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ABSTRACT

Musical automata were very popular in European homes
in the pre-phonograph era, but have attracted little atten-
tion in academic research. Motivated by a specific ap-
plication need, this paper proposes a first approach to the
automatic detection of versions of the same piece of mu-
sic played by different automata. Due to the characteris-
tics of the instruments as well as the themes played, this
task deviates considerably from cover version detection in
modern pop and rock music. We therefore introduce an
enhanced audio matching and comparison algorithm with
two main features: (1) a new alignment cost measure –
Off-Diagonal Cost – based on the Hough transform; and
(2) a split-and-merge strategy that compensates for major
structural differences between different versions. The sys-
tem was evaluated on a test set comprising 89 recordings
of historical musical automata. Results show that the new
algorithm performs significantly better than the reference
system based on Dynamic Time Warping and chroma fea-
tures without the above-mentioned new features, and that
it may work well enough to be practically useful for the
intended application.

1. INTRODUCTION

Over the past 30 years, the Phonogram Archive of the Aus-
trian Academy of Sciences (www.phonogrammarchiv.
at) has compiled a large collection of recordings of a va-
riety of historical musical automata (e.g., musical boxes,
‘flute clocks’, violin playing automata, barrel organs,. . . ). 1

Thousands of recordings have been collected, representing
a large repertoire of music that was popular during certain
periods of the 18th and 19th centuries – from opera arias to
folk songs. Musical automata were widespread in private
homes long before the invention of the phonograph. Such
a collection is thus a unique source of information to study
musical tastes, popular repertoire, and other musical trends
during parts of the pre-phonograph era.

A major problem with the audio collection is that while
the instruments themselves are relatively well documented,

1 For a report on the background of this project see http:
//www.phonogrammarchiv.at/Mechanical_Music/
mechreal.html.
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the musical pieces being played are often unknown. At the
same time, there is reason to believe that there will be mul-
tiple versions and interpretations of many of the songs in
the collection. One way to automatically identify some
of the unknown pieces would thus be to systematically
search for subsets of recordings that might represent the
same piece and then unify their meta-information. Given
the size of the collection and the specific characteristics of
the recordings (see below), this is a very difficult and te-
dious task.

The research described here represents a first attempt at
developing audio analysis and matching technology that
could help with this problem. The goal is a kind of ‘cover
version’ detection: for each recording in the collection,
search for other recordings that might represent (parts of)
the same piece – perhaps played on an entirely different
instrument, in a different key, possibly only sharing some
sub-sections of the piece. Recordings of such historical
music automata present new challenges to sound and mu-
sic computing: apart from the sometimes extremely inhar-
monic sounds of the instruments (see section 3), a central
problem is the often extreme ornamentation and/or arpeg-
giations and other asynchronies that obscure the main me-
lody (to the extent that it is sometimes hard even for experi-
enced listeners to recognize a song, at least at first hearing).

We present here a first pilot study that starts with a small
collection of recordings of musical boxes and flute clocks,
and with 3 pairs of recordings which are known to per-
tain to the same composition. We first experiment with
fairly ‘standard’ audio matching technology (chroma fea-
tures, dynamic time warping), and then, based on insights
into specific problems posed by our data, develop and test
an enhanced audio matching strategy (including the use
of a Hough transform). Experiments show that the latter
method improves results considerably and gives us reason
to believe that the general problem is not unsolvable.

The remainder of this paper is organized as follows. In
section 2 we give a brief overview of related work in the
field of (cover) version detection. Section 3 then describes
relevant characteristics of the mechanical musical instru-
ments under consideration. The proposed version detec-
tion system is explained in Section 4, and the exact similar-
ity measures used are defined in Section 5. An evaluation
is presented in Section 6.

2. RELATED WORK

A detailed overview over current version detection systems
is given in [4]. Also, an annual comparison of different al-
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gorithms is carried out as part of the MIREX 2 contest.
The evaluation is performed on two test sets, one compris-
ing pieces of popular music, the other one consisting of
performances of Chopin’s mazurkas by different pianists.
Best results were obtained in 2009 by [1] and [2]. Both ap-
proaches are based on chroma descriptors. [1] used cross
recurrence plots based on a state space representation of
two songs to rank songs according to their similarity. [2]
calculated three different similarity features – two based on
cross-correlation and one based on dynamic programming
– in combination with three different tempo assumptions
and trained a support vector machine on this data.

A completely different approach was presented in [3],
where similarity estimation is not done based on audio
features themselves, but on a discrete text representation.
Strings are obtained from the feature sequences by clus-
tering all chroma vectors and subsequently replacing each
individual vector by the hash value assigned to the clus-
ter it belongs to. The actual query is then performed by
exploiting the open-source search engine Lucene 3 .

