is calculated based on an

accurate estimate of the partials sounding at a certain audio frame (cf. [Goto, 2005] or

[Ellis et al., 2008]).

While the approach is sound, its implementation poses questions concerning an ad-

equate peak picking. A common method is to smooth the spectrum to reduce the

number of local maxima and to also apply thresholding. Strategies for the selection of

the thresholds can be based on auditory principles such as the absolute threshold of

hearing or masking effects, i.e., assumed partials with an amplitude too low in absolute

numbers or in comparison to the amplitude of a proximate peak are dropped.

3.2.3. Harmonic Frequencies

Another enhancement proposed by [Gómez, 2006] is to also take into account that a

partial found within a signal does not need to have the fundamental frequency of a

note, but, with a much higher probability, might have a harmonic frequency. The

direct mapping of frequencies to pitch classes, as described above, neglects this fact.

Since for vibrating strings the first and the third (ideal) harmonic are of the same pitch

class as the fundamental (see Table 3.1), a straightforward mapping implicitly assumes

that the sum of the amplitudes of these two partials and the fundamental frequency

dominates that of other partials belonging to a different pitch class. This is justified by

the observation that the energy tends to decrease for each other harmonic and therefore

three out of the four most dominant partials belong to the desired pitch class.

For the computation of the Harmonic Pitch Class Profile (HPCP), however, each spec-

tral peak is in turn assumed to be the fundamental and the first up to the Hth harmonic

frequency of a pitch, where h ∈ [1, H]. Then the energy of the ith pitch class is defined

as

HPCP (i) =
∑
f

H∑
h=0

w

(
di

(
f

h+ 1

))
A(f)sh (3.25)

Feature Extraction for Audio Alignment 45

harmonic interval PC offset

fundamental (0) (0)

1 12 0
2 19.0 -5.0
3 24 0
4 27.9 3.9
5 31.0 -5.0
6 33.7 -2.3
7 36 0
8 38.0 2.0
9 39.9 3.9
10 41.5 5.5

Table 3.1.: Interval in semitones between the fundamental frequency and the harmonics
and the respective offsets in terms of pitch classes

where di(f) and w(di) are distance and weighting functions according to Equation 3.23

and 3.24 respectively, A(f) is the amplitude, and s ∈ (0, 1] yields a constant or a

decaying weight for each consecutive harmonic.

3.2.4. Pre- and Post-processing Methods

In order to enhance the explanatory power of the feature, several authors have proposed

additional pre-processing methods. One of the probably simplest approaches is to intro-

duce a silence detection as, for example, done in [Niedermayer, 2008]. Numerous audio

features, including Chroma vectors computed without a normalization, can represent

silence in the feature domain. Normalization, however, discards all information on the

absolute loudness or the absolute energy within an audio frame. To maintain this piece

of information, a detection of silent passages can be performed on the amplitude en-

velope of the time domain signal or on the total energy of a frame in the frequency or

feature domain by simple thresholding.

A second method for pre-processing audio signals is spectral whitening, as described

in [Klapuri, 2003] and also used in [Niedermayer, 2008]. It aims at reducing timbral

influences as well as suppressing noise. To this end, the spectrum Xt of a frame at time

t is modeled as

Xt(k) = Ht(k)St(k) +Nt(k) (3.26)

Feature Extraction for Audio Alignment 46

i.e., a superposition of an excited sound St modified by the frequency response Ht of the

environment, including the instrument body or room acoustics, and a noise component

Nt. The effect of Ht is lessened by a magnitude warping of Xt according to

Yt(k) = ln

(
1 +

Xt(k)

g(Xt)

)
(3.27)

while allowing for the noise component Nt to be linearly subtracted from the result in

a second step. [Klapuri, 2003] proposes a function g(Xt) defined as

g(Xt) =

[
1

K

∑
k

Xt(k)
1
3

]3

(3.28)

and an approximation N̄t(k) calculated as the moving average over Yt(k) calculated on

a logarithmic frequency scale such that the final whitened signal is

Zt(k) = max
(
0, Yt(k)− N̄t(k)

)
(3.29)

Other authors perform a tuning frequency estimation to obtain a more accurate map-

ping between frequencies and pitch classes. It is relatively common that instruments

are not tuned to a standard pitch of A4 =̂ 440 Hz but to a slightly deviating frequency.

In [Gómez, 2006] an algorithm is described which extracts the instantaneous frequency

of each spectral peak within the time-frequency representation of an audio recording.

Building a histogram over the detuning factors obtained from these peak frequencies

yields the most likely global tuning. Consideration of the exact tuning can also be found

in [Dressler and Streich, 2007], [Lerch, 2006], or [Vincent et al., 2008], for example.

When two feature sequences are compared, one has to decide on an analysis window

overlap ratio. On the one hand, since the common alignment algorithms have quadratic

complexities, a high overlap ratio will quickly result in very high computational costs.

On the other hand, features which are sparse in time bear the risk that, due to a

small offset or a tempo variation, the combination of notes present during the analysis

windows will not be the same when two versions of a piece are compared. To make

feature sequences invariant to such offsets or tempo variations, in [Ellis et al., 2008] or

[Bertin-Mahieux et al., 2010], a beat tracking is performed on the audio data. Then

the Chroma feature is calculated at a fixed resolution in terms of frames per beat.

Feature Extraction for Audio Alignment 47

Concerning post-processing, a large number of proposed systems uses normalized

Chroma vectors. Normalization is achieved by linear scaling, such that either the

sum or the maximum of all values is a constant (usually 1). It should also be re-

marked that some authors work with resolutions finer than one semitone. This results

in vector lengths larger than 12. A relatively common choice are feature resolutions

of 24 or 36 elements, i.e., pitch classes (cf. [Gómez, 2006], [Sheh and Ellis, 2003], or

[Müller et al., 2011]).

3.3. Onset-based Features

The feature described above – Chroma vectors – describes the tonality of a frame.

Although this information allows for matching sections of the audio recording to corre-

sponding passages within the score, this feature is not designed to yield accurate note

onset estimations. To also consider exact event timings, a second class of features,

which is based on onset detection functions, is introduced.

Such a feature was originally proposed in [Müller et al., 2004]. There, a multi-rate bank

of 88 elliptic filters was used to obtain a time-frequency representation where each filter

output corresponds to the fundamental frequency of one note within a standard piano’s

pitch range. The resulting short-time root-mean-square power is similar to the Pitch

Activation feature, with the major difference that not all or at least several partials

of a pitch are taken into consideration, but only a certain band centered around the

fundamental frequency of a pitch.

Based upon this time-frequency representation, the novelty in each band is calculated

by half-wave rectifying the first-order difference function over each frequency band.

Local maxima are then selected as onset candidates not only for the notes with a

fundamental frequency equaling a band’s center frequency fc but also for the pitches

with fundamental frequencies of fc/2 and fc/3. In doing so, the fact that the first two

harmonics are contributing a significant fraction of a note’s overall energy, is accounted

for. Spurious candidates are removed by applying a local threshold.

Although onset candidates are sparse and highly accurate cues for novel partials within

an audio signal, their usage as features in an audio alignment task is limited. On the

one hand, the onset descriptors strongly depend on the peak picking step which is

error-prone due to several aspects. Shared partials, low signal novelty when notes are

repeated or a passage is performed very softly, and high degrees of polyphony due to

extensive usage of the sustain pedal are phenomena which hamper the detection of note

onsets. On the other hand, notes of a chord are played asynchronously most of the time

Feature Extraction for Audio Alignment 48

during real performances. This results in note onsets at different times, contradicting

the synchronous onset within the score. Due to the instantaneous character of note

onsets, i.e., the fact that they do not have any temporal spread, it is unlikely that the

onsets of all notes of a chord are within the same audio frame. As a consequence, the

information if notes are played one at a time or as a chord is lost. Therefore, adapted

alignment optimization algorithms are needed to deal with pure onset features.

In [Ewert and Müller, 2009], the approach of using note onset information for audio

alignment was developed further. To obtain a feature which is not only robust but

also allows for an accurate onset detection, the strengths of each pitch’s onset candi-

dates within a window of 20 ms are added up. After applying a logarithm, a Chroma

representation of these onset indicators is obtained by taking the sum over all values

representing an equal pitch class. To account for dynamic changes, the chroma onset

values are normalized with respect to the maximum value within a sliding window. In

a final step, the individual, sparse Chroma onset peaks are given a temporal spread.

To this end, each peak is repeated 10 times after multiplying the original value with a

respective decay factor.

The introduction of this decay does not reduce the temporal accuracy, but, on the

other hand, improves the feature’s robustness. While the sharp attack at the note

onset time remains unchanged, the decaying repetitions will mask spurious, subsequent

peaks of small values when considering a single pitch class. Also, a temporal spread

of individual notes’ representations results in frames where all notes of a chord are

present, independent of small asynchronies.

A modification is the combination of this onset-based descriptor with standard Chroma

vectors. In doing so, notes whose onset was missed will nevertheless be repre-

sented in the combined feature due to their contribution to the Chroma values. In

[Ewert and Müller, 2009], a simple sum of the two alignment costs corresponding to

the two features was reported to outperform the individual features. In addition,

[Arzt et al., 2012] found that by combining the principles of onset-based descriptors

and Chroma vectors adaptive to the signal novelty within a short sliding window, re-

sults can be improved even further.

3.4. Pitch Activation

While Chroma vectors and onset-based features are adequate descriptors for the tonality

of an audio frame and for signal novelty respectively, they do not reveal details at the

pitch level. This is not only tolerable when global alignments up to a certain required

Feature Extraction for Audio Alignment 49

accuracy are considered, but in fact a deliberate approach to increase the robustness

of the features by avoiding the error-prone task of multi-pitch extraction. However,

Table 2.6 and Table 2.7 show that asynchronies between individual notes of a chord are

significant and cannot be ignored when alignment accuracy is an issue.

In [Niedermayer, 2008], we have proposed a spectrogram factorization based Pitch

Activation feature in the context of automatic music transcription. Later (see

[Niedermayer, 2009a]) we adapted this feature for the post-processing of individual

notes’ onset times. While the underlying principle is similar to non-negative matrix

factorization, the specific strength of the Pitch Activation feature is that the musical

context can be taken into account. This is particularly valuable for the local refinement

of Audio-to-Score Alignments, where the notes which are played within a certain range

of time are already known with a relatively high confidence.

3.4.1. Non-negative Matrix Factorization

As described in [Niedermayer, 2008], the principle behind the Pitch Activation feature

is derived from the idea behind non-negative matrix factorization (NMF) which was in-

troduced in [Lee and Seung, 1999] in the context of image processing. There, a number

m of facial images is represented by an n dimensional column vector of non-negative

pixel values each. The resulting matrix V of the size m× n is decomposed into two as

well non-negative output matrices W and H of size m× r and r× n respectively, such

that

Vi,j ≈ (W H)ij =
r∑

a=1

WiaHaj (3.30)

where the columns of W are called basis images whereas each column of H corresponds

to an image vector in V and is called an encoding. The factorization’s rank r is chosen

such that (n+m)r < nm, i.e., such that a reduction of data is achieved.

Since perfect factorization is not possible in almost all cases, a solution to Equation 3.30

with minimal error of reconstruction is achieved by minimizing a cost function over the

difference between V and W H. Common such objective functions are the Euclidean

Feature Extraction for Audio Alignment 50

distance E(V,WH) or the (generalized) Kullback-Leibler divergence D(V ‖WH) given

as

D(V ‖WH) =
∑
ij

(
Vij log

Vij
(WH)ij

− Vij + (WH)ij

)
(3.31)

The concept of decomposing data matrices while minimizing the reconstruction error

is not specific to NMF. However, other approaches impose different constraints on the

factorization. Vector Quantization, for example, uses a unitary constraint on each

encoding vector H.j , i.e., each image is encoded as its best matching prototype. An-

other example is Principal Component Analysis where the atoms in Wi. are forced to

be orthonormal and the weightings in H.j must be orthogonal. In contrast to Vector

Quantization, this allows for an actual decomposition of signals into individual compo-

nents. However, allowing negative pixel values in the basis images does not yield atoms

which are intuitive or even represent meaningful partials. In the domain of audio signal

processing, this would result in spectral patterns where individual frequencies could

have negative amplitudes.

When we apply NMF to a power spectrum, as obtained by the short time Fourier

transform, the basis components in W are weighted frequency groups that are found

to sound together. Ideally, they belong either to a single pitch played on a certain

instrument or a group of pitches that are normally played together, such as the notes

of a chord. If the number r of basis components is smaller than the number of different

pitches played, some of them have to be either omitted or grouped within one atom.

In the reverse case, where r is sufficiently large, there can be atoms representing noise

or there is more than one atom per one single pitch. It is very likely that one compo-

nent represents the sustained part of a note whereas another maps to the note onset

with much richer harmonics. A detailed investigation on these effects can be found in

[Plumbley et al., 2006].

The component activation in Hrj expresses the strength of the rth atom at time frame j.

Due to the non-negativity constraint, the combination is additive only, giving consider-

ation to the fact that there is nothing like a negative velocity of notes. Although power

or magnitude spectra are not additive, assuming that they are a linear combination of

their weighted components, i.e., the spectra of individual notes sounding concurrently,

is an approximation which has been shown to yield acceptable results.

Effective algorithms for the calculation of the NMF have been introduced in

[Lee and Seung, 2001]. Multiplicative update rules are used in order to find local min-

Feature Extraction for Audio Alignment 51

ima starting from randomly initialized W and H. Using the divergence from Equa-

tion 3.31 as cost function, these update rules are

Haj ← Haj

∑
iWiaVij/(WH)ij∑

kWka
(3.32)

Wia ←Wia

∑
j HajVij/(WH)ij∑

ν Haν
(3.33)

Also, in [Lee and Seung, 2001] proof is given that the divergence is (i) non-increasing

under the above update rules and (ii) invariant if and only if W as well as H are at

stationary points, i.e., the algorithm converges towards a (local) optimum.

Several works like [Cont, 2006], [Plumbley et al., 2006], [Smaragdis and Brown, 2003],

[Weiss and Bello Correa, 2010], [Vincent et al., 2007], or [Virtanen et al., 2008] have

concentrated on applying matrix factorization using non-negativity and sparseness con-

straints on MIR tasks. Although NMF is a capable means to decompose a spectrogram

into self-contained components, it has a number of drawbacks in the context of audio

alignment and music signal processing in general.

One inherent problem of NMF based approaches is the determination of an appropriate

number r of base components. While in the context of Audio-to-Score Alignment,

the number of different pitches played during a specific piece of music can easily be

obtained from the score, there is no guarantee that each played pitch is represented

in the resulting dictionary W of atoms. [Plumbley et al., 2006] report that even when

they used a more than sufficiently large number of base vectors in an NMF as well as

in two sparse coding approaches, a small number of notes was not represented in the

result. This is the case when chords or certain residual noise patterns become more

significant than single tones that are played only very rarely.

Choosing a value r larger than the number of different pitches played increases the

chance that each pitch has at least one corresponding atom, but, inherently results

in higher computational costs. Also, the problem of mapping basis vectors in W to

their corresponding pitches is likely to become harder proportionally to the excess of

atoms.

In addition, learning a dictionary of independent components while aligning musical

audio to a given score does not seem to be a natural way of approaching the problem.

As shown in [Hainsworth, 2003], humans start by detecting the genre and style of a

piece, which allows them to limit the number of possible instruments and timbres to

be expected. Learning the dictionary of independent components along with their

Feature Extraction for Audio Alignment 52

activation is, as pointed out above, likely to model noise as well and therefore prone

to over-fitting. Restricting dictionary vectors to feasible values, i.e., models of the

tones which are expected to be played during the performance of a piece in advance

is a reasonable means of preventing over-fitting as well as nonessential computational

costs.

3.4.2. Non-negative Least Squares Factorization

To overcome the above described drawbacks of the NMF approach, we proposed to fix

the dictionary W of atoms in [Niedermayer, 2008]. First, the number r of independent

components is set to the number of possible notes regarding the pitch range of the

certain instrument or the piece in focus. In addition, the single atoms are chosen to

be stereotypical tone models of the corresponding pitches. A straightforward approach

would be to use multiplicative updates on a random initialization of H applying the rule

in Equation 3.32 while omitting Equation 3.33 and leaving W unchanged. However, a

more efficient approach is to exploit the fact that W is fixed and Equation 3.30 can be

resolved to

vi ≈ (W h)i =

r∑
a=1

Wiaha (3.34)

where W is the fixed dictionary. v and h are column vectors representing one time

frame of the spectrogram and the Pitch Activation respectively. In order to measure

the quality of an approximation in Equation 3.34, again a cost function is needed. A

convenient measure is the mean square criterion where

f =
1

2
‖Wh− v ‖22 (3.35)

has to be minimized, while regarding the constraint of non-negativity. According to

[Lawson and Hanson, 1974] this problem is solved by an iterative algorithm as fol-

lows.

1. Initialize all elements of h to zero and introduce two sets P and Z where P is

empty and Z contains all indices within h.

2. Compute the gradient 5hf = W
T · (v − Wh) where f is the cost function as

defined in (3.35).

Feature Extraction for Audio Alignment 53

3. If Z = {} or ∀i : i ∈ Z ⇒ (5hf)i ≤ 0 then terminate.

4. Find the maximum element of 5hf and move its index from Z to P .

5. Solve the unconstrained linear least squares problem W sub · z = v where W sub

is a copy of W where all columns corresponding to indices in Z are set to zeros.

Within the result z only those elements with indices contained in P are significant.

The others are set to zero.

6. If ∀i : i ∈ P ⇒ zi ≥ 0 then z is a feasible solution, h is set to z and the main loop

is continued at step 2.

7. If the above condition does not hold z can only contribute to the new temporary

solution up to a certain amount. Therefore the factor α is calculated as α =

argmini(hi/(hi−zi)) where only the indices of negative elements in z are allowed

as i.

8. Calculate the new temporary solution using α from the above step as h = h +

α(z − h)

9. Move from P to Z all indices for which the corresponding element in h is zero.

Continue the inner loop at step 5.

Although the result of one frame is a useful hint for the computation of the next frame,

single time frames can now be processed independently. This makes the method not

only suitable for parallelization but also for online processing. Reassembling the results

of individual frames gives a complete activation matrix, such as H from Equation 3.30

as an optimal non-negative quotient of an input power spectrogram V and a given tone

model dictionary W . The method can, therefore, be seen as a non-negative matrix

division in contrast to the uninformed matrix factorization.

From another point of view, the vectors h are a feature, representing the strengths of

the individual pitches within a chord. Within this work, it is called Pitch Activation

and used to yield a quasi-transcription of an audio recording to be able to perform

Audio-to-Score Alignment in the symbolic domain (as described in Section 4.3) and for

the refinement of note onsets (as described in Section 6.2).

Feature Extraction for Audio Alignment 54

3.4.3. Tone models

The above described spectrogram factorization requires a set W of pre-trained tone

models. Such a model consists of a prototypical spectrum of the same frequency reso-

lution and scaling as the transformed audio frame v under consideration. A common

approach (cf. [Bertin et al., 2010], [Vincent et al., 2008], and [Virtanen, 2007]) is to

generate generic tone models based on the ideal frequencies of the partials of a note

while allowing for a certain deviation. To this end, a cosine function in the interval

[−π
2 ,

π
2], i.e., the positive part of the cosine wave, was chosen to represent a partial.

The model of the tone with a fundamental frequency f0 is then obtained as the sum

over all partial models mi defined as

mi(f) :=

hi cos
(
π
2
f−(i+1) f0

δs(f)

)
if f − (i+ 1) f0 <= δs((i+ 1) f0)

0 otherwise
(3.36)

where h ∈ (0, 1] is a decay factor and δs(f) is the frequency dependent tolerance range

of s semitones calculated as

δs(f) = f
(

1− 2
s
12

)
(3.37)

A frequency dependent tolerance range has the beneficial side-effect that this range

becomes wider for harmonics of higher order, which implicitly accounts for increasing

inharmonicities. Alternatively, [Vincent et al., 2008] describes a system where inhar-

monicities are explicitly taken into consideration. Then, instead of increasing the toler-

ance range, models are obtained as a series of constantly sharp peaks at the predicted

detuned harmonic frequencies.

For vibrating strings, the index i runs from 0 to hmax. For wind instruments, in

contrast, the model has to be adapted, such that only harmonics at uneven multiples

of the fundamental frequency are included (m =
∑

i∈{0,2,4,... 2hmax}mi)
4. An example

tone model of an A4 for string instruments is shown in Figure 3.1.

Preliminary experiments in the context of audio alignment have shown that a decay

factor of 0.8 and a maximum tolerance of one semitone yield good results. During the

decomposition of a spectrum, the relatively wide tolerance range allows for frequency

4Remark: m0 models the fundamental frequency (f0), m1 corresponds to the first harmonic (2f0),
and so on. Thus, the models of uneven multiples of the fundamental frequencies have even indices
(mi=̂f0(i + 1)).

Feature Extraction for Audio Alignment 55

Figure 3.1.: Tone model of the note A4 (pitch 69, 440 Hz)

bins in between two adjacent pitches to potentially contribute to the activation of both

tones. This seems to introduce unnecessary ambiguity. However, such ambiguities are

not an issue due to a sufficient large number hmax of partials taken into account for

each pitch.

While the generic model can easily be generated for arbitrary pitches, it will most

certainly not contain typical characteristics of notes played on musical instruments.

The fact that real tones do not satisfy the assumption of ideal harmonic frequencies

has been know for many decades (see [Schuck and Young, 1943]). It was found that

harmonic partials generally lie above their ideal frequencies by an amount quadratically

increasing with their order. In [Fletcher, 1964] this effect is approximated by

fn = f0(n+ 1)

(
1 +B (n+ 1)2

1 +B

) 1
2

(3.38)

The parameter B is not only dependent on the exact instrument but also on the pitch of

a note. While inharmonic deviations are least significant in the range between C2 and

C4, they increase towards the lower and even more rapidly towards the higher pitches.

MIR systems which explicitly take these inharmonicities into account are presented in

[Klapuri, 2003] and [Vincent et al., 2008], for example.

A direct consequence of the inharmonicity is a “stretched” tuning of instruments. A

common tuning process (cf. [Schuck and Young, 1943]) starts by tuning one octave

according to a reference frequency and the ideal frequency relations between the indi-

vidual tones. Then, the tones of the adjacent octaves are tuned such that no dissonance

can be observed between the tone under consideration and its corresponding one within

the reference octave. In doing so, the fundamental frequency of the higher tone will be

the same as the first harmonic frequency of the lower tone, resulting in a propagation of

Feature Extraction for Audio Alignment 56

inharmonic frequency deviations to the fundamental frequencies of subsequently tuned

tones.

[Niedermayer, 2008] proposes to use tone models which do not only consider an arbi-

trary number of harmonics, their assumed ideal frequencies, and an approximation of

their relative strengths but also reflect the actual characteristics of the tone played on

a specific instrument by a prior training phase. The necessary training data can con-

sist of recordings of the single pitches played on the particular instrument or a similar

instrument of the same class. For the actual training, the same principles as for the

computation of the Pitch Activation feature are applied. Starting from Equation 3.30

again, instead of fixing W to a given dictionary, H is chosen to have r = 1 to do justice

to the fact that there is only one note played. The single values of H are then set

according to the amplitude envelope expressing the current loudness of the sound. The

only remaining variable there is W . Due to r = 1, the dictionary W consists of a single

atom w, for which an approximation can be obtained by applying the non-negative

least squares criterion and the according optimization algorithm as described above.

In this way, an average model representing the entire sustain phase of a tone is obtained.

Since higher order harmonics tend to decay relatively fast, using training data where

tones are sustained for a long time results in these harmonics being averaged out. The

note length of the training tones should, therefore, relate to the expected note durations

found in music performances.

In cases where only recordings of some notes and not the whole pitch range are available,

interpolation is applied. Given a fundamental frequency f0, for which the tone model is

not known, the starting points are the two nearest fundamentals fl and fh with known

energy distributions such that fl < f0 < fh. The interpolation is then done in two

steps. First, center frequencies f of the unknown spectrum’s bins are mapped onto the

known spectra by linear scaling, i.e., such that the fundamental of f0 is mapped to the

fundamentals of fl and fh, the first harmonic is mapped to the respective first harmonic

frequencies, and so on. The mapped frequencies f ′ are, therefore, obtained as

f ′ = f
fi
f0

with i ∈ {l, h} (3.39)

In a second step, the energy has to be obtained for each bin. Due to the mapping

computed in the first step, the frequency f ′ corresponding to a bin’s center frequency

f is known. However, since all spectra are discrete in the frequency dimension, f ′ is

likely to lie at some position between two center frequencies. Therefore, the energy

y(f ′) of f ′ is approximated applying Stirling’s formula for interpolation. To this end,

Feature Extraction for Audio Alignment 57

the energies y0, y−1, and y+1 at the bin with the center frequency fnearest closest to f ′

and its two adjacent bins are considered. y(f ′) is then given as

y(f ′) = y0 +
y+1 + y−1

2
· d+

y+1 − 2y0 + y−1

4
· d2 (3.40)

with

d =
f ′ − fnearest

δf
(3.41)

where δf represents the constant difference between the center frequencies of two adja-

cent bins. In a final step the approximations using the lower and the upper frequency

model are combined by taking the average.

Two sets of training samples of piano tones were obtained from the Bösendorfer SE 290

computer controlled grand piano and from the online database of tone samples of various

musical instruments of the University of Iowa 5. The Bösendorfer samples were recorded

in 2001 by Werner Goebl (cf. [Goebl, 2003]) for every fourth pitch, starting at MIDI

pitch 12, at five different velocities (30, 50, 70, 90, and 110). For pitches up to C2, i.e.,

MIDI pitch 36, recordings of a length of 9 seconds were available. For the higher pitches,

a recording length of 4 seconds was chosen due to the faster decay of the tones.

The musical instruments samples of the University of Iowa were recorded in 2001 on a

Steinway & Sons grand piano. Samples are available from B[0 to C8, i.e., MIDI pitches

22 to 108, in three different loudnesses (pp, mf, and ff). Each tone was sustained for

about 2 seconds and is preceded and followed by silence.

Samples from both sources were available in stereo at a sampling rate of 44.1 kHz

and a 16 bit quantization. Respective tone models were obtained as described above.

A comparison between these trained models (see Figure 3.2 for an example) and the

ones obtained by mathematically modeling the harmonics at their ideal frequencies

(see Figure 3.1) was done in the context of anchor note extraction as described in

Section 6.2. Although models trained from tones of the same piano as was used for the

performance resulted in a marginally higher alignment accuracy, we decided to use the

generic models in our system for generalization reasons. The Pitch Activation for the

beginning of the first movement of the sonata k.279 is shown in Figure 3.3 where only

the models of those notes which are expected to be played within the shown search

window are used for the factorization.

5http://theremin.music.uiowa.edu/MIS.html

http://theremin.music.uiowa.edu/MIS.html

Feature Extraction for Audio Alignment 58

Figure 3.2.: Tone model of the note A[4 trained from a sample recording (pitch 68,
415.3 Hz)

(a)

(b)

Figure 3.3.: Pitch Activations of the beginning of the first movement of the sonata
k.279, where the activations of the individual pitches are plotted with an offset of 100
on the value axis (a) and the corresponding score (b)

Feature Extraction for Audio Alignment 59

3.5. Extraction of Score Features

Audio-to-score alignment approaches are divided into two main classes. One, where

the score is represented as a graphical model, such as a Hidden Markov Model (HMM),

and the other one, where the score is represented by the same features or symbolic

descriptors as extracted from the audio recording. While the modeling of a score by

means of HMMs or similar representations is described in Section 4.2 together with the

decoding of such models, the extraction of the three audio features described above

from score MIDI files will be discussed here.

A straightforward approach for obtaining audio features from a symbolic representation

is to synthesize the score and to follow the same extraction process as for the actual

audio recordings. Due to pre-processing steps, such as spectral whitening and the gen-

erally significant data reduction performed during feature calculation, the requirements

concerning the quality of instrument samples and naturalness of the rendering are mod-

erate. In our experiments, we used the freely available software synthesizer timidity++

(see Section 2.4.1) and its, as well free, default sound bank.

The seeming drawback that high level, symbolic information is lost, does also have a

number of benefits. Most important, systematic sources of error during the computation

of audio features, such as inadequate or simplified handling of harmonics, overlapping

partials, inharmonicities, etc., are reproduced during the score feature extraction. One

example is the Chroma feature, where the second harmonic contributes to the pitch class

a perfect fourth, i.e., five semitones, below the one corresponding to the fundamental

frequency of a note (see Table 3.1).

In addition, calculating score features on audio renderings results in timbre information

being integrated into the feature values. While the differentiation between various

instruments is not an issue, realistic decays of individual partials yield values more

similar to those obtained from the actual audio data.

On the other hand, rendering each score prior to feature extraction is expensive in terms

of computational costs. Since the improvements due to calculating score features in the

same manner as audio features are not substantial, these costs cannot be justified in ev-

ery context. Therefore, [Dannenberg and Hu, 2003] first proposed to calculate Chroma

vectors directly from the MIDI representation of a score. In a preliminary experiment,

the authors showed that the Chroma feature is relatively insensitive to timbre. The

score of a classical orchestral piece was synthesized using (i) the original instruments

and (ii) a generic piano sound only. The resulting alignments to actual recording of

the performances showed only marginal deviations. Based on this conclusion, it is

also possible to obtain a Chroma vector by simply representing each present pitch by

Feature Extraction for Audio Alignment 60

the value 1, taking the sum for each pitch class and performing a normalization. In

[Hu et al., 2003], it is shown that, even then, there is little impact on the alignment

results. In this work, a slightly modified algorithm was applied, which also considers

note onsets and offsets during a single frame and down-weights the contributions of the

respective pitches accordingly.

The Pitch Activation feature can be directly extracted from the score in a similar

manner. While a simple approach would be to set the activation of each pitch present

at a certain frame to 1 and the ones of the silent notes to 0, introducing a decay

factor better reflects the actual sustain phase of a tone. For the accurate Audio-to-

Score Alignment system proposed in this thesis, the Pitch Activation feature is used

to obtain precise onset estimates in the refinement step. Therefore, Pitch Activation

values computed from scores are only needed in our symbolic domain Audio-to-Score

Alignment system (see Section 4.3) which was designed to reduce computational costs

of the alignment step. There, in accordance with this objective, the binary feature

representation was chosen.

3.6. Conclusions and Consequences for this Thesis

In the literature, Chroma features in conjunction with DTW are a common choice for

audio alignment tasks due to their high robustness against a number of aspects such as

timbre or room acoustics. Nevertheless, such a system can generally not compete with

uninformed state-of-the-art onset detectors in terms of accuracy. On our evaluation

corpus, about 74% of all note onsets obtained by DTW and Chroma vectors were

within a 50 ms tolerance range around the actual timings. About 32% of the onsets

were accurate applying a 10 ms tolerance range.

Based on the motivation of improving alignment accuracy, while not trading it against

robustness, features similar to Chroma vectors including explicit onset indicators have

been developed. Preliminary experiments using our own implementations of several of

the above described onset based features – also in a mixture with Chroma vectors –

revealed the ones described by [Arzt et al., 2012] (again, in conjunction with DTW)

to perform best on our evaluation corpus. However, it became apparent that these

features, despite yielding accurate results on most pieces, fail at some passages where

the performer has inserted many additional notes which are not in the score. To be

specific, this was the case for the pieces k.457-2 and k.284-3 where the error was the

largest (and also for the piece k.475-2 due to a similar reason). There, about 900

notes were aligned with a temporal deviation from the actual onsets between 10 and

18 seconds before the alignment became accurate again.

Feature Extraction for Audio Alignment 61

The objective of this thesis is to develop an alignment system, where the user has

to correct as few notes as possible to obtain an accurate annotation. Therefore, we

argue that as soon as the timing of an aligned note is obviously not correct, the actual

temporal deviation up to a certain extent is of less interest. Timing errors of more

than 10 seconds where a manual correction exceeds a simple refinement, however, can

be considered as too severe. In the final Audio-to-Score Alignment system proposed

in this thesis, we therefore apply Chroma vectors instead of a mixture including onset

based features due to their robustness. Here, the largest alignment error in the above

mentioned piece k.284-3 does not exceed 2.5 seconds (see Appendix B, for details).

Nevertheless we want to give an explanation of the large errors produced by the, oth-

erwise very accurate, onset based methods. At each of the three pieces where the

alignment fails locally, the performer plays a large number of additional notes which

are not in the score. To be specific, in the piece k.284-3 51 notes are added within 4

consecutive measures as part of additional trills. For the performances of the other two

pieces the situation is similar (k.457-2: 60 additional notes within 2 measures due to

two glissandi; k.475-2: 39 notes of a glissando within one single measure, where the

glissando is notated as a chord). Even when also taking harmonic content into account,

the attempt to match such large numbers of additional onsets to notes within a score

will inherently result in significant errors.

We also experimented with Pitch Activation as a feature for a basic alignment. Al-

though the quasi-transcription which can be derived from the feature values is an ad-

equate means to reduce the amount of data processed during the alignment step, it

became obvious that the note detection is not robust enough to yield accurate align-

ment results (see Section 4.3). Nevertheless, by tuning the feature extraction to the

local musical context of a note based on an initial alignment we were able to extract re-

fined onset times. We initially proposed this method in [Niedermayer, 2009a], showing

that it outperforms the initial alignment as well as a reference onset refinement tech-

nique based on selective bandpass filtering. In Chapter 6, we describe how a slightly

adapted version of the Pitch Activation feature is used in the system we propose here.

Audio-to-Score Alignment Techniques 62

4. Audio-to-Score Alignment

Techniques

Based upon the feature extraction step as described in Chapter 3, the actual Audio-to-

Score Alignment can be performed. Such an alignment is a symmetric binary relation

between the set Ta comprising the timestamps of all audio frames and the set Ts of

timestamps of all score frames or score events. However, due to the discrete nature of

digitized data, a compression or stretching of the two time scales relative to each other

will inherently inhibit the relation from being either bijective or a function.

An important consequence of mapping timestamps with respect to such a relation is

that notes which are notated concurrently will inherently be assigned a uniform onset

time within the audio recording. This is a major drawback which is not resolved in the

vast majority of current state-of-the-art systems. It is the main contribution of this

thesis, to present a system which allows for the distinction of individual notes within a

chord. This issue will be topic of Chapter 6.

In the following, three methods for the timestamp mapping will be described. The

first one is based on acoustic features, calculated from the score in the same manner

as from the audio signal. As described for the Chroma vectors, this can by done by

either calculating an idealized feature directly from the MIDI data or by synthesizing

the score. The alignment is then obtained by comparing individual features of the

two sequences to each other and identifying corresponding frames by minimizing an

accumulated matching cost measure.

A second method is to construct a graphical model from the score. In doing so, infor-

mation contained in the symbolic data is not reduced during the feature calculation,

but can be incorporated into the model in almost arbitrary diversity. Distinguishing

between attack, sustain, and decay phase of a note is in principle possible as well as

defining a specific probability distribution over possible lengths of a note. Aligning the

audio signal to the score is then carried out by decoding the model, i.e., computing the

state sequence which is most likely to produce the observed output.

Audio-to-Score Alignment Techniques 63

The third approach is also based on the idea of exploiting the symbolic representation

of the score. But instead of relating score events to acoustic descriptors extracted

from the audio signal, the score is directly aligned to a quasi-transcription of the audio

recording. This rudimentary transcription is obtained by reporting a note during the

time where the Pitch Activation feature of the respective pitch is greater than zero.

While the first two approaches are common in the literature, the third one – working in

the symbolic domain – has been neglected so far. To the author’s knowledge, the only

related system was described in [Müller et al., 2004] and evaluated in terms of compu-

tational costs. In [Niedermayer, 2009b], we presented the first quantitative evaluation

of the alignment accuracy of such a system.

4.1. Dynamic Time Warping

Dynamic Time Warping (DTW) is a general technique for finding a globally optimal

alignment between two time series. It assumes that both series contain the same or

very similar semantic content, which is, however, non-linearly stretched or compressed,

i.e., warped, along the time axis. DTW is, therefore, predestined to be applied in the

context of audio processing to establish a connection between two instances of the same

words or melodies which are spoken, sung, or played at different, varying tempos.

Although many variants and modifications of Dynamic Time Warping exist, they rely

on a common basic procedure. At first a dissimilarity matrix of the two sequences

is calculated, which contains the isolated costs of alignment for each possible pair of

elements. Based on this information, the optimal alignment is obtained as the sequence

of pairs which yield the minimal sum of costs.

4.1.1. Similarity Measure

In the audio alignment literature, the Chroma vector is the most commonly used feature

(see, for example, [Dannenberg and Hu, 2003], [Hu et al., 2003], [Joder et al., 2010b],

[Müller et al., 2005], [Serrà et al., 2008], [Niedermayer and Widmer, 2010a], and

[Niedermayer, 2009a]). According to this, the time series describing a specific au-

dio recording is a series A = {ai} with i ∈ [0, N − 1] and ai ∈ R12. Given the hop size

lhop of the time-frequency transform used to obtain the Chroma feature, the index i

corresponds to the time ti = i
lhop
fs

.

Audio-to-Score Alignment Techniques 64

When computing the sequence B of score features, it is beneficial to stretch the score

to the performance time of the audio recording beforehand. In doing so, individual

frames are likely to contain similar amounts of information.

Based upon the two sequences A and B, the dissimilarity matrix D is calculated by

comparing each frame of the audio recording to each frame of the score representation

as

Dij = C(ai, bj) , for all ai ∈ A and bj ∈ B (4.1)

The alignment cost function C is chosen with respect to the type of feature used

for the comparison. Common choices for C in combination with Chroma vectors are

the Euclidean distance on the normalized feature values and the cosine distance (cf.

[Niedermayer and Widmer, 2010a], [Müller et al., 2006], [Joder et al., 2010a])

Ccos(ai, bj) =
aibj
|ai| |bj |

(4.2)

4.1.2. Minimal Cost Calculation

Aligning two feature sequences is equivalent to finding a path through the dissimilarity

matrix D. Each single mapping of a frame ai within the audio feature sequence to

an arbitrary score frame represented by bj can be interpreted as a point (i, j) and has

its corresponding element Dij describing the cost at this point. Connecting the matrix

elements while mapping subsequent frames yields an alignment path. However, in order

to obtain meaningful results such an alignment path has to meet several constraints.

Continuity The constraint of continuity forces a path to proceed through adjacent cells

within the dissimilarity matrix. Jumps would be equal to skipping frames without

considering the costs of this operation.

Monotonicity The constraint of monotonicity in both dimensions guarantees that the

alignment has the same temporal order of events as the reference sequence.

End-point constraint The end-point constraint forces the beginning and the end of

the path to be the diagonal corners of the dissimilarity matrix. In doing so it is

assured that the alignment covers the whole sequences.

Audio-to-Score Alignment Techniques 65

Even within these constraints, an exhaustive search over all possible alignment paths

would exceed manageable computational efforts. Therefore, a dynamic programming

approach is applied, where partial alignment paths of increasing length up to a certain

element Dij are considered iteratively. The algorithms starts at the point (0, 0) and

rates this degenerated alignment path, consisting of one way-point only, with the cost

D0,0 = C(a0, b0). Then, still within the initiation phase, all partial alignments ending

at a point (i, 0) or (0, j) are considered. The calculation of their respective costs is

straightforward, since the corresponding alignment paths are unique due to the mono-

tonicity constraint. The minimum costs of paths ending at other points (i, j) can then

be calculated in a recursive manner according to

Accu(i, j) = min

Accu(i− 1, j − 1) + Cij ∗ wd
Accu(i− 1, j) + Cij ∗ ws
Accu(i, j − 1) + Cij ∗ ws

(4.3)

The three options correspond to partial paths ending with a diagonal step, an up-

wards step, and a step to the right within the dissimilarity matrix D. In addition to

the actual local distances, weights wd and ws are introduced to adjust the algorithm’s

preference towards diagonal steps. Setting both weights to 1 results in smoothed align-

ment paths since diagonal paths traverse only half as many points as ones consisting

of steps to the right and upwards only and are, therefore, much more cost efficient. In

[Niedermayer, 2009a], we have used the values 1.4 and 1.0 for wd and ws which still

gives diagonal steps a preference over horizontal or vertical ones.

When one is only interested in the optimal alignment, the algorithm can be imple-

mented such that the cost calculation works in-place, i.e., the values Dij are overwritten

by Accu(i, j) in order to save memory space. Alternatively, when one computes the

Accumulated result line by line, a memory efficient method is to only store the current

line and its predecessor.

The algorithm terminates when the costs of the complete optimal path are, according

to the end-point condition, obtained as Accu(N−1,M−1), with N = |A| and M = |B|
being the lengths of the feature sequences. Due to the constraints on the alignment

path, the result is guaranteed to be a global minimum. However, since two ore more of

the terms in Equation 4.3 can be equal, the optimum does not need to be unique.

Audio-to-Score Alignment Techniques 66

4.1.3. Path Backtracking

Since one is generally more interested in the optimal alignment path than its overall

cost, the optimal path is reconstructed in a separate backtracking step. One point

which must inherently lie on this path is the end-point (N − 1,M − 1). To be able

to reproduce the respective preceding way point, a second matrix is built during the

forward step, memorizing whether the last step leading to a point (i, j) was diagonal,

upwards, or to the right, i.e., which of the three options of Equation 4.3 was chosen.

By tracking this information back to (0, 0) the complete optimal path is obtain in a

computationally efficient way. A dissimilarity matrix computed from a rendering of the

mechanical score of the first movement of Mozart’s sonata k.279 and the recording of

a respective performance is shown in Figure 4.1.3. The alignment cost measure was

chosen to be the cosine distance between Chroma vectors. Deviations of the (smoothed)

alignment path from a strict diagonal show expressive tempo changes.

Figure 4.1.: Alignment cost matrix and path comparing the score (horizontal axis) of
the sonata k.279 and a respective performance (vertical axis), where the units along
the axes are audio and score frames and the respective matching cost is mapped onto
the gray-scale

Audio-to-Score Alignment Techniques 67

4.1.4. Enhancements of the DTW Algorithm

Especially in classical music, rapid tempo changes are a common means of artistic ex-

pression. Tempo fluctuation by a factor of 2 or 2−1 are not an exception. To account

for this fact, the repertory of possible steps through the dissimilarity matrix D formal-

ized in Equation 4.3 can be extended. By seemingly softening the continuity constraint

and introducing a respective weight w(n,m), steps of length |(n,m)| and slopes m/n are

possible. The generalized rule then becomes

Accu(i, j) = min
(n,m)

{
Accu(i− n, j −m) + Cij ∗ w(n,m)

}
(4.4)

Although way-points of an alignment path are not necessarily adjacent cells, the con-

tinuity constraint is still met, since there is no gap between the start of one step and

the end of its predecessor. Possible step constraints are shown in Figure 4.2, where

(a) corresponds to the standard options as described above. In (b), steps towards

the right and upwards are not allowed. This limits the resulting paths similar to the

Itakura-parallelogram. While the maximal slopes of 2 and 1/2 account for tempo

changes by a factor of 2, (c) depicts a set of possible steps where the tempo devia-

tion accounted for has a factor of 3. Such extensions of the step constraints are used

in [Macrae and Dixon, 2010], [Meron and Hirose, 2001], and [Soulez et al., 2003], for

example.

(a) (b) (c)

Figure 4.2.: Possible constraints for steps allowed during a DTW computation

Another issue are silences at the beginning and the end of an audio signal and the

respective score representation. While it is very likely that within an audio recording

the first note onset will not occur with the first analysis frame, MIDI notations of a

score often start without any offset at a tick number of 0. Since each alignment path

has to start at the point (0, 0), this would inherently result in the first note of a piece

being aligned to the first audio frame. To prevent this scenario, an arbitrary number of

Audio-to-Score Alignment Techniques 68

frames of silence is inserted at the beginnings and endings of the two feature sequences.

Justified by observations regarding common lengths of such pauses in audio recordings,

we use a value approximating a duration of 2 seconds in our system.

4.2. Graphical Score Models

The Dynamic Time Warping approach described above works on two time series of

audio features. This has the advantage that the method can be applied for audio-to-

audio matching without any modifications. On the other hand, due to the extraction

of audio features from the score, high-level symbolic information is lost or at least

distorted. Also, DTW can be interpreted as a graphical model, where cells of the

dissimilarity matrix correspond to states and the cost measure is the equivalent to

the output probability of a state. However, in comparison to the DTW approach

graphical models allow for more general state transitions and specially modeled output

probabilities.

[Cano et al., 1999] propose Hidden Markov Models (HMMs) for score to performance

matching. In [Raphael, 1999], a system which is also based on HMMs, for the offline

as well as online segmentation of an audio recording of a monophonic piece into note

objects given by a score, is presented. Hidden Markov Models are well known from

the field of speech recognition (see [Rabiner, 1989], for example). They are based on

the assumption that a series of observations is generated by a hidden state Markov

process, i.e., a process where the next state depends solely on the current state and an

a priori known state transition model. The application to Audio-to-Score Alignment

is obvious, since the notes which are currently played, i.e., the states, are not directly

observable from an audio recording of a musical performance. Instead, one can obtain a

probability distribution for each state over all possibly observed outputs. Those outputs

are modeled to be values of audio features which can be obtained from the signal.

4.2.1. Note and Chord Duration Modeling

Before a note’s actual duration is modeled, some thoughts shall be spent on how a

score note is represented in a Hidden Markov Model at all. The simplest method is to

convert each note or each chord respectively into one state of an HMM. If the structure

of the model is strictly linear and therefore requires each state to be visited this implies

that each score event is assigned a unique time stamp within the audio recording.

Otherwise, if the model structure allows states representing individual notes or chords

to be skipped by introducing additional transitions, note durations are (as in the DTW

Audio-to-Score Alignment Techniques 69

approach) not constrained at all. Skipped states result in notes being “merged” to

chords whereas visiting a state and possibly following self-transitions corresponds to

sustaining a note.

Following a hierarchical approach, notes can be modeled by an attack, a sustain, and

a release phase, as proposed by [Cano et al., 1999] and [Orio and Déchelle, 2001], for

example. This is justified by the fundamental differences in the expected observations

during these phases. While, on instruments such as the piano, the note attack is

characterized by a transient increase of energy throughout the whole spectrum, spectral

patterns remain relatively steady while a note is sustained before partials are rapidly

decaying during the release.

What is left to model is the actual duration of the sustain phase. Due to the assumption

that the generating process is a Markov process, it is not possible to either introduce a

likely note length, i.e., a number of iterations where the HMM stays in the same state,

nor to enforce a minimum or maximum duration of a note, by means of a single state.

[Raphael, 1999] provides two possible solutions to this problem. One approach is to

model a note by a number of states equal to the maximum number of audio frames the

note can be sustained. The states are connected linearly with no self transitions but

allow for an additional short-cut from each node to the release state. The probability

that the next state k is visited is then given as

pk = P (T > k|T > k − 1) (4.5)

where T is a random variable representing the duration of the respective note in units

of audio frames.

Although it is intuitive and allows to model arbitrary probability distributions over the

duration T of a note, the main drawback of the method described above is the large

number of required states. A more efficient, however not as flexible, approach is to

model the note duration by a number N of states equal to the allowed minimum of

T . The states are, again, linearly connected, but, in contrast to the model described

above, have self transitions with a constant probability of p instead of the short-cuts to

the release state. The note duration T then follows a negative binomial distribution,

given as

P (T = t) =

(
t− 1

N − 1

)
pt−N (1− p)N (4.6)

Audio-to-Score Alignment Techniques 70

for t ≥ N .

[Cont, 2010] also describes the combination of these two ideas, where a number N of

linearly connected nodes have self transitions which are chosen at a constant probability

of p and short-cut transitions to the release state chosen at a constant probability of

q. The resulting topology is shown in Figure 4.3 The remaining probability of the

transition to the subsequent state is then (1 − p − q) and the probability for T = t

follows the compound distribution

P (T = t) =

N∑
n=1

(
t− 1

n− 1

)
pt−n(1− p− q)n−1q+

(
t− 1

N − 1

)
pt−N (1−p−q)N−1(1−p) (4.7)

Figure 4.3.: Topology of an HMM for note duration modeling [Cont, 2010]

Instead of using this general HMM, [Cont, 2010] describes a Semi-Markov Model in the

context of score following, where notes or chords are described by single macro-states

following a Markov process while note durations are modeled by an explicit probability

distribution.

4.2.2. Tempo Modeling

[Raphael, 2006] proposes to not only represent the relative durations of score notes, but

to include the current tempo of the performance into the model. The timing of a note is

then determined by the combination of time-varying tempo and local note-dependent

temporal deviations. Such deviations can be due to the voice-lead phenomenon as

Audio-to-Score Alignment Techniques 71

described in Section 2.4.2 or intended arpeggiations. The random variable representing

the timing Tk of the kth score event is then

Tk = Tk−1 + lkSk + τk (4.8)

where τk is the local deviation, lk is the score time difference between the kth event and

its preceding one, and Sk models the tempo process as

Sk = Sk−1 + σk (4.9)

The tempo change σk follows, as well as τk, a normal distribution with a mean of zero.

Considering a score of a length of K distinct events, the probability of a certain tempo

trajectory s = (s0, . . . , sK−1) and an instance t = (t0, . . . , tK−1) of all event timings is

given by

p(s, t) = p(s0)p(t0)
K−1∏
k=1

p(sk|sk−1)p(tk|tk−1, sk) (4.10)

Due to the assumption that the tempo changes σ and the local timing displacement τ

both follow a normal distribution, p(s, t) can be calculated based on estimates of the

respective parameters and the probabilities p(s0) and p(t0) of the initial tempo and the

first note onset respectively.

To obtain a joint model, also considering observations from the audio file, the tempo

and timing processes are put into relation to the probability p(yn|xn) as described

above, where yn is the audio feature calculated from the nth frame and Xn are the

(hidden) model states. The problem is that while p(s, t) is calculated in the domain of

score time, p(y|x) is obtained from the audio recording. However, the state trajectory

x and the sequence of note timings t can easily be transformed reciprocally. A joint

probability can therefore be expressed as

p(s, x, y) = p(s, t, x, y) = p(s, t)p(y|x) (4.11)

Audio-to-Score Alignment Techniques 72

4.2.3. Observation Probability Distribution

The observation probability distribution p(yn|xn) is the equivalent to the dissimilar-

ity or cost measure used by the Dynamic Time Warping algorithm. In the Hid-

den Markov model literature these probability distributions are often called bi(v) (see

[Rabiner, 1989]), where i is the index of a state xn and v is the observation yn. The

dependency on the time denoted by the frame number n can be dropped due to the

basic assumption that an observation solely depends on the current state.

The individual probabilities of a frequency v to be observed while the model is in state

bi can be modeled as a mixture of Gaussians G(.; ., .)

bi(v) =

K∑
k=k1

cikG(v;µik, Sik) (4.12)

where µik is the mean vector, Sik the covariance matrix, and cik the mixture coefficient

with
∑K

k=1 cik = 1. These parameters can either be learned from training data by

calculating the maximum likelihood estimators, or set manually, to incorporate musical

knowledge.

4.2.4. Modeling of Asynchronies

As it is the case for Dynamic Time Warping, Hidden Markov Models, as described

above, can not efficiently represent asynchronies between individual notes of a chord.

A series of linearly connected states does not account for the uncertainty whether

the notes are actually played simultaneously or which of the notes is played first.

[Devaney and Ellis, 2009] describe a hierarchical HMM where not the notes or chords

are detailed by micro-states, but the chord transitions.

Each transition between one note and its subsequent one is divided into a phase where

the first note sounds, a transition or silence phase, and a span of time where the

second note is present. Assuming a chord transition where each chord has a degree of

polyphony of n, this results in n individual note transitions requiring 3n states.

While the approach is feasible for pieces played by a small number of monophonic

instruments or instruments with limited polyphony, it will become too expensive in

terms of computational costs due to its exponential asymptotic complexity. At a degree

of polyphony of 4 – which is relatively common for piano music (see Section 2.4.2) –

Audio-to-Score Alignment Techniques 73

the number of HMM states modeling a singe chord transition is 81. For the highest

degree of polyphony found within the evaluation data set used here, 8, to be specific,

this number increases to 6561.

Additional complexity would arise from also accounting for sustained notes which out-

last the onsets of several subsequent notes or chords. While this can easily be modeled

for notes when their actual duration is known from the score, notes which sound for

a long period of time due to the use of the sustain pedal of a piano are difficult to

handle.

4.2.5. Model Training and Decoding

Once the topology of a graphical model is designed, parameters, i.e., probability distri-

butions, defining the state transitions have to be determined. Doing so can either be

achieved by exploiting prior knowledge about the underlying processes or by estimating

these attributes from adequate training data. The final (Hidden Markov) model is then

determined as λ = (A,B, π), where A is the matrix of state transition probabilities, B

defines the probabilities for specific observations to be made at a certain state, and the

initial state distribution π (see [Rabiner, 1989]).

For the actual decoding of a Hidden Markov Model, i.e., the calculation of the most

likely sequence of states, given the observations made, the Viterbi algorithm is used.

This algorithms starts by calculating the most likely initial state, by

δ0(i) = πibi(y0) = πip(y0|xi) (4.13)

Then, following a dynamic programming approach, the most likely paths up to the next

observation are calculated as

δt(j) = max
1≤i≤K

[δt−1(i)aij] bj(yt) (4.14)

When the values for δN−1(j), corresponding to the states at the very last observation,

are calculated, the most likely path, i.e., the Viterbi path, is obtained by backtracking

the sequence of consecutive states. To this end, the index i of the state responsible for

the maximum in Equation 4.14 is remembered in a separate matrix, as it is done in the

Dynamic Time Warping algorithm.

Audio-to-Score Alignment Techniques 74

4.3. Quasi-Transcription

While Dynamic Time Warping based on Chroma features, as most commonly de-

scribed in the literature, relies on low-level descriptors for the audio as well as for

the score representation, graphical models still use such low-level features to represent

the audio recording, but, on the other hand, use a high-level description of the score.

[Bloch and Dannenberg, 1985] originally described a third approach, where (in the con-

text of an automatic accompaniment system) performance and score are matched in the

symbolic domain. However, since the proposed system relies on symbolic input from

keyboard-like devices its applicability is limited and the method cannot be directly

transferred to Audio-to-Score Alignment.

In [Niedermayer, 2009b], we proposed a system based upon mid- to high-level descrip-

tors of the audio content yielded by a quasi-transcription of the raw signal. To this

end, the Pitch Activation feature is used as a mid-level representation corresponding to

the pitches played. By setting note onsets at each time where a Pitch Activation rises

above zero or another predefined threshold and defining the note offset as the point

where the activation energy becomes zero again or has decayed by a certain factor, a

high-level, symbolic description of the audio material is obtained.

This high-level audio description can be directly compared to the score, which is also

available in a symbolic representation. Relating single events, i.e., note on- or offsets,

instead of audio features sampled at a fixed rate reduces computational costs signifi-

cantly.

4.3.1. The Symbolic Domain

Automatic Music Transcription for polyphonic pieces is still an open MIR problem.

Common issues are confusions between pitches which share a number of partials, the

detection of very low notes, and repeated notes, where the degree of spectral novelty

is limited. In [Niedermayer, 2009b], we suggested accepting the fact that an automatic

audio transcription process is error-prone and to account for possible errors by designing

a specific cost measure when comparing the result to the score. While expecting a

manageable amount of ambiguities between spurious note detections and correct ones,

one can assume this approach to produce a number of benefits.

• Whereas acoustic features will result in large arrays of data, symbolic representa-

tions are much more compact, using just a small fraction of the original memory

space.

Audio-to-Score Alignment Techniques 75

• While computing alignments using DTW- or edit-distance-like algorithms, the

number of frames per sequence can be dramatically reduced from a fixed ratio of

frames per time unit to one frame each time a note onset or offset occurs.

• Using a transcription given in MIDI format, obvious errors of the feature extrac-

tion process can be recognized and handled prior to the actual alignment step.

Examples of such obvious errors are detected chords or notes with pitches which

do not occur within the score of the current piece. This pre-processing, however,

might also eliminate incorrect notes played by the performer in certain cases.

An approximate transcription of an audio file can be directly based upon the Pitch

Activation feature. The simplest method is to set the note boundaries to the times

where the activation value hpi of a pitch i becomes greater than zero and falls back to

zero again respectively. [Niedermayer, 2008] shows that almost all of the actually played

notes (more than 99%) have an overlapping representation within such a symbolic

representation. Also, not only does this exploit the sparseness of the factorization

result, but an additional data reduction is performed since note velocities are set to a

single value, such as the maximum or the third quartile, for example, and the actual

time-varying activation pattern during a note’s sustain time is dropped.

The effect of this method in terms of the amount of data which has to be stored and

processed is shown on the example of the recording of Mozart’s piano sonata k.279

(see Section 2.1.2). The resulting MIDI representation contains 6275 notes using less

than 150 kB of memory. This is a little more than 7.5% of the space needed to store

the Chroma vectors calculated at a time resolution of 50 frames per second. For the

original acoustic representation of the factorization result this relation is even more

drastic. The activation patterns of 58 pitches (i.e., the pitch range used in the sonata

k.279) require 11MB of memory, which is more than 70 times the space needed for the

symbolic version of the feature.

For the actual alignment of this representation to the score, one can choose between

several approaches. The most important design decision is whether to process the data

split into chunks of a fixed length at an appropriate overlap ratio, or to split the data

into segments which can be variable in length but, on the other hand, have a constant

pitch content. In doing so, each chunk starts and ends at either a note onset or a

note offset. This has the advantage that actual events are aligned instead of arbitrary

timestamps. On the other hand, the implicit weighting of notes with respect to their

length is lost. While in the frame-by-frame approach, a bad alignment of a chord which

is sustained for a relatively long time is valued by a cost which is not only proportional

to the quality of the alignment, but also to the duration of the respective notes, this

Audio-to-Score Alignment Techniques 76

relation is lost when only note on- and offsets are compared and no additional measures

are taken.

4.3.2. Local Distances

Independent from the segmentation of the data into analysis windows, a local distance

measure defining the cost of aligning two frames or, in the symbolic domain, two events

to each other has to be found. In Section 4.1 the Euclidean and the cosine distance

have been introduced as good dissimilarity measures for Chroma vectors. Although

those metrics could be applied on Pitch Activation data as well, they are not the best

choice for several reasons.

In the first place, the feature produces a different quantity of deletion (false negative)

and insertion (false positive) errors. Especially in high pitch ranges the majority of

errors is made up by spurious note detections. Therefore, the two types of errors

should be treated differently.

Secondly, the STFT used here as the transform into the frequency domain divides

the spectrum into linearly distributed frequency bins. On the other hand, musical

notes follow a logarithmic frequency scale. Therefore, the deeper a tone, the closer

in the spectrogram it is to its immediate neighbors. In addition, higher pitches also

exhibit significant energy in the lower frequency bins making it even harder to reliably

detect low notes. Therefore local distance calculation should accommodate this fact by

relatively tolerant penalizing of missing low notes in the audio feature.

A simple distance measure that combines these ideas and has yielded good results

during experimentation is

d(hs, hp) =
N−1∑
i=0

diff(hsi , h
p
i) (4.15)

with

diff(hsi , h
p
i) =

hsi ∗ α if hpi = 0

hpi ∗ β if hsi = 0

|hsi − h
p
i | else

(4.16)

Audio-to-Score Alignment Techniques 77

where hs represents a feature vector taken from the score and hp represent one feature

vector extracted from the recorded performance. α and β are the weights for missing

and spurious notes respectively. Throughout our work, 1.2 and 2.0 have proven to yield

good results. Experiments have further shown that alignments can be improved by

ignoring missing notes lower than a threshold around C3 (midi pitch 48) at all. Also,

taking the square root of d turned out to be advantageous in combination with Dynamic

Time Warping as explained in Section 4.1.

4.4. Onset Matching

In contrast to performing a rudimentary audio transcription, [Müller et al., 2004] de-

scribe a similar approach where instead of notes, only the onsets are extracted for each

pitch and than matched to the score representation. This onset extraction is based on

a multi-rate bank of elliptic filters and the short-time root-mean-square power of the

filter output (see Section 3.3). Onset candidates are then extracted using the half-wave

rectified power derivative as a detection function. Local thresholds are then applied on

this function to select the significant peaks.

As a last pre-processing step, the onsets are organized into temporal bins. To this

end, the time scale is partitioned into equally spaced segments of a certain length –

the authors use a segment length of 50 ms. Segments in which no onset candidate is

detected are then dropped. In analogy to this, the score is divided into score bins, i.e.,

sets of notes which are played concurrently in the score. For the audio recording as well

as for the score, the final feature representation consists of a sequence of sets of notes

with one uniform onset time per set. In contrast to the score features, where each note

has the same weight, the audio features additionally contain the relative strength, i.e.,

a MIDI velocity estimate, for each onset.

For the actual alignment, a dynamic programming approach similar to Dynamic Time

Warping is applied. However, instead of using acoustic features on a linear time scale,

symbolic onset lists are matched according to a similarity model. This model takes into

account that the audio processing step is expected to yield a number of spurious peaks

in addition to the correct onset. On the other hand, notes can be omitted or played

in a way such that they are not detected by the signal processing layer of the system.

The conclusion drawn from these two observations is that the matching model should

be tolerant against insertions and deletion.

[Müller et al., 2004] propose a matching score allowing for octave errors in the pitch

specific onset detection. To this end, the match score of a single onset extracted from

Audio-to-Score Alignment Techniques 78

the audio recording amounts to its respective MIDI velocity, if the reported pitch equals

a corresponding pitch within the score bin, its first, or second harmonic; otherwise it is

defined to be zero.

Using this matching score, the globally optimal match is obtained by recursively calcu-

lating the accumulated score matrix S of size (N + 1)× (M + 1) from the local scores

s(i, j) between the ith score bin and the jth segment of audio features, as

Si,j = max

Si,j−1

Si−1,j

Si−1,j−1 + s(i, j)

(4.17)

where S0,0, Si,0, and S0,j are defined to be 0 for all i ∈ [1, N] and j ∈ [1,M]. Therefore,

the maximum global score SN,M is the sum over all s(i, j), where (i, j) is part of the

matching path. This path and the according matches can, in contrast to the Dynamic

Time Warping algorithm, be easily backtracked using the accumulator matrix S only.

Since the value of an intermediary score Si,j is only increased if a diagonal step is taken,

a comparison for equality of a cell of S with its possible predecessors will reveal the

direction the matching path has taken at that point.

The method, as described so far, treats onset cues within the audio file as simultaneously

if they occur within the same segment of 50 ms. To obtain the accurate timings of

individual notes within such a segment, the highest peak of the respective section of

the onset detection function is assumed to be the onset of a corresponding score note.

Again, for each pitch, the first two harmonics are considered as well. If no corresponding

peak within the onset detection function is found, the note is marked as unmatched.

While this method yields a note-level alignment exploiting the robustness of the dy-

namic programming approach, it suffers from a number of drawbacks. First, two notes

at the interval of one octave can, very likely, not be distinguished. Since for each

note, the first two harmonics are taken into account in addition to the fundamental

frequency, playing two notes which share these partials within the same audio segment

is an inherently ambiguous and therefore error-prone scenario.

Also, the partitioning of the audio recording into chunks of 50 ms seems to be prob-

lematic. As shown in Table 2.6, a timing deviation between notes of the same chord

of more than those 50 ms is very common. In such cases, the onsets of the individual

chord notes will be fragmented over two or more audio chunks. The consequence is

that the tonality of the chord is represented in neither of the individual segments and

this information is lost.

Audio-to-Score Alignment Techniques 79

While the authors present an evaluation of the runtime behavior of their system, the

accuracy is evaluated only qualitatively. Also, a semi-automatic anchor note detection

is performed to prevent the alignment from drifting off too far.

4.5. Conclusion and Consequences for this Thesis

In this chapter, basic methods for the alignment between two feature sequences, calcu-

lated from a symbolic score and an audio representation of the same piece of music, were

described. Dynamic Time Warping was presented as the default algorithm if the score

is represented in terms of audio features as well (A2A). In contrast, building graphical

models – most commonly Hidden Markov models – from the score gives the designer a

chance to incorporate additional information into the calculation which would be lost

when transforming the symbolic data into the audio domain (A2S). As a third option,

the extraction of symbolic information from the audio material is presented (S2S). The

advantage of this method is that the amount of data that needs to be processed during

the alignment step is reduced significantly. In addition, there is no need for a perfect

transcription of the audio signal, since the notes which are played are known from the

score and are likely to be correctly selected from a reasonable set of candidates during

the matching phase.

The main objective of this thesis is to develop an alignment system optimized towards

accuracy. Therefore, the quasi-transcription approach had to be discarded. As reported

in [Niedermayer, 2009b] and [Müller et al., 2004], it is an appropriate means of handling

very long pieces of music, such as audio recordings containing whole sonatas without

a segmentation into movements. The recording of Mozart’s sonata k.284, as described

in Section 2.1 has an overall length of more than 26 minutes, for example. By quasi-

transcription, the compactness of the feature representation in our experimental system

was improved by a factor of 70. The resulting time of computation was also reduced to

about a tenth. However, due to the audio transcription step, which can be described as

only rudimentary, the method cannot compete with other systems concerning accuracy

of individual notes’ or chords’ estimated onsets. A median timing displacement of

205 ms and a 95th percentile of 905 ms are not sufficient for applications such as musical

performance analysis.

Concerning Dynamic Time Warping and Hidden Markov models, both approaches suffer

from the same shortcoming: they do not treat individual chord notes separately. While

the separate parameter extraction for single notes within a chord is not possible in DTW

as a matter of principle, asynchronous note onsets can be represented by graphical

models. A corresponding method is described in [Devaney and Ellis, 2009]. However,

as argued in Section 4.2.4 the idea of modeling each chord transition by all possible

Audio-to-Score Alignment Techniques 80

combinations of (i) a note of the previous chord sounding, (ii) a silence or transient

stage, and (iii) the respective note of the next chord sounding, will most likely exceed

the available computational capacities. For the transition between two chords of a

degree of polyphony of n, 3n states are required to model all possible alternatives. The

highest degree of polyphony found within the Mozart sonatas, i.e., 8, would result in

6561 states for one single chord transition.

Based on these considerations, we propose to use a multi-pass approach for accurate

Audio-to-Score Alignment (a detailed description of such a system will be given in

Chapter 6). A computationally efficient initial alignment is performed first based upon

which each note is refined individually. This design decision was made independently

from the actual technique applied for the alignment step. The decoupling of the rough

identification of notes within a tolerance window of a certain range and the extraction

of an accurate onset estimate within this window allows for stage specific evaluation

and optimization.

[Dannenberg and Hu, 2003] argue for the use of Dynamic Time Warping instead of

Hidden Markov models because of the simplicity of this approach. On the one hand,

DTW is a special case of HMMs. Cells of the dissimilarity matrix correspond to states

and the alignment cost is indirect proportional to the output probability. The strength

of HMMs is the possibility to model complex state transitions and to learn output

probabilities directly from adequate training data. On the other hand, the advantage

of DTW, is that it yields reasonable results without such a training stage or an explicitly

designed model.

We are in line with this reasoning and consider DTW results to be ”accurate enough”

to serve as first pass alignments. In our experiments, an STFT window size of 1024

samples and a hop size of 512 frames turned out to yield good results. The largest

absolute temporal displacement produced by this initial (first pass) alignment on our

entire evaluation corpus was about 4.5 seconds. While this values seems to be large,

the 95th percentile of absolute errors of 363 ms shows that there is only a very small

number of such outliers. Slightly more than 70% of all aligned note onsets deviate from

their actual time by less than 50 ms and for almost 30% the error is less than 10 ms

(see Appendix B, for details).

Alignment Optimization Techniques 81

5. Alignment Optimization

Techniques

Dynamic Time Warping was chosen as the method to be used in our final system for

several reasons discussed in Section 4.5. In the following, enhancements to the DTW

approach concerning the issues of computational costs, robustness, and accuracy will

be described. In Section 5.4, we will discuss which of these are used in our final system,

and how.

5.1. Optimization towards Computational Costs

The DTW algorithm is, as well as other dynamic programming methods, of asymptotic

complexity O(n2) in time as well as in space. Therefore, for pieces of music longer

than a certain time it is impossible to keep a reasonable time resolution of features and

still compute a global alignment. While relatively simple approaches put global, static

constraints on the search space for valid paths, more complex methods apply adaptive

constraints based on the actual data.

5.1.1. Static global Constraints

Two straightforward methods which limit the search space for valid align-

ment paths globally are the Sakoe-Chiba band and the Itakura parallelogram

([Rabiner and Juang, 1993], [Sakoe and Chiba, 1978]). The Sakoe-Chiba band im-

plicitly assumes that the two sequences which are aligned contain the same information

in the sense that no insertion or deletion of significant length has taken place. Further

requiring the tempo difference between the two feature sequences to be arbitrary but

fixed, would result in an alignment path along the main diagonal of the dissimilarity

matrix. The Sakoe-Chiba band is, then, a tolerance range of a constant horizontal and

vertical offset T with respect to the main diagonal, i.e., the constant tempo change

Alignment Optimization Techniques 82

assumption. This allows for local deviations, such as expressive tempo variations, but

prohibits paths from modeling structural changes between score and performance.

A similar concept is the Itakura parallelogram, which, instead of considering the average

tempo difference between two feature sequences, is based upon an assumption about

the maximum tempo deviation factor. This factor corresponds to a maximum and

minimum slope of the alignment path. Introducing these slopes as boundaries within

the dissimilarity matrix, starting from the two end-points of the main diagonal results

in a parallelogram within which the optimal path is searched for.

Both methods, constraining the search space to a band or a parallelogram respectively,

can reduce the asymptotic complexity from O(n2) to O(n) depending on the implemen-

tation. The simple approach of setting all alignment costs outside the allowed search

space to infinity and leaving the actual alignment algorithm unchanged, only reduces

the computational effort of the dissimilarity computation step. It is, therefore, more a

restriction to prevent implausible alignments than to reduce the computational effort.

Implementing path constraints in the cost minimization step, however, will not only

result in a significant speed-up but also in major memory savings. The forward step of

the DTW algorithm can then be calculated at a space complexity of O(1).

5.1.2. Online Audio Alignment

A completely different approach to align sequences of arbitrary length without pos-

ing the problem of memory space, is to perform the alignment task online, i.e., by

considering one audio frame at a time and deciding on onset times for the individ-

ual score notes shortly after their occurrence, allowing only a small latency. On-

line Audio-to-Score Alignment is also referred to as Score Following and allows for

numerous applications, such as automatic accompaniment (see [Dannenberg, 1984],

[Dannenberg and Raphael, 2006], [Davies, 2007], or [Raphael, 2009]) or an automatic

page turner (see [Arzt et al., 2008]) for live performances. However, processing the au-

dio data as a stream is a more difficult problem in comparison to offline algorithms,

since the computer system cannot ”look into the future”. Therefore, note candidates

identified within the audio stream cannot be compared to competing ones occurring

shortly afterwards.

An online variant of Dynamic Time Warping was first proposed in [Dixon, 2005b] and

then developed further in [Arzt et al., 2008]. It is based upon a (ring) buffer holding

the alignments between 500 feature vectors computed from the audio as well as from the

score representation. The algorithm then selects between advancing to the next score

frame, to the next audio frame, or both, depending on the partial alignment paths

Alignment Optimization Techniques 83

ending at the newest row or column within the buffer. If the path with lowest costs

amongst these candidates ends at the newest audio frame, a new frame is read from

the stream. The analogous procedure is performed for the score. In the case where the

minimum cost is yielded by the path ending at the alignment of the latest audio data

to the latest score frame, the algorithm advances in both directions.

To tackle the robustness issue, [Arzt et al., 2008] describe a Backward-Forward Strategy,

where the alignment path over a short period is reconsidered, more effectively explaining

the accumulated information. To this end, a smoothed backward path is calculated and

followed for a certain number of steps. Then, starting at the respective point of this

path, a new hypothesis about the forward path is obtained by applying the default

dynamic programming approach. This new path, however, is expected to be more

robust since it relies on more information which was unknown at the time the initial

alignment was computed and is, therefore, used by the algorithm to continue. The

authors suggest to alternate between short backtrackings of 10 steps and a longer one

with a length of 50 steps, i.e., 200 ms and 1 second in their specific implementation.

Another strategy to overcome the drawback of not knowing the whole audio recording

in advance, proposed in [Arzt et al., 2008], is to incorporate information about note

onsets. The basic assumption is that onsets can be detected almost instantaneously by

taking into account spectral novelty and rapid increases of the signal energy. Also, by

following the score and maintaining a current tempo hypothesis the timing of the next

note can be anticipated up to a certain accuracy. Combining those cues and the score

information, the onset of a note can be detected without observing the ”future” sustain

phase of a note.

5.1.3. Path Pruning

Path pruning is a greedy approach where only promising paths, i.e., those paths with an

overall cost below a certain threshold θ, are continued during the dynamic programming

phase. [Soulez et al., 2003] describes a method where the accumulated path costs are

calculated row by row. The threshold θ(m), which an element in the mth row must not

exceed to become a valid candidate for a continuation at the (m+ 1)th row, is set to

θ(m) = 1.1 min
n

[accu(m,n)] (5.1)

To allow for more possible paths, those between the outermost candidates and the main

diagonal are not pruned, resulting in a continuous corridor. The authors report a data

reduction by a factor of 90, reducing a feature sequence of length 36000 (corresponding

Alignment Optimization Techniques 84

to a piece of a length of 3 minutes at a hop size of 5.8 ms, i.e., 256 samples at a sampling

rate of 44.1 kHz) to a corridor of an average length of 400.

In analogy to this method, instead of processing one row at each iteration, thresholds

θ(l) for each length l of a path can be used to drop candidates which are already too

expensive at an early stage.

However, neither variant of the Path Pruning approach guarantees that the globally

optimal alignment path is found. Paths which are cheap, in terms of alignment cost, at

their beginning and become increasingly expensive towards their end are expanded. On

the other hand, a globally cheaper path might be discarded if it has to traverse a section

where the feature sequences are relatively dissimilar at its beginning. To ensure that the

global optimum is found, a tentative optimum is obtained by calculating the alignment

cost along the main diagonal. Partial paths exceeding this value can be discontinued

while the algorithm is still guaranteed to yield the global optimum. Although the

tentative cost minimum can be updated as soon as cheaper alternatives to parts of the

main diagonal are found, this method will result in a lower speed-up. Since the cost of

a complete path is considered as a pruning criterion, paths are not likely to exceed this

value during an early iteration.

5.1.4. Shortcut Paths

As an alternative to continuing only promising partial paths or restricting paths to

those within a plausible search space, [Orio and Déchelle, 2001] propose to shorten the

paths by considering only those score-frames where the tonality is changed, i.e., frames

where a note onset or an offset occurs. The time as well as the space complexity is

decreased from O(n2) to O(nm), where m is the number of distinctive score events for

which, in practice, m� n holds.

Similar to this approach is the alignment in the symbolic domain, as described in

Section 4.3. By performing a rudimentary transcription on the audio data, not only

the score representation, but also the audio recording can be reduced to a sequence of

note or chord events.

5.1.5. Multi-Scale DTW

Another approach reducing time and space complexity to O(n) (or O(n log n),

depending on the exit-condition) is multi-scale Dynamic Time Warping (see

[Salvador and Chan, 2004], [Salvador and Chan, 2007], and [Müller et al., 2006], for

Alignment Optimization Techniques 85

Figure 5.1.: Two-scale DTW: An approximate alignment path (black) through the
dissimilarity matrix is calculated in the first pass. In the second pass, only matrix
elements within a certain range around the initial path (gray) are considered. Since
after the initialization only the respective last row and column must be kept in memory,
the time resolution can be increased by a significant factor.

example). Here, an initial estimate of the optimal path is obtained at a low time

resolution and then iteratively refined at increasing feature resolutions. At each of the

refinement steps, paths are constrained to stay within a band determined by a certain

tolerance range around the tentative optimum. As for Path Pruning, the result of

a multi-scale DTW is not necessarily the global optimum. It may happen that low

resolution features are misleading in such a strong way that the actual path yielding

minimal costs is out of the search radius.

In [Niedermayer, 2009b], an implementation using only two steps is used. In the first

one, a standard DTW is computed on features extracted from an STFT spectrogram at

a window as well as a hop size of 4096 samples (∼93 ms). This allows for the processing

pieces of lengths up to more than 25 minutes, corresponding to a dissimilarity matrix

of a size of about 2GB. The second step is the refinement, calculated on features based

on a different spectrogram with the hop size reduced to 512 samples (∼12 ms). As

illustrated in Figure 5.1.5, the path estimation from the first step leads the search in

the second step such that only dissimilarity values and path costs within an area of

radius r frames need to be calculated. In this way memory requirements can be kept

low by just storing dissimilarity measures of the currently processed element and path

costs for the respective last rows and columns, as depicted in Figure 5.1.5.

Alignment Optimization Techniques 86

5.1.6. Divide & Conquer

[Niedermayer and Widmer, 2010b] propose a divide and conquer approach to improve

the efficiency of DTW. This idea was originally introduced by [Müller et al., 2004],

where, however, the interaction of a system user was required. Given a set of anchor

notes, for which the exact timing is known, solving the alignment problem on the whole

piece can be reduced to finding optimal alignments between each pair of consecutive

anchor notes. Given a maximal interval c between two anchors, the sub-DTWs are com-

puted in O(c2) in time as well as in space. While the space complexity of O(c2)=̂O(1)

does not change compared to considering the whole piece, time complexity decreases

to O(c2 ∗N/c) = O(c ∗N)=̂O(N), while guaranteeing that the globally optimal align-

ment is found. This is a great improvement over the original algorithm’s complexity of

O(N ∗M), where N and M are the lengths of the audio and score feature sequences

respectively.

This increase in efficiency is countered by the additional problem of how to identify suit-

able anchor notes and how to extract their respective onset times. [Müller et al., 2004]

describe an approach where the user manually selects an anchor configuration or ver-

ifies suggestions made by the algorithm. These suggestions are established based on

cues such as pauses, long isolated fortissimo chords, or notes with salient fundamental

pitches, i.e. pitches that do not overlap with harmonics of concurrently played notes.

In [Niedermayer and Widmer, 2010b], this idea was developed further in order to avoid

the requirement for user interaction. Based on an initial, low resolution alignment,

note onsets are refined using the Pitch Activation feature. This feature is calculated

from the spectrogram within a certain search window around the initial onset estimate,

while exploiting the knowledge about the notes which are expected to sound within

this window. A significant increase in the activation energy is then found to be an

accurate onset estimate. While such a refined onset is obtained for each note, only those

notes where the confidence level concerning correctness and accuracy issues exceeds a

threshold are selected as anchor notes. The exact procedure is described in detail in

Section 6.2.

5.2. Optimization towards Robustness

In Section 3.2, the Chroma feature was introduced as a fairly robust descriptor of the

tonality of a frame. This generally holds for different dynamic ranges, timbres, or

playing styles. However, in specific situations, such as sections of a very high degree

of polyphony, when glissandi are played, or when heavy distortion is used as an audio

Alignment Optimization Techniques 87

effect, the Chroma feature loses its explanatory power, since all pitch classes have an

almost equal presence. On the other hand, a highly repetitive structure of a piece or

errors made by the performer can mislead the alignment algorithm to such an extent

that it can be considered to be failed.

In the literature, several methods can be found which either aim at enhancing alignment

robustness by introducing additional types of features and subroutines which handle

common problems, such as structural deviations of the performance from the score of

a piece, or at automatically obtaining a confidence measure reflecting the plausibility

of an alignment.

5.2.1. Short-Time Statistics

In the context of an alignment-based audio retrieval task, [Müller et al., 2005] propose

the usage of short-time statistics over Chroma features to increase robustness towards

different articulations and local tempo changes. To this end, the Chroma vectors are

normalized to a sum of 1 before quantizing the individual values vi according to

v̂i =

4 , if vi ≥ 0.4

3 , if 0.2 ≤ vi < 0.4

2 , if 0.1 ≤ vi < 0.2

1 , if 0.05 ≤ vi < 0.1

0 , otherwise

(5.2)

The sequence of quantized feature vectors is then convolved element-wise using a Hann

window. In their specific implementation, the authors use a window of a length of

41 frames which corresponds to 4.1 seconds. The result is downsampled to a feature

resolution of 1 Hz and the respective feature vectors are normalized to a Euclidean norm

of 1. The authors call this feature Chroma Energy distribution Normalized Statistics

(CENS).

Its main strength over the Chroma feature is that, by considering short-time statistics

instead of single feature values, local variations in timing and articulation are smoothed

out to a large extent. The same holds for noise caused by transient spectral changes

at the note onsets. Noise which is inherently present in Chroma representations due

to harmonics contributing to pitch classes different from the one corresponding to the

fundamental frequency is also suppressed by the thresholding in Equation 5.2. This

Alignment Optimization Techniques 88

straightforward detection of noisy contributions would not be possible if the longer

analysis window were already applied at the Chroma calculation stage.

5.2.2. Robustness to Structural Changes

A well known problem in Audio-to-Score Alignment are changes of a piece’s structure

between score and performance. This can be due to individual variations of a performer,

who can intentionally leave out a repetition or introduce one that is not notated in the

score. On the other hand, OMR software, used to digitize a score, might have missed

a repeat mark or a score MIDI file does not contain redundant parts to save memory.

Independent from the cause of structural changes, they bear the risk that an alignment

will fail. Although Dynamic Time Warping yields the optimal alignment, when one

feature sequence contains an additional section, an alignment path might be cheaper if

it successively proceeds in both directions at an adequate slope than if it remains in a

”waiting” position within one representation until the inserted block within the other

feature sequence is completed.

As a solution to this problem, [Arzt et al., 2008] use a system which keeps track of

multiple path hypotheses at a time. To this end, the score representation is assumed to

contain information about the major sections of a piece and respective points where a

performer can continue after changing the structure. Starting from these points, several

potential paths are computed in parallel. After a certain number of audio frames, these

candidates are evaluated based on the overall path cost and the cheapest one is selected

for continuation. To avoid excessive computational efforts, the authors propose to only

consider three path candidates each time the performance reaches a section boundary.

One, assuming that the performer repeats the played section, a second one, where the

performer continues playing the subsequent section, and a third path hypothesis, based

on the assumption that the entire next section is skipped.

This approach was further refined in [Arzt and Widmer, 2010] to drop the requirement

for annotated sections as part of the score representation. Instead, a rough position

estimator was introduced which works on feature sequences at a low time resolution

corresponding to a hop size of 300 ms. Based on this data, multiple promising points in

score time are selected and the respective paths are refined at a higher time resolution,

before a final decision on the actual most likely alignment is made.

Instead of using multiple matchers, [Fremerey et al., 2010] formulate an extended Dy-

namic Time Warping algorithm in the context of offline alignment, already incorporat-

ing the possibility to jump between sections of a piece. Again, the section boundaries

are supposed to be known from a prior analysis of the score by means of OMR software

Alignment Optimization Techniques 89

or by human annotation. Then, in order to account for structural changes, the mono-

tonicity constraint of DTW is dropped. To this end, in addition to the regular steps

within an alignment path (see Equation 4.3), a jump to the beginning of an arbitrary

section is introduced. To prohibit jumps which are not musically motivated, this option

is only allowed (i.e., charged with finite costs) when the score is at a position of a jump

directive.

Considering da capo al fine notations, it also makes sense to relax the end-point con-

straint of Dynamic Time Warping. Instead of ending at the last frame of the score

representation, an alignment path is allowed to end at the last frame of a “da capo”

section.

5.2.3. Plausibility Estimation

Although the estimation of the plausibility of an obtained alignment does not im-

prove the robustness itself, it is a valuable means of identifying failed alignments as a

first counter measure. [Turetsky and Ellis, 2003] describe the automatic extraction of

”ground-truth” annotations of audio recordings by means of Audio-to-Score Alignment,

which can then be used for the evaluation of a task with less information input. To

recognize pieces where the offline alignment has failed, five plausibility measure are in-

troduced: Average Best Path Score, Average Best Path Percentile, Off-Diagonal Ratio,

Square Ratio, and Line Ratio. They can be grouped into methods inspecting the costs

along the alignment path in relation to the ”off-path” values within the dissimilarity

matrix (the first three measures), and ones aiming at the shape of the optimal path

itself (the latter two measures). In the following we will describe the Average Best

Path Cost, our adaption of the Average Best Path Percentile, and a new measure we

propose for the detection of paths with implausible shapes.

Average (Best) Path Cost

Given the alignment, an intuitive measure for the quality of the match between two

pieces of music would be the average cost along the alignment path. For this calculation,

[Turetsky and Ellis, 2003] use a median filter and consider values along diagonal regions

of the path only. However, preliminary experiments have shown that this measure is

too simple. Although Chroma vectors as well as Pitch Activation are relatively robust

to changes in instrumentation or accompaniment as well as room acoustics or audio

effects, higher average alignment costs can still be caused by such variations.

Alignment Optimization Techniques 90

Relative Path Cost

One approach to account for differences in instrumentation or accompaniment is to

calculate the average cost along the alignment path in relation to the overall average

cost D over all Dij , as described in [Niedermayer et al., 2011b]. The cost D is a good

baseline, estimating the average path cost of a random alignment. It accounts for all

specifics of the two feature sequences under consideration which the used feature is

not entirely invariant to (e.g., changed recording conditions, varying levels of noise,

or different arrangements). A similar measure – the Average Best Path Percentile –

is based on the percentile of all path costs within all values of D. It was proposed

by [Turetsky and Ellis, 2003] and shown to outperform the other measure mentioned

above.

Off-Diagonal Cost

We have introduced the Off-Diagonal cost in [Niedermayer et al., 2011b] as a measure

for the plausibility of an alignment path’s shape. Despite its similar name, it is not

related to the Off-Diagonal ratio of [Turetsky and Ellis, 2003] which takes the values

along the path into account.

An inherent property of the DTW algorithm is that it is robust to small deviations of

one sequence compared to another one. This is necessary in order to compensate for

expressive variations or playing errors. However, the DTW algorithm’s flexibility can

also result in relatively low alignment costs when two different but still similar melodies

are compared to each other. Especially in cases where the performance contains a lot

of additional ornamentations, the desired result can have a similar alignment cost as

is obtained by partly deleting the actual ornamented notes and matching the auxiliary

notes to the score of a different melody.

This undesired behavior is likely to be detected by investigating the shape of the align-

ment path. Matching melodies, although with varying ornamentations, are likely to

result in approximately linear paths along the main diagonal. In contract, relatively

low global alignment costs observed while comparing a score with a performance of a

different piece is likely to be achieved by major stretches and compressions of notes.

This corresponds to significant horizontal or vertical segments within the alignment

path. To measure this effect, we define the Off-Diagonal cost as the deviation of the

optimal alignment path from the best strictly linear alignment path.

A method to retrieve linear segments, known from the field of image processing, is the

Hough transform (see [Princen et al., 1992] or [Atiquzzaman, 1994], for example). It

Alignment Optimization Techniques 91

transforms points (i, j)T from the image domain – in the case of audio alignment, the

element-wise inverse of the dissimilarity matrix D, i.e., the similarity matrix S1 – into

the Hough space H, where each point (ρ, θ)T represents a line given by θ – the angle

with respect to the image domain’s positive x-axis – and ρ – the distance from the

origin, such that

ρ− i cos θ − j sin θ = 0 (5.3)

A single point (i, j)T of the image domain lies on infinitely many lines at arbitrary angles

θ. Thus, a point’s Hough transform is a function ri,j , following from Equation 5.3 as

ri,j(θ) = i cos θ + j sin θ (5.4)

ri,j is a sinusoid of period 2π having a magnitude of |(i, j)T | and a phase of arctan j/i.

In the discrete case the Hough space is sampled and represented by an accumulator

array Ĥ of size T × R. The function ri,j then becomes a set of corresponding cells,

defined as

Ri,j = {Ĥt,P−1(hi,j(Θ(t))) : t ∈ [0, T − 1]} (5.5)

where Θ(t) is the angle θ corresponding to index t and P−1(ρ) is the sampling index ρ

resolves to.

When applying the Hough transform to the similarity matrix S, for each element (i, j)T ,

all accumulator cells in Ri,j are increased by Si,j . High values within the resulting Ĥ in-

dicate prominent lines in the image domain. In Figure 5.2 the accumulator arrays Ĥ are

shown that result from comparing two feature sequences calculated from performances

of the same piece of music and and two independent recordings, respectively.

In our proposed system for the identification of versions of a same piece (see Section

7.4), the size of the accumulator array was set to the size of the similarity matrix

S. Doing so yields fine resolutions if S is large and coarser resolutions if the compared

features sequences are short. In addition, the angle θ was restricted to have a maximum

1Remark: Probable lines are represented as local maxima in the Hough space, which can be seen as
an accumulator for evidence for lines described by certain parameters. Since this can be considered
an “inverse” problem to cost minimization, a similarity measure is required instead of a cost, i.e., a
dissimilarity measure

Alignment Optimization Techniques 92

(a)

(b)

Figure 5.2.: Hough transform of two feature sequences calculated from performances of
the same piece of music (a) and the recordings of two pieces different from each other
(b).

deviation from the main diagonal of ±30◦. Since the dominant line is assumed to be the

best linear alignment path, this restricts the valid slopes – i.e., the tempo deviations –

to reasonable values.

In summary, the Hough transform is used as a line detector. Applied on the inverse

alignment costs, it finds linear segments within the similarity matrix S along which the

two feature sequences under consideration match relatively well. Such alignments allow

only for an offset between the first note onsets within the two musical representations

and a constant tempo change. The highest value of the accumulator array Ĥ represents

the best alignment under these constraints.

Alignment Optimization Techniques 93

Finally the Off-Diagonal cost is calculated from the sets of points A = {aij ∈ pathDTW }
and B = {bkl ∈ pathlinear}. From the set A the points corresponding to the first and

the last 5% of the path are discarded, to not penalize different offsets. For the remaining

points aij along the path obtained by the DTW algorithm the cost c(a) is calculated

as the minimum of the horizontal and the vertical offset to the linear path.

c(aij) = argmin
b

dist(aij , bkl) (5.6)

with

dist(aij , bkl) =

|i− k| , if j = l

|j − l| , if i = k and j 6= l

∞ , else

(5.7)

From these individual values, the final Off-Diagonal cost cod is computed as

cod(A) =
1

|A|
∑
a∈A

c(a)2 (5.8)

As also described in [Niedermayer et al., 2011b], this plausibility measure was used for

the purpose of version detection, when the audio recordings of two performances of a

same piece are aligned to each other. In the context of this work, the Off-Diagonal cost

was calculated on alignments between short chunks of the two respective feature se-

quences. In this way, similar chunks are detected without raising the issue of structural

changes (see Section 7.4).

Other Plausibility Measures

A method, similar to the computation of the plausibility of an alignment path

over short chunks, is to detect linear segments within the complete alignment path.

[Turetsky and Ellis, 2003] define the Line Ratio as the length of approximately linear

alignment path segments in relation to the overall path length and the Square Ratio as

the area of rectangles around the linear path segments compared to the overall area of

the dissimilarity matrix D.

Alignment Optimization Techniques 94

The Off-Diagonal ratio introduced by the same authors is, despite its similar name, not

related to the Off-Diagonal cost as defined above. It is generally not a measure aiming

at the shape of an alignment path, but at its average cost in comparison to the costs of

a path with an offset of a small number of frames. Thus, it is an indicator for a sharp

peak around the cost minimum obtained by the DTW algorithm.

5.3. Optimization towards Accuracy

Alignment accuracy is the main objective of this thesis. Therefore, we describe our pro-

posed system including novel refinement strategies in a separate chapter (see Chapter

6). The optimization methods reviewed in this section describe related systems. Some

respective approaches have already been discussed in previous sections within another

context where accuracy was not the main issue and are here summarized as implicit

accuracy improvements. In addition, methods which explicitly address the problem of

resolving individual chord notes are explained.

5.3.1. Implicit Accuracy Improvement

A method which was introduced in Section 5.1.5 as a means to reduce the computational

complexity of the DTW algorithm from O(n2) to O(n) is multi-scale Dynamic Time

Warping. While this approach can be used to compute an alignment at a fixed feature

time resolution with less effort compared to standard DTW, one can as well argue

that assuming a fixed computational capacity, alignments can be obtained at a much

higher temporal resolution. From this point of view, multi-scale DTW can improve the

accuracy of an Audio-to-Score Alignment.

[Ewert and Müller, 2009] use onset-based features, as described in Section 3.3, to yield

accurate alignments. To not trade accuracy for robustness, identified onset candi-

dates are summarized in a Chroma representation. To this end, the audio signal is

transformed into the spectral domain using a multi-rate filter-bank, as described in

[Müller et al., 2004], and the short-time root-mean-square power. Onset candidates,

characterized by significant energy increases, are extracted and subjected to a peak

picking mechanism. The remaining candidates are integrated over a longer analysis

window and summed up according to the pitch classes of their respective pitch. After

a normalization step, the sparse onset descriptors are expanded by adding a temporal

decay. Each onset candidate is copied to a fixed number of subsequent frames and

accordingly multiplied by a decreasing weight. The authors call the resulting repre-

sentation Decaying Locally Adaptive Normalized Chroma Onset feature. Its strength

Alignment Optimization Techniques 95

is that it contains accurate onset information while offering the robustness of Chroma

vectors. Nevertheless, [Ewert and Müller, 2009] report best results to be obtained by

using a combination of this onset-based feature and straightforward Chroma vectors in

the sense that the respective dissimilarity matrices are simply added during the DTW

calculation.

Although the described methods improve the accuracy of an Audio-to-Score alignment

in general, they do not resolve the problem arising from asynchronies as contained in

a natural performance. In Section 2.4.2, the importance of considering micro-timing in

an Audio-to-Score Alignment system was shown. Chords where the individual notes’

onset times spread over several hundred milliseconds are not an exception. These timing

deviations are even more dramatic when also considering notes marked as grace notes

or ornamentations in general. In such cases – which might not be apparent from score

representations such as the MIDI file format – note onsets deviate from each other by

up to one second, although they are notated concurrently in the score.

5.3.2. Score-guided Audio Transcription

Audio Transcription is the task of obtaining a symbolic representation, such as a MIDI

file, from an audio recording and therefore a combination of Onset Detection, Offset

Detection, and Multiple-Pitch Tracking. A small number of systems, such as the one

presented in [Böck and Widmer, 2012], additionally extract the relative loudness of each

individual note. Score-guided transcription can be considered an optimization towards

accuracy since it is a method to obtain onset times at the note-level, i.e., distinct

onset times for individual chord notes. Therefore, systems following this approach are

strongly related to the focus of this thesis. In this section, after a brief introduction

to audio transcription, the score-guided transcription system of [Scheirer, 1997] will be

discussed.

A review of transcription methods is presented in [Hainsworth, 2001] and

[Hainsworth, 2003], clustering them into three main approaches. The first sys-

tems were built on pure bottom-up principles, without considering any higher level

knowledge. Although these algorithms used to fit very specific cases only, works like

[Klapuri, 1999] or [Plumbley et al., 2006] show that bottom-up methods have overcome

those early restrictions. A second group of transcription methods, like the ones used by

[Martin, 1996], is based on blackboard systems. Here, low-level information gathered

by digital signal processing and frame-wise description of the auditory scene as well

as high-level prior knowledge is used to support or discard hypotheses at multiple

levels. The third major approach to music transcription is made up by model based

algorithms. Similar to blackboard systems, they also include high-level information

Alignment Optimization Techniques 96

as well as low-level signal based features. The difference is that prior knowledge is

fed into the system by introducing a model of the analyzed data. The signal is then

processed in order to estimate the model’s parameters. The results of these methods

can only be as good as the degree to which the model can fit the data. Works like

[Ryynänen and Klapuri, 2005] or [Godsill and Davy, 2002] are examples of this class.

In a wider sense, neglecting the fact that the system was given knowledge about the

score, the graphical model based Audio-to-Score Alignment approach could be related

to the latter class as well.

In [Niedermayer, 2008], we have proposed a transcription system based upon the Pitch

Activation features as described in Section 3.4. The usage of tone models to decom-

pose the spectrogram was inspired by insights into transcription strategies of trained

musicians. They have been shown to use a large amount of background information,

such as the style of the piece or the instruments playing (see [Hainsworth, 2003]). In

analogy to a human annotator, who would not listen for distorted guitar sounds in the

recording of a piano piece, specific piano tone models are used during the extraction of

the Pitch Activation feature.

We showed that simply setting note boundaries at timestamps where the activation

level of a certain pitch becomes greater than zero and the time where it falls back to

zero, yields a note-level overlap of more than 99%. This means that almost all notes

which are played during the performance, overlap with a transcribed note at least

to some extent. However, due to the significant number of spurious note events, the

precision of this representation was only around 20%, making it useless as a meaningful

transcription. To enhance the precision and the respective f-measure, a classifier was

trained to distinguish between actual notes and false positives. In this way, the f-

measure was improved from 0.36 to 0.92 at the note level. At the frame level an f-value

of 0.52 was achieved in a 10-fold cross-validation experiment.

An early system which uses such an audio transcription approach instead of Dynamic

Time Warping or graphical models, was presented in [Scheirer, 1997]. In this work, in

each iteration, the algorithm searches for offsets or current amplitudes of those notes

which have been detected before. Then, the onset of the next note within the score is

extracted. Using this information, the score is reconsidered and the tempo estimation

as well as the predicted onset times of the next notes are updated.

Since this method works online, i.e., processes the audio data as a stream without

taking the whole data into account, the correct detection of the note onsets is crucial.

Although not evaluated by the authors, it is reasonable to assume that this approach

is less robust to playing errors or very noisy passages than an alignment-based system.

Once a note onset is identified, there is no indication for a reconsideration of this

Alignment Optimization Techniques 97

decision, such as the Backward-Forward strategy introduced in [Arzt et al., 2008] and

described in Section 5.1.2.

The onset detector the system proposed by [Scheirer, 1997] in based upon takes into

consideration several cues. First, the approximate timing of the next note is determined

based on the current tempo estimation. Then, if, according to the score, only one note

is struck at this time, the algorithm searches for high frequency energy content caused

by the piano’s hammer strike and also an increase in the overall spectral power. A

note onset is reported when at least one of these two conditions holds while a positive

derivative can be observed in the bin corresponding to the fundamental frequency of

the pitch under consideration. If no significant peaks are found, the signal is filtered

using a comb filter tuned to the fundamental and harmonic frequencies of the respective

pitch. The onset is then detected, based upon the sharpest increase in energy of the

filtered signal, as the point in time where the energy derivative becomes positive before

attaining this steepest slope.

In cases where, according to the score, not a single note but a chord is played at a

time, taking into account the high-frequency content of the signal, which results from

the transient note onset, is ambiguous. While an energy increase in this region is a

good indicator for an onset in general, it does not discriminate between the pitches

that have been played. [Scheirer, 1997] proposes to isolate the onset of an individual

note within a chord using multi-bandpass filters. The filters are designed to have pass

bands around the fundamental frequency of the note and those harmonics which are

not shared with another currently played pitch.

[Scheirer, 1997] also presents an evaluation of this approach. The used corpus of test

data consists of three scales as well as five performance excerpts from pieces by Bach

and Schumann recorded on a Yamaha Disklavier. The reported standard deviation of

the displacements between extracted and actual timing is reported to be between 10 ms

and 116 ms, depending on the complexity of the audio material. There is a performance

with a standard deviation of above 100 ms. This is an outlier, where the transcriptions

system failed due to a tempo change which is more dramatic than assumed by the

internal tempo tracker. However, since significant tempo changes are an inherent char-

acteristic of classical music, one can conclude from these results that relying on narrow

tempo hypotheses compromises the robustness of the system. Although results reported

by different authors cannot be compared directly, the temporal accuracy of Scheirer’s

system seems to be in the range of what DTW based approaches can achieve.

Two similar systems are the ones proposed by [Müller et al., 2004] and

[Niedermayer, 2009b] (cf. Section 4.3), with the main difference that there are

two distinct passes for obtaining a high-level description of the audio recording and

Alignment Optimization Techniques 98

for the actual alignment. While [Müller et al., 2004] did not perform a quantitative

evaluation, the accuracy reported in [Niedermayer, 2009b] is lower than what we

achieve by simple DTW (cf. Appendix B). This strengthens our arguments in favor of

a multi-pass system for accurate alignment.

5.3.3. Single-Pass Post-processing Methods

A number of authors have developed post-processing methods, where the onset of each

individual note is refined within a search window around a tentative onset estimate

obtained by an initial alignment. In doing so, the advantages of the two approaches

described above – the accurate extraction of individual notes’ onset times and the

robustness of dynamic programming – are combined. This approach is preferred over

alternatives, such as modeling asynchronies by means of hierarchical HMMs where

each note or chord transition is represented by a number of sub-states according to all

possible successions of note offsets and onsets, due to its flexibility and computational

efficiency.

In the following, two approaches will be reviewed. The first one is based on an audio

transcription technique – pitch specific note onset detection. There, an initial align-

ment based on Dynamic Time Warping is performed, before the onset of each note

is reconsidered individually. The second approach is based on machine learning. The

initial alignment is used as training data for an onset classifier. After finishing the

training, the classifier is applied to the same piece of music, yielding more accurate

onset estimates which are then used to iteratively retrain the classifier. The method we

will introduce in our system (Chapter 6) differs from these methods by using multiple

post-processing methods where note onsets are further refined if the level of confidence

into the estimate from the first pass is not high enough.

Pitch-specific Onset Detection

While onset based audio features, as, for example, applied in [Ewert and Müller, 2009]

as a strategy to refine audio alignments, are an integral part of the feature extrac-

tion and core alignment phase of a system, [Meron and Hirose, 2001] introduce a post-

processing approach to refine Audio-to-Score alignments. The proposed system first

computes an initial alignment using DTW. Then, for each individual note, a more ac-

curate onset is searched for within a window of predefined size around the tentative

onset estimate.

Alignment Optimization Techniques 99

To avoid confusions due to overlapping partials between two notes which sound si-

multaneously, those harmonics which can unambiguously be related to a certain pitch

are given more weight. This is similar to the idea presented in [Scheirer, 1997] and

described in Section 5.3.2, however differing in so far as overlapping partials are not

generally neglected but only down-weighted. The basic energy of the hth harmonic of

a pitch with a fundamental frequency of f0 is computed in the time domain, as

eh(l) =

[
K∑
k=1

sl(k) cos (k (h+ 1) f0)

]2

+

[
K∑
k=1

sl(k) sin (k (h+ 1) f0)

]2

(5.9)

where s is the lth segment of length K of the signal. The overall energy of a note i at

the frame sl is then given by

E(i, l) =
H∑
h=0

w(i, h) eh(l) (5.10)

The weighting function w(i, h) does not only take into account the pitch of note i and

its respective hth harmonic with frequency fh, but also the score time. Amongst all

notes which are expected to sound simultaneously according to the score, the partial

with the frequency closest to fh is obtained. The resulting weight is then proportional

to this difference such that those partials where a confusion is least likely yield the

highest weights.

The authors report a reduction of the standard deviation of timing errors from 43 ms

down to 25 ms due to this post-processing step. However, they manually initialize the

DTW alignment. While listening to the audio recording, a human annotator presses a

key at each beginning of a word of the lyrics. In this way, the computed alignment can

be forced to only deviate from this reference within a certain tolerance range. A very

accurate first alignment then allows for the use of relatively narrow search windows

in the refinement step. One can assume that a fully automatic system would produce

some outliers and therefore a larger standard deviation of alignment errors.

Onset Classification

[Hu and Dannenberg, 2005], [Hu and Dannenberg, 2006], and [Liu et al., 2010] de-

scribe a different refinement method based on an initial DTW alignment. There, the

initial alignment is used as training data for an automatic onset classifier. The classifier

Alignment Optimization Techniques 100

is initialized using audio material synthesized from a known score. Then, the training

on an arbitrary audio recording is performed as follows.

1. Perform an onset detection on the audio recording resulting in an classifier output

function v(t) indicating the likelihood of the tth audio frame to contain a note

onset.

2. Compute the function w(t) as a pseudo-probability distribution resulting from the

note onsets as yielded by the Audio-to-Score Alignment. To this end, Gaussian

windows, with the standard deviation σ being half the length of an audio frame,

are centered around the predicted onset times and their values are summed up

to obtain the function w(t). In a last step, all values w(t) = 0 are set to a small

number ε to also allow onset to occur at such times t at a respective probability.

3. Combine the classifier output v and the prediction obtained from the audio align-

ment into a new function vnew, defined as vnew(t) = v(t)w(t).

4. For each note, find the maximum value of vnew within a search window around the

tentative note onset as estimated by the DTW algorithm. The windows length

to each side is not longer than the analysis window used during the alignment

step and also bounded by the half of the inter-onset interval with regard to the

adjacent note.

5. Retrain the classifier based on this data, where each estimated onset has a target

value of 1 while all other frames are assigned a target value of 0, using a default

error back-propagation method. The misclassification penalty is set such that the

low number of onsets compared to non-onsets is compensated for.

The procedure is repeated until a local minimum of errors is reached in a 5-fold cross-

validation. The classifier used is a multi-layer perceptron designed as a feed-forward

neural network with two hidden layers which are fully connected. The first layer consists

of 6 neurons while the second layer has only 4 neurons. The output is a real value

v ∈ [0, 1], with v ≥ 0.5 indicating an onset.

Given an audio recording of a performance where the ground-truth transcription is not

known, one can only use unsupervised machine learning techniques. However, due to the

generally better understanding and the variety of well-studies algorithms, supervised

learning approaches are preferred and assumed to yield better results. On the other

hand, such techniques require a large number of training samples, i.e., annotated audio

recordings, in this context. The advantage of the described bootstrap learning is that

Alignment Optimization Techniques 101

it automatically acquires its own training data and improves the data quality in terms

of onset accuracy with each iteration.

The features, i.e., values of the perceptron’s input units, used in

[Hu and Dannenberg, 2006] are the logarithmic energy of the frame, the frequen-

cies of presumable partials, the energy of the first three harmonics of a pitch, as

identified from the set of partials, in relation to the frames sum of energies, the inhar-

monicity factor, the zero-crossing rate, and the derivatives of these values. In contrast

to the alignment step, where a window length of 50 ms is suggested, the features fed

into the classifier are computed at window size of only 5.8 ms, i.e., 256 samples at a

sampling frequency of 44.1 kHz.

5.4. Conclusion and Consequences for this Thesis

In this chapter, we presented several methods for the optimization of DTW-based

audio alignment. Since the results of a default alignment using Chroma vectors show

only a small number of outliers on our evaluation corpus, increasing the robustness is

not a main objective here. A 95th percentile of absolute time displacements of 363 ms

is promising, so that we concentrated on accuracy. Nevertheless, a system for the

automatic detection of versions of a same piece of music is described in Section 7.4

which relies on audio alignment and two of the discussed plausibility measures.

Although it has no direct influence on Audio-to-Score Alignment results, computational

efficiency is an important issue. In our implementation we use a two-scale DTW,

where an initial alignment is computed at a hop size of 4096 samples. In addition, an

Itakura parallelogram is applied, allowing only for a certain maximum offset between

the two feature sequences and an alignment path slope, i.e., tempo difference between

the two respective sequences, within a defined band. Based on this initial alignment,

a second pass at an increased temporal resolution is performed where only potential

paths within a corridor around the first estimate are considered. There, a hop size of

512 samples and a search radius of 350 frames were found to be an adequate compromise

between allowing for the correction of errors made at the first alignment and keeping

the computational costs low.

Another strategy used in our Audio-to-Score Alignment system is the Divide & Conquer

approach. In the refinement step anchor notes, for which an accurate onset time can

be extracted at a high level of confidence, are determined automatically. Other notes

which are notated concurrent to anchors or in between two such anchors are then

reconsidered, taking this additional information into account.

Alignment Optimization Techniques 102

An optimization technique which is not used in our final system are shortcut paths.

However, they are the principle behind the increased computational efficiency of our

alignment system working in the symbolic domain as described in Section 4.3.

Since accuracy is the main issue in this thesis, we present our final system for accurate

Audio-to-Score Alignment in the next Chapter in detail. The methods described above

are related work. The main difference of our proposed system is that is uses a multi-pass

approach where notes which are relatively “easy” to detect constrain the extraction of

note onsets which are less clear.

A System for Accurate Audio-to-Score Alignment at the Note Level 103

6. A System for Accurate

Audio-to-Score Alignment at the

Note Level

In this chapter, we describe our new system for the accurate extraction of each individ-

ual note’s onset from an audio recording by means of Audio-to-Score Alignment. From

a practical point of view, the objective is to minimize the number of notes for which a

human annotator would need to correct the timing information.

In [Niedermayer and Widmer, 2010a] and [Niedermayer and Widmer, 2010b], we have

proposed a number of post-processing methods based on an initial alignment obtained

by Dynamic Time Warping to achieve Audio-to-Score Alignment at the note-level. In

contrast to the single-pass approaches, the proposed post-processing chain works in

several steps, starting with the refinement of notes where an onset candidate can be

obtained at a high level of confidence. Such notes are called anchor notes, since they

constitute fixed matchings that further enhancement steps rely on. The use of anchor

notes has already been mentioned in Section 5.1.6, where the Divide&Conquer approach

to reduce computational costs was discussed. In a similar manner, the piece is divided

into relatively short sections of which the audio-score matches at the boundaries are

known. Using this additional knowledge, notes concurrent to an anchor and those in

between two such fixed points are revisited in two separate steps. An overview of this

system is shown in Figure 6.1.

6.1. Initial Alignment

In an initial alignment step Dynamic Time Warping of sequences of Chroma vectors

is used. The choice in favor of Chroma vectors instead of onset based features has

been made due to the Chroma vectors’ robustness to large numbers of inserted notes.

Although onset based features yield more accurate results in an DTW-based alignment,

they fail at certain pieces where up to 39 additional notes are inserted into one single

A System for Accurate Audio-to-Score Alignment at the Note Level 104

Figure 6.1.: Overview of the proposed Audio-to-Score Alignment system (Ws and Hs
indicate the window and the hop sizes in samples chosen for the time-frequency trans-
forms at the respective computations.)

measure. To achieve relatively accurate alignments using Chroma vectors, we have

chosen a relatively high temporal resolution. In our implementation a hop size of 512

samples and a window size of 1024 samples are used.

To keep computational costs low, this alignment is computed using a two-scale ap-

proach. A first alignment path is computed at a coarser temporal resolution, i.e., a

hop size as well as a window size of 4096 samples. The alignment at the finer temporal

resolution is then computed only for possible paths within a search radius of 350 frames

around the initial path estimate. To further speed up the computation, an Itakura par-

allelogram is used, allowing for maximum offsets between the features sequences of 100

frames, i.e., approximately 10 seconds, and an additional maximum tempo difference

between the two sequences of factor 3.

6.2. Anchor Note Selection

Throughout our experiments on various refinement strategies, it became obvious that

some notes can be annotated with a very high accuracy, i.e., onset time devia-

tions of only a small number of milliseconds, while other ones are much harder to

extract and timing errors are therefore larger. This also holds for the onset de-

scriptor based on weighted bandpass filter outputs as described in the last chapter

([Meron and Hirose, 2001] show that repeated notes, for example, are systematically

prone to more significant errors). To avoid such larger timing deviations, we propose

to determine the timing of notes where the onset is unambiguous. Then, in a second

pass, the notes in between and concurrent to those notes are refined while taking this

additional information into account.

A System for Accurate Audio-to-Score Alignment at the Note Level 105

In general, an anchor note has to satisfy two requirements. On the one hand, its onset

time must be extracted with a very high precision, i.e., a timing deviation from its

actual onset of only a small number of milliseconds. On the other hand, the extraction

must be robust in the sense that the set of selected anchors contains only a very small

number of outliers. To achieve these objectives, a refined onset time is obtained for each

note using a method which has been shown to be capable of yielding highly accurate

results. Then, candidates where confusions or ambiguities are likely due to the tonal

context, for example, are dropped, leaving only the most promising candidates.

6.2.1. Candidate Extraction

In [Niedermayer and Widmer, 2010a] as well as [Niedermayer and Widmer, 2010b], the

factorization based Pitch Activation feature (see Section 3.4) is used during the anchor

note selection. To obtain improved onset time estimates, a search window of length l is

centered around the onset time tdtw reported by the DTW algorithm for each note. The

parameter l has been chosen to be 2 seconds, since preliminary evaluation of Dynamic

Time Warping based alignments has shown that only a marginal number of outliers

deviates from the ground truth by more than a second (see Table B.1(a) in Appendix

B for details).

Within this search window, a factorization of the spectrogram is performed, taking the

tonal context of the note under consideration into account. To this end, a dictionary

W local is used, consisting of tone models corresponding to only those pitches which are

expected to be played within the time span l centered around the current note. It has

proven beneficial to use an additional white noise component, in which the energies are

spread uniformly over all frequency bins.

The resulting activation patternsH are smoothed using a median filter and used in order

to extract onset indicators for each time frame. Such indicators, which are common in

the literature and were tested in our system, are:

Activation energy Since activation patterns H are very sparse in nature (even when

sparsity is not enforced), activation energies greater than zero are strong indi-

cators for note positions. An onset is reported either (1) at the time where the

energy becomes greater than zero or (2) at the time where it reaches its maximum.

Energy slopes The first derivative of the activation energy corresponds to energy

changes. Positive slopes, as they occur at note onsets, are filtered by half wave

rectification. The extracted onset time is the one where the energy increases the

most, i.e., at the maximum of the derivative.

A System for Accurate Audio-to-Score Alignment at the Note Level 106

Relative energy slopes Since transients at note onsets are characterized by energy

burst across the whole spectrum, other pitches – especially ones with shared har-

monics – might show low activation energies during such phases as well. Therefore,

the increases in energy of the pitch under consideration in relation to the overall

frame energy is also taken into account. The note onset is then set to the time at

which the maximum of the relative energy derivative is observed.

Experiments have shown that the maxima of the derivatives are good predictors for

note attacks, while the activation energy itself has turned out to be less significant.

Comparing the slope of the absolute energy to the one of the relative energy revealed

a slight advantage of the relative energy derivative which was, therefore, chosen as

onset detection criterion. In contrast to the onset candidate tdtw obtained by the initial

alignment, this new estimate tnmf can deviate from other notes with the same score

time.

To summarize, the new onset time candidate tnmf is obtained as follows:

1. Compute the tonal context of each note, i.e., select the set I of pitches which

are expected to be played within a window of 2 seconds around the note under

consideration including an additional noise component.

2. Calculate the Pitch Activations hi within the search window using only the tone

models wi with i ∈ I.

3. Obtain the onset indicators ∆̂hi by half-wave rectifying the derivatives of the

individual pitches’ activation hi over time.

4. Choose the onset candidate for the pitch j ∈ I under consideration at the time

frame where ∆̂hj/
∑

i∈I ∆̂hi has its maximum.

Considering related work, [Scheirer, 1997] is the one that presents the approach which

is most similar to our proposed system. There, onset detection by selective bandpass

filtering is described in the context of score supported audio transcription. According

to this method, a note is found by summing up the energy in all frequency bands

corresponding to the f0 as well as the harmonics of a pitch. In order to avoid the

influence of other pitches with overlapping harmonics, partials that collide with those

of an other note struck at the same time are neglected. The note onset is then reported

at the time frame where the derivative of this sum has its maximum.

In [Niedermayer, 2009a], a comparison of our system to our own implementation of

Scheirer’s approach is presented. We use the same computational framework as de-

A System for Accurate Audio-to-Score Alignment at the Note Level 107

rpa sbf

25% < x 5.6 ms 10.0 ms
50% < x 14 ms 20 ms
75% < x 32 ms 40 ms
95% < x 137 ms 128 ms

x < 10 ms 40.0% 24.9%
x < 50 ms 85.6% 81.3%

Table 6.1.: Comparison between all anchor candidates for the first movements of the
Mozart sonatas computed based on relative Pitch Activation (rpa) and based on selec-
tive bandpass filtering (sbf) according to [Scheirer, 1997]

scribed above and only exchanged the factorization based Pitch Activation feature in

the refinement step by an onset detector based on selective bandpass filtering. The ac-

cumulated results on the first movements of the Mozart sonatas are shown in Table 6.1.

It demonstrates that bandpass filtering yields results less accurate than those produced

by NMF, and mostly even less accurate than those achieved by the alignment based on

chroma vectors. A possible reason is that the STFT based version of selective bandpass

filtering relies on just a few frequency bins while NMF takes the whole spectrogram

into account.

6.2.2. Candidate Selection

A ratio of notes where the extracted onset deviates from its ground truth timing by less

than 10 ms of 40% is promising (see Table 6.1). However, the problem of separating

those candidates from the ones where the timing estimation is less accurate remains.

Motivated by the assumptions made during the candidate extraction itself, namely that

an onset corresponds to the maximum increase in relative Pitch Activation and that

the real note onset is close to the estimate obtained by the DTW algorithm, two simple

rules can be formulated.

When thinking of repeated notes or of fast passages in which a certain pitch is played

several times within the search window, it becomes obvious that selecting the maximum

increase of relative Pitch Activation is too simple to yield meaningful results. However,

estimating the onsets of repeated notes is a relatively hard problem in itself. Spectral

energy of a sustained note weakens the indicators for the onset of a new note if they

have the same pitch. Under these circumstances, algorithms are likely to get mislead by

onsets of other notes with overlapping harmonics. This fact makes such notes ineligible

to be anchor notes, as a high confidence in the exact estimation of the onset time is

essential. Thus, all notes which are played twice or even more often within the time

A System for Accurate Audio-to-Score Alignment at the Note Level 108

span l of the search window, as determined from the score, are discarded from the

anchor candidates.

Likewise, all notes are dropped from the list of anchor candidates, for which the initial

onset estimate tdtw and the estimate given by the factorization-based feature tnmf differ

by more than a certain time span which could have plausibly been caused by an arpeggio

or a simple asynchrony. This is justified because such a conflict decreases the confidence

in the onset estimation. Moreover, there is no safe way to give either tdtw or tnmf a

preference over the other. On the one hand, tdtw is supposed to be more robust, since

much more context information is incorporated. On the other hand, tnmf is not bound

by the constraints inherent to the DTW algorithm, and therefore able to yield more

accurate results. During the anchor extraction, the semantics of the search radius l is

thus reduced to defining the tonal context of a note rather than being an actual search

window.

In summary, the two times tdtw and tnmf are calculated by the DTW algorithm and

finding the maximum slope within the factorization-based Pitch Activation (see algo-

rithm above). A note is then selected as an anchor if the following two criteria are

met:

1. |tdtw − tnmf | < threshold

2. there are no other notes of the same pitch within tdtw ± l/2

In our specific implementation, the maximum difference |tdtw − tnmf | allowed between

the two onset estimates was set to 20 frames, i.e., a little more than a tenth of a second

at a hop size of 256 samples.

A detailed evaluation of this anchor extraction step is presented in Appendix B. There,

for each piece as well as the entire corpus the timing deviations between detected and

actual note onsets are given for anchor and non-anchor notes. It is shown that while

92% of all anchor notes are reported within a 50 ms range around the correct onset and

65% of all anchors are accurate at a 10 ms tolerance (see Table B.1(b)), these values

are only 66% and 23% respectively for the non-anchor notes (see Table B.1(c)). It

is remarkable that the accuracy of anchor notes is approximately the same for each

movement, while the DTW-based initial alignment is significantly less accurate for the

second movements in comparison to the others (see Table B.2 – Table B.4). Taking

into account that 32,552 notes, i.e., approximately 32% of all notes, were selected as

anchors, this step would be a major improvement of alignment accuracy on its own.

A System for Accurate Audio-to-Score Alignment at the Note Level 109

6.3. Between-Anchor Refinement

After extracting the anchor notes, the remaining notes have to be revised. For each of

them (with the exception of notes played before the first or after the last anchor notes)

the span of time during which it can be played is clearly constrained by the preceding

and the successive anchor.

6.3.1. Beta distribution

In addition to a new search window, bounded by the nearest anchors, rhythmic infor-

mation in the score can be exploited to make even more detailed predictions on where

to look for an onset. Therefore, the numbers or fractions of beats between the anchor

notes and the note n under consideration are extracted and their relation is transferred

onto the timescale of the audio recording. We assume that the anchor note n0 (detected

at performance time t0) is the anchor directly preceding the note n and the anchor note

n1 (detected at performance time t1) is its directly successive anchor. Then the onset

of n is expected to occur at tn = t0 + c(t1 − t0). The relative offset c can be inferred

from the score. If, for example, a note is supposed to be played exactly one beat after

an anchor note and the next anchor note follows at the interval of another exact beat,

then the offset c = 1
2 . If, in another example, a note is notated one beat after an

anchor but the next anchor follows after only half a beat, then the offset c = 2
3 . In the

same manner, the values c = 1
3 and c = 2

4 are obtained for the two examples shown in

Figure 6.2.

To account for inexactnesses of the anchor extraction and expressive tempo changes, the

”expectation strength”of the onset occurring at time t is modeled by a beta distribution1.

The beta distribution is defined continuously on the interval [0, 1] and has values of

zero outside this range. Depending on the values of its parameters α and β, the density

function can take several forms, for example, that of a uniform distribution, it can be

strictly increasing or decreasing, U-shaped, or – as in our case – it is unimodal (α > 1

and β > 1). Its density function is defined as

f(x)α,β =
1

B(α, β)
xα−1(1− x)β−1 (6.1)

1The beta distribution was chosen for pragmatic reasons (the flexibility of its shape and its restriction
to a fixed interval) rather than for precise probability-theoretic reasons.

A System for Accurate Audio-to-Score Alignment at the Note Level 110

where B is the beta function

B(α, β) = 2

π/2∫
0

cos2α−1 θ sin2β−1 θ dθ (6.2)

Mode x̂ and variance σ2 of the distribution are therefore given by

x̂ =
α− 1

α+ β − 2
(6.3)

σ2 =
αβ

(α+ β)2(α+ β + 1)
(6.4)

In this application, the parameters α and β are set by fixing a mode x̂ and a variance

σ2. The former is assumed to be at the onset time we expect according to score and

anchor notes. The linear projection of this time to the domain of the beta function

(i.e., [0, 1]) is exactly the offset factor c as introduced above.

The variance is chosen such that it allows for expressive variations and inexactnesses

of the anchor extraction, but prevents notes from being placed at rhythmically unrea-

sonable timings. Experiments have shown that the value σ2 = min(c, 1 − c)/γ with a

”sharpness” factor γ = 20 results in plausible expectation strengths.

Given the values of x̂ = c and σ2 = min(c, 1 − c)/γ, the parameters α and β can

be computed from Equation 6.3 and Equation 6.4 using mathematical software. The

resulting equations, however, are not given here due to the large number of terms they

contain.

Two such expectation functions are depicted in Figure 6.2. The upper plot shows the

onset likelihood for the onset time of the third note, assuming that the first and the

fifth note are anchors. The time span between the anchor comprises three beats. Since

the note should be played after the first out of these three beat-to-beat intervals, the

function is clearly skewed. This is desirable because a musician’s freedom of expressive

timing is greater when the score calls for longer inter-onset intervals. The second

function is the likelihood of the fourth note’s onset time given notes number one and

six as anchors. The function is now symmetric, since the onset time given by the score

is exactly half the time span (two out of four beat-to-beat intervals).

A System for Accurate Audio-to-Score Alignment at the Note Level 111

Figure 6.2.: Onset expectation strength for the 3rd and 4th note.

In order to transfer these expectation strength functions from the score into the audio

domain, another linear projection is applied. Here, a value x ∈ [0, 1] is projected to a

performance time of tx = t0 + x(t1 − t0).

6.3.2. Onset estimation

To extract revised onset estimates for non-anchor notes, a standard onset detection

algorithm is chosen. The onset indicator used, is extracted from the constant Q spec-

trogram over the time span in which the onset expectation strength, as described above,

is greater than zero. The parameters of the constant Q spectrogram are chosen, such

that each energy bin corresponds to a specific pitch. The hop size is set to 256 frames,

resulting in a very high overlap ratio at the lower bins. The actual feature extracted

from this representation is the energy increase, i.e., the half-wave rectified energy deriva-

tive, within the bin k corresponding to the fundamental frequency of the pitch under

consideration, i.e.,

odfk(t) = max(0, X̂k(t)− X̂k(t− 1)) (6.5)

where X̂k(t) is the spectral magnitude of the kth bin at time t.

A System for Accurate Audio-to-Score Alignment at the Note Level 112

Figure 6.3.: Calculation of the onset indicator function: Compute the half-wave rectified
derivative of the bin energy magnitudes (top), place a beta window between the two
anchors (middle), and obtain the onset estimate (green marker) as the maximum of
the product of these two functions. The red markers in the middle plot indicate the
positions of the two anchors.

The spectral information is combined with the expectation strength betax̂,σ2(t) by piece-

wise multiplication. The note onset is then reported at the time frame where this

function has its maximum.

tonset = argmax
t

odfk(t) betax̂,σ2(t) (6.6)

In doing so, the extraction of note onsets in ”difficult” scenarios benefits from additional

knowledge obtained from the score as well as the anchor positions. In Figure 6.3 an

example for this computation is shown, where the offset c between two anchors at the

frames 10 and 55 of this excerpt equals 1/3.

The sole consideration of the fundamental frequency of a note through this refinement

step might seem to neglect valuable spectral information. However, the whole spectral

information has already been exploited in the anchor extraction where the respective

onset candidate was not considered reliable. This can have two reasons – the respective

pitch is expected to be played twice within the analysis window according to the score,

or the candidate’s timing differs from the tentative onset time, obtained by the DTW

algorithm, by more than a threshold. Independent from the actual cause of this un-

certainty, relying on a simple, nevertheless purposeful feature is a reasonable decision.

In piano music, the fundamental frequency is, in general, the most significant peak

within the spectrum of a tone. The effect of a missing fundamental or a fundamental

frequency which is at least damped, as common for instruments where, for example,

the corpus suppresses oscillations at very low frequencies, is very unlikely. On the other

A System for Accurate Audio-to-Score Alignment at the Note Level 113

hand, given the narrow context the search is focused on, a single partial is less prone

to overlapping, and therefore less ambiguous, than a complete series of harmonics.

6.4. Refinement of Notes concurrent to Anchors

A special case are notes which are, according to the score, played concurrently to an

anchor. In such a scenario, instead of exploiting an expectation about the timing of

a note yielded from interpolation between the two adjacent anchor notes, the onset

time of the concurrent anchor can be used as a more reliable cue. Considering two

points in time, i.e., events where a match between score and audio representation is

known, the alignment between those fixed points is not linearly scaled but subject

to changes in local tempo and also intra-chord micro-timings. When, in contrast, a

score note concurrent to the one under consideration is already matched to the audio

recording, the uncertainty about tempo changes can be avoided. Small differences in

the timings of individual chord notes, however, remain an issue, as well as inaccuracies

in the alignment of the anchor note.

Independent of intra-chord micro-timings, it is reasonable to assume that the temporal

order of notes is not changed such that an event notated before another one in the score

occurs after this second event in the performance. Based upon this assumption, the

refined onset times of the adjacent notes can be exploited to limit the search for notes

known to be played in between. Combining this information with the onset time of the

concurrent anchor, an expectation strength function for the onset of the note under

consideration is computed. It is defined as a Gaussian window centered around the

anchor note with a width equal to the smaller of the two inter-onset intervals between

the anchor and its adjacent notes.

Given the onset detection function odfk(t) for the pitch with its fundamental frequency

in the kth bin as described above, the onset is detected at time

tonset = argmax
t

odfk(t)G(t; ta,max(ta − t0, t1 − ta)2/γ2) (6.7)

where ta is the refined onset of the concurrent anchor note. t0 and t1 are the refined

onset times of the two adjacent notes. γ influences the variance and, therefore, the

”sharpness” of the function’s peak. In preliminary experiments a value of γ = 20.0

was shown to yield good results. An example is given in Figure 6.4, where the anchor

concurrent to the note under consideration is detected at time frame 35 of this excerpt

A System for Accurate Audio-to-Score Alignment at the Note Level 114

Figure 6.4.: Calculation of the onset indicator function: Compute the half-wave recti-
fied derivative of the bin energy magnitudes (top), center a Gaussian window around
the concurrent anchor (middle), and obtain the onset estimate (green marker) as the
maximum of the product of these two functions. The red markers in the middle plot
indicate the range of the Gaussian window.

and causes the onset to be reported at the smaller peak which also is at frame 35 in

favor of the higher peaks at the frames 26 and 44 respectively.

An evaluation of these last two refinement steps can also be seen in Appendix B. The

number of non-anchor notes aligned within a 10 ms tolerance range around the actual

onsets was increased by a factor of 2 from 23% to 47%. Allowing a time displacement

of 50 ms, the amount of correctly aligned notes also increased significantly from 66% to

82% (see Table B.1(c) and Table B.1(d)).

6.5. Evaluation Results

The results of a detailed evaluation as described in Chapter 2 are shown in Appendix B.

There, the average, minimum, and maximum of the temporal displacements and their

absolute values are given as well as the quartiles, the 5th and 95th percentiles and the

number of notes which are accurate when allowing for a 50 ms and a 10 ms tolerance

range, respectively. These measures are not only given for the final evaluation result

on each individual piece but also for the intermediary results of the initial DTW-based

alignment, the selected anchor notes and the non-anchor notes before as well as after

their refinement.

Table 6.2 shows the final result over the entire evaluation corpus. Due to our refinement

methods, more than half of the notes are aligned with a temporal deviation of less than

A System for Accurate Audio-to-Score Alignment at the Note Level 115

10 ms, i.e., an error small enough that it is reasonable to assume that a human annotator

would accept the respective note onsets as correct.

avg-error 1.5 (50.5)

std-dev 169.9 (162.2)

min-error -3460.5 (0.0)

max-error 3776.3 (3776.3)

p-5 p-25 p-50 p-75 p-95

-108.1 -8.8 -0.9 10.5 84.4
(0.8) (4.1) (9.3) (24.1) (232.4)

error<50ms 85.15%
error<10ms 52.41%

Table 6.2.: Alignment result of the proposed system on the entire evaluation corpus
where errors are measure in milliseconds. The parenthesized numbers are calculated
from absolute timing errors, and the values in the 6th and the 7th row represent the
5th , 25th , 50th , 75th , and 95th percentiles.

Considering the 95th percentile of absolute errors of 232 ms, the number of outliers is

small. Only 0.68% of all notes are aligned with a timing deviation of more than one

second. Most of these errors occur at the endings of a piece or the endings of a major

phrase followed by a pause. These scenarios are characterized by ritardandi and high

degrees of polyphony. This combination makes an accurate alignment exceptionally

difficult. Due to the reduced tempo there are fewer cues in terms of note onsets the

system can use, and a high degree of polyphony results in increased ambiguity when

relating partials to notes.

6.6. Conclusion

We have presented a system which is able to align more than 50% of all notes within

our evaluation corpus with a temporal deviation from the actual onset time of less

than 10 milliseconds. According to [Friberg and Sundberg, 1992] this is about the just-

noticeable error humans are able to recognize within series for pulses played at a fixed

inter-onset interval. We, therefore, assume alignments of notes with an onset time

deviation below this threshold as ”good enough”.

A question suggesting itself is, if a system yielding such a result is useful. On the

one hand, one might argue that, especially in the domain of performance analysis, the

described errors are too severe. Phenomena, such as intra-chord micro-timings or the

A System for Accurate Audio-to-Score Alignment at the Note Level 116

timing of ornamentation notes, where note timings deviate at the magnitude order of

a few milliseconds require a level of accuracy which is beyond the capability of our

system. Also, when playing back a synthesized version of the alignment result, error

become evident frequently. Finally, we have to expect that the system performs worse

on more complex signals compared to the Mozart sonatas, such as recordings of pieces

with higher degrees of polyphony or increased pedal usage.

On the other hand, except from short segments of up to about 4 seconds where the

alignment system fails locally, the extracted note onsets are within a range around the

actual onset which is small enough to allow for an unambiguous correlation and a fast

correction. This is consonant with our objective of minimizing the effort of annotating

musical performances. In the next section a tool will be described which allows for the

inspection and manual correction of automatically computed alignments. Also, for a

number of applications where not the exact timing for each note is required (such as

certain visualizations) the annotation effort can be further decreased.

In summary, we consider our results promising, taking into account that in the presence

of playing errors or intended deviations of the performance from the score not even

symbolic alignment is an easy task.

Applications 117

7. Applications

7.1. Graphical Annotation Tool

The system for audio alignment, as proposed in this thesis, aims at a high accuracy

in terms of time displacement of the note onsets. Although results are promising, the

requirements of some applications in the context of computational musicology cannot

be met. A consistent temporal accuracy at a few-millisecond level is a prerequisite for,

e.g., an in depth analysis of expressive timing. With regard to the fact that current

state-of-the-art alignment systems do generally not yield such precise results, one of

the objectives while developing our system was to minimize manual post-processing

efforts. This is reflected in the evaluation metrics, where tolerance ranges for time

displacements and percentiles were preferred over average timing errors.

Figure 7.1.: Screen-shot of the annotation tool showing (1) the spectrogram of a loaded
audio file, (2) meta information about the audio file format, parameters of the applied
STFT, and individual notes, (3) a model-based decomposition of the spectrogram at
the current cursor position, (4) player controls, and (5) a navigation panel indicating
the current position within the entire audio recording.

Applications 118

Figure 7.1 shows a screen-shot of the user interface of the annotation tool which was

built for the inspection and correction of audio-to-score alignments. As soon as an

audio file is loaded, the user can acquaint herself with the piece by playing it back (4)

or browsing through the spectrogram (1,5). While doing so, the factorization panel

(3) shows a dictionary-based decomposition of the audio frame at the cursor position.

Red bars indicate the activation strength of individual pitches at the given time. In

Figure 7.1, one can see the beginning of a performance of Mozart’s piano sonata k.279

with a cursor position between the individual note onsets of the d-minor chord at the

first beat of the second measure. The notes already sounding – the A4 (pitch number 69)

and the D5 (pitch number 74) – are correctly detected and indicated in the factorization

panel.

After loading a score in MIDI format, it can be automatically aligned to the audio

recording by either a fast or a more accurate algorithm. The first one computes Chroma

features from the audio as well as from the score representation and performs Dynamic

Time Warping at a relatively low temporal resolution. The more accurate method is

based upon this initial alignment, but, in contrast, also includes the multi-pass refine-

ment mechanisms as proposed in Chapter 6. Alternatively the user can also load an

arbitrary alignment computed during an earlier session or by another software.

The main working area throughout the inspection or correction process is the panel

showing the spectrogram of a loaded audio file overlaid with the aligned notes. By

moving the cursor over a note, its parameters are shown in the meta-data area, the

activation energy of the respective pitch over time is plotted overlaying the spectrogram,

and a ruler indicates the frequencies of the ideal harmonics (see Figure 7.2). Using this

information, the user can correct the alignment by moving, stretching, or compressing

note objects in time by simple dragging the boundaries of the respective graphical note

objects. For the verification of an annotation the audio recording can be played back

in conjunction with an automatically overlaid click-track indicating the current note

onset positions. The result of this post-processing step can be stored to an arbitrary

file.

Using this tool we hope to be able to considerably speed up the annotation process

of audio recordings at a note level. However, even in the scenario where most notes

are aligned with sufficient accuracy, the verification of the exact note onset timings is

still a laborious task. As a compromise between the amount of data acquired and the

effort required to do so, meta events can be inserted into the MIDI file directly after

a Note-On event. Such meta events having the same time stamp as a note will not be

separated from this note during the alignment process. Thus, one can label note events

of interest and export the corrected timings of the corresponding labels only. This is a

Applications 119

Figure 7.2.: Screen-shot of the annotator tool, showing an aligned score and the activa-
tion energy of the highlighted note over time (red function) as well as its ideal harmonic
frequencies (blue ruler)

useful feature when one is, for example, interested in the voice carrying the melody or

in an annotation at a bar or beat level.

7.2. Musical Performance Research

Assuming an accurate annotation of a performance of a piece, one is able to conduct an

in-depth analysis of the expressive variations an artist makes during the performance.

While, at the current state-of-the-art of music signal processing and content based

music information retrieval, nuances at a level of intra-chord dynamic variations or

articulation cannot be distinguished automatically, the extraction of tempo curves at a

beat level can be achieved – at least for the Mozart sonatas – with an affordable amount

of manual inspection and correction. On the other hand, visualization approaches are

important applications of the methods described throughout this thesis. There, a note

onset accuracy down to a few milliseconds is often lost due to data reduction, smoothing,

or summarization. This further reduces the need for manual corrections.

Applications 120

7.2.1. Performance Visualization

Tempo Curves

From the alignment of two audio recordings of performances of a specific piece of music

one can only infer the tempo relation for each segment of the piece. However, without

additional knowledge about the score of the piece or, to be more specific, the inter-

onset interval of any two notes in terms of score time, i.e., beats, a measurement

of absolute tempo cannot be made. In the context of Audio-to-Score Alignment, a

symbolic representation of the score is inherently available. Nevertheless, this does not

guarantee that the above requirement is met.

The issue of richness and quality of the score representation used for an Audio-to-

Score Alignment has not been discussed yet. Although the algorithm benefits from

a score representation comprising the (relative) duration between two events, for an

alignment using Dynamic Time Warping it is, in principle, sufficient that the correct

temporal order of note events is known. Other methods, such as Hidden Markov model

based approaches, explicitly exploit knowledge about the expected temporal interval

between two events. Another example of a system which requires the score to contain

information at this level of detail is the multi-pass refinement process proposed here.

Nevertheless, none of these algorithms use concepts such as note values and beats or

time signatures and bars.

However, for the measurement of the absolute tempo in units of beats-per-minute

(BPM), those concepts are crucial and a closer inspection of the used score repre-

sentation is required. The MIDI file format specifies time and note values in terms of

ticks, i.e., events from a virtual timer, and a beat subdivision rate, i.e., the number of

such ticks per beat. The tempo of a playback of this file is then determined by the

period of the timer, which can be set and changed using MIDI meta events.

While this information seems sufficient to extract the required information, problems

arise when the MIDI file also encodes tempo changes during a piece. This can be due

to performance cues provided by the composer of a piece or global tempo indicators

which are often given at beginnings of main segments, such as whole movements. While

a good practice is to encode those changes by meta events and changing the period of

the timer, in a large number of MIDI files one can find a global tempo and arbitrarily

modified event timings. In such cases, it is not possible to infer beat information from

the MIDI ticks. In the Mozart corpus, however, we do not only have this information

but also the detailed alignment to a score including further annotations.

Applications 121

Figure 7.3.: Comparison between actual performed (red) and automatically extracted
(black) tempo

To estimate the tempo, those notes are chords are considered which are played exactly

on a beat. For beats where no note is played, a beat time is approximated by interpo-

lation. The tempo is calculated as 60/IBI, where IBI is the inter-beat interval. For

beats on which only one note is played, this is simply the time difference. If a chord

is played on one of the beats and a single note on the other, the chord note with the

pitch best matching the pitch of the single note is selected for the IBI-calculation.

This is due to the assumption that those two notes belong to the same voice and that

a better tempo estimate can be obtained by observing one voice only. If chords are

played on both beats which are compared, each note of the chord with the lesser degree

of polyphony is matched to a note of the other chord. The final inter-beat interval

is obtained by taking the average over individual values the corresponding to such

pairs of notes. The remaining unmatched notes of the chord with the higher degree of

polyphony do not contribute to the tempo estimation.

Figure 7.3 shows the tempo curve automatically extracted from the Audio-to-Score

Alignment of the piece k.279-1 in comparison to the actual tempo computed from the

ground truth data, both smoothed over a window of 7 beats. One can recognize two

passages with significant errors – one around the 25th beat where the detected tempo

decreases down to 25BPM and one around the 430th beat where the actual tempo is

overestimated. The alignment errors responsible for these misestimations of the tempo

can be easily detected in Figure B.1. For the rest of the piece the errors are less severe

and meaningful tempo estimates are obtained for long segments.

Applications 122

Tempograms and Dynagrams

While the tempo curve is an adequate means to analyze a single performance, it is

not very intuitive when comparing two or more performances. [Langner et al., 2000]

describe Dynagrams as a visualization of dynamic trends over increasingly long periods

of time. There, the performance time and the period of time over which a trend

is observed are displayed along the axes of a two-dimensional space. Crescendi are

visualized by a corresponding saturation of green, while decrescendi are assigned the

color red. If dynamic changes cannot be observed at all or only to an insignificant

extent, the saturation of green or red is reduced to zero, resulting in white areas. If,

at a certain playing time, a dynamic change is not only a local phenomenon, but part

of a more general trend throughout the performance of a piece, arch-shaped structures

can be observed in the dynagram as the span of time under consideration increases.

The computation of the dynamic change over a certain period of time is based on the

loudness curve of the performance. Such curves can easily be calculated form the audio

signal using arbitrary models of perceived loudness. To allow for analysis at different

levels, smoothing is applied using mean-filters at respective length. The gradient of the

filtered curves are then visualized using the color map as described above.

The resulting visualization provides an overview of the performance in terms of dynamic

phrasing at various levels. On the one hand, the intensity of such expressive variations

can be directly seen from the colors’ saturation. On the other hand, differences between

two interpretations concerning the organization of a piece into phrases at different levels

become obvious from the arch shaped structures emerging in the dynagram.

Assuming that a tempo curve can be obtained from arbitrary performances of a piece,

the idea of the dynagram visualization can be transferred to the tempo concepts ac-

celerando and ritardando. As described above, this can be achieved by Audio-to-Score

Alignment, given that the note timings in terms of beats can be deduced from the

score representation. Alignment errors, i.e., timing deviations, can be tolerated up to a

certain extent, bearing in mind that for the visualization of general trends, the tempo

is smoothed over a span of time of several seconds. Therefore, for the generation of

tempograms (analogous to the name dynagram), only those outliers with a significant

temporal deviation from the actual onset need to be corrected manually. As shown in

Figure 7.3, there are mainly two significantly erroneous regions in the alignment of the

piece k.279-1 – one around the 25th and the other around the 430th beat. The automat-

ically extracted tempogram as shown in the upper half of Figure 7.4(a) shows incorrect

trends at these passages, whereas the other trends can be recognized correctly compared

to the tempogram computed from the ground truth data as shown in Figure 7.4(b).

Applications 123

(a) Combined Tempogram (upper half) and Dynagram (lower half)

(b) Tempogram computed from ground truth data

Figure 7.4.: Combined Tempo- and Dynagram representation as extracted automati-
cally (a) and the Tempogram computed from the ground truth data (b)

Another visualization which combines tempo and loudness curves would be the per-

formance worm (see [Dixon et al., 2002] or [Langner and Goebl, 2003], for example).

There, during the playback of a performance, the current points in the tempo-loudness

space are connected over time. Having the older values fade out, results in a ’worm’

which moves according to the two performance parameters. Since tempo and loud-

ness of a performance can change abruptly, extensive smoothing is needed to generate

intuitive worm movements. This favors the usage of data obtained by automatic align-

ment of the performance to its respective score, since errors, as for the tempogram

visualization, can be tolerated up to a certain extent.

7.2.2. Expressive Performance Rendering

Visualizations are an adequate method to explore a data corpus and to perform a qual-

itative evaluation of expressive variations. A more sophisticated issue is the automatic

extraction of measurable performance characteristics in terms of generalizable rules.

One approach to study musical performance as a creative process is to build systems

which are able to automatically render an expressive performance of a piece.

To encourage work in this field, an initiative named Rencon1 (Musical Performance Ren-

dering Contest for Computer Systems) was founded that organizes a series of workshops

and competitions between performance rendering systems. There, computer systems

1http://http://renconmusic.org/

http://http://renconmusic.org/

Applications 124

are required to read in the score of a yet unseen piece of piano music and produce an

expressive performance of that piece in MIDI format. The participants themselves are

given one hour of processing time, in which they are only allowed to ensure that the

score was parsed correctly and to add their own annotations to the score. They are

not permitted to listen to the result or to do any post-processing, especially not at the

level of output MIDI notes. One exception from this strict policy is the opportunity

to look at the key movements while the silenced piano is playing back the resulting

performance. This is necessary to give participants the chance to correct minor errors

in cases where the automatic system has failed for some reason.

The system which won all prizes in the latest two RENCON contests2 is called

YQX and relies on a Bayesian performance model (see [Widmer et al., 2009] and

[Flossmann et al., 2011]) to alter certain performance parameters locally, i.e., on top of

a general trend which is determined by specifications provided within the score. The

basic idea is to use statistical machine learning methods to establish certain relations

between features which can easily be obtained from the score and the most influential

performance parameters. After breaking this approach down to the note level, the task

is to observe the score context of each note and determine three target variables yi –

the (1) timing, in terms of a ratio of the inter-onset interval as given in the score in

comparison to the respective time interval in the performance; (2) dynamics, i.e., the

relative loudness of each individual note; and (3) articulation, measured as the relation

between how long a note is sustained and the corresponding prescription by the score.

The features computed from the score are separated into two groups. On the one hand,

there is a set Q of discrete features, such as the pitch interval to the following note or

an abstract description of the rhythmic context, measuring the durations of the note

under consideration and the two adjacent ones in terms of long and short. On the

other hand, properties, such as the duration ratio of a respective note compared to its

successor or the musical closure as obtained by implication-realization analysis, form a

set X of continuous score features.

The Bayes net, as outlined in Figure 7.5, models the target variables as dependent on

the combination of those discrete and continuous features p(yi|Q,X), where the ev-

idence Q and X have marginal likelihoods P (qj) determined from probability tables

and p(xj) following Gaussian distributions. The model is trained starting with learn-

ing distributions p(yi|X). Then, the dependency on the set of discrete variables Q is

estimated for each possible combination of values separately.

2held as workshops in the context of the International Conference on Music Perception and Cognition
(ICMPC) 2008 in Sapporo, Japan, and the Sound and Music Computing Conference (SMC) 2011
in Padova, Italy

Applications 125

Figure 7.5.: Overview of the structure of the Bayesian model used in the YQX system
[Widmer et al., 2009]

As explained in [Widmer et al., 2009], this learning procedure requires an extensive

amount of training data. In the example of YQX two data corpora have been available,

which were sufficiently large to yield meaningful predictions. One corpus – the Mozart

sonatas – is the same as used for the evaluation of algorithms performed within the

scope of this thesis. The second one consists of 39 selected pieces by Chopin (comprising

about 24,000 melody notes) performed by Nikita Magaloff on a computer-monitored

grand piano, where the authors have semi-automatically linked each performed note to

its respective appearance within the score (cf. [Flossmann et al., 2010]). Here, Audio-

to-Score Alignment can be a means of making performances by other pianists avail-

able for model training. The automatic performance rendering system would not only

be able to imitate performances of works by other composers and their era-specific

characteristics, but also to compare different pianists by means of the respective gen-

eralized models. Insights into the phenomenon of expression arising from this field

of research (see [Flossmann and Widmer, 2011] or [Grachten and Widmer, 2011], for

example) could then be based upon a broader data base.

7.3. Audio-to-Audio Alignment and Structural Analysis

While Hidden Markov model based alignment approaches, as described in Chapter 4,

are inherently based upon a symbolic score representation, others, such as Dynamic

Time Warping based systems, do not require high-level descriptors. Particularly, ren-

dering the score representation using a software synthesizer was introduced as a method

to obtain the same audio features (Chroma vectors, for example) from the score as from

the recording of a performance. Doing so reduces the problem of Audio-to-Score Align-

Applications 126

ment to Audio-to-Audio Alignment, where both instances of a piece of music are given

in a uniform representation.

However, in addition to aligning a musical recording to a corresponding score, Audio-

to-Audio Alignment can be applied to a number of dedicated tasks. These do not

only include Audio Retrieval tasks such as (Cover) Version Detection, but also Song

Structure Analysis. There, instead of comparing two feature sequences, individual

frames of one musical representation are compared to each other. In the following, we

describe a system for the automatic detection of repeated sections within a song that

was developed to demonstrate the use of alignment techniques for structural analysis.

Figure 7.6 shows a music player that we have implemented integrating a song structure

analysis layer, allowing the user to navigate directly to a certain repeated section. To

this end, the user is provided with a graphical representation of such repeated passages.

The horizontal axis of the navigation panel (on the lower right) represents the playing

time in terms of frames, whereas the rows correspond to certain musical themes which

are played during the highlighted segments.

The algorithm used to derive this information is strongly based upon the method pro-

posed by [Goto, 2006] with some minor simplifications. In analogy to a large num-

ber of Audio-to-Score Alignment systems, a (dis-)similarity matrix is computed using

Chroma vectors and the (inverse) Euclidean distance as described in Section 3.2 and

Section 4.1.1. However, instead of considering two different feature sequences, the audio

recording is compared to itself.

The detection of repeated sections can then be reduced to finding line segments within

the similarity matrix along which high values can be observed. In addition, these line

segments have to be parallel to the main diagonal. This constrains repeated sections

to be played at the same tempo. According to [Goto, 2006], such sections are found

efficiently by first dropping the redundant values within the similarity matrix, reducing

it to a triangular matrix. After doing so, it is converted, such that the vertical axis no

longer represents the playing time, but the time lag between two audio frames. The

value of a point (t0, t1) is written to (t0, t0− t1). This transformation into the time-lag

space has the advantage that repeated sections, where corresponding frames share a

uniform time-lag, are represented as horizontal lines. This self-similarity matrix is also

visualized in the graphical user interface of the music player shown in Figure 7.6.

After applying a local threshold, suppressing noise and emphasizing line segments with

high similarity, the average over each row of the remaining matrix is computed. A peak

in the average similarity function over all rows, i.e., time lags, indicates a probable lag

between two repetitions of a same theme. However, before examining the corresponding

Applications 127

Figure 7.6.: Screen-shot of a music player with integrated piece structure analysis

matrix rows is detail, a peak picking step is performed. High peaks are separated from

low peaks by maximizing the discriminant criterion measure, defined as

σ2 = w1w2(µ1 − µ2)2 (7.1)

where w1 and w2 are the relative class occurrences and µ1 and µ2 represent the means

of similarity values in each class.

Within the remaining peaks, i.e., matrix rows corresponding to self-similarity values at a

certain time lag, the actual repetitions are then located by smoothing and thresholding.

In addition to these search and filtering steps, segments with a length shorter than a

reasonable minimum value (typically a few seconds) are also discarded. In a final post-

processing step, numerous repetitions of a single segment are summarized into one

set.

Applications 128

In a qualitative evaluation of this simple algorithm we found that although a con-

siderable number of repeated sections was correctly detected, most of the time at

least one of a specific theme’s repetitions was missed. Nevertheless, we were able

to show that using the techniques described within this thesis (especially Section 3.2

and Section 4.1.1) a basic structural analysis can be performed. Other approaches in

this direction, which also partly rely on techniques discussed here, can be found in ,

[Dannenberg and Hu, 2002], [Lu et al., 2004], [Ong et al., 2006], [Peeters et al., 2002],

or [Shiu et al., 2006] for example.

7.4. Version Detection

Version Detection is the task to identify different performances or different interpre-

tations of one piece of music within an arbitrary set of audio recordings. Its main

application is the identification of cover versions or plagiarisms. However, it can also

be used to recognize the piece a performer plays by relating it to synthesized versions

of (the scores of) potential candidate pieces. In such a scenario, most state-of-the-art

systems perform some variant of audio alignment as described in Chapter 3 and Chap-

ter 4 of this thesis. The reason is that an alignment between possibly matching sections

within two recordings is a prerequisite for the computation of their similarity.

A detailed overview of current version detection systems is given in [Serrà et al., 2010].

Also, an annual comparison of different algorithms is carried out as part of the

MIREX3 contest. The evaluation is performed on two test sets, one comprising pieces

of popular music, the other one consisting of performances of Chopin’s mazurkas

by different pianists. Best results were obtained in 2009 by [Serrà et al., 2009]

and [Ravuri and Ellis, 2010]. Both approaches are based on Chroma descriptors.

[Serrà et al., 2009] used cross recurrence plots based on a state space representation

of two songs to rank songs according to their similarity. [Ravuri and Ellis, 2010] calcu-

lated three different similarity features – two based on cross-correlation and one based

on Dynamic Programming – in combination with three different tempo assumptions

and trained a Support Vector Machine on this data.

As part of the work presented in this thesis, the described alignment tools were

adapted to perform Audio-to-Audio Alignment in a concrete use-case. In coopera-

tion with the Department of Musicology4 at the University of Vienna5, the feasibility

of version detection for pieces performed by historical musical automata (e.g., musi-

3MIREX: Music Information Retrieval Evaluation eXchange (organized by the IMIRSEL at the Uni-
versity of Illinois at Urbana-Champaign) http://www.music-ir.org/mirex

4http://musikwissenschaft.univie.ac.at/home/ (in German)
5http://www.univie.ac.at/en/

http://www.music-ir.org/mirex
http://musikwissenschaft.univie.ac.at/home/
http://www.univie.ac.at/en/

Applications 129

cal boxes, ‘flute clocks’, violin playing automata, barrel organs,. . .) was studied (see

[Niedermayer et al., 2011b]).

The need for such an application arose from the effort to catalog a large collection

of recordings of a variety of such automata which was compiled by the Phonogram

Archive of the Austrian Academy of Sciences 6 over the past 30 years7. The thousands

of collected recordings represent a large repertoire of music which was popular during

the 18th and 19th century. The respective genres range from opera arias to folk songs.

Musical automate were a common means of playing back music before the invention of

the phonograph. The collection at hand is thus a valuable data corpus for the study of

musical trends, such as common tastes or popular repertoire, during those periods of

the pre-phonograph era.

One major difficulty with the collection of audio recordings is that, in contrast to the

instruments themselves, the performed pieces are documented insufficiently and are

often unknown. Nevertheless, it can be assumed that there exist multiple versions and

various performances of individual pieces. Therefore, the use-case for an automatic

version detection is to cluster the recordings such that different interpretations of one

piece are grouped together. After the identification of associated audio recordings, they

can be described by a unified set of meta-data.

In the following, a pilot study is presented that starts with a small collection of record-

ings of musical boxes and flute clocks, and with 3 pairs of recordings which are known

to pertain to the same composition. Relying on Chroma features and Dynamic Time

Warping, by using the Off-Diagonal plausibility measure (see Section 5.2.3) a reference

system based on the relative path cost is outperformed.

7.4.1. Acoustic Characteristics of Musical Automata

Musical automata come in wide varieties. Computer controlled pianos and similar

modern instruments aside, there are musical boxes, flute clocks, violin playing automata

of various kinds, barrel organs, etc. – each of them having individual characteristics.

While flute clocks, for example, are largely consistent with the spectral envelopes one

would expect from wind instruments – i.e., harmonics at the odd integer multiples of

the fundamental frequency – musical boxes, where metal plates are struck, are highly

inharmonic.

6http://www.phonogrammarchiv.at
7A report on the background of this project can be found at

http://www.phonogrammarchiv.at/Mechanical Music/mechreal.html.

http://www.phonogrammarchiv.at
http://www.phonogrammarchiv.at/Mechanical_ Music/mechreal.html

Applications 130

(a) (b)

Figure 7.7.: The ending of the same theme from Mendelssohn’s oratorio Elias played
by two different musical boxes.

The second issue are different arrangements of a same theme for different automata.

Besides transpositions into different keys, additional ornamentations or arpeggiations

can alter the sound impression of a piece significantly. Figure 7.4.1 shows spectrograms

of the ending of a theme from Mendelssohn’s oratorio Elias as played by two different

musical boxes. While in (a) only the main melody notes are played, (b) features luscious

ornamentations that make it hard even for human listeners to hear the relation to the

main theme.

A third challenge for a version detection system are major changes in the structure

of the piece. As described in more detail in the discussion of the evaluation results

(see Table 7.1), when two recordings relate to the same piece, this does not necessarily

mean that they both comprise the same musical sections. In the data at hand there

are samples where one musical box plays only the second half of what another one is

playing. Moreover, some recordings are potpourris of several themes, such as popular

melodies from an opera. When this is the case, corresponding pairs of recordings will

only match in part.

7.4.2. Version Detection System

We propose a system working in two steps. First, features are extracted from the

audio signals of the individual recordings. Then, a similarity measure is obtained,

such that pairs of audio files can be ranked accordingly. To account for transpositions

and major structural changes, each piece is split into several chunks of a fixed length

Applications 131

Figure 7.8.: Calculation of the similarity measure

which are then aligned to each other considering all possible transpositions. The final

similarity measure is obtained by accumulating the fitness ratings of these alignments.

An overview of the whole process is given in Figure 7.8.

7.4.3. Feature Extraction

Since Version Detection generally includes an Audio-to-Audio Alignment step, the fea-

tures described in Chapter 3 can be applied in this context as well. However, in this

scenario, transcription- or onset detection-based features are less preferable. Their

computation involves fragile decision processes, which is not justified since two audio

recordings are compared and high temporal accuracy is not a main issue. Based on this

consideration, 12-dimensional Chroma vectors were chosen as feature representation.

Applications 132

This is concordant with a comparative study presented in [Hu et al., 2003], showing

that Chroma vectors outperform several other features, such as MFCCs or pitch his-

tograms, in an audio matching task.

In our specific implementation, we found an STFT with a window length of 4096

samples and a hop size of 1024 samples to be a good trade-off between a frequency res-

olution fine enough to also resolve relatively low pitches and a time resolution enabling

an accurate alignment between two pieces. During the mapping between the STFT’s

frequency bins and the pitch classes, a cosine window with a width of 1.5 semitones was

used to account for the proximity between a bin’s center frequency and the fundamental

frequency of a certain pitch.

A common deviation of a version of a piece from its original is a change of key. Of-

ten, the reason for these transpositions is to adapt a piece to a different instrument.

Transpositions can also be motivated by artistic considerations, such as to give a piece

a different mood.

Most similarity measures will inevitably fail if the main key has been changed between

two versions of a piece. The one used here, for example, depends on the Cosine dis-

tance dc(Ai, Bj) (see Equation 4.2 in section 4.1.1) that measures the error made when

matching two Chroma vectors Ai and Bj . The Cosine distance, however, is not robust

to transpositions, i.e., shifts of one of the Chroma vectors.

To compensate for possible changes of key, when computing the similarity measures

between two feature sequences, each of the 12 shifts is considered. The one yielding the

best result is kept and its deviation from the original key is remembered.

7.4.4. Segmentation

Listening to many recordings of different musical automata has revealed that the lengths

of the themes played by these instruments vary significantly from less than 30 seconds

up to several minutes. This can also be the case when the original piece or even the

particular theme was the same. For instance, there are pairs of musical boxes where

one performs only the second half of what the other one is playing.

To address this problem, the recordings were split into fragments of equal length. In-

stead of comparing two whole pieces, each combination of two such chunks was consid-

ered. This might seem inefficient from a computational costs point of view. However,

the effects are moderate since the effort required to run the alignment algorithm (which

is of complexity O(n2)) and compute the similarity measure (including operations of

Applications 133

complexity O(n3)) is reduced accordingly. In addition, the processing of pairs of frag-

ments is fully parallelizable and also, due to the fixed chunk size, the amount of memory

needed is limited and independent of the actual length of the full audio recordings.

A fragment length of 25 seconds and an overlap ratio of about 50% have been found to

yield good results. The overlap ratio was adapted slightly, such that the last fragments

are positioned at the very end of each piece and there is no remainder left. When trying

to align pairs of fragments from two pieces, all possible transpositions are considered,

and different fragments from the same piece are allowed to be transposed by different

numbers of semitones. Conflicts arising from this are handled later when the results

from the individual fragment pairs are merged.

7.4.5. Alignment and Similarity Measurement

To calculate a similarity measure, two sequences of features have to be aligned first. To

do so, the Dynamic Time Warping algorithm, as described in Section 4.1, is applied.

Given such an alignment, an intuitive similarity measure for two pieces of music would

be the average cost along the alignment path. However, preliminary experiments have

shown that this measure is too simple. One the one hand, it allows for insertions or

deletions of notes and thus a change of melody up to certain degree, while on the other

hand, it penalizes a change in the structure of a piece. In addition, although Chroma

vectors are relatively robust to these effects, higher average alignment costs can still be

caused by changes in instrumentation or accompaniment.

In Section 5.2.3, a number of alternative methods to measure the plausibility of an

alignment between two feature sequences were described. A relatively simple one is the

Relative Path Cost, where deviations as mentioned above are partly absorbed by con-

sidering the average alignment cost over the entire dissimilarity matrix as an estimator

for the average path cost of a random alignment. The quality of an obtained alignment

is then compared to, i.e., divided by, this baseline.

Instead of analyzing the cost of an alignment, we have proposed (cf. Section 5.2.3, Off-

Diagonal Cost) to take the shape of the respective alignment path into consideration.

Especially in the case of musical automata, where performances differ considerably

in terms of additional ornamentation, relying on DTW can result in relatively low

alignment costs even when melody notes of one piece are aligned to auxiliary notes of

the other piece. However, the rhythmic discrepancy arising from such a scenario will

be reflected in the alignment path as significant non-diagonal sections.

Applications 134

The Off-Diagonal cost is an adequate measure for this effect. We define it as the

deviation of the actual alignment path from the optimal strictly linear path through the

dissimilarity matrix. The best linear path represents an alignment under the constraint

of a constant tempo change and no rhythmic deviations and is obtained by performing

a line detection on the inverted dissimilarity matrix. To this end, the Hough transform,

as known from image processing, is applied. For a detailed description of the Hough

transform and on how to compute the Off-Diagonal cost see Section 5.2.3.

7.4.6. Data Merging

In summary, after the processing steps described so far, the pieces have been split

into chunks, and two plausibility measures for the alignment between each pair of such

chunks have been computed considering each possible transposition interval. To finally

obtain a single similarity measure these pieces of information need to be integrated.

First, the two similarity measures need to be combined. The Relative Path cost de-

scribes the difference between feature vectors along the alignment path in comparison

to a specific baseline influenced by changes in instrumentation or recording conditions

between the two audio recordings. The Off-Diagonal cost, on the other hand, measures

the severity of changes in rhythm or local tempo. Preliminary experiments have shown

that simply taking the product of these two measures results in a meaningful aggregated

matching cost.

Next, conflicts between evidence for transpositions of segments by different intervals

need to be resolved. To this end, a majority vote is taken from the n most similar pairs

of segments. To determine this number n, the lengths of valid alignment paths given

different scenarios are considered. Let one piece be split into a chunks and the one it is

compared to into b fragments, then the minimum number nmin of pairs needed to fully

reflect an alignment path over the whole recordings along the diagonal is max(a, b). On

the other hand, the maximum number nmax of pairs needed to cover an alignment path

in the worst case – if it consists of many horizontal and vertical segments – is a+ b− 1.

Therefore a reasonable number of pairs of chunks to take into consideration is chosen

as n = αmax(a, b) with 1 ≤ α < 2, depending on how much deviation from the main

diagonal an overall alignment path should be allowed to exhibit.

The main idea of splitting pieces into chunks was to compensate for major structural

changes, e.g. the insertion or deletion of a prominent section of a piece. A large

difference in performance time would be a cue for such a modification. Therefore,

instead of forcing two whole pieces to be aligned, parts of the longer recordings are

allowed to be left out. To this end, the length of the shorter recording was chosen to

Applications 135

be the determining factor, resulting in ñ = αmin(a, b). We set α to 1.5, to still give

consideration to deviations in tempo. Experiments have shown that the number ñ of

pairs taken into account outperforms the original n.

Once the main transposition interval has been obtained via voting among these ñ

selected pairs of segments, deviating transposition intervals of individual pairs are pe-

nalized by multiplying the respective matching costs by a factor β. In the context of

our data, β = 2 is sufficient to prevent low matching costs as a result of arbitrarily

many different transpositions. The final matching cost is then obtained by averaging

over the costs of the ñ most similar pairs of fragments.

7.4.7. Experimental Results

The data corpus used for the evaluation comprises recordings of 89 mechanical music

instruments, provided by the Phonogram Archive of the Austrian Academy of Sciences.

About half of the pieces are played by flute clocks while the other half is performed by

musical boxes. As described above, there are also significant differences in performance

style and accompaniment. While some instruments only play the main melody notes,

others make use of rich ornamentations. Also, the sounds of the instruments are wildly

different.

Amongst the test data are three pairs of recordings pertaining to the same underly-

ing piece (all of them performed by music boxes). They comprise (several) themes

from Auber’s opera Fra Diavolo, Mendelssohn’s oratorio Elias, and Haydn’s oratorio

The Creation, respectively. These are the ‘cover versions’ we wish to discover in the

experiment.

In analogy to the MIREX audio cover song detection task, each of the 3 × 2 test

recordings is in turn used as the query file. The ranking of the corresponding recording

amongst the 88 remaining candidates is then examined and given in Table 7.1. Although

there is only one perfect match, we are satisfied with the results, given the nature of the

data. In comparison to popular music, a different version of a piece is not only played

on a different instrument, but, as can be presumed from the durations also given in

Table 7.1, there are significant differences in which subset of the underlying piece is

performed at all.

Although the proposed algorithm is not precise enough for the fully automatic identi-

fication of matching recordings in a music collection as difficult as the one at hand, it

clearly outperforms a ’standard’ method which does not include the Off-Diagonal cost

measure and a split-and-merge approach. Looking at the mean rank of the correspond-

Applications 136

Query Piece
Duration Proposed Standard

Ver. 1 Ver. 2 Ver. 1 Ver. 2 Ver. 1 Ver. 2

Fra Diavolo 2:13 3:25 1 3 5 8
Elias 0:58 1:53 4 3 12 6
The Creation 0:58 1:55 5 9 8 11

Table 7.1.: Rank of the corresponding version of the same piece within a list of 88
candidates, i.e, rank of version 2 when the query was version 1 and the other way around.
‘Standard’ refers to a DTW-based matching algorithm without our two extensions
split-and-merge and Off-Diagonal cost (but with Relative Path cost, which was already
proposed by [Turetsky and Ellis, 2003]).

ing version of the 6 query recordings, our system achieves a value of 4.2 in comparison

to 8.3. Taking into account that state-of-the-art cover version systems are not able to

automatically achieve a perfect classification in an unconstrained setting, we consider

the result of this first study promising (cf. [Niedermayer et al., 2011b]).

7.5. Other Applications of Audio Alignment

For the purpose of completeness, two additional applications of audio alignment from

the literature are briefly described. The first one, desoloing, requires an accurate align-

ment such that notes played by the soloist are removed while minimizing the damage

to the sound of other instruments. For the second one, music retrieval, in contrast, the

objective has to be to obtain alignments at a certain quality level as fast as possible,

such that (relatively) large databases can be searched.

7.5.1. Desoloing

[Han and Raphael, 2010] describe a system for the suppression of the contribution of a

soloist to the recording of a classical piece. The remaining orchestral accompaniment

can then, by means of phase vocoding, be used in an automatic accompaniment system,

where the obtained residual audio is played back according to another soloist’s tempo.

The proposed method for the desoloing step works in several passes. In the first one,

the timing of each note played by the solo instrument is obtained applying Audio-to-

Score Alignment. Then, those notes are removed in the frequency domain using specific

masks. Those masks consist of components which remove the steady partials present

during the sustain phase of a note and an additional component removing the transient

at the note’s onset.

Applications 137

The problematic aspect of this approach is that the algorithm removes more than

the actual contribution of the soloist. This is due to overlapping harmonics, i.e., the

consequence that partials of notes played by accompanying instruments which have the

same or a very similar frequency are removed as well. To overcome missing partials in

the accompaniment, [Han and Raphael, 2010] propose a reconstruction method based

on phase estimation using Kalman smoothing, projection from measured partials of

a note onto the missing ones, and phase-locked modulation. The authors report a

significant number of partials to be repaired using this approach in an evaluation on

an excerpt of a length of 45 seconds from a piano concerto.

7.5.2. Query-by-Humming and Music Retrieval

In an alignment based music retrieval system, the objective is to find the best matching

piece of music within a database, given a query sample. Assuming that the query is

monophonic, such as in the query-by-humming scenario (see [Dannenberg et al., 2007],

[Kapur et al., 2004], or [Song et al., 2002], for example), its fragments can correspond

to different voices of a polyphonic piece. Standard string matching algorithms are,

therefore, not an adequate solution to this problem.

[Pardo and Sanghi, 2005], for example, propose a music retrieval system based on audio

alignment in the symbolic domain (cf. Section 4.3). There, the query sequence is aligned

to each score in the database and the corresponding score with the lowest matching

cost is returned. The polyphonic alignment is performed by a dynamic programming

algorithm which allows for sections of the monophonic query to be aligned to different

voices of the target.

In comparison the our alignment system working in the symbolic domain (see Sec-

tion 4.3), [Pardo and Sanghi, 2005] assume a perfect transcription of the query. Based

on this constraint, they report a significant improvement on their (small) test set over a

reference algorithm which does not allow for sections of the query to correspond to dif-

ferent voices of the target. With a modeled probability that the query changes between

two voices of 0.5 at each individual note, the vast majority of all test runs returned the

correct target at the first rank, while this was only the case for about one third of the

queries processed by the reference system. This significant improvement illustrates the

potential of alignment techniques in the domain of music retrieval.

Conclusion 138

8. Conclusion

8.1. Summary

In this thesis we have described an Audio-to-Score Alignment system which was de-

veloped to obtain accurate note onset annotations from arbitrary recordings of piano

pieces of which a score is known and available to the system. To this end we have

performed detailed investigations into three audio features including one (Pitch Activa-

tion) that we have initially proposed for alignment tasks in [Niedermayer, 2009a]. Since

all of these features are computed in the spectral domain, numerous transforms of an

audio signal into a time-frequency representation were discussed. Here, consistent with

Heisenberg’s uncertainty principle, the time-resolution cannot be increased without re-

ducing the frequency resolution and inversely. In search for an adequate trade-off, we

investigated into several transforms and found the short-time Fourier transform and

the constant Q transform to be the ones best suited for our system.

Based on an initial Audio-to-Score Alignment performed by Dynamic Time Warping

we introduced several optimizations and refinement strategies. To obtain this initial

alignment at a fine temporal resolution while, at the same time, keeping computational

costs low, a two-scale approach was used. A first alignment path was computed at a

rough temporal feature resolution with an additional Itakura parallelogram constraint.

Based upon this first estimate, a refined alignment was computed where only paths

within a certain corridor centered around the initial path were considered.

The shortcoming of this method as well as most stat-of-the-art systems is that individual

chord notes cannot be resolved but are assigned a uniform timestamp instead. To

overcome this drawback we introduced a two-pass post-processing approach, where, in

the first step, anchor notes are extracted for which an accurate onset estimated can

be obtained at a high level of confidence. To this end, our Pitch Activation feature is

used. Then, following a Divide & Conquer approach, the notes in between or notated

concurrently to these anchors are refined.

Conclusion 139

An extensive evaluation was performed on a set of 13 Mozart sonatas comprising more

than 100.000 notes. It was shown that each of the proposed refinement steps signifi-

cantly improves the degree to which our objective – to minimize the number of aligned

notes a human annotator would need to correct – is achieved. For our final system this

number amounts to 52.41% of all notes.

In addition we presented an Audio-to-Score Alignment system working in the symbolic

domain based upon a quasi-transcription obtained from our Pitch Activation features

(Section 4.3). Also, we presented a number of applications of Audio-to-Score Alignment

based data acquisition in the domain of computational musicology. As a “side-product”

demonstrating the general adaptability of the techniques described here, we developed

a version detection system for historical musical automata and a music player which

can automatically recognize the structure of a piece.

8.2. Discussion

While, as mentioned above, the alignment accuracy of each individual piece benefits

from all our proposed refinement strategies and the overall result is promising, there

is a number of open questions. First, classical piano music is a narrow field. While

the restriction towards the classical genre is, up to a certain extent, justified by the

availability of score material corresponding to audio recordings of musical performances,

considering piano music only is a considerable constraint.

A second issue is robustness. While other authors report significant improvements of

the robustness and, at the same time, the accuracy of DTW alignments when also using

onset based features in addition to Chroma vectors, we could not confirm those findings

in our experiments. We found that large numbers of notes which the pianist inserted

in his performance caused the alignment based on a mixture of Chroma vectors and

onset based descriptors to fail.

Also, at the current state of our research, we only extract note onset timings. Although

this information is essential for the estimation of other note parameters such as dura-

tion or relative loudness and, therefore, a reasonable measurement task to start with,

performing an onset extraction only is not satisfactory in the long term. Problems that

will have to be faced are that even when, in the case of the piano, the exact key and

pedal movements are known, one does not know where the offset of a note is exactly.

The note might have decayed before the corresponding key is released. On the other

hand, the relative loudness of individual chord notes is an issue which has been widely

neglected in recent MIR research. Our preliminary experiments, however, showed that

Conclusion 140

relying on the energy content of spectrogram bins corresponding to a certain note is

very fragile when processing mixtures of three or more notes.

Despite these limitations of our proposed system, we consider our results an achieve-

ment. We want to remind the reader of the difficulty of the task of accurate Audio-to-

Score Alignment considering the large number of the performer’s deviations from the

score. More than 4,000 additional notes have been inserted during the performance

amounting to almost 4% of the number of score notes. However, such variations or

playing errors are a natural phenomenon an Audio-to-Score Alignment system has to

be robust to. On our evaluation corpus, this is the case for our proposed alignment

system.

8.3. Future Developments

From the above considerations we have identified three main areas for future work.

• In this thesis we mainly focused on increasing the alignment accuracy of those

notes for which the initial onset estimate is accurate within a certain range. The

refinement methods working within a fixed search window can inherently not

correct the timings of those notes where the actual onset lies outside the search

window. Therefore, an objective is to concentrate on those 0.68% of all notes

which are aligned with a time deviation of more than one second. Given the

nature of the data including a relatively large number of deviations of the perfor-

mances from the scores, this is a challenging task. One possible approach would

be to explicitly detect such deviations and to react accordingly.

Robustness is also an issue when applying the alignment system to piano pieces

by composers different from Mozart. While our system does not overfit the data

in the sense that it implements composer specific performance models, it is rea-

sonable to assume that pieces from the romantic era such as the works of Chopin

are more difficult to process due to more prominent pedal usage and freedom

concerning tempo variations in comparison to pieces of the classical era. Here, a

medium term objective is to prepare an evaluation set comparable to the Mozart

corpus used within this thesis.

• A major limitation of our current system is the focus on piano music. While cur-

rent methods are not powerful enough to detect each individual note in pieces with

a much higher degree of polyphony than possible on a piano, i.e., in pieces played

by a whole orchestra, it is desirable to have a system which can automatically

extract annotations of performances by soloists playing arbitrary instruments or

Conclusion 141

by small ensembles, such as string quartets. This requires the detection of soft

onsets such as produced by strings or wind instruments where one cannot focus

on recognizing transient attack phases.

• A third important objective for future developments is to also extract other note

parameters in addition to the onset time. An obvious issue is the detection of

note offsets, i.e., the duration of notes. This is problematic due to several aspects.

While the onset of a note played on a piano is clearly defined as the time when

the hammer hits the string resulting in a transient increase in spectral energy at

the frequencies corresponding to the respective pitch, the offset can take various

forms. On the one hand, a vibrating string can be silenced abruptly by releasing

the key. On the other hand, a note can decay continuously while the key or the

sustain pedal is pressed. In such cases, even for trained listeners it is hard to

identify an accurate note offset in polyphonic pieces where masking effects and

shared partials occur.

Extracting the exact relative loudness of individual notes is an even more difficult

problem. For instruments, such as the piano, where the loudness of a note cannot

be further increased after the onset it is subjected to a continuous decay. The

estimation of loudness, therefore, strongly depends on an accurate onset detection

to be able to relate a measured energy to the respective degree of decay.

Performance Statistics 142

A. Performance Statistics

A.1. Tempo

piece
1st movement

tempo time sig bpm

k.279 Allegro 4/4 113

k.280 Allegro assai 3/4 126

k.281 Allegro 2/4 67

k.282 Adagio 4/4 36

k.283 Allegro 3/4 135

k.284 Allegro 4/4 135

k.330 Allegro moderato 2/4 67

k.331 Andante grazioso (Allegro) 6/8 (4/4) 108

k.332 Allegro 3/4 161

k.333 Allegro 4/4 136

k.457 Molto allegro 4/4 166

k.475 Adagio 4/4 36

k.533 Allegro 2/2 162

Table A.1.: Tempo indication, time signature, and actual, performed tempo of the 1st

movements in [bpm], where for pieces in alla breve the quarter note is considered to be

the beat

Performance Statistics 143

piece
2nd movement

tempo time sig bpm

k.279 Andante 3/4 45

k.280 Adagio 6/8 90

k.281 Andante amoroso 3/8 81

k.282 Menuetto 3/4 123

k.283 Andante 4/4 37

k.284 Andante 3/4 56

k.330 Andante cantabile 3/4 45

k.331 Menuetto 3/4 129

k.332 Adagio 4/4 31

k.333 Andante cantabile 3/4 46

k.457 Adagio 4/4 30

k.475 Allegro (Andantino) 4/4 (3/4) 95

k.533 Andante 3/4 52

Table A.2.: Tempo indication, time signature, and actual, performed tempo of the 2nd

movements in [bpm]

piece
3rd movement

tempo time sig bpm

k.279 Allegro 2/4 138

k.280 Presto 3/8 259

k.281 Allegro 2/2 164

k.282 Allegro 2/4 136

k.283 Presto 3/8 281

k.284 Andante 2/2 116

k.330 Allegro 2/4 83

k.331 Allegretto 2/4 131

k.332 Allegro assai 6/8 291

k.333 Allegretto grazioso 2/2 138

k.457 Allegro assai 3/4 209

k.475 Piu Allegro 3/4 47

k.533 Allegretto 2/2 122

Table A.3.: Tempo indication, time signature, and actual, performed tempo of the 3rd

movements in [bpm], where for pieces in alla breve the quarter note is considered to be

the beat

Performance Statistics 144

A.2. Dynamics

1st movement

count min mean (stddev) max

1 16273 – – – –

2 6622 0.000 22.406 (13.956) 87.037

3 2602 0.000 28.851 (14.000) 97.917

4 806 1.887 30.752 (14.258) 94.915

5 94 5.479 31.647 (12.544) 85.714

6 35 10.112 34.967 (10.828) 59.740

7 3 22.472 27.899 (6.332) 36.782

8 1 20.690 20.690 (0.000) 20.690

Table A.4.: Intra-chord dynamics deviations for the 1st movements according to the

degree of polyphony measured as the softest note’s MIDI velocity relative to the loudest

note’s MIDI velocity not including grace notes

2nd movement

count min mean (stddev) max

1 7366 – – – –

2 3476 0.000 28.847 (15.554) 84.906

3 1482 1.471 33.398 (13.979) 94.444

4 522 2.326 39.558 (13.786) 78.667

5 62 10.753 34.323 (11.046) 60.811

6 8 20.000 28.995 (6.832) 39.024

7 4 36.000 45.169 (6.487) 54.286

Table A.5.: Intra-chord dynamics deviations for the 2nd movements according to the

degree of polyphony measured as the softest note’s MIDI velocity relative to the loudest

note’s MIDI velocity not including grace notes

3rd movement

count min mean (stddev) max

1 14721 – – – –

2 6073 0.000 20.079 (13.887) 94.203

3 2479 0.000 27.357 (12.876) 88.136

4 574 4.545 30.679 (14.539) 92.857

5 159 8.235 28.592 (11.774) 58.537

6 20 8.696 32.305 (12.834) 63.415

7 0 – – – –

8 15 14.286 27.477 (7.647) 50.000

Table A.6.: Intra-chord dynamics deviations for the 3rd movements according to the

degree of polyphony measured as the softest note’s MIDI velocity relative to the loudest

note’s MIDI velocity not including grace notes

Performance Statistics 145

A.3. Micro-Timings

1st movement

count min mean (stddev) max

1 16273 – – – –

2 6622 0.000 0.016 (0.019) 0.286

3 2602 0.000 0.018 (0.014) 0.236

4 806 0.001 0.028 (0.033) 0.292

5 94 0.005 0.065 (0.067) 0.227

6 35 0.005 0.113 (0.066) 0.215

7 3 0.010 0.014 (0.003) 0.017

8 1 0.009 0.009 (0.000) 0.009

Table A.7.: The 1st movements’ time spreads between the earliest and the latest note of

a chord according to the respective degree of polyphony, disregarding ornamentations,

i.e., grace notes and trills

2nd movement

count min mean (stddev) max

1 7366 – – – –

2 3476 0.000 0.019 (0.025) 0.447

3 1482 0.000 0.026 (0.034) 0.514

4 522 0.002 0.034 (0.038) 0.435

5 62 0.007 0.065 (0.063) 0.330

6 8 0.016 0.022 (0.006) 0.030

7 4 0.019 0.030 (0.013) 0.051

Table A.8.: The 2nd movements’ time spreads between the earliest and the latest note of

a chord according to the respective degree of polyphony, disregarding ornamentations,

i.e., grace notes and trills

3rd movement

count min mean (stddev) max

1 14721 – – – –

2 6073 0.000 0.014 (0.018) 0.322

3 2479 0.000 0.019 (0.017) 0.245

4 574 0.000 0.029 (0.042) 0.318

5 159 0.002 0.038 (0.049) 0.193

6 20 0.006 0.049 (0.054) 0.152

8 15 0.006 0.146 (0.145) 0.366

Table A.9.: The 3rd movements’ time spreads between the earliest and the latest note of

a chord according to the respective degree of polyphony, disregarding ornamentations,

i.e., grace notes and trills

Performance Statistics 146

1st movement

count min mean (stddev) max

1 46 – – – –

2 304 0.000 0.028 (0.033) 0.161

3 143 0.001 0.055 (0.077) 0.471

4 45 0.054 0.208 (0.051) 0.391

5 36 0.125 0.281 (0.129) 0.529

6 11 0.090 0.289 (0.153) 0.511

Table A.10.: The 1st movements’ time spreads between the earliest and the latest

note of a chord including ornamentation without its own dedicated timing in the score

and timing differences between ornamentations with a notated timing and other notes

having the same score time

2nd movement

count min mean (stddev) max

1 22 – – – –

2 86 0.000 0.047 (0.055) 0.248

3 38 0.009 0.149 (0.118) 0.478

4 56 0.009 0.170 (0.157) 0.691

5 49 0.107 0.285 (0.130) 0.637

6 6 0.274 0.418 (0.131) 0.621

7 2 0.370 0.455 (0.085) 0.541

Table A.11.: The 2nd movements’ time spreads between the earliest and the latest

note of a chord including ornamentation without its own dedicated timing in the score

and timing differences between ornamentations with a notated timing and other notes

having the same score time

3rd movement

count min mean (stddev) max

1 35 – – – –

2 142 0.000 0.035 (0.047) 0.196

3 188 0.001 0.066 (0.060) 0.310

4 95 0.007 0.089 (0.055) 0.244

5 63 0.014 0.188 (0.116) 0.454

6 48 0.103 0.189 (0.069) 0.366

7 13 0.090 0.318 (0.157) 0.598

8 16 0.092 0.194 (0.210) 1.001

Table A.12.: The 3rd movements’ time spreads between the earliest and the latest

note of a chord including ornamentation without its own dedicated timing in the score

and timing differences between ornamentations with a notated timing and other notes

having the same score time

Alignment Results 147

B. Alignment Results

In the following the detailed evaluation results are presented for the entire corpus,

the entire corpus clustered by movement numbers, and each individual piece. In ad-

dition to the performance of our complete Audio-to-Score Alignment system, we also

give intermediary results for the initial DTW-based alignment step, the extracted an-

chors, and the remaining notes before and after their refinement. Given performance

measures are the mean, standard deviation, minimum, and maximum of the time dis-

placements as well as their absolute values (measures calculated on absolute errors are

parenthesized) in milliseconds. In the following two lines the 5th , 25th , 50th , 75th , and

95th percentiles are shown. Finally, the number of correctly aligned notes with respect

to the 50 ms (as common in Onset Detection) and our proposed 10 ms tolerance range

are given. For the individual movements of a piece, the time displacements are plotted

over the note numbers. The respective histograms show the distributions of errors. In

addition, the cumulative distribution functions of the timing errors are plotted. Since

the maxima of these functions are known, the plots are scaled such that the entire

available space is used.

Alignment Results 148

Overall Result

(a) Two-scale DTW and Chroma vectors

avg-error 3.0 (80.0)

std-dev 204.3 (188.0)

min-error -3386.5 (0.0)

max-error 4479.9 (4479.9)

-185.3 -23.7 -7.8 13.3 216.0

(1.9) (8.9) (20.2) (62.5) (362.7)

error<50ms 70.98%

error<10ms 28.44%

(b) Refined Anchor Notes

avg-error 6.2 (28.4)

std-dev 114.0 (110.5)

min-error -3045.1 (0.0)

max-error 2753.3 (3045.1)

-12.4 -2.0 3.2 11.9 45.8

(0.5) (2.6) (6.1) (15.0) (99.9)

error<50ms 92.14%

error<10ms 65.41%

(c) Non-Anchor Notes before Refinement

avg-error 1.6 (99.5)

std-dev 234.4 (212.3)

min-error -3386.5 (0.0)

max-error 4479.9 (4479.9)

-240.3 -32.3 -11.1 9.5 282.5

(2.6) (10.8) (25.2) (89.7) (435.5)

error<50ms 65.50%

error<10ms 22.73%

(d) Non-Anchor Notes after Refinement

avg-error -1.0 (60.5)

std-dev 190.4 (180.6)

min-error -3460.5 (0.0)

max-error 3776.3 (3776.3)

-142.2 -11.6 -4.1 8.0 113.9

(1.0) (5.2) (10.7) (30.4) (293.7)

error<50ms 82.01%

error<10ms 47.38%

(e) Complete System

avg-error 1.5 (50.5)

std-dev 169.9 (162.2)

min-error -3460.5 (0.0)

max-error 3776.3 (3776.3)

-108.1 -8.8 -0.9 10.5 84.4

(0.8) (4.1) (9.3) (24.1) (232.4)

error<50ms 85.15%

error<10ms 52.41%

Table B.1.: Overall Alignment Results

Alignment Results 149

1st Movements

(a) Two-scale DTW and Chroma vectors

avg-error 6.6 (68.9)

std-dev 175.3 (161.4)

min-error -2216.4 (0.0)

max-error 2943.7 (2943.7)

-143.4 -20.2 -6.8 12.8 200.4

(1.6) (8.0) (17.9) (54.3) (312.5)

error<50ms 73.57%

error<10ms 31.61%

(b) Refined Anchor Notes

avg-error 6.5 (25.1)

std-dev 97.6 (94.6)

min-error -1816.3 (0.0)

max-error 2433.8 (2433.8)

-10.2 -1.8 3.3 11.7 44.4

(0.5) (2.5) (5.8) (14.3) (86.2)

error<50ms 92.58%

error<10ms 66.80%

(c) Non-Anchor Notes before Refinement

avg-error 6.6 (84.6)

std-dev 200.3 (181.7)

min-error -2216.4 (0.0)

max-error 2943.7 (2943.7)

-185.5 -26.7 -9.6 9.9 257.0

(2.3) (9.7) (21.7) (73.8) (372.6)

error<50ms 68.66%

error<10ms 26.05%

(d) Non-Anchor Notes after Refinement

avg-error -0.3 (52.8)

std-dev 165.4 (156.7)

min-error -2179.9 (0.0)

max-error 2907.6 (2907.6)

-122.2 -10.9 -3.6 8.2 99.8

(1.0) (4.9) (10.2) (29.3) (234.9)

error<50ms 82.87%

error<10ms 49.21%

(e) Complete System

avg-error 2.0 (44.4)

std-dev 147.7 (140.9)

min-error -2179.9 (0.0)

max-error 2907.6 (2907.6)

-100.4 -8.2 -0.6 10.4 76.2

(0.8) (3.9) (8.9) (23.0) (206.7)

error<50ms 85.83%

error<10ms 54.08%

Table B.2.: Overall Alignment Results: First Movements

Alignment Results 150

2nd Movements

(a) Two-scale DTW and Chroma vectors

avg-error -4.5 (122.8)

std-dev 293.5 (266.6)

min-error -3386.5 (0.0)

max-error 3508.5 (3508.5)

-354.9 -33.3 -9.6 14.8 360.1

(2.2) (10.7) (26.6) (90.8) (595.6)

error<50ms 65.29%

error<10ms 23.39%

(b) Refined Anchor Notes

avg-error 5.3 (37.0)

std-dev 158.2 (153.9)

min-error -3045.1 (0.0)

max-error 2753.3 (3045.1)

-13.8 -2.1 3.2 12.2 46.0

(0.5) (2.7) (6.3) (15.6) (105.6)

error<50ms 92.17%

error<10ms 64.66%

(c) Non-Anchor Notes before Refinement

avg-error -9.6 (162.5)

std-dev 344.1 (303.4)

min-error -3386.5 (0.0)

max-error 3508.5 (3508.5)

-442.9 -49.9 -15.6 8.0 480.0

(3.9) (14.4) (37.6) (178.8) (724.9)

error<50ms 56.66%

error<10ms 15.80%

(d) Non-Anchor Notes after Refinement

avg-error -6.8 (92.0)

std-dev 271.4 (255.4)

min-error -3460.5 (0.0)

max-error 2647.2 (3460.5)

-314.3 -12.7 -4.8 7.6 205.4

(1.1) (5.5) (11.4) (32.4) (590.7)

error<50ms 80.56%

error<10ms 44.89%

(e) Complete System

avg-error -2.2 (73.2)

std-dev 238.2 (226.7)

min-error -3460.5 (0.0)

max-error 2753.3 (3460.5)

-184.9 -9.2 -0.9 10.9 101.5

(0.8) (4.3) (9.8) (24.6) (461.5)

error<50ms 84.44%

error<10ms 50.69%

Table B.3.: Overall Alignment Results: Second Movements

Alignment Results 151

3rd Movements

(a) Two-scale DTW and Chroma vectors

avg-error 3.1 (68.1)

std-dev 169.4 (155.1)

min-error -2473.2 (0.0)

max-error 4479.9 (4479.9)

-150.1 -23.2 -8.1 13.0 192.8

(2.0) (9.1) (20.0) (60.7) (280.0)

error<50ms 71.37%

error<10ms 27.83%

(b) Refined Anchor Notes

avg-error 6.4 (26.7)

std-dev 95.7 (92.1)

min-error -2386.1 (0.0)

max-error 2273.0 (2386.1)

-14.8 -2.4 3.1 12.1 47.4

(0.5) (2.7) (6.3) (15.6) (116.1)

error<50ms 91.64%

error<10ms 64.37%

(c) Non-Anchor Notes before Refinement

avg-error 2.1 (82.3)

std-dev 193.2 (174.8)

min-error -2471.1 (0.0)

max-error 4479.9 (4479.9)

-184.4 -30.3 -11.0 9.7 234.3

(2.6) (10.8) (23.9) (78.7) (332.5)

error<50ms 66.75%

error<10ms 22.79%

(d) Non-Anchor Notes after Refinement

avg-error 1.3 (52.1)

std-dev 161.5 (152.9)

min-error -2438.9 (0.0)

max-error 3776.3 (3776.3)

-121.3 -11.9 -4.4 7.9 109.1

(1.1) (5.3) (10.9) (30.9) (232.3)

error<50ms 81.86%

error<10ms 46.69%

(e) Complete System

avg-error 3.1 (44.4)

std-dev 144.4 (137.4)

min-error -2438.9 (0.0)

max-error 3776.3 (3776.3)

-103.1 -9.1 -1.3 10.5 85.9

(0.8) (4.3) (9.6) (24.8) (210.1)

error<50ms 84.81%

error<10ms 51.56%

Table B.4.: Overall Alignment Results: Third Movements

Alignment Results 152

k.279 – 1st Movement

(a) Two-scale DTW and Chroma vectors

avg-error -0.2 (42.7)

std-dev 84.2 (72.5)

min-error -499.3 (0.0)

max-error 663.0 (663.0)

-104.0 -18.1 -7.5 7.3 139.0

(1.6) (7.4) (14.8) (41.3) (183.6)

error<50ms 78.63%

error<10ms 35.11%

(b) Refined Anchor Notes

avg-error 6.1 (17.1)

std-dev 44.5 (41.6)

min-error -343.4 (0.0)

max-error 539.1 (539.1)

-9.1 -2.0 3.1 10.9 39.8

(0.5) (2.6) (5.4) (13.6) (70.9)

error<50ms 93.21%

error<10ms 68.79%

(c) Non-Anchor Notes before Refinement

avg-error -3.1 (50.9)

std-dev 96.7 (82.3)

min-error -499.3 (0.0)

max-error 663.0 (663.0)

-132.9 -24.8 -9.9 2.9 177.4

(2.2) (8.6) (16.7) (49.8) (218.8)

error<50ms 75.01%

error<10ms 30.47%

(d) Non-Anchor Notes after Refinement

avg-error -3.9 (32.0)

std-dev 77.5 (70.7)

min-error -1639.2 (0.0)

max-error 552.1 (1639.2)

-97.3 -11.2 -4.8 6.5 82.7

(1.1) (5.3) (10.4) (26.1) (136.7)

error<50ms 85.12%

error<10ms 48.68%

(e) Complete System

avg-error -0.3 (27.3)

std-dev 68.5 (62.8)

min-error -1639.2 (0.0)

max-error 552.1 (1639.2)

-74.6 -8.4 -1.1 9.3 65.3

(0.8) (4.0) (8.7) (21.7) (126.0)

error<50ms 87.62%

error<10ms 54.91%

Table B.5.: Alignment Results k.279-1

Figure B.1.: Time Deviations k.279-1

Alignment Results 153

k.279 – 2nd Movement

(a) Two-scale DTW and Chroma vectors

avg-error -79.6 (173.1)

std-dev 365.8 (331.9)

min-error -3205.7 (0.0)

max-error 1457.6 (3205.7)

-538.5 -72.1 -17.7 3.0 341.7

(3.9) (14.6) (36.6) (217.6) (723.3)

error<50ms 57.16%

error<10ms 15.32%

(b) Refined Anchor Notes

avg-error 0.2 (38.6)

std-dev 154.0 (149.1)

min-error -2396.8 (0.0)

max-error 1257.6 (2396.8)

-44.3 -1.7 4.8 15.2 50.7

(0.7) (2.9) (7.6) (19.9) (162.2)

error<50ms 90.47%

error<10ms 58.17%

(c) Non-Anchor Notes before Refinement

avg-error -109.8 (227.1)

std-dev 422.6 (372.9)

min-error -3205.7 (0.0)

max-error 1457.6 (3205.7)

-715.1 -210.5 -25.9 -7.2 403.1

(7.5) (19.0) (63.8) (323.5) (810.7)

error<50ms 46.30%

error<10ms 8.49%

(d) Non-Anchor Notes after Refinement

avg-error -60.9 (127.9)

std-dev 324.0 (303.8)

min-error -3460.5 (0.0)

max-error 1250.2 (3460.5)

-486.4 -14.7 -5.4 5.7 253.9

(1.1) (5.5) (11.4) (50.8) (644.8)

error<50ms 74.79%

error<10ms 45.21%

(e) Complete System

avg-error -42.3 (101.2)

std-dev 285.1 (269.9)

min-error -3460.5 (0.0)

max-error 1257.6 (3460.5)

-431.2 -10.4 -1.8 10.4 97.8

(0.9) (4.8) (10.4) (36.1) (483.3)

error<50ms 79.34%

error<10ms 48.53%

Table B.6.: Alignment Results k.279-2

Figure B.2.: Time Deviations k.279-2

Alignment Results 154

k.279 – 3rd Movement

(a) Two-scale DTW and Chroma vectors

avg-error -2.6 (41.0)

std-dev 77.5 (65.8)

min-error -579.7 (0.0)

max-error 576.7 (579.7)

-108.4 -18.5 -6.2 8.1 131.0

(1.4) (6.7) (15.2) (42.7) (192.3)

error<50ms 78.12%

error<10ms 37.08%

(b) Refined Anchor Notes

avg-error 7.4 (16.2)

std-dev 41.4 (38.8)

min-error -489.3 (0.0)

max-error 490.5 (490.5)

-8.9 -0.7 4.1 11.1 46.9

(0.5) (2.4) (5.7) (13.7) (62.6)

error<50ms 93.71%

error<10ms 67.96%

(c) Non-Anchor Notes before Refinement

avg-error -6.7 (48.6)

std-dev 87.8 (73.5)

min-error -579.7 (0.0)

max-error 576.7 (579.7)

-129.4 -26.4 -9.3 3.8 170.7

(1.8) (8.1) (17.3) (52.0) (208.4)

error<50ms 74.28%

error<10ms 31.41%

(d) Non-Anchor Notes after Refinement

avg-error -1.5 (27.6)

std-dev 57.1 (50.0)

min-error -498.9 (0.0)

max-error 464.3 (498.9)

-86.7 -10.8 -3.9 7.8 69.4

(0.9) (4.8) (10.0) (23.4) (121.3)

error<50ms 86.29%

error<10ms 50.10%

(e) Complete System

avg-error 1.4 (24.2)

std-dev 53.0 (47.2)

min-error -498.9 (0.0)

max-error 490.5 (498.9)

-66.1 -8.2 -0.3 9.9 57.6

(0.7) (3.9) (8.9) (20.3) (109.2)

error<50ms 88.54%

error<10ms 55.07%

Table B.7.: Alignment Results k.279-3

Figure B.3.: Time Deviations k.279-3

Alignment Results 155

k.280 – 1st Movement

(a) Two-scale DTW and Chroma vectors

avg-error -10.2 (52.7)

std-dev 111.0 (98.2)

min-error -862.2 (0.0)

max-error 890.6 (890.6)

-175.5 -17.8 -6.1 9.6 109.5

(1.6) (6.8) (14.6) (52.8) (230.7)

error<50ms 74.11%

error<10ms 38.02%

(b) Refined Anchor Notes

avg-error 1.7 (20.4)

std-dev 61.2 (57.8)

min-error -578.3 (0.0)

max-error 267.9 (578.3)

-8.1 -0.5 4.6 11.7 38.1

(0.7) (2.6) (6.1) (14.1) (76.9)

error<50ms 93.61%

error<10ms 66.86%

(c) Non-Anchor Notes before Refinement

avg-error -17.1 (65.0)

std-dev 128.7 (112.4)

min-error -862.2 (0.0)

max-error 890.6 (890.6)

-209.3 -27.9 -8.8 4.4 134.9

(2.1) (8.1) (18.4) (67.7) (317.1)

error<50ms 69.38%

error<10ms 32.02%

(d) Non-Anchor Notes after Refinement

avg-error -4.8 (32.9)

std-dev 88.7 (82.5)

min-error -767.1 (0.0)

max-error 1325.1 (1325.1)

-96.8 -9.4 -3.0 6.7 73.0

(0.7) (4.2) (8.6) (22.5) (154.2)

error<50ms 85.36%

error<10ms 56.99%

(e) Complete System

avg-error -2.5 (28.8)

std-dev 80.6 (75.4)

min-error -767.1 (0.0)

max-error 1325.1 (1325.1)

-69.1 -6.8 0.1 9.4 60.1

(0.7) (3.5) (7.8) (18.4) (135.7)

error<50ms 88.08%

error<10ms 60.02%

Table B.8.: Alignment Results k.280-1

Figure B.4.: Time Deviations k.280-1

Alignment Results 156

k.280 – 2nd Movement

(a) Two-scale DTW and Chroma vectors

avg-error 137.8 (237.2)

std-dev 490.4 (450.8)

min-error -1257.0 (0.0)

max-error 3230.1 (3230.1)

-310.3 -26.5 -2.5 65.5 1150.4

(2.0) (10.9) (37.4) (225.0) (1159.7)

error<50ms 57.12%

error<10ms 23.20%

(b) Refined Anchor Notes

avg-error 22.3 (41.2)

std-dev 161.2 (157.4)

min-error -834.8 (0.0)

max-error 1201.1 (1201.1)

-9.7 -2.4 2.9 12.7 45.8

(0.6) (2.7) (6.4) (14.6) (76.1)

error<50ms 93.76%

error<10ms 63.55%

(c) Non-Anchor Notes before Refinement

avg-error 203.1 (343.2)

std-dev 593.7 (525.3)

min-error -1257.0 (0.0)

max-error 3230.1 (3230.1)

-422.0 -41.2 -7.8 312.4 1395.3

(4.4) (19.0) (81.0) (487.8) (1395.3)

error<50ms 43.27%

error<10ms 13.59%

(d) Non-Anchor Notes after Refinement

avg-error 93.9 (153.8)

std-dev 385.8 (366.0)

min-error -1403.7 (0.0)

max-error 2061.2 (2061.2)

-44.9 -12.1 -4.6 21.0 1039.7

(1.7) (6.7) (13.6) (38.0) (1074.1)

error<50ms 78.36%

error<10ms 37.03%

(e) Complete System

avg-error 67.7 (112.8)

std-dev 324.2 (311.4)

min-error -1403.7 (0.0)

max-error 2061.2 (2061.2)

-33.5 -8.8 0.1 16.5 796.2

(1.0) (4.9) (11.0) (26.1) (834.1)

error<50ms 83.92%

error<10ms 46.05%

Table B.9.: Alignment Results k.280-2

Figure B.5.: Time Deviations k.280-2

Alignment Results 157

k.280 – 3rd Movement

(a) Two-scale DTW and Chroma vectors

avg-error 14.1 (63.1)

std-dev 120.8 (103.9)

min-error -722.0 (0.0)

max-error 894.3 (894.3)

-113.9 -16.6 -4.3 33.7 211.7

(2.0) (9.2) (21.0) (70.2) (266.3)

error<50ms 68.33%

error<10ms 27.86%

(b) Refined Anchor Notes

avg-error 6.2 (23.3)

std-dev 65.4 (61.4)

min-error -594.2 (0.0)

max-error 516.3 (594.2)

-14.3 -2.8 2.3 10.2 64.3

(0.5) (2.6) (5.8) (14.0) (116.2)

error<50ms 91.44%

error<10ms 67.67%

(c) Non-Anchor Notes before Refinement

avg-error 16.8 (77.9)

std-dev 140.8 (118.6)

min-error -722.0 (0.0)

max-error 894.3 (894.3)

-138.0 -21.7 -6.9 40.6 261.1

(2.6) (11.0) (26.2) (97.0) (343.2)

error<50ms 62.84%

error<10ms 22.27%

(d) Non-Anchor Notes after Refinement

avg-error -1.5 (41.9)

std-dev 101.0 (91.9)

min-error -1484.5 (0.0)

max-error 907.1 (1484.5)

-112.9 -11.3 -4.2 9.2 106.4

(1.3) (5.1) (11.0) (35.1) (211.3)

error<50ms 80.27%

error<10ms 46.53%

(e) Complete System

avg-error 1.4 (35.7)

std-dev 90.3 (83.0)

min-error -1484.5 (0.0)

max-error 907.1 (1484.5)

-87.6 -8.4 -1.3 11.1 91.6

(0.8) (4.1) (9.2) (25.9) (202.2)

error<50ms 84.10%

error<10ms 52.56%

Table B.10.: Alignment Results k.280-3

Figure B.6.: Time Deviations k.280-3

Alignment Results 158

k.281 – 1st Movement

(a) Two-scale DTW and Chroma vectors

avg-error -1.5 (63.6)

std-dev 130.5 (114.0)

min-error -1086.3 (0.0)

max-error 1087.2 (1087.2)

-161.6 -25.5 -9.0 17.6 170.0

(2.1) (10.5) (22.8) (65.5) (235.6)

error<50ms 69.94%

error<10ms 23.53%

(b) Refined Anchor Notes

avg-error 0.1 (25.7)

std-dev 79.8 (75.5)

min-error -586.3 (0.1)

max-error 1019.3 (1019.3)

-48.0 -3.2 1.3 7.9 44.3

(0.5) (2.4) (5.4) (11.8) (184.1)

error<50ms 90.30%

error<10ms 72.21%

(c) Non-Anchor Notes before Refinement

avg-error -3.5 (74.1)

std-dev 145.6 (125.4)

min-error -1086.3 (0.0)

max-error 1087.2 (1087.2)

-187.5 -33.6 -12.3 12.8 190.2

(3.1) (12.4) (26.9) (82.1) (264.8)

error<50ms 65.41%

error<10ms 19.42%

(d) Non-Anchor Notes after Refinement

avg-error -12.7 (43.0)

std-dev 112.7 (104.9)

min-error -1400.0 (0.0)

max-error 1343.4 (1400.0)

-141.4 -13.1 -6.8 5.0 71.7

(1.5) (6.4) (11.8) (30.5) (208.0)

error<50ms 82.55%

error<10ms 42.23%

(e) Complete System

avg-error -8.8 (38.1)

std-dev 104.3 (97.5)

min-error -1400.0 (0.0)

max-error 1343.4 (1400.0)

-127.6 -11.0 -3.2 7.0 68.8

(0.9) (4.5) (9.9) (22.4) (200.3)

error<50ms 84.59%

error<10ms 50.45%

Table B.11.: Alignment Results k.281-1

Figure B.7.: Time Deviations k.281-1

Alignment Results 159

k.281 – 2nd Movement

(a) Two-scale DTW and Chroma vectors

avg-error 4.6 (105.4)

std-dev 227.8 (202.0)

min-error -1328.6 (0.0)

max-error 1521.4 (1521.4)

-290.5 -28.0 -4.8 27.8 366.0

(2.0) (9.0) (27.9) (78.2) (551.0)

error<50ms 64.65%

error<10ms 27.07%

(b) Refined Anchor Notes

avg-error 0.2 (31.6)

std-dev 123.5 (119.4)

min-error -1304.2 (0.0)

max-error 828.5 (1304.2)

-7.6 -0.4 5.4 14.2 42.4

(0.5) (2.9) (7.1) (17.4) (58.5)

error<50ms 93.59%

error<10ms 62.90%

(c) Non-Anchor Notes before Refinement

avg-error 6.3 (143.6)

std-dev 273.4 (232.8)

min-error -1328.6 (0.0)

max-error 1521.4 (1521.4)

-384.7 -41.0 -10.6 27.4 481.0

(3.6) (12.4) (39.3) (169.2) (668.1)

error<50ms 55.87%

error<10ms 19.27%

(d) Non-Anchor Notes after Refinement

avg-error -14.5 (59.8)

std-dev 168.7 (158.4)

min-error -1316.4 (0.0)

max-error 743.5 (1316.4)

-221.4 -11.8 -5.7 5.2 77.8

(1.0) (5.6) (10.3) (24.7) (412.7)

error<50ms 82.67%

error<10ms 48.22%

(e) Complete System

avg-error -8.2 (49.2)

std-dev 153.0 (145.1)

min-error -1316.4 (0.0)

max-error 828.5 (1316.4)

-67.7 -8.4 -0.1 11.1 67.9

(0.8) (4.4) (9.4) (21.4) (264.3)

error<50ms 86.79%

error<10ms 52.76%

Table B.12.: Alignment Results k.281-2

Figure B.8.: Time Deviations k.281-2

Alignment Results 160

k.281 – 3rd Movement

(a) Two-scale DTW and Chroma vectors

avg-error 8.3 (72.0)

std-dev 163.2 (146.7)

min-error -1343.9 (0.0)

max-error 1368.8 (1368.8)

-150.3 -20.0 -7.3 15.7 269.9

(2.1) (9.1) (18.7) (61.6) (326.6)

error<50ms 71.42%

error<10ms 27.64%

(b) Refined Anchor Notes

avg-error 2.8 (26.3)

std-dev 98.7 (95.2)

min-error -1153.8 (0.1)

max-error 1112.3 (1153.8)

-17.2 -1.8 3.5 10.8 37.3

(0.7) (2.8) (5.8) (13.9) (97.1)

error<50ms 92.63%

error<10ms 67.59%

(c) Non-Anchor Notes before Refinement

avg-error 9.6 (89.0)

std-dev 185.5 (163.1)

min-error -1343.9 (0.0)

max-error 1368.8 (1368.8)

-179.2 -27.1 -10.8 12.4 319.6

(2.7) (10.9) (23.3) (89.9) (356.5)

error<50ms 66.07%

error<10ms 21.71%

(d) Non-Anchor Notes after Refinement

avg-error -8.3 (49.1)

std-dev 144.6 (136.2)

min-error -2148.3 (0.0)

max-error 1144.3 (2148.3)

-136.3 -11.7 -5.5 3.6 80.4

(1.1) (5.1) (10.4) (28.6) (227.4)

error<50ms 83.07%

error<10ms 48.80%

(e) Complete System

avg-error -4.5 (41.9)

std-dev 131.7 (124.9)

min-error -2148.3 (0.0)

max-error 1144.3 (2148.3)

-107.9 -9.2 -2.0 8.1 64.9

(0.8) (4.0) (9.0) (21.2) (191.7)

error<50ms 86.16%

error<10ms 54.16%

Table B.13.: Alignment Results k.281-3

Figure B.9.: Time Deviations k.281-3

Alignment Results 161

k.282 – 1st Movement

(a) Two-scale DTW and Chroma vectors

avg-error -6.4 (97.3)

std-dev 206.4 (182.1)

min-error -1382.5 (0.0)

max-error 1623.6 (1623.6)

-309.6 -35.7 -11.4 15.5 280.9

(2.8) (12.2) (27.8) (81.5) (425.7)

error<50ms 66.02%

error<10ms 19.58%

(b) Refined Anchor Notes

avg-error -2.8 (27.9)

std-dev 102.7 (98.9)

min-error -758.9 (0.0)

max-error 1231.1 (1231.1)

-32.8 -3.9 1.5 10.0 34.9

(0.6) (2.6) (5.8) (13.9) (86.1)

error<50ms 92.99%

error<10ms 67.04%

(c) Non-Anchor Notes before Refinement

avg-error -9.8 (126.1)

std-dev 241.5 (206.3)

min-error -1382.5 (0.1)

max-error 1623.6 (1623.6)

-353.6 -51.8 -16.7 7.4 340.2

(4.3) (15.6) (37.2) (162.7) (516.3)

error<50ms 57.22%

error<10ms 12.79%

(d) Non-Anchor Notes after Refinement

avg-error -0.5 (77.5)

std-dev 220.7 (206.6)

min-error -1558.2 (0.0)

max-error 2164.8 (2164.8)

-266.5 -14.9 -7.9 3.7 175.9

(1.7) (7.4) (13.7) (40.7) (407.9)

error<50ms 78.06%

error<10ms 35.04%

(e) Complete System

avg-error -1.0 (61.2)

std-dev 189.9 (179.8)

min-error -1558.2 (0.0)

max-error 2164.8 (2164.8)

-206.4 -12.3 -4.1 8.6 86.1

(1.0) (5.3) (11.4) (28.2) (374.2)

error<50ms 83.06%

error<10ms 45.07%

Table B.14.: Alignment Results k.282-1

Figure B.10.: Time Deviations k.282-1

Alignment Results 162

k.282 – 2nd Movement

(a) Two-scale DTW and Chroma vectors

avg-error -4.2 (68.0)

std-dev 127.5 (107.9)

min-error -887.1 (0.0)

max-error 543.7 (887.1)

-180.7 -27.0 -12.3 11.3 235.5

(2.6) (12.2) (22.0) (68.6) (324.3)

error<50ms 68.71%

error<10ms 20.21%

(b) Refined Anchor Notes

avg-error 2.6 (23.0)

std-dev 71.4 (67.6)

min-error -498.7 (0.1)

max-error 558.1 (558.1)

-36.3 -6.4 -1.8 5.3 40.5

(0.7) (2.7) (6.0) (11.2) (116.2)

error<50ms 90.95%

error<10ms 72.40%

(c) Non-Anchor Notes before Refinement

avg-error -10.2 (88.5)

std-dev 152.1 (124.1)

min-error -887.1 (0.0)

max-error 543.7 (887.1)

-249.6 -38.5 -16.0 3.0 310.1

(4.3) (14.5) (27.7) (126.2) (357.4)

error<50ms 61.61%

error<10ms 13.67%

(d) Non-Anchor Notes after Refinement

avg-error -0.0 (39.5)

std-dev 98.8 (90.6)

min-error -559.3 (0.0)

max-error 752.7 (752.7)

-74.7 -15.8 -10.2 -0.0 77.5

(1.8) (8.7) (13.8) (23.0) (149.7)

error<50ms 85.49%

error<10ms 30.71%

(e) Complete System

avg-error 1.5 (33.4)

std-dev 89.2 (82.7)

min-error -559.3 (0.0)

max-error 752.7 (752.7)

-67.8 -13.2 -5.9 3.5 64.8

(1.1) (5.3) (11.1) (19.3) (126.9)

error<50ms 87.43%

error<10ms 45.92%

Table B.15.: Alignment Results k.282-2

Figure B.11.: Time Deviations k.282-2

Alignment Results 163

k.282 – 3rd Movement

(a) Two-scale DTW and Chroma vectors

avg-error 5.4 (46.2)

std-dev 77.1 (61.9)

min-error -421.9 (0.0)

max-error 433.6 (433.6)

-103.7 -18.8 -6.3 21.8 153.4

(2.2) (9.6) (19.5) (56.9) (185.8)

error<50ms 72.79%

error<10ms 26.21%

(b) Refined Anchor Notes

avg-error 2.8 (23.0)

std-dev 59.6 (55.1)

min-error -280.2 (0.0)

max-error 433.8 (433.8)

-14.7 -4.3 1.0 10.3 38.8

(0.5) (2.8) (5.9) (13.5) (201.6)

error<50ms 92.17%

error<10ms 67.25%

(c) Non-Anchor Notes before Refinement

avg-error 5.6 (53.2)

std-dev 84.9 (66.5)

min-error -421.9 (0.0)

max-error 433.6 (433.6)

-115.9 -23.0 -10.1 24.0 175.5

(2.6) (12.2) (23.5) (67.7) (205.2)

error<50ms 68.00%

error<10ms 20.16%

(d) Non-Anchor Notes after Refinement

avg-error -14.6 (41.2)

std-dev 122.4 (116.2)

min-error -1717.2 (0.0)

max-error 592.2 (1717.2)

-133.5 -15.1 -8.5 4.7 63.7

(1.9) (7.8) (13.4) (29.7) (194.5)

error<50ms 84.90%

error<10ms 35.02%

(e) Complete System

avg-error -8.0 (34.9)

std-dev 104.7 (99.0)

min-error -1717.2 (0.0)

max-error 592.2 (1717.2)

-100.4 -12.1 -3.9 8.5 63.0

(1.0) (5.1) (11.0) (23.1) (197.1)

error<50ms 87.26%

error<10ms 46.16%

Table B.16.: Alignment Results k.282-3

Figure B.12.: Time Deviations k.282-3

Alignment Results 164

k.283 – 1st Movement

(a) Two-scale DTW and Chroma vectors

avg-error 0.8 (45.7)

std-dev 97.0 (85.6)

min-error -653.5 (0.0)

max-error 923.6 (923.6)

-94.6 -18.6 -8.1 6.0 158.4

(1.5) (7.7) (15.6) (39.6) (212.0)

error<50ms 79.09%

error<10ms 33.63%

(b) Refined Anchor Notes

avg-error 5.1 (17.4)

std-dev 50.4 (47.6)

min-error -435.6 (0.0)

max-error 552.2 (552.2)

-11.3 -2.9 1.5 8.4 40.0

(0.4) (2.2) (5.1) (11.9) (71.5)

error<50ms 93.21%

error<10ms 71.26%

(c) Non-Anchor Notes before Refinement

avg-error -0.4 (54.8)

std-dev 110.5 (95.9)

min-error -653.5 (0.0)

max-error 923.6 (923.6)

-108.6 -22.7 -10.4 4.4 194.9

(2.1) (9.3) (18.1) (50.6) (244.1)

error<50ms 74.82%

error<10ms 27.40%

(d) Non-Anchor Notes after Refinement

avg-error -4.1 (32.9)

std-dev 84.7 (78.1)

min-error -1701.2 (0.0)

max-error 763.8 (1701.2)

-100.3 -11.3 -4.9 5.6 67.3

(1.0) (5.0) (10.0) (23.6) (166.2)

error<50ms 85.85%

error<10ms 50.23%

(e) Complete System

avg-error -1.3 (28.4)

std-dev 76.4 (71.0)

min-error -1701.2 (0.0)

max-error 763.8 (1701.2)

-74.1 -9.0 -2.0 7.3 57.6

(0.7) (3.8) (8.4) (20.0) (126.5)

error<50ms 88.14%

error<10ms 55.99%

Table B.17.: Alignment Results k.283-1

Figure B.13.: Time Deviations k.283-1

Alignment Results 165

k.283 – 2nd Movement

(a) Two-scale DTW and Chroma vectors

avg-error -28.6 (75.2)

std-dev 180.9 (166.9)

min-error -1864.7 (0.0)

max-error 1500.6 (1864.7)

-264.5 -37.0 -13.5 -3.3 119.0

(2.7) (9.7) (22.0) (53.5) (354.9)

error<50ms 73.37%

error<10ms 25.73%

(b) Refined Anchor Notes

avg-error 2.3 (18.2)

std-dev 66.4 (63.9)

min-error -583.1 (0.0)

max-error 847.9 (847.9)

-8.9 -1.2 3.4 10.8 38.9

(0.4) (2.2) (5.2) (12.5) (44.5)

error<50ms 95.80%

error<10ms 68.27%

(c) Non-Anchor Notes before Refinement

avg-error -40.1 (97.3)

std-dev 213.5 (194.2)

min-error -1864.7 (0.1)

max-error 1500.6 (1864.7)

-325.2 -48.7 -19.4 -7.9 187.1

(4.6) (12.8) (28.1) (76.2) (400.0)

error<50ms 67.08%

error<10ms 17.93%

(d) Non-Anchor Notes after Refinement

avg-error -16.3 (68.6)

std-dev 206.0 (194.9)

min-error -1853.1 (0.0)

max-error 1661.8 (1853.1)

-296.3 -10.2 -4.6 3.0 73.8

(0.8) (4.2) (8.4) (19.0) (467.3)

error<50ms 85.39%

error<10ms 58.89%

(e) Complete System

avg-error -10.1 (52.5)

std-dev 174.0 (166.2)

min-error -1853.1 (0.0)

max-error 1661.8 (1853.1)

-186.9 -8.2 -1.5 6.6 49.9

(0.6) (3.6) (7.6) (17.3) (360.1)

error<50ms 88.64%

error<10ms 61.31%

Table B.18.: Alignment Results k.283-2

Figure B.14.: Time Deviations k.283-2

Alignment Results 166

k.283 – 3rd Movement

(a) Two-scale DTW and Chroma vectors

avg-error 8.5 (53.2)

std-dev 162.7 (154.0)

min-error -503.6 (0.0)

max-error 2383.2 (2383.2)

-114.9 -18.3 -7.7 8.7 152.5

(1.8) (7.9) (15.2) (45.0) (187.5)

error<50ms 76.53%

error<10ms 32.82%

(b) Refined Anchor Notes

avg-error 11.6 (24.2)

std-dev 97.3 (95.0)

min-error -396.8 (0.0)

max-error 1460.9 (1460.9)

-10.1 -2.0 3.1 11.3 42.4

(0.5) (2.6) (5.8) (14.2) (101.8)

error<50ms 92.20%

error<10ms 67.52%

(c) Non-Anchor Notes before Refinement

avg-error 7.3 (62.4)

std-dev 184.3 (173.6)

min-error -503.6 (0.0)

max-error 2383.2 (2383.2)

-132.6 -23.4 -9.9 5.2 179.0

(2.1) (8.9) (17.6) (56.7) (213.0)

error<50ms 72.98%

error<10ms 28.23%

(d) Non-Anchor Notes after Refinement

avg-error 11.4 (45.5)

std-dev 177.4 (171.8)

min-error -462.3 (0.0)

max-error 2383.2 (2383.2)

-93.6 -11.9 -5.1 7.1 93.8

(1.2) (5.5) (10.8) (27.1) (194.7)

error<50ms 83.93%

error<10ms 46.62%

(e) Complete System

avg-error 11.5 (39.2)

std-dev 157.4 (152.9)

min-error -462.3 (0.0)

max-error 2383.2 (2383.2)

-79.5 -9.3 -1.8 9.5 76.0

(0.8) (4.3) (9.4) (22.5) (174.4)

error<50ms 86.42%

error<10ms 52.25%

Table B.19.: Alignment Results k.283-3

Figure B.15.: Time Deviations k.283-3

Alignment Results 167

k.284 – 1st Movement

(a) Two-scale DTW and Chroma vectors

avg-error 1.2 (51.4)

std-dev 109.6 (96.8)

min-error -906.3 (0.0)

max-error 978.0 (978.0)

-122.8 -17.6 -5.6 11.4 163.3

(1.3) (7.1) (15.6) (50.3) (227.6)

error<50ms 74.97%

error<10ms 35.32%

(b) Refined Anchor Notes

avg-error 6.1 (26.0)

std-dev 81.4 (77.4)

min-error -861.3 (0.0)

max-error 972.2 (972.2)

-10.3 -1.9 2.7 11.5 51.5

(0.4) (2.3) (5.3) (14.7) (173.3)

error<50ms 91.05%

error<10ms 67.45%

(c) Non-Anchor Notes before Refinement

avg-error -0.7 (58.2)

std-dev 118.3 (103.0)

min-error -906.3 (0.0)

max-error 924.9 (924.9)

-139.1 -22.0 -7.8 10.0 199.5

(1.6) (8.2) (18.0) (60.6) (262.9)

error<50ms 71.79%

error<10ms 30.82%

(d) Non-Anchor Notes after Refinement

avg-error -3.0 (43.3)

std-dev 99.1 (89.2)

min-error -1027.9 (0.0)

max-error 896.5 (1027.9)

-134.5 -10.6 -2.9 9.0 107.7

(1.1) (4.8) (10.0) (33.5) (214.9)

error<50ms 81.03%

error<10ms 49.94%

(e) Complete System

avg-error -0.3 (38.7)

std-dev 94.7 (86.4)

min-error -1027.9 (0.0)

max-error 972.2 (1027.9)

-118.3 -8.0 -0.6 10.4 95.7

(0.8) (3.8) (8.9) (26.4) (209.9)

error<50ms 83.78%

error<10ms 54.14%

Table B.20.: Alignment Results k.284-1

Figure B.16.: Time Deviations k.284-1

Alignment Results 168

k.284 – 2nd Movement

(a) Two-scale DTW and Chroma vectors

avg-error 55.0 (130.3)

std-dev 330.4 (308.6)

min-error -929.6 (0.0)

max-error 3508.5 (3508.5)

-214.2 -28.6 -9.9 16.5 570.9

(2.4) (10.7) (25.2) (93.1) (594.4)

error<50ms 67.04%

error<10ms 23.26%

(b) Refined Anchor Notes

avg-error 20.7 (44.3)

std-dev 206.4 (202.7)

min-error -925.4 (0.0)

max-error 2753.3 (2753.3)

-16.0 -2.5 2.2 12.5 52.2

(0.6) (2.5) (5.8) (17.3) (161.3)

error<50ms 91.39%

error<10ms 64.77%

(c) Non-Anchor Notes before Refinement

avg-error 75.2 (169.8)

std-dev 374.7 (342.3)

min-error -929.6 (0.1)

max-error 3508.5 (3508.5)

-263.2 -36.4 -12.9 34.3 777.8

(4.2) (14.1) (36.0) (187.3) (801.9)

error<50ms 58.25%

error<10ms 13.98%

(d) Non-Anchor Notes after Refinement

avg-error 29.6 (90.4)

std-dev 279.4 (266.0)

min-error -2117.5 (0.0)

max-error 2647.2 (2647.2)

-139.8 -10.1 -2.8 15.4 332.8

(1.2) (5.6) (11.0) (32.5) (523.7)

error<50ms 81.49%

error<10ms 46.78%

(e) Complete System

avg-error 27.0 (75.1)

std-dev 256.9 (247.2)

min-error -2117.5 (0.0)

max-error 2753.3 (2753.3)

-90.3 -7.9 -0.1 15.3 232.4

(0.9) (4.2) (9.6) (28.0) (458.3)

error<50ms 84.72%

error<10ms 51.69%

Table B.21.: Alignment Results k.284-2

Figure B.17.: Time Deviations k.284-2

Alignment Results 169

k.284 – 3rd Movement

(a) Two-scale DTW and Chroma vectors

avg-error -19.4 (72.3)

std-dev 160.0 (144.0)

min-error -1394.5 (0.0)

max-error 2439.1 (2439.1)

-203.4 -38.3 -14.7 2.8 145.2

(2.7) (12.2) (25.5) (69.6) (286.4)

error<50ms 67.95%

error<10ms 19.70%

(b) Refined Anchor Notes

avg-error 2.3 (31.8)

std-dev 107.6 (102.8)

min-error -1355.8 (0.0)

max-error 2273.0 (2273.0)

-85.4 -2.6 3.2 14.0 47.9

(0.6) (2.9) (7.0) (19.5) (186.6)

error<50ms 89.68%

error<10ms 60.18%

(c) Non-Anchor Notes before Refinement

avg-error -25.9 (85.1)

std-dev 177.0 (157.3)

min-error -1394.5 (0.0)

max-error 2439.1 (2439.1)

-240.2 -50.0 -18.8 -2.8 184.5

(3.7) (14.7) (30.3) (89.9) (321.9)

error<50ms 63.24%

error<10ms 14.69%

(d) Non-Anchor Notes after Refinement

avg-error -11.5 (53.3)

std-dev 147.5 (138.0)

min-error -1740.2 (0.0)

max-error 2096.6 (2096.6)

-178.1 -12.1 -4.3 7.6 101.7

(1.0) (5.3) (10.7) (33.4) (250.0)

error<50ms 80.08%

error<10ms 47.42%

(e) Complete System

avg-error -7.2 (47.1)

std-dev 137.1 (129.0)

min-error -1740.2 (0.0)

max-error 2273.0 (2273.0)

-160.8 -9.5 -1.3 10.4 82.7

(0.8) (4.4) (9.9) (28.3) (226.0)

error<50ms 82.90%

error<10ms 50.63%

Table B.22.: Alignment Results k.284-3

Figure B.18.: Time Deviations k.284-3

Alignment Results 170

k.330 – 1st Movement

(a) Two-scale DTW and Chroma vectors

avg-error -8.1 (45.8)

std-dev 98.7 (87.8)

min-error -812.7 (0.0)

max-error 924.5 (924.5)

-115.1 -21.9 -10.1 3.0 102.6

(2.1) (8.4) (16.1) (38.9) (207.2)

error<50ms 79.91%

error<10ms 30.73%

(b) Refined Anchor Notes

avg-error 3.7 (12.6)

std-dev 37.8 (35.8)

min-error -679.8 (0.0)

max-error 264.5 (679.8)

-8.8 -3.2 1.3 7.8 34.8

(0.5) (2.4) (5.0) (9.5) (41.1)

error<50ms 95.47%

error<10ms 76.92%

(c) Non-Anchor Notes before Refinement

avg-error -11.5 (56.8)

std-dev 114.6 (100.2)

min-error -812.7 (0.0)

max-error 924.5 (924.5)

-153.9 -27.7 -12.6 -0.7 163.4

(3.5) (10.6) (19.5) (49.1) (252.4)

error<50ms 75.44%

error<10ms 22.84%

(d) Non-Anchor Notes after Refinement

avg-error -7.7 (26.8)

std-dev 72.5 (67.8)

min-error -1636.9 (0.0)

max-error 474.9 (1636.9)

-86.2 -11.4 -5.4 3.0 46.3

(1.0) (4.8) (9.2) (20.7) (110.1)

error<50ms 88.96%

error<10ms 53.01%

(e) Complete System

avg-error -4.2 (22.6)

std-dev 64.3 (60.3)

min-error -1636.9 (0.0)

max-error 474.9 (1636.9)

-48.1 -9.0 -2.9 5.5 44.1

(0.8) (3.7) (7.9) (16.9) (96.3)

error<50ms 90.98%

error<10ms 59.81%

Table B.23.: Alignment Results k.330-1

Figure B.19.: Time Deviations k.330-1

Alignment Results 171

k.330 – 2nd Movement

(a) Two-scale DTW and Chroma vectors

avg-error 16.7 (217.2)

std-dev 409.4 (347.4)

min-error -2154.9 (0.1)

max-error 2351.5 (2351.5)

-599.5 -55.2 -16.4 31.9 676.1

(4.5) (18.5) (48.7) (306.3) (901.8)

error<50ms 50.76%

error<10ms 11.47%

(b) Refined Anchor Notes

avg-error 5.6 (81.5)

std-dev 245.6 (231.8)

min-error -1855.8 (0.0)

max-error 1365.2 (1855.8)

-294.3 -1.1 4.0 16.3 129.1

(0.6) (2.6) (7.9) (26.5) (603.3)

error<50ms 84.96%

error<10ms 56.55%

(c) Non-Anchor Notes before Refinement

avg-error 21.9 (257.3)

std-dev 449.5 (369.3)

min-error -2154.9 (0.5)

max-error 2351.5 (2351.5)

-661.5 -80.8 -21.3 47.1 781.0

(7.8) (23.1) (74.6) (372.2) (991.8)

error<50ms 43.12%

error<10ms 7.57%

(d) Non-Anchor Notes after Refinement

avg-error 3.4 (163.9)

std-dev 379.9 (342.7)

min-error -2160.7 (0.0)

max-error 1520.9 (2160.7)

-637.1 -11.9 -3.0 9.7 684.3

(1.1) (5.0) (11.2) (60.4) (950.2)

error<50ms 73.47%

error<10ms 45.85%

(e) Complete System

avg-error 4.5 (144.1)

std-dev 351.9 (321.0)

min-error -2160.7 (0.0)

max-error 1520.9 (2160.7)

-608.0 -9.9 -0.4 14.1 655.4

(0.9) (4.5) (11.1) (45.6) (827.9)

error<50ms 75.96%

error<10ms 46.50%

Table B.24.: Alignment Results k.330-2

Figure B.20.: Time Deviations k.330-2

Alignment Results 172

k.330 – 3rd Movement

(a) Two-scale DTW and Chroma vectors

avg-error -6.9 (37.7)

std-dev 71.4 (61.0)

min-error -400.6 (0.0)

max-error 1055.8 (1055.8)

-104.9 -22.4 -9.3 3.4 82.3

(1.9) (7.9) (16.2) (42.0) (137.2)

error<50ms 78.81%

error<10ms 32.16%

(b) Refined Anchor Notes

avg-error 4.5 (15.9)

std-dev 41.0 (38.1)

min-error -349.8 (0.0)

max-error 386.0 (386.0)

-9.4 -2.8 2.0 10.6 43.0

(0.4) (2.4) (5.7) (13.2) (59.0)

error<50ms 94.03%

error<10ms 69.24%

(c) Non-Anchor Notes before Refinement

avg-error -11.1 (43.4)

std-dev 80.6 (68.8)

min-error -400.6 (0.0)

max-error 1055.8 (1055.8)

-121.1 -29.7 -11.6 -0.6 91.1

(2.4) (9.1) (18.1) (48.3) (160.7)

error<50ms 75.96%

error<10ms 28.04%

(d) Non-Anchor Notes after Refinement

avg-error -4.0 (23.4)

std-dev 61.9 (57.5)

min-error -1064.8 (0.0)

max-error 1067.4 (1067.4)

-42.1 -11.6 -5.7 2.7 43.7

(1.0) (5.0) (9.7) (18.7) (95.6)

error<50ms 91.40%

error<10ms 51.37%

(e) Complete System

avg-error -1.2 (21.1)

std-dev 56.1 (52.0)

min-error -1064.8 (0.0)

max-error 1067.4 (1067.4)

-31.7 -9.2 -2.4 6.6 43.0

(0.7) (3.8) (8.4) (17.0) (79.7)

error<50ms 92.33%

error<10ms 56.64%

Table B.25.: Alignment Results k.330-3

Figure B.21.: Time Deviations k.330-3

Alignment Results 173

k.331 – 1st Movement

(a) Two-scale DTW and Chroma vectors

avg-error 6.2 (55.7)

std-dev 151.3 (140.8)

min-error -1039.7 (0.0)

max-error 2619.7 (2619.7)

-99.6 -21.0 -6.1 9.2 163.5

(1.4) (7.0) (16.3) (44.9) (227.4)

error<50ms 77.46%

error<10ms 35.77%

(b) Refined Anchor Notes

avg-error 7.2 (25.4)

std-dev 107.2 (104.4)

min-error -991.8 (0.0)

max-error 2433.8 (2433.8)

-12.4 -0.5 4.6 13.8 45.5

(0.5) (2.7) (6.7) (16.2) (63.3)

error<50ms 93.10%

error<10ms 61.14%

(c) Non-Anchor Notes before Refinement

avg-error 6.8 (66.3)

std-dev 166.5 (152.9)

min-error -1039.7 (0.0)

max-error 2619.7 (2619.7)

-128.4 -26.9 -9.0 6.8 201.8

(1.8) (8.5) (20.6) (56.0) (268.6)

error<50ms 73.11%

error<10ms 29.62%

(d) Non-Anchor Notes after Refinement

avg-error -0.6 (40.8)

std-dev 134.8 (128.5)

min-error -1480.7 (0.0)

max-error 2321.9 (2321.9)

-97.3 -8.1 -1.6 8.2 79.5

(0.7) (3.6) (8.1) (23.5) (202.0)

error<50ms 85.72%

error<10ms 57.58%

(e) Complete System

avg-error 2.2 (36.4)

std-dev 127.0 (121.7)

min-error -1480.7 (0.0)

max-error 2433.8 (2433.8)

-69.2 -5.8 1.0 11.4 62.0

(0.7) (3.4) (8.1) (20.4) (146.7)

error<50ms 87.85%

error<10ms 57.50%

Table B.26.: Alignment Results k.331-1

Figure B.22.: Time Deviations k.331-1

Alignment Results 174

k.331 – 2nd Movement

(a) Two-scale DTW and Chroma vectors

avg-error 2.9 (36.1)

std-dev 81.0 (72.6)

min-error -461.8 (0.0)

max-error 787.2 (787.2)

-58.3 -15.0 -3.7 11.1 100.9

(1.0) (5.8) (13.6) (31.5) (160.4)

error<50ms 84.03%

error<10ms 40.63%

(b) Refined Anchor Notes

avg-error 6.9 (16.6)

std-dev 51.5 (49.2)

min-error -449.6 (0.0)

max-error 829.0 (829.0)

-7.0 0.8 5.2 12.6 36.8

(0.5) (2.8) (6.3) (14.7) (48.3)

error<50ms 95.25%

error<10ms 64.96%

(c) Non-Anchor Notes before Refinement

avg-error -1.4 (43.8)

std-dev 93.9 (83.1)

min-error -461.8 (0.0)

max-error 787.2 (787.2)

-92.8 -21.3 -8.4 2.8 134.4

(1.6) (7.2) (16.3) (36.7) (204.5)

error<50ms 81.80%

error<10ms 34.43%

(d) Non-Anchor Notes after Refinement

avg-error 0.5 (27.0)

std-dev 85.3 (80.9)

min-error -725.5 (0.0)

max-error 1578.7 (1578.7)

-50.0 -7.6 -1.4 7.9 54.9

(0.6) (3.6) (7.8) (19.3) (106.5)

error<50ms 89.54%

error<10ms 58.76%

(e) Complete System

avg-error 3.4 (23.3)

std-dev 74.0 (70.3)

min-error -725.5 (0.0)

max-error 1578.7 (1578.7)

-31.5 -4.7 2.2 11.3 47.6

(0.6) (3.3) (7.5) (17.9) (89.0)

error<50ms 91.53%

error<10ms 59.90%

Table B.27.: Alignment Results k.331-2

Figure B.23.: Time Deviations k.331-2

Alignment Results 175

k.331 – 3rd Movement

(a) Two-scale DTW and Chroma vectors

avg-error 7.1 (42.5)

std-dev 113.4 (105.4)

min-error -368.7 (0.0)

max-error 1665.2 (1665.2)

-84.8 -14.7 -5.0 13.7 110.0

(1.5) (6.7) (14.3) (41.6) (171.7)

error<50ms 77.93%

error<10ms 37.21%

(b) Refined Anchor Notes

avg-error 7.1 (22.3)

std-dev 49.9 (45.2)

min-error -391.9 (0.0)

max-error 341.6 (391.9)

-13.2 -1.5 5.2 17.0 51.6

(0.6) (3.3) (7.8) (20.4) (94.9)

error<50ms 90.56%

error<10ms 56.38%

(c) Non-Anchor Notes before Refinement

avg-error 7.4 (47.0)

std-dev 128.5 (119.8)

min-error -340.9 (0.0)

max-error 1665.2 (1665.2)

-102.1 -16.7 -6.5 12.5 134.1

(1.7) (7.6) (15.5) (43.3) (184.7)

error<50ms 77.25%

error<10ms 33.94%

(d) Non-Anchor Notes after Refinement

avg-error 0.6 (38.8)

std-dev 125.9 (119.8)

min-error -1012.1 (0.0)

max-error 1665.2 (1665.2)

-118.9 -9.0 -2.7 8.1 79.6

(0.7) (4.0) (8.7) (29.6) (164.8)

error<50ms 82.28%

error<10ms 54.74%

(e) Complete System

avg-error 3.1 (34.9)

std-dev 110.8 (105.2)

min-error -1012.1 (0.0)

max-error 1665.2 (1665.2)

-104.7 -7.1 -0.3 12.1 81.9

(0.7) (3.9) (8.6) (27.2) (141.6)

error<50ms 83.57%

error<10ms 54.68%

Table B.28.: Alignment Results k.331-3

Figure B.24.: Time Deviations k.331-3

Alignment Results 176

k.332 – 1st Movement

(a) Two-scale DTW and Chroma vectors

avg-error 17.1 (117.7)

std-dev 252.5 (224.0)

min-error -1425.5 (0.0)

max-error 2115.7 (2115.7)

-280.1 -26.7 -8.4 31.3 380.1

(2.5) (10.8) (27.6) (111.1) (547.3)

error<50ms 61.56%

error<10ms 23.11%

(b) Refined Anchor Notes

avg-error 11.0 (40.4)

std-dev 133.4 (127.6)

min-error -1218.6 (0.0)

max-error 1804.2 (1804.2)

-30.2 -2.6 2.9 15.6 76.3

(0.4) (2.7) (6.8) (20.7) (199.1)

error<50ms 88.53%

error<10ms 60.00%

(c) Non-Anchor Notes before Refinement

avg-error 19.0 (144.2)

std-dev 286.5 (248.3)

min-error -1425.5 (0.0)

max-error 2115.7 (2115.7)

-346.9 -34.8 -11.0 33.8 437.9

(3.1) (13.0) (34.7) (163.5) (674.8)

error<50ms 55.81%

error<10ms 19.03%

(d) Non-Anchor Notes after Refinement

avg-error 7.2 (84.0)

std-dev 216.7 (199.9)

min-error -1125.0 (0.0)

max-error 1962.8 (1962.8)

-224.4 -13.7 -3.4 13.4 277.6

(1.0) (6.2) (13.7) (46.3) (412.1)

error<50ms 75.77%

error<10ms 39.92%

(e) Complete System

avg-error 8.5 (71.8)

std-dev 196.6 (183.2)

min-error -1218.6 (0.0)

max-error 1962.8 (1962.8)

-192.4 -10.3 -0.4 15.0 205.2

(0.8) (4.8) (11.8) (36.5) (383.3)

error<50ms 79.31%

error<10ms 44.64%

Table B.29.: Alignment Results k.332-1

Figure B.25.: Time Deviations k.332-1

Alignment Results 177

k.332 – 2nd Movement

(a) Two-scale DTW and Chroma vectors

avg-error -29.2 (142.8)

std-dev 309.9 (276.5)

min-error -1759.8 (0.0)

max-error 2528.1 (2528.1)

-488.1 -49.8 -12.4 13.1 335.8

(2.3) (12.7) (35.6) (130.4) (621.0)

error<50ms 58.97%

error<10ms 19.58%

(b) Refined Anchor Notes

avg-error 17.1 (59.6)

std-dev 245.6 (238.9)

min-error -1734.7 (0.0)

max-error 2539.7 (2539.7)

-15.7 -0.8 4.3 12.3 58.2

(0.5) (2.4) (5.8) (17.2) (187.0)

error<50ms 90.20%

error<10ms 65.20%

(c) Non-Anchor Notes before Refinement

avg-error -49.8 (175.5)

std-dev 333.1 (287.5)

min-error -1759.8 (0.1)

max-error 2143.3 (2143.3)

-530.2 -99.6 -25.0 -1.0 385.2

(4.4) (17.9) (49.1) (212.8) (721.7)

error<50ms 50.98%

error<10ms 13.46%

(d) Non-Anchor Notes after Refinement

avg-error -10.3 (103.4)

std-dev 300.1 (281.9)

min-error -2868.2 (0.1)

max-error 1724.6 (2868.2)

-407.7 -11.3 -3.9 8.1 251.9

(1.2) (4.9) (10.8) (38.0) (620.6)

error<50ms 79.40%

error<10ms 47.99%

(e) Complete System

avg-error -1.1 (89.8)

std-dev 284.2 (269.6)

min-error -2868.2 (0.0)

max-error 2539.7 (2868.2)

-264.9 -8.7 -0.4 11.5 182.9

(0.8) (4.0) (9.5) (28.3) (540.9)

error<50ms 82.77%

error<10ms 52.31%

Table B.30.: Alignment Results k.332-2

Figure B.26.: Time Deviations k.332-2

Alignment Results 178

k.332 – 3rd Movement

(a) Two-scale DTW and Chroma vectors

avg-error 15.0 (62.8)

std-dev 147.0 (133.7)

min-error -797.8 (0.0)

max-error 1385.0 (1385.0)

-125.2 -15.4 -5.6 20.4 204.6

(1.7) (7.9) (16.9) (52.6) (281.8)

error<50ms 74.08%

error<10ms 32.32%

(b) Refined Anchor Notes

avg-error 9.2 (20.8)

std-dev 73.6 (71.2)

min-error -407.6 (0.0)

max-error 1275.6 (1275.6)

-8.8 -2.2 3.4 11.9 40.5

(0.4) (2.7) (6.1) (14.3) (68.1)

error<50ms 93.33%

error<10ms 66.67%

(c) Non-Anchor Notes before Refinement

avg-error 16.7 (78.7)

std-dev 171.0 (152.8)

min-error -797.8 (0.0)

max-error 1385.0 (1385.0)

-173.0 -20.2 -8.1 19.3 248.4

(2.7) (9.5) (20.0) (69.6) (361.3)

error<50ms 69.05%

error<10ms 26.52%

(d) Non-Anchor Notes after Refinement

avg-error 6.4 (42.0)

std-dev 127.0 (120.0)

min-error -1883.4 (0.0)

max-error 1703.6 (1883.4)

-88.8 -11.3 -3.7 10.7 94.1

(1.1) (5.3) (11.1) (29.2) (193.9)

error<50ms 83.43%

error<10ms 45.98%

(e) Complete System

avg-error 7.4 (35.0)

std-dev 111.9 (106.5)

min-error -1883.4 (0.0)

max-error 1703.6 (1883.4)

-60.4 -8.0 -0.4 11.6 74.2

(0.8) (4.2) (9.3) (22.4) (170.5)

error<50ms 86.72%

error<10ms 52.31%

Table B.31.: Alignment Results k.332-3

Figure B.27.: Time Deviations k.332-3

Alignment Results 179

k.333 – 1st Movement

(a) Two-scale DTW and Chroma vectors

avg-error 14.3 (43.5)

std-dev 116.7 (109.2)

min-error -886.5 (0.0)

max-error 1577.1 (1577.1)

-67.0 -12.1 -2.9 16.5 131.6

(1.0) (6.2) (13.4) (37.4) (179.4)

error<50ms 80.92%

error<10ms 40.49%

(b) Refined Anchor Notes

avg-error 8.9 (15.6)

std-dev 38.3 (36.1)

min-error -299.0 (0.0)

max-error 469.1 (469.1)

-5.3 0.2 5.3 13.3 36.0

(0.6) (2.5) (6.1) (14.4) (46.5)

error<50ms 95.25%

error<10ms 65.27%

(c) Non-Anchor Notes before Refinement

avg-error 16.2 (53.3)

std-dev 139.8 (130.2)

min-error -886.5 (0.0)

max-error 1577.1 (1577.1)

-91.4 -15.3 -6.2 11.8 186.2

(1.6) (7.2) (14.6) (41.1) (216.4)

error<50ms 78.37%

error<10ms 36.45%

(d) Non-Anchor Notes after Refinement

avg-error 2.3 (25.9)

std-dev 60.1 (54.2)

min-error -520.1 (0.0)

max-error 541.8 (541.8)

-54.0 -7.9 -1.3 9.4 61.5

(0.8) (3.7) (8.4) (21.0) (111.7)

error<50ms 88.05%

error<10ms 57.37%

(e) Complete System

avg-error 4.5 (22.5)

std-dev 53.8 (49.1)

min-error -520.1 (0.0)

max-error 541.8 (541.8)

-29.4 -5.2 1.4 11.6 53.7

(0.7) (3.3) (7.6) (17.8) (99.1)

error<50ms 90.46%

error<10ms 59.91%

Table B.32.: Alignment Results k.333-1

Figure B.28.: Time Deviations k.333-1

Alignment Results 180

k.333 – 2nd Movement

(a) Two-scale DTW and Chroma vectors

avg-error -7.0 (130.4)

std-dev 265.2 (231.0)

min-error -1474.1 (0.0)

max-error 1767.6 (1767.6)

-426.6 -40.6 -9.9 22.1 423.6

(3.0) (12.4) (34.0) (115.9) (625.7)

error<50ms 60.90%

error<10ms 19.47%

(b) Refined Anchor Notes

avg-error 11.1 (40.6)

std-dev 151.4 (146.3)

min-error -991.2 (0.0)

max-error 1282.8 (1282.8)

-15.1 -0.7 4.3 14.8 57.0

(0.4) (2.2) (6.4) (17.5) (122.7)

error<50ms 91.47%

error<10ms 61.73%

(c) Non-Anchor Notes before Refinement

avg-error -18.0 (177.2)

std-dev 314.2 (260.1)

min-error -1474.1 (0.1)

max-error 1767.6 (1767.6)

-569.5 -71.5 -19.6 11.5 559.3

(5.9) (18.2) (51.0) (248.3) (694.1)

error<50ms 49.55%

error<10ms 10.11%

(d) Non-Anchor Notes after Refinement

avg-error -4.2 (93.5)

std-dev 234.2 (214.8)

min-error -1447.6 (0.1)

max-error 1773.4 (1773.4)

-349.2 -13.0 -4.6 10.2 283.9

(1.5) (5.9) (12.4) (41.1) (649.8)

error<50ms 77.51%

error<10ms 42.95%

(e) Complete System

avg-error 2.3 (74.0)

std-dev 206.9 (193.3)

min-error -1447.6 (0.0)

max-error 1773.4 (1773.4)

-201.2 -8.3 0.6 15.1 150.9

(0.9) (4.4) (10.9) (28.8) (607.2)

error<50ms 82.50%

error<10ms 48.20%

Table B.33.: Alignment Results k.333-2

Figure B.29.: Time Deviations k.333-2

Alignment Results 181

k.333 – 3rd Movement

(a) Two-scale DTW and Chroma vectors

avg-error 10.9 (77.3)

std-dev 204.2 (189.3)

min-error -1297.3 (0.0)

max-error 2343.1 (2343.1)

-136.0 -17.7 -5.5 17.6 234.5

(1.9) (8.2) (17.7) (59.6) (358.9)

error<50ms 72.54%

error<10ms 31.57%

(b) Refined Anchor Notes

avg-error 6.2 (30.1)

std-dev 100.6 (96.2)

min-error -1250.3 (0.0)

max-error 858.0 (1250.3)

-5.6 0.8 5.9 15.2 45.2

(0.5) (2.8) (7.2) (17.5) (120.5)

error<50ms 92.41%

error<10ms 58.63%

(c) Non-Anchor Notes before Refinement

avg-error 13.7 (95.0)

std-dev 236.6 (217.1)

min-error -1297.3 (0.0)

max-error 2343.1 (2343.1)

-187.8 -22.9 -8.4 16.9 283.3

(2.5) (9.5) (21.3) (77.2) (406.2)

error<50ms 67.93%

error<10ms 26.81%

(d) Non-Anchor Notes after Refinement

avg-error 3.7 (63.6)

std-dev 168.5 (156.0)

min-error -1399.4 (0.0)

max-error 1948.4 (1948.4)

-167.9 -8.6 -2.1 11.5 191.4

(0.8) (4.5) (9.2) (40.4) (380.2)

error<50ms 77.98%

error<10ms 52.91%

(e) Complete System

avg-error 4.6 (53.4)

std-dev 150.8 (141.1)

min-error -1399.4 (0.0)

max-error 1948.4 (1948.4)

-117.0 -6.1 1.4 14.3 125.2

(0.7) (3.9) (8.9) (28.1) (350.5)

error<50ms 82.44%

error<10ms 53.82%

Table B.34.: Alignment Results k.333-3

Figure B.30.: Time Deviations k.333-3

Alignment Results 182

k.457 – 1st Movement

(a) Two-scale DTW and Chroma vectors

avg-error 29.9 (73.0)

std-dev 154.8 (139.8)

min-error -973.4 (0.0)

max-error 1690.3 (1690.3)

-107.4 -14.6 -2.7 34.7 314.7

(1.6) (7.8) (18.5) (72.6) (345.3)

error<50ms 68.93%

error<10ms 32.31%

(b) Refined Anchor Notes

avg-error 15.4 (25.6)

std-dev 92.2 (89.9)

min-error -520.9 (0.0)

max-error 1571.5 (1571.5)

-8.0 -1.0 4.3 14.8 54.2

(0.5) (2.6) (6.1) (17.5) (94.8)

error<50ms 92.16%

error<10ms 62.65%

(c) Non-Anchor Notes before Refinement

avg-error 36.9 (92.7)

std-dev 177.7 (156.1)

min-error -973.4 (0.0)

max-error 1690.3 (1690.3)

-153.5 -18.6 -5.4 53.4 353.6

(2.4) (9.8) (24.7) (114.2) (377.0)

error<50ms 61.89%

error<10ms 25.85%

(d) Non-Anchor Notes after Refinement

avg-error 11.2 (58.4)

std-dev 180.1 (170.8)

min-error -1756.2 (0.0)

max-error 2723.5 (2723.5)

-111.5 -12.6 -4.5 14.0 156.4

(1.2) (6.2) (13.2) (40.0) (269.7)

error<50ms 79.07%

error<10ms 40.34%

(e) Complete System

avg-error 12.8 (47.3)

std-dev 155.9 (149.1)

min-error -1756.2 (0.0)

max-error 2723.5 (2723.5)

-81.4 -8.8 0.3 14.7 110.3

(0.8) (4.7) (10.9) (28.7) (190.2)

error<50ms 83.53%

error<10ms 47.41%

Table B.35.: Alignment Results k.457-1

Figure B.31.: Time Deviations k.457-1

Alignment Results 183

k.457 – 2nd Movement

(a) Two-scale DTW and Chroma vectors

avg-error -80.6 (182.2)

std-dev 393.1 (357.5)

min-error -3386.5 (0.0)

max-error 2327.8 (3386.5)

-784.0 -74.3 -18.9 6.1 306.6

(3.5) (16.3) (38.7) (181.1) (912.2)

error<50ms 55.77%

error<10ms 12.91%

(b) Refined Anchor Notes

avg-error -27.0 (57.6)

std-dev 242.1 (236.7)

min-error -3045.1 (0.0)

max-error 1269.9 (3045.1)

-233.5 -6.4 -1.3 7.1 37.4

(0.6) (3.3) (6.6) (12.1) (312.1)

error<50ms 91.09%

error<10ms 67.90%

(c) Non-Anchor Notes before Refinement

avg-error -102.4 (232.2)

std-dev 442.6 (390.4)

min-error -3386.5 (0.0)

max-error 2327.8 (3386.5)

-888.8 -142.9 -27.4 -3.5 394.6

(8.3) (22.2) (68.1) (271.0) (944.7)

error<50ms 44.67%

error<10ms 6.44%

(d) Non-Anchor Notes after Refinement

avg-error -76.7 (161.9)

std-dev 414.1 (388.8)

min-error -3118.2 (0.1)

max-error 1817.0 (3118.2)

-895.0 -20.1 -11.5 2.0 242.0

(2.4) (9.9) (16.3) (49.4) (961.7)

error<50ms 75.14%

error<10ms 25.43%

(e) Complete System

avg-error -61.2 (129.9)

std-dev 370.5 (352.3)

min-error -3118.2 (0.0)

max-error 1817.0 (3118.2)

-631.0 -16.3 -6.9 5.5 159.4

(1.3) (6.5) (13.4) (32.0) (901.9)

error<50ms 80.00%

error<10ms 38.29%

Table B.36.: Alignment Results k.457-2

Figure B.32.: Time Deviations k.457-2

Alignment Results 184

k.457 – 3rd Movement

(a) Two-scale DTW and Chroma vectors

avg-error 15.2 (93.5)

std-dev 192.5 (168.9)

min-error -566.9 (0.0)

max-error 1780.2 (1780.2)

-208.4 -33.7 -11.3 32.5 271.1

(3.1) (13.6) (33.2) (106.1) (344.3)

error<50ms 58.75%

error<10ms 16.48%

(b) Refined Anchor Notes

avg-error 2.1 (29.1)

std-dev 94.5 (89.9)

min-error -539.2 (0.0)

max-error 1660.6 (1660.6)

-17.4 -8.1 -3.1 5.6 52.3

(0.9) (4.0) (7.7) (13.2) (234.3)

error<50ms 90.78%

error<10ms 63.26%

(c) Non-Anchor Notes before Refinement

avg-error 20.8 (117.8)

std-dev 224.4 (192.1)

min-error -566.9 (0.0)

max-error 1780.2 (1780.2)

-240.1 -51.2 -14.5 47.5 322.4

(4.5) (17.8) (50.1) (153.5) (429.3)

error<50ms 49.97%

error<10ms 12.00%

(d) Non-Anchor Notes after Refinement

avg-error 10.2 (71.9)

std-dev 200.3 (187.2)

min-error -982.8 (0.0)

max-error 2356.8 (2356.8)

-193.1 -21.9 -11.2 10.0 235.6

(2.6) (10.6) (19.3) (43.0) (285.5)

error<50ms 77.37%

error<10ms 22.36%

(e) Complete System

avg-error 7.9 (58.1)

std-dev 173.3 (163.4)

min-error -982.8 (0.0)

max-error 2356.8 (2356.8)

-133.9 -17.1 -6.9 8.8 168.9

(1.6) (7.3) (14.8) (32.0) (268.4)

error<50ms 81.72%

error<10ms 35.08%

Table B.37.: Alignment Results k.457-3

Figure B.33.: Time Deviations k.457-3

Alignment Results 185

k.475 – 1st Movement

(a) Two-scale DTW and Chroma vectors

avg-error 25.5 (317.7)

std-dev 575.5 (480.6)

min-error -2216.4 (0.0)

max-error 2943.7 (2943.7)

-802.2 -121.6 -15.8 55.8 1232.9

(4.8) (19.0) (94.2) (393.0) (1365.3)

error<50ms 41.73%

error<10ms 12.44%

(b) Refined Anchor Notes

avg-error 2.8 (152.0)

std-dev 392.9 (362.3)

min-error -1816.3 (0.1)

max-error 2035.4 (2035.4)

-558.9 -5.3 1.1 10.1 366.3

(0.6) (3.0) (7.3) (34.6) (949.3)

error<50ms 75.47%

error<10ms 56.98%

(c) Non-Anchor Notes before Refinement

avg-error 31.9 (358.3)

std-dev 613.8 (499.4)

min-error -2216.4 (0.0)

max-error 2943.7 (2943.7)

-838.6 -165.7 -21.2 123.3 1252.7

(7.3) (28.4) (145.2) (488.6) (1536.9)

error<50ms 34.89%

error<10ms 7.87%

(d) Non-Anchor Notes after Refinement

avg-error -16.7 (281.7)

std-dev 547.3 (469.6)

min-error -2179.9 (0.0)

max-error 2907.6 (2907.6)

-823.1 -23.7 -5.6 20.5 1201.6

(1.9) (7.4) (22.9) (393.3) (1303.6)

error<50ms 60.93%

error<10ms 33.82%

(e) Complete System

avg-error -12.6 (255.2)

std-dev 519.3 (452.5)

min-error -2179.9 (0.0)

max-error 2907.6 (2907.6)

-792.1 -17.0 -3.5 16.7 1176.9

(1.5) (6.2) (16.9) (363.6) (1273.9)

error<50ms 63.83%

error<10ms 38.18%

Table B.38.: Alignment Results k.475-1

Figure B.34.: Time Deviations k.475-1

Alignment Results 186

k.475 – 2nd Movement

(a) Two-scale DTW and Chroma vectors

avg-error 18.4 (119.0)

std-dev 295.9 (271.6)

min-error -2615.1 (0.0)

max-error 2132.1 (2615.1)

-261.1 -19.4 0.2 43.3 344.2

(1.5) (9.8) (27.2) (101.7) (522.5)

error<50ms 63.01%

error<10ms 25.74%

(b) Refined Anchor Notes

avg-error 17.2 (54.8)

std-dev 222.5 (216.4)

min-error -1555.7 (0.0)

max-error 2180.2 (2180.2)

-13.8 -4.8 0.8 11.3 102.7

(0.7) (3.5) (7.4) (16.8) (208.4)

error<50ms 87.58%

error<10ms 62.75%

(c) Non-Anchor Notes before Refinement

avg-error 13.9 (144.1)

std-dev 324.2 (290.7)

min-error -2615.1 (0.0)

max-error 2132.1 (2615.1)

-331.1 -30.5 -3.9 46.3 440.7

(2.0) (12.7) (34.7) (148.6) (644.6)

error<50ms 56.60%

error<10ms 20.17%

(d) Non-Anchor Notes after Refinement

avg-error 26.3 (93.0)

std-dev 279.4 (264.7)

min-error -1564.4 (0.1)

max-error 2161.1 (2161.1)

-164.6 -13.0 -3.9 21.0 225.3

(1.7) (7.1) (14.9) (41.9) (503.2)

error<50ms 76.34%

error<10ms 34.57%

(e) Complete System

avg-error 23.5 (80.6)

std-dev 261.6 (250.0)

min-error -1564.4 (0.0)

max-error 2161.1 (2161.1)

-108.8 -10.6 -1.4 17.0 190.2

(1.1) (5.3) (11.7) (34.3) (380.2)

error<50ms 80.07%

error<10ms 43.24%

Table B.39.: Alignment Results k.475-2

Figure B.35.: Time Deviations k.475-2

Alignment Results 187

k.475 – 3rd Movement

(a) Two-scale DTW and Chroma vectors

avg-error 12.3 (252.6)

std-dev 482.7 (411.5)

min-error -2473.2 (0.1)

max-error 4479.9 (4479.9)

-697.7 -72.4 -14.0 88.6 728.0

(5.5) (24.1) (76.6) (349.4) (959.6)

error<50ms 41.67%

error<10ms 10.69%

(b) Refined Anchor Notes

avg-error 25.2 (125.7)

std-dev 323.8 (299.4)

min-error -2386.1 (0.0)

max-error 1851.3 (2386.1)

-401.8 -2.9 5.2 24.3 473.8

(0.6) (4.1) (11.9) (49.4) (697.7)

error<50ms 75.40%

error<10ms 45.56%

(c) Non-Anchor Notes before Refinement

avg-error 10.1 (280.2)

std-dev 513.4 (430.2)

min-error -2471.1 (0.1)

max-error 4479.9 (4479.9)

-785.2 -92.8 -17.4 128.4 752.8

(7.0) (28.4) (110.7) (383.4) (1004.4)

error<50ms 36.62%

error<10ms 8.20%

(d) Non-Anchor Notes after Refinement

avg-error 49.8 (200.5)

std-dev 434.5 (388.7)

min-error -2438.9 (0.1)

max-error 3776.3 (3776.3)

-523.7 -15.0 -2.9 48.0 776.1

(2.2) (8.7) (25.8) (234.4) (887.8)

error<50ms 60.74%

error<10ms 28.12%

(e) Complete System

avg-error 45.2 (186.0)

std-dev 415.5 (374.2)

min-error -2438.9 (0.0)

max-error 3776.3 (3776.3)

-496.6 -13.0 0.1 39.8 699.9

(1.6) (7.8) (21.4) (199.4) (868.3)

error<50ms 63.60%

error<10ms 31.21%

Table B.40.: Alignment Results k.475-3

Figure B.36.: Time Deviations k.475-3

Alignment Results 188

k.533 – 1st Movement

(a) Two-scale DTW and Chroma vectors

avg-error 15.1 (59.7)

std-dev 144.0 (131.9)

min-error -511.6 (0.0)

max-error 1824.7 (1824.7)

-109.4 -17.1 -6.1 18.0 188.5

(1.8) (8.5) (17.4) (47.5) (282.4)

error<50ms 75.92%

error<10ms 30.24%

(b) Refined Anchor Notes

avg-error 8.2 (17.9)

std-dev 63.2 (61.2)

min-error -402.6 (0.0)

max-error 919.2 (919.2)

-7.9 -1.6 3.3 10.7 42.2

(0.4) (2.4) (5.3) (12.0) (55.3)

error<50ms 94.51%

error<10ms 70.53%

(c) Non-Anchor Notes before Refinement

avg-error 18.0 (75.6)

std-dev 170.6 (153.9)

min-error -511.6 (0.0)

max-error 1824.7 (1824.7)

-155.6 -22.9 -9.4 13.8 275.1

(2.4) (9.9) (20.5) (60.3) (363.7)

error<50ms 70.97%

error<10ms 25.25%

(d) Non-Anchor Notes after Refinement

avg-error 13.7 (46.9)

std-dev 134.0 (126.2)

min-error -1788.9 (0.0)

max-error 1047.2 (1788.9)

-77.3 -9.5 -2.7 10.1 116.4

(1.0) (4.7) (9.6) (26.6) (232.0)

error<50ms 84.81%

error<10ms 51.73%

(e) Complete System

avg-error 12.0 (37.1)

std-dev 114.9 (109.4)

min-error -1788.9 (0.0)

max-error 1047.2 (1788.9)

-40.0 -6.8 0.2 11.0 74.4

(0.7) (3.7) (8.2) (20.7) (171.9)

error<50ms 88.11%

error<10ms 57.57%

Table B.41.: Alignment Results k.533-1

Figure B.37.: Time Deviations k.533-1

Alignment Results 189

k.533 – 2nd Movement

(a) Two-scale DTW and Chroma vectors

avg-error -5.9 (87.5)

std-dev 202.9 (183.2)

min-error -1455.5 (0.0)

max-error 1995.9 (1995.9)

-282.6 -23.8 -5.7 19.9 206.1

(2.0) (8.8) (22.6) (67.0) (411.1)

error<50ms 69.69%

error<10ms 28.69%

(b) Refined Anchor Notes

avg-error -0.9 (26.7)

std-dev 112.0 (108.8)

min-error -1513.6 (0.0)

max-error 554.6 (1513.6)

-9.2 -0.7 4.1 12.6 41.9

(0.6) (2.7) (5.9) (15.0) (54.0)

error<50ms 94.50%

error<10ms 66.11%

(c) Non-Anchor Notes before Refinement

avg-error -12.5 (122.2)

std-dev 247.1 (215.1)

min-error -1243.8 (0.0)

max-error 1995.9 (1995.9)

-371.0 -44.1 -12.8 7.8 320.8

(3.7) (12.1) (30.5) (145.1) (539.9)

error<50ms 61.16%

error<10ms 19.58%

(d) Non-Anchor Notes after Refinement

avg-error -7.8 (50.7)

std-dev 155.3 (147.0)

min-error -1614.2 (0.0)

max-error 1183.0 (1614.2)

-159.7 -10.0 -2.7 8.9 91.7

(1.0) (4.6) (9.6) (27.0) (219.4)

error<50ms 82.86%

error<10ms 51.01%

(e) Complete System

avg-error -4.7 (41.3)

std-dev 139.3 (133.2)

min-error -1614.2 (0.0)

max-error 1183.0 (1614.2)

-55.9 -6.4 1.2 12.5 69.2

(0.8) (3.7) (8.4) (21.4) (186.6)

error<50ms 87.44%

error<10ms 55.50%

Table B.42.: Alignment Results k.533-2

Figure B.38.: Time Deviations k.533-2

Alignment Results 190

k.533 – 3rd Movement

(a) Two-scale DTW and Chroma vectors

avg-error 18.0 (66.1)

std-dev 163.5 (150.6)

min-error -614.4 (0.0)

max-error 1747.6 (1747.6)

-106.3 -21.9 -7.9 12.1 235.2

(1.8) (8.7) (18.9) (52.0) (268.9)

error<50ms 74.29%

error<10ms 28.93%

(b) Refined Anchor Notes

avg-error 12.3 (24.0)

std-dev 101.3 (99.2)

min-error -539.0 (0.0)

max-error 1414.5 (1414.5)

-8.0 -0.9 3.4 9.8 41.1

(0.4) (2.1) (5.1) (11.6) (84.3)

error<50ms 93.07%

error<10ms 70.84%

(c) Non-Anchor Notes before Refinement

avg-error 21.1 (81.5)

std-dev 185.7 (168.3)

min-error -603.4 (0.1)

max-error 1747.6 (1747.6)

-135.0 -28.4 -10.9 7.7 268.9

(2.5) (10.5) (22.7) (67.9) (332.0)

error<50ms 69.56%

error<10ms 23.19%

(d) Non-Anchor Notes after Refinement

avg-error 15.4 (49.8)

std-dev 164.7 (157.8)

min-error -517.1 (0.0)

max-error 1639.2 (1639.2)

-85.4 -9.6 -3.6 6.1 101.6

(1.0) (4.3) (8.6) (22.7) (240.7)

error<50ms 85.31%

error<10ms 57.01%

(e) Complete System

avg-error 14.4 (41.4)

std-dev 146.6 (141.4)

min-error -539.0 (0.0)

max-error 1639.2 (1639.2)

-63.2 -7.3 -0.5 8.2 70.7

(0.7) (3.5) (7.6) (17.6) (196.7)

error<50ms 87.80%

error<10ms 60.97%

Table B.43.: Alignment Results k.533-3

Figure B.39.: Time Deviations k.533-3

Bibliography 191

Bibliography

[Abdallah and Plumbley, 2004] Abdallah, S. A. and Plumbley, M. D. (2004). Poly-

phonic music transcription by non-negative sparse coding of power spectra. In Pro-

ceedings of the 5th International Conference on Music Information Retrieval (ISMIR

2004), pages 318–325.

[Arifi et al., 2003] Arifi, V., Clausen, M., Kurth, F., and Müller, M. (2003). Auto-

matic synchronization of music data in score-, midi- and pcm-format. In Proceedings

of the 4th International Conference on Music Information Retrieval (ISMIR 2003),

Baltimore, MD, USA.

[Arzt and Widmer, 2010] Arzt, A. and Widmer, G. (2010). Towards effective ”any-

time” music tracking. In Proceedings of the Starting AI Researchers’ Symposium

(STAIRS 2010).

[Arzt et al., 2008] Arzt, A., Widmer, G., and Dixon, S. (2008). Automatic page turning

for musicians via real-time machine listening. In Proceedings of the 18th European

Conference on Artificial Intelligence (ECAI 2008).

[Arzt et al., 2012] Arzt, A., Widmer, G., and Dixon, S. (2012). Adaptive distance

normalization for real-time music tracking. In Submitted to the IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP2012).

[Atiquzzaman, 1994] Atiquzzaman, M. (1994). Complete line segment description using

the hough transform. Image and Vision Computing, 12(5):267–273.

[Bartsch and Wakefield, 2001] Bartsch, M. A. and Wakefield, G. H. (2001). To catch a

chorus: Using chroma-based representations for audio thumbnailing. In Proceedings

of the IEEE Workshop on Application of Signal Processing to Audio and Acoustics

(WASPAA 2001), pages 15–18.

[Bayram and Selesnick, 2009] Bayram, I. and Selesnick, I. W. (2009). Frequency-

domain design of overcomplete rational-dilation wavelet transforms. IEEE Trans.

Bibliography 192

Signal Processing (IEEE Transactions on Signal Processing), 57(8):2957–2972.

[Bello Correa et al., 2005] Bello Correa, J. P., Daudet, L., Abdallah, S. A., Duxbury,

C., Davies, M., and Sandler, M. B. (2005). A tutorial on onset detection in music

signals. IEEE Transactions on Speech and Audio Processing, 13(5):1035–1047.

[Bertin et al., 2010] Bertin, N., Badeau, R., and Vincent, E. (2010). Enforcing har-

monicity and smoothness in bayesian non-negative matrix factorization applied to

polyphonic music transcription. IEEE Transactions on Audio, Speech and Language

Processing, 18(3):538–549.

[Bertin-Mahieux et al., 2010] Bertin-Mahieux, T., Weiss, R. J., and Ellis, Daniel P. W.

(2010). Clustering beat-chroma patterns in a large music database. In Proceedings of

the 11th International Society for Music Information Retrieval Conference (ISMIR

2010), pages 111–116.

[Bloch and Dannenberg, 1985] Bloch, J. J. and Dannenberg, R. B. (1985). Real-

time computer accompaniment of keyboard perfromances. In Proceedings of the

11th International Computer Music Conference (ICMC 1985).

[Boashash, 1992] Boashash, B. (1992). Estimating and interpreting the instantaneous

frequency of a signal: Part 1: Fundamentals. Proceedings of the IEEE, 80(4):520–538.

[Brossier, 2006] Brossier, P. M. (2006). Automatic Annotation of Musical Audio for

Interactive Applications. PhD-Thesis, Queen Mary, University of London, UK.

[Brown and Puckette, 1992] Brown, J. C. and Puckette, M. S. (1992). An efficient

algorithm for the calculation of a constant q transform. Journal of the Acoustic

Society of America, 92(5).

[Böck and Widmer, 2012] Böck, S. and Widmer, G. (2012). Music transcription. In

Submitted to the IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP2012).

[Cano et al., 1999] Cano, P., Loscos, A., and Bonada, J. (1999). Score-performance

matching using hmms. In Proceedings of the International Computer Music Confer-

ence (ICMC 1999).

[Cheveigné, 1993] Cheveigné, A. d. (1993). Separation of concurrent harmonic sounds:

Fundamental frequency estimation and a time-domain cancellation model of auditory

processing. Journal of the Acoustic Society of America, 93(6):3271–3290.

Bibliography 193

[Cont, 2006] Cont, A. (2006). Realtime audio to score alignment for polyphonic mu-

sic instruments using sparse non-negative constraints and hierarchical hmms. In

Proceedings of the IEEE International Conference in Acoustics and Speech Signal

Processing (ICASSP 2006).

[Cont, 2010] Cont, A. (2010). A coupled duration-focused architecture for real-time

music-to-score alignment. IEEE Transactions on Pattern Analysis and Machine In-

telligence, 32(6):974––987.

[Cont et al., 2007] Cont, A., Schwarz, D., Schnell, N., and Raphael, C. (2007). Eval-

uation of real-time audio-to-score alignment. In Proceedings of the 8th International

Conference on Music Information Retrieval (ISMIR 2007).

[Cooley and Tukey, 1965] Cooley, J. and Tukey, J. (1965). An algorithm for the ma-

chine calculation of complex fourier series. Mathematics of Computation, 19(90):297–

301.

[Dannenberg, 1984] Dannenberg, R. B. (1984). An on-line algorithm for real-time ac-

companiment. In Proceedings of the 10th International Computer Music Conference

(ICMC 1984).

[Dannenberg et al., 2007] Dannenberg, R. B., Birmingham, W., Pardo, B., Hu, N.,

Meek, C., and Tzanetakis, G. (2007). A comparative evaluation of search techniques

for query-by-humming using the musart testbed. Journal of the American Society

for Information Science and Technology, 58(5):687–701.

[Dannenberg and Hu, 2002] Dannenberg, R. B. and Hu, N. (2002). Discovering musical

structure in audio recordings. In Proceedings of the 2nd International Conference on

Music and Artificial Intelligence (ICMAI 2002).

[Dannenberg and Hu, 2003] Dannenberg, R. B. and Hu, N. (2003). Polyphonic audio

mathcing for score following and intelligent audio editors. In Proceedings of the

International Computer Music Conference (ICMC 2003), pages 27–33.

[Dannenberg and Raphael, 2006] Dannenberg, R. B. and Raphael, C. (2006). Mu-

sic score alignment and computer accompaniment. Communications of the ACM,

49(8):38.

[Daubechies, 1988] Daubechies, I. (1988). Orthogonal bases of compactly supported

wavelets. Communications on Pure and Applied Mathematics, 41(7):909—-996.

Bibliography 194

[Davies, 2007] Davies, Matthew E. P. (2007). Towards Automatic Rhythmic Accompa-

niment. PhD-Thesis, Queen Mary, University of London, UK.

[Devaney and Ellis, 2009] Devaney, J. and Ellis, Daniel P. W. (2009). Handling asyn-

chrony in audio-score alignment. In Proceedings of the International Computer Music

Conference (ICMC 2009).

[Dixon, 2000] Dixon, S. (2000). On the computer recognition of solo piano musci. In

Proceedings of Australasian Computer Music Conference, pages 31–37.

[Dixon, 2005a] Dixon, S. (2005a). Live tracking of musical performances using on-line

time warping. In Proceedings of the 8th International Conference on Digital Audio

Effects (DAFx-05).

[Dixon, 2005b] Dixon, S. (2005b). An on-line time warping algorithm for tracking

musical performances. In Proceedings of the 19th International Joint Conference on

Artificial Intelligence (IJCAI 2005).

[Dixon, 2006] Dixon, S. (2006). Onset detection revisited. In Proceedings of the

9th International Conference on Digital Audio Effects 2006 (DAFx-06).

[Dixon et al., 2002] Dixon, S., Goebl, W., and Widmer, G. (2002). The performance

worm: Real time visualisation based on langner’s representation. In Proceedings of

the International Computer Music Conference (ICMC 2002), pages 361–364.

[Dixon and Widmer, 2005] Dixon, S. and Widmer, G. (2005). Match: A music align-

ment tool chest. In Proceedings of the 6th International Conference on Music Infro-

mation Retrieval (ISMIR 2005).

[Downie et al., 2010] Downie, J. S., Ehmann, A., Bay, M., and Jones, M. C. (2010).

The music information retrieval evaluation exchange: Some observations and insights.

In Raś, Z. W. and Wieczorkowska, A. A., editors, Advances in Music Information

Retrieval, pages 93–115. Springer-Verlag Berlin Heidelberg, Berlin and Heidelberg,

Germany.

[Dressein et al., 2010] Dressein, A., Cont, A., and Lemaitre, G. (2010). Real-time

polyphonic music transcription with non-negative matrix factorization and beta-

divergence. In Proceedings of the 11th International Society for Music Information

Retrieval Conference (ISMIR 2010).

Bibliography 195

[Dressler and Streich, 2007] Dressler, K. and Streich, S. (2007). Tuning frequency es-

timation using circular statistics. In Proceedings of the 8th International Conference

on Music Information Retrieval (ISMIR 2007).

[Dörfler, 2002] Dörfler, M. (2002). Gabor Analysis for a Class of Signals called Music.

PhD-Thesis, University of Vienna, Austria.

[Dörfler, 2004] Dörfler, M. (2004). What time-frequency analysis can do to music sig-

nals. In Emmer, M., editor, Matematica e Cultura. Springer, Italy.

[Ellis et al., 2008] Ellis, Daniel P. W., Cotton, C. V., and Mandel, M. I. (2008). Cross-

correlation of beat-synchronous representations for music similarity. In Proceedings

of the IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP 2008), pages 57–60.

[Ewert and Müller, 2009] Ewert, S. and Müller, M. (2009). Refinement strategies for

music synchronization. In Lecture Notes on Computer Science, volume 5493, pages

147–165. Springer, Berlin and Heidelber, Germany.

[Eyben et al., 2010] Eyben, F., Böck, S., Schuller, B., and Graves, A. (2010). Universal

onset detection with bidirectional long short-term memory neural networks. In Pro-

ceedings of the 11th International Society for Music Information Retrieval Conference

(ISMIR 2010).

[Flanagan and Golden, 1966] Flanagan, J. and Golden, R. (1966). Phase vocoder. Bell

Systems Technical Journal, 45(9):1493–1509.

[Fletcher, 1964] Fletcher, H. (1964). Normal vibration frequencies of a stiff piano string.

The Journal of the Acoustical Society of America, 36(6):203–209.

[Flossmann et al., 2010] Flossmann, S., Goebl, W., Grachten, M., Niedermayer, B.,

and Widmer, G. (2010). The Magaloff project: An interim report. JNMR, 39(4):363–

377.

[Flossmann et al., 2011] Flossmann, S., Grachten, M., and Widmer, G. (2011). Expres-

sive performance with bayesian networks and linear basis models. In International

Performance Rendering Contest RENCON 2011.

[Flossmann and Widmer, 2011] Flossmann, S. and Widmer, G. (2011). Toward a mul-

tilevel model of expressive piano performance. In International Symposium on Per-

formance Science 2011.

Bibliography 196

[Fremerey et al., 2010] Fremerey, C., Müller, M., and Clausen, M. (2010). Han-

dling repeats and jumps in score-performance synchronization. In Proceedings of

the 11th International Society for Music Information Retrieval Conference (ISMIR

2010).

[Friberg and Sundberg, 1992] Friberg, A. and Sundberg, J. (1992). Perception of just

noticeable time displacement of a tone presented in a metrical sequence at different

tempos. STL-QPSR, 33(4):97–108.

[Frigo and Johnson, 2005] Frigo, M. and Johnson, S. G. (2005). The design and imple-

mentation of fftw3. Proceedings of the IEEE - Special Issue on Program Generation,

Optimization, and Platform Adaption, 93(2):216–231.

[Fujishima, 1999] Fujishima, T. (1999). Realtime chord recognition of musical sound:

A system using common lisp music. In Proceedings of the International Computer

Music Conference (ICMC 1999), pages 464–467.

[Godsill and Davy, 2002] Godsill, S. and Davy, M. (2002). Bayesian harmonic mod-

els for musical signal analysis. In 7th Valencia International Meeting on Bayesian

Statistics.

[Goebl, 2001] Goebl, W. (2001). Melody lead in piano performance: Expressive device

or artifact? The Journal of the Acoustical Society of America, 110(1):563–572.

[Goebl, 2003] Goebl, W. (2003). The Role of Timing and Intensity in the Produc-

tion and Perception of Melody in Expressive Piano Performance. PhD-Thesis, Karl-

Franzens University of Graz, Austria.

[Goebl and Bresin, 2003] Goebl, W. and Bresin, R. (2003). Measurement and repro-

duction accuracy of computer-controlled grand pianos. In Proceedings of the Stock-

holm Music Acoustics Conference (SMAC 2003).

[Goto, 2005] Goto, M. (2005). Prefest: A predominant-f0 estimation method for poly-

phonic musical audio signals. In Proceedings of the 2nd Music Information Retrieval

Evaluation eXchange (MIREX 2005).

[Goto, 2006] Goto, M. (2006). A chorus section detection method for musical audio

signals and its application to a music listening station. IEEE Transactions on Audio,

Speech and Language Processing, 14(5):1783–1794.

Bibliography 197

[Goto and Hayamizu, 1999] Goto, M. and Hayamizu, S. (1999). A real-time music scene

description system: Detecting melody and bass lines in audio signals. In Proceedings

of the IJCAI-99 Workshop on Computational Auditory Scene Analysis, pages 31–40.

[Grachten and Widmer, 2011] Grachten, M. and Widmer, G. (2011). Explaining mu-

sical expression as a mixture of basis functions. In Proceedings of the 8th Sound and

Music Computing Conference (SMC 2011).

[Gómez, 2006] Gómez, E. (2006). Tonal Description of Music Audio Signals. PhD-

Thesis, Universitat Pompeu Fabra, Barcelona, Spain.

[Hainsworth, 2001] Hainsworth, S. W. (2001). Analysis of Musical Audio for Poly-

phonic Transcription. PhD thesis – 1st year reoport, University of Cambridge, Cam-

bridge, UK.

[Hainsworth, 2003] Hainsworth, S. W. (2003). Techniques for Audio Transcription.

PhD-Thesis, University of Cambridge, Cambridge, UK.

[Han and Raphael, 2010] Han, Y. and Raphael, C. (2010). Informed source separation

of orchestra and soloist. In Proceedings of the 11th International Society for Music

Information Retrieval Conference (ISMIR 2010).

[Heideman et al., 1984] Heideman, M. T., Johnson, D. H., and Burrus, C. S. (1984).

Gauss and the history of the fast fourier transform. IEEE ASSP Magazin, 1(4):14–21.

[Hu and Dannenberg, 2005] Hu, N. and Dannenberg, R. B. (2005). A bootstrap method

for training an accurate audio segmenter. In Proceedings of the 6th International

Conference on Music Infromation Retrieval (ISMIR 2005).

[Hu and Dannenberg, 2006] Hu, N. and Dannenberg, R. B. (2006). Bootstrap learning

for accurate onset detection. Machine Learning, 65(2-3):457–471.

[Hu et al., 2003] Hu, N., Dannenberg, R. B., and Tzanetakis, G. (2003). Polyphonic

audio matching and alignment for music retrieval. In Proceedings of the IEEE Work-

shop on Applications of Signal Processing to Audio and Acoustics (WASPAA 2003),

pages 185–188.

[Jiang et al., 2011] Jiang, N., Grosche, P., Konz, V., and Müller, M. (2011). Analyzing

chroma feature types for automated chord recognition. In Proceedings of the 42nd

AES Conference.

Bibliography 198

[Joder et al., 2010a] Joder, C., Essid, S., and Richard, G. (2010a). A comparative

study of tonal acoustic features for a symbolic level music-to-score alignment. In

Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP 2010).

[Joder et al., 2010b] Joder, C., Essid, S., and Richard, G. (2010b). An improved

hierarchical approach for music-to-symbolic score alignment. In Proceedings of

the 11th International Society for Music Information Retrieval Conference (ISMIR

2010).

[Kapur et al., 2004] Kapur, A., Benning, M., and Tzanetakis, G. (2004). Query-by-

beat-boxing: Music retrieval for the dj. In Proceedings of the 5th International Con-

ference on Music Information Retrieval (ISMIR 2004).

[Klapuri, 1999] Klapuri, A. (1999). Pitch estimation using multiple independent time-

frequency windows. In Proceedings of the IEEE Workshop on Applications of Signal

Processing to Audio and Acoustics (WASPAA 1999).

[Klapuri, 2003] Klapuri, A. (2003). Multiple fundamental frequency estimation based

on harmonicity and spectral smoothness. IEEE Transactions on Speech and Audio

Processing, 11(6):804–816.

[Langner and Goebl, 2003] Langner, J. and Goebl, W. (2003). Visualizing expressive

performance in tempo-loudness space. Computer Music Journal, 79(4):69–83.

[Langner et al., 2000] Langner, J., Kopiez, R., and Stoffel, C. (2000). Realtime analysis

of dynamic shaping. In Proceedings of the 6th International Conference on Music

Perception and Cognition.

[Lawson and Hanson, 1974] Lawson, C. and Hanson, R. (1974). Solving Least Squares

Problems. Prentice Hall, Lebanon, IN, USA.

[Lee and Seung, 1999] Lee, D. D. and Seung, H. S. (1999). Learning the parts of objects

by non-negative matrix factorization. Nature, 401(6755):788–791.

[Lee and Seung, 2001] Lee, D. D. and Seung, H. S. (2001). Algorithms for non-negative

matrix factorization. In 13th Conference on Advances in Neural Information Pro-

cessing Systems, page 556–562. MIT Press, Denver, CO, USA.

[Lerch, 2006] Lerch, A. (2006). On the requirement of automatic tunig frequency es-

timation. In Proceedings of the 7th International Conference on Music Information

Bibliography 199

Retrieval (ISMIR 2006).

[Liu et al., 2010] Liu, Y., Dannenberg, R. B., and Cai, L. (2010). The intelligent music

editor: Towards an automated platform for music analysis and editing. In Huang, D.-

S., Zhang, X., Garćıa, C. A., and Zhang, L., editors, Advanced Intelligent Computing

Theories and Applications, volume 6216 of Lecture Notes in Computer Science, pages

123–131. Springer, Berlin and Heidelberg, Germany.

[Lu et al., 2004] Lu, L., Wang, M., and Zhang, H. (2004). Repeating pattern discovery

and structure analysis from acoustic music data. In Proceedings of the 6th ACM

SIGMM International Workshop on Multimedia Information Retrieval.

[Macrae and Dixon, 2010] Macrae, R. and Dixon, S. (2010). Accurate real-time win-

dowed time warping. In Proceedings of the 11th International Society for Music In-

formation Retrieval Conference (ISMIR 2010), pages 423–428.

[Mallat, 1989] Mallat, S. G. (1989). A theory for multiresolution signal decomposition:

The wavelet representation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 11(7).

[Martin, 1996] Martin, K. D. (1996). A Blackboard System for Automatic Transcription

of Simple Polyphonic Music. PhD thesis, MIT, MA, USA.

[Meron and Hirose, 2001] Meron, Y. and Hirose, K. (2001). Automatic alignment of a

musical score to performed music. Acoustical Science & Technology, 22(3):189–198.

[Moog and Rhea, 1990] Moog, R. A. and Rhea, T. L. (1990). Evolution of the key-

board interface: The bösendorfer 290 se recording piano and themoog multiply-

touch-sensitive keyboards. Computer Music Journal, 14(2):52–60.

[Müller, 2011] Müller, M. (2011). Evaluation issues in the field of audio-to-score align-

ment: Personal communication.

[Müller et al., 2011] Müller, M., Ellis, Daniel P. W., Klapuri, A., and Richard, G.

(2011). Signal processing for music analysis. IEEE Journal on Selected Topics in

Signal Processing, 5(6):1088–1110.

[Müller et al., 2005] Müller, M., Kurth, F., and Clausen, M. (2005). Audio matching

via chroma-based statistical features. In Proceedings of the 6th International Confer-

ence on Music Infromation Retrieval (ISMIR 2005).

Bibliography 200

[Müller et al., 2004] Müller, M., Kurth, F., and Röder, T. (2004). Towards an effi-

cient algorithm for automatic score-to-audio synchronization. In Proceedings of the

5th International Conference on Music Information Retrieval (ISMIR 2004), pages

365–372.

[Müller et al., 2006] Müller, M., Mattes, H., and Kurth, F. (2006). An efficient mul-

tiscale approach to audio synchronization. In Proceedings of the 7th International

Conference on Music Information Retrieval (ISMIR 2006), pages 192–197.

[Niedermayer, 2008] Niedermayer, B. (2008). Non-negative matrix division for the au-

tomatic transcription of polyphonic music. In Proceedings of the 9th International

Conference on Music Information Retrieval (ISMIR 2008).

[Niedermayer, 2009a] Niedermayer, B. (2009a). Improving accuracy of polyphonic

music-to-score alignment. In Proceedings of the 10th International Society for Music

Information Retrieval Conference (ISMIR 2009).

[Niedermayer, 2009b] Niedermayer, B. (2009b). Towards audio to score alignment in

the symbolic domain. In Proceedings of the 6th Sound and Music Computing Con-

ference (SMC 2009).

[Niedermayer et al., 2011a] Niedermayer, B., Böck, S., and Widmer, G. (2011a). On

the importance of ”real” audio data for MIR algorithm evaluation at the note-level

– a comparative study. In Proceedings of the 12th International Society for Music

Information Retrieval Conference (ISMIR 2011).

[Niedermayer and Widmer, 2010a] Niedermayer, B. and Widmer, G. (2010a). A

multi-pass algorithm for accurate audio-to-score alignment. In Proceedings of

the 11th International Society for Music Information Retrieval Conference (ISMIR

2010).

[Niedermayer and Widmer, 2010b] Niedermayer, B. and Widmer, G. (2010b). Strate-

gies towards the automatic annotation of classical piano music. In Proceedings of the

7th Sound and Music Computing Conference (SMC 2010).

[Niedermayer et al., 2011b] Niedermayer, B., Widmer, G., and Reuter, C. (2011b). Ver-

sion detection for historical musical automata. In Proceedings of the 8th Sound and

Music Computing Conference (SMC 2011).

[Ong et al., 2006] Ong, B. S., Gómez, E., and Streich, S. (2006). Automatic extraction

of musical structure using pitch class distribution features. In Workshop on Learning

Bibliography 201

the Semantics of Audio Signals (LSAS 2006), pages 53–65.

[Oppenheim and Schafer, 2007] Oppenheim, A. V. and Schafer, R. W. (2007). Discrete-

Time Signal Processing. Prentice Hall, Harlow, UK, 3rd international ed. edition.

[Orio and Déchelle, 2001] Orio, N. and Déchelle, F. (2001). Score following using spec-

tral analysis and hidden markov models. In Proceedings of the International Com-

puter Music Conference (ICMC 2001), pages 151–154.

[Painter and Spanias, 2000] Painter, T. and Spanias, A. (2000). Perceptual coding of

digital audio. Proceedings of the IEEE, 88(4):451–515.

[Pardo and Sanghi, 2005] Pardo, B. and Sanghi, M. (2005). Polyphonic musical se-

quence alignment for database search. In Proceedings of the 6th International Con-

ference on Music Infromation Retrieval (ISMIR 2005), pages 215–222.

[Patterson et al., 1992] Patterson, R. D., Robinson, K., Holdsworth, J., McKeown, D.,

Zhang, C., and Allerhand M. (1992). Complex sounds and auditory images. In

Auditory physiology and perception, Proceedings of the 9th International Symposium

on Hearing, pages 429–446. Pergamon, Oxford, UK.

[Peeters et al., 2002] Peeters, G., La Burthe, A., and Rodet, X. (2002). Roward auto-

matic music audio summary generation from signal analysis. In Proceedings of the

3rd International Symposium on Music Information Retrieval (ISMIR 2002).

[Plumbley et al., 2006] Plumbley, M. D., Abdallah, S. A., Blumensath, T., and Davies,

M. E. (2006). Sparse representations of polyphonic music. Signal Processing,

86(3):417–431.

[Poliner and Ellis, 2007] Poliner, G. E. and Ellis, Daniel P. W. (2007). A discriminative

model for polyphonic piano transcription. EURASIP Journal on Advances in Signal

Processing, 2007(1):1–10.

[Princen et al., 1992] Princen, J., Illingworth, J., and Kittler, J. (1992). A formal defi-

nition of the hough transform - properties and relationships. Journal of Mathematical

Imaging and Vision, 1(2):153–168.

[Rabiner, 1989] Rabiner, L. R. (1989). A tutorial on hidden markov models and selected

applications in speech recognition. Proceedings of the IEEE, 77(2):257–286.

Bibliography 202

[Rabiner and Juang, 1993] Rabiner, L. R. and Juang, B.-H. (1993). Fundamentals of

Speech Recognition. Prentice Hall, Englewood Cliffs, NJ, USA.

[Raphael, 1999] Raphael, C. (1999). Automatic segmentation of acoustic musical sig-

nals using hidden markov models. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 21(4):360–380.

[Raphael, 2001] Raphael, C. (2001). Coarse-to-fine dynamic programming. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 23(12):1379–1390.

[Raphael, 2006] Raphael, C. (2006). Aligning music audio with symbolic scores using

a hybrid graphical model. Machine Learning Journal, 65(2):389–409.

[Raphael, 2009] Raphael, C. (2009). Current directions with musical plus one. In

Proceedings of the 6th Sound and Music Computing Conference (SMC 2009).

[Ravuri and Ellis, 2010] Ravuri, S. and Ellis, Daniel P. W. (2010). Cover song detec-

tion: From high scores to general classification. In Proceedings of the IEEE Inter-

national Conference on Acoustics, Speech, and Signal Processing (ICASSP 2010),

pages 65–68.

[Ryynänen and Klapuri, 2005] Ryynänen, M. and Klapuri, A. (2005). Polyphonic mu-

sic transcription using note event modeling. In Proceedings of the IEEE Workshop

on Applications of Signal Processing to Audio and Acoustics (WASPAA 2005).

[Sakoe and Chiba, 1978] Sakoe, H. and Chiba, S. (1978). Dynamic programming opti-

mization for spoken word recognition. IEEE Trans. Acoustics, Speech, Sig. Processing

(IEEE Transactions on Acoustics, Speech, and Signal Processing), 26(1):43–49.

[Salvador and Chan, 2004] Salvador, S. and Chan, P. (2004). Fastdtw: Toward ac-

cuarte dynamic time warping in linear time and space. In KDD Workshop on Mining

Temporal and Sequential Data, pages 70–80.

[Salvador and Chan, 2007] Salvador, S. and Chan, P. (2007). Toward accurate dynamic

time warping in linear time and space. Intelligent Data Analysis, 11(5):561–580.

[Scheirer, 1997] Scheirer, E. D. (1997). Using musical knowledge to extract expressive

performance information from audio recordings. In Okuno, H. G. and Rosenthal,

D., editors, Readings in Computational Auditory Scene Analysis, pages 361–380.

Lawrence Erlbaum Publication, Mahew, NJ, USA.

Bibliography 203

[Schuck and Young, 1943] Schuck, O. and Young, R. (1943). Observations on the vibra-

tions of piano strings. The Journal of the Acoustical Society of America, 15(1):1–11.

[Schwarz et al., 2004] Schwarz, D., Orio, N., and Schnell, N. (2004). Robust polyphonic

midi score following with hidden markov models. In Proceedings of the International

Computer Music Conference (ICMC 2004), pages 3–6.

[Schörkhuber and Klapuri, 2010] Schörkhuber, C. and Klapuri, A. (2010). Constant-q

transform toolbox for music processing. In Proceedings of the 7th Sound and Music

Computing Conference (SMC 2010).

[Serrà et al., 2010] Serrà, J., Gómez, E., and Herrera, P. (2010). Audio cover song

identification and similarity: Background, approaches, evaluation, and beyond. In

Advances in Music Information Retrieval, volume 247 of Studies in Computational

Intelligence, pages 307–332. Springer, Berlin, Germany.

[Serrà et al., 2008] Serrà, J., Gómez, E., Herrera, P., and Serra, X. (2008). Chroma

binary similarity and local alignment applied to cover song identification. IEEE

Transactions on Audio, Speech, and Language Processing, 16(6):1138–1151.

[Serrà et al., 2009] Serrà, J., Serra, X., and Andrzejak, R. G. (2009). Cross recurrence

quantification for cover song identification. New Journal of Physics, 11(9):093017.

[Shalev-Schwartz et al., 2004] Shalev-Schwartz, S., Keshet, J., and Singer, Y. (2004).

Learning to align polyphonic music. In Proceedings of the 5th International Confer-

ence on Music Information Retrieval (ISMIR 2004).

[Sheh and Ellis, 2003] Sheh, A. and Ellis, Daniel P. W. (2003). Chord segmentation

and recognition using em-trained hidden markov models. In Proceedings of the

4th International Conference on Music Information Retrieval (ISMIR 2003), pages

185–191, Baltimore, MD, USA.

[Shiu et al., 2006] Shiu, Y., Jeong, H., and Jay Kuo, C.-C. (2006). Similarity matrix

processing for music structure analysis. In Proceedings of the Audio and Music Com-

puting for Multimedia Workshop (AMCMM 2006).

[Smaragdis and Brown, 2003] Smaragdis, P. and Brown, J. C. (2003). Non-negative

matrix factorization for polyphonic music transcription. In Proceedings of the IEEE

Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA

2003).

Bibliography 204

[Song et al., 2002] Song, J., Bae, S.-Y., and Yoon, K. (2002). Query by humming:

Matching humming query to polyphonic audio. In Proceedings of the 2002 IEEE

International Conference on Multimedia and Expo, pages 329–332.

[Soulez et al., 2003] Soulez, F., Rodet, X., and Schwarz, D. (2003). Improving poly-

phonic and poly-instrumental music to score alignment. In Proceedings of the

4th International Conference on Music Information Retrieval (ISMIR 2003), Bal-

timore, MD, USA.

[Turetsky and Ellis, 2003] Turetsky, R. J. and Ellis, Daniel P. W. (2003). Ground-

truth transcriptions of real music from force-aligned midi syntheses. In Proceedings

of the 4th International Conference on Music Information Retrieval (ISMIR 2003),

Baltimore, MD, USA.

[Tzanetakis et al., 2003] Tzanetakis, G., Emolinskyi, A., and Cook, P. (2003). Pitch

histograms in audio and symbolic music information retrieval. JNMR, 32(2):143–152.

[Tzanetakis et al., 2001] Tzanetakis, G., Essl, G., and Cook, P. (2001). Audio analysis

using the discrete wavelet transform. In Proceedings of the WSES International

Conference on Acoustics and Music: Theory and Applications (AMTA 2001).

[Urbano, 2011] Urbano, J. (2011). Information retrieval meta-evaluation: Challenges

and opportunities in the music domain. In Proceedings of the 12th International

Society for Music Information Retrieval Conference (ISMIR 2011).

[Velasco et al., 2011] Velasco, G. A., Holighaus, N., Dörfler, M., and Grill, T. (2011).

Constructing an invertible constant-q transform with nonstationary gabor frames. In

Proceedings of the 14th International Conference on Digital Audio Effects (DAFx-11),

pages 93–99.

[Vincent et al., 2007] Vincent, E., Bertin, N., and Badeau, R. (2007). Two nonnegative

matrix factorization methods for polyphonic pitch transcription. In MIREX 2007.

[Vincent et al., 2008] Vincent, E., Bertin, N., and Badeau, R. (2008). Harmonic and

inharmonic nonnegative matrix factorization for polyphonic pitch transcription. In

Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP 2008).

[Virtanen, 2007] Virtanen, T. (2007). Monaural sound source separation by nonneg-

ative matrix factorization with temporal continuity and sparseness criteria. IEEE

Transactions on Audio, Speech and Language Processing, 15(3):1066–1074.

Bibliography 205

[Virtanen et al., 2008] Virtanen, T., Cemgil, A. T., and Godsill, S. (2008). Bayesian

extensions to non-negative matrix factorisation for audio signal modelling. In Pro-

ceedings of the IEEE International Conference on Acoustics, Speech, and Signal Pro-

cessing (ICASSP 2008).

[Weiss and Bello Correa, 2010] Weiss, R. J. and Bello Correa, J. P. (2010). Identifying

repeated patterns in music using sparse convolutive non-negative matrix factoriza-

tion. In Proceedings of the 11th International Society for Music Information Retrieval

Conference (ISMIR 2010), pages 123–128.

[Widmer et al., 2009] Widmer, G., Flossmann, S., and Grachten, M. (2009). Yqx plays

chopin. AI Magazine, 30(3):35–48.

curriculum vitæ

Dipl.-Ing. Mag.
Bernhard Niedermayer
b.niedermayer@inode.at

Date of Birth July 28st 1983
Nationality Austrian
Address Colerusstr. 12/9

A-4040 Linz

Education and Studies

1992–2001 Grammar School

2001–2005 Bachelor’s programme Computer Science at the Johannes Kepler University (JKU) of Linz (Austria)

2005 Exchange programme at the Oxford Brookes University (UK)

2005–2009 Master’s programme Business Information Systems at the Johannes Kepler University of Linz

2006–2007 Master’s programme Computer Science at the Johannes Kepler University of Linz

2007– PhD programme Computer Science at the Johannes Kepler University of Linz

2009– Master programme Legal and Business Aspects in Technics at the Johannes Kepler University of Linz

Practial experience

2004–2005 Developer of eLearning material at the Institute for Information Processing and Microprocessor Technology (JKU)

2004–2006 Tutor at the Institute for Applied Knowledge Processing (JKU)

2006 Developer of eLearning material at the Oxford Brookes University

2006–2007 IT-Trainer at the company Integanet (Software Development)

2008 IT-Trainer at the company Rossi Roth KG (Software Development)

2007–2008 IT Administrator and Advisor at the Ziviltechnikerbuero Steinbichl

2007– Research Assistant at the Department for Computational Perception (JKU)

Publications

2007 Niedermayer, B. Automatic Detection of Cover-Versions and Plagiarism in Modern Pop- und Rockmusic. Master-
Thesis (in German), JKU Linz.

2008 Niedermayer, B. Non-Negative Matrix Division for the Automatic Transcription of Polyphonic Music. In Pro-
ceedings of the 9th International Conference on Music Information Retrieval (ISMIR 2008), Philadelphia, PA,
USA.

2009 Niedermayer, B. Towards Audio to Score Alignment in the Symbolic Domain. In Proceedings of the Sound and
Music Computing Conference (SMC 2009), Porto, Portugal.

2009 Niedermayer, B. Improving Accuracy of Polyphonic Music-to-Score Alignment. In Proceedings of the 10th Inter-
national Conference on Music Information Retrieval (ISMIR 2009), Kobe, Japan.

2010 Niedermayer, B.; Widmer, G. A Multi-Pass Algorithm for Accurate Audio-to-Score Alignment. In Proceedings of
the 11th International Society for Music Information Retrieval Conference (ISMIR 2010), Utrecht, The Netherlands.

2010 Niedermayer, B.; Widmer, G. Strategies towards the Automatic Annotation of Classical Piano Music. In Proceed-
ings of the 7th Sound and Music Computing Conference (SMC 2010), Barcelona, Spain.

2010 Flossmann, S.; Goebl, W.; Grachten, M.; Niedermayer, B.; Widmer, G. The Magaloff Project: An Interim Report.
Journal of New Music Research, 39 (4), 363-377 .

2011 Niedermayer, B.; Widmer, G.; C. Reuter Version Detection for Historical Musical Automata. In Proceedings of
the 8th Sound and Music Computing Conference (SMC 2011), Padova, Italy.

2011 Niedermayer, B.; Böck, S; Widmer, G. On the Importance of ”Real” Audio Data for MIR Algorithm Evaluation
at the Note-Level - A comparative Study. In Proceedings of the 12th International Society for Music Information
Retrieval Conference (ISMIR 2011), Miami, Florida, USA.

Linz, February 28, 2012

Eidesstattliche Erklärung 207

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig und ohne

fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt

bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht

habe.

Linz, am

Bernhard Niedermayer

	1 Introduction
	1.1 Motivation
	1.2 Objectives and Contribution
	1.2.1 Problem Description
	1.2.2 Contributions

	1.3 Outline

	2 Evaluation
	2.1 Data Corpus
	2.1.1 The Bösendorfer SE290
	2.1.2 The Mozart Sonatas

	2.2 Test Bench Environment
	2.2.1 Matching Score MIDI to Performance MIDI
	2.2.2 Matching Performance MIDI to Audio

	2.3 Evaluation Criteria
	2.3.1 Timing
	2.3.2 Loudness
	2.3.3 Other Evaluation Criteria

	2.4 A Detailed Analysis of Possible Data Sources
	2.4.1 Alternative Audio Sources
	2.4.2 Performance Aspects

	2.5 Conclusions and Consequences for this Thesis

	3 Feature Extraction for Audio Alignment
	3.1 Time-Frequency Transformations
	3.1.1 Short Time Fourier Transform
	3.1.2 Constant Q Transform
	3.1.3 Wavelet Transform
	3.1.4 Gabor Analysis
	3.1.5 Filter Banks
	3.1.6 Discussion

	3.2 Chroma Vectors
	3.2.1 Distance Weighting
	3.2.2 Spectral Peak Selection
	3.2.3 Harmonic Frequencies
	3.2.4 Pre- and Post-processing Methods

	3.3 Onset-based Features
	3.4 Pitch Activation
	3.4.1 Non-negative Matrix Factorization
	3.4.2 Non-negative Least Squares Factorization
	3.4.3 Tone models

	3.5 Extraction of Score Features
	3.6 Conclusions and Consequences for this Thesis

	4 Audio-to-Score Alignment Techniques
	4.1 Dynamic Time Warping
	4.1.1 Similarity Measure
	4.1.2 Minimal Cost Calculation
	4.1.3 Path Backtracking
	4.1.4 Enhancements of the DTW Algorithm

	4.2 Graphical Score Models
	4.2.1 Note and Chord Duration Modeling
	4.2.2 Tempo Modeling
	4.2.3 Observation Probability Distribution
	4.2.4 Modeling of Asynchronies
	4.2.5 Model Training and Decoding

	4.3 Quasi-Transcription
	4.3.1 The Symbolic Domain
	4.3.2 Local Distances

	4.4 Onset Matching
	4.5 Conclusion and Consequences for this Thesis

	5 Alignment Optimization Techniques
	5.1 Optimization towards Computational Costs
	5.1.1 Static global Constraints
	5.1.2 Online Audio Alignment
	5.1.3 Path Pruning
	5.1.4 Shortcut Paths
	5.1.5 Multi-Scale DTW
	5.1.6 Divide & Conquer

	5.2 Optimization towards Robustness
	5.2.1 Short-Time Statistics
	5.2.2 Robustness to Structural Changes
	5.2.3 Plausibility Estimation

	5.3 Optimization towards Accuracy
	5.3.1 Implicit Accuracy Improvement
	5.3.2 Score-guided Audio Transcription
	5.3.3 Single-Pass Post-processing Methods

	5.4 Conclusion and Consequences for this Thesis

	6 A System for Accurate Audio-to-Score Alignment at the Note Level
	6.1 Initial Alignment
	6.2 Anchor Note Selection
	6.2.1 Candidate Extraction
	6.2.2 Candidate Selection

	6.3 Between-Anchor Refinement
	6.3.1 Beta distribution
	6.3.2 Onset estimation

	6.4 Refinement of Notes concurrent to Anchors
	6.5 Evaluation Results
	6.6 Conclusion

	7 Applications
	7.1 Graphical Annotation Tool
	7.2 Musical Performance Research
	7.2.1 Performance Visualization
	7.2.2 Expressive Performance Rendering

	7.3 Audio-to-Audio Alignment and Structural Analysis
	7.4 Version Detection
	7.4.1 Acoustic Characteristics of Musical Automata
	7.4.2 Version Detection System
	7.4.3 Feature Extraction
	7.4.4 Segmentation
	7.4.5 Alignment and Similarity Measurement
	7.4.6 Data Merging
	7.4.7 Experimental Results

	7.5 Other Applications of Audio Alignment
	7.5.1 Desoloing
	7.5.2 Query-by-Humming and Music Retrieval

	8 Conclusion
	8.1 Summary
	8.2 Discussion
	8.3 Future Developments

	A Performance Statistics
	A.1 Tempo
	A.2 Dynamics
	A.3 Micro-Timings

	B Alignment Results
	Bibliography
	Curriculum Vitae