Though not directly focusing on cover version detection,
also [5] is relevant to our work. Here, instead of identify-
ing cover versions, the plausibility of audio-to-midi align-
ments is assessed. Several metrics were investigated, in-
cluding a relative path cost measure that will also be em-
ployed in our matching algorithm (see Section 5).

3. ACOUSTIC CHARACTERISTICS OF MUSICAL
AUTOMATA

Musical automata come in wide varieties. Computer con-
trolled pianos and similar modern instruments aside, there
are musical boxes, flute clocks, violin playing automata of
various kinds, barrel organs, etc. – each of them revealing
individual characteristics. While flute clocks, for exam-
ple, are largely consistent with the spectral envelopes one
would expect from wind instruments – i.e., harmonics at
the odd integer multiples of the fundamental frequency –
musical boxes, where metal plates are struck, are highly
inharmonic.

Another issue are different arrangements of a same theme
for different automata. Besides transpositions into differ-
ent keys, additional ornamentations or arpeggiations can
alter the sound impression of a piece significantly. Figure 1
shows spectrograms of the ending of a theme from Men-
delssohn’s oratorio Elias as played by two different musi-
cal boxes. While in (a) only the main melody notes are
played, (b) features luscious ornamentations that make it
hard even for human listeners to hear the relation to the
main theme.

A third challenge for a version detection system are ma-
jor changes in the structure of the piece. As described in
more detail in section 6 (see Table 2), when two recordings
relate to the same piece, this does not necessarily mean
that they both comprise the same musical sections. In our
data there are samples where one musical box plays only

2 MIREX: Music Information Retrieval Evaluation eXchange (orga-
nized by the IMIRSEL at the University of Illinois at Urbana-Champaign)
http://www.music-ir.org/mirex

3 http://lucene.apache.org

(a)

(b)

Figure 1. The ending of the same theme from
Mendelssohn’s oratorio Elias played by two different mu-
sical boxes.

the second half of what another one is playing. More-
over, some recordings are potpourris (medleys) of several
themes (e.g., popular melodies from an opera); pairs of
such medleys pertaining to the same set of themes will
match only in part.

4. VERSION DETECTION

The proposed system works in two steps. First, features are
extracted from the audio signals of the individual record-
ings. Then, a compact similarity measure is obtained, such
that pairs of audio files can be ranked accordingly. In do-
ing so, to account for transpositions and major structural
changes, each piece is split into several chunks of a fixed
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Figure 2. Calculation of the similarity measure

length which are then aligned to each other considering
all possible transpositions. The final similarity measure
is obtained by accumulating the fitness ratings of these
alignments. An overview of the whole process is given
in Figure 2.

4.1 Feature Extraction

Chroma vectors are a common feature in cover version
detection or audio-to-audio alignment. They have been
shown to be robust to several potentially problematic as-
pects, such as different instrumentation, varying degrees of
polyphony, or different recording conditions. A compara-
tive study has been presented in [6], showing that chroma
vectors outperform several other features, such as MFCCs
or pitch histograms, in an audio matching task.

Chroma vectors consist of a 12-dimensional vector per
time frame, representing the relative energies within the
individual pitch classes (i.e. C, C#, D,. . . ). The calculation
starts by transforming the audio signal into the frequency
domain. Then the energies of frequency bins correspond-
ing to the same pitch classes are accumulated. To this end
the center frequencies of all bins are folded into the same
octave. The mapping onto pitch classes is then done such
that a frequency can also contribute to two classes if it lies
in the middle of the fundamental frequencies of two ad-
jacent pitches. Therefore, the distance of a bin’s folded
center frequency f to the fundamental f0 of a certain pitch
prototype is determined on the cent-scale as

df0(f) = 1200 ∗ log2

f

f0
(1)

The energy of f then contributes to each prototypical fun-
damental f0 with a weighting of

w(f, f0) =

{
0 , if df0(f) < l

cos
(
π
2ldf0(f)

)
, else

(2)

In the system proposed here, l was chosen to be 75. Con-
cerning the transform into the spectral domain, an STFT
with window length 4096 and a hop size of 1024 was ap-
plied. This results in a frequency resolution fine enough
to also resolve relatively low pitches and a time resolution
enabling an accurate alignment between two pieces.

4.2 Transposition

A common deviation of a version of a piece from its orig-
inal is a change of key. Often, the reason for these trans-
positions is to adapt a piece to a different lead instrument
or another singer. Transpositions can also be motivated by
artistic considerations, such as to give a piece a different
mood.

Most similarity measures will inevitably fail if the main
key has been changed between two versions of a piece. The
one used here, for example, depends on the Cosine distance
dc(Ai, Bj) (see equation 3 in section 4.4) that measures the
error made when matching two chroma vectorsAi andBj .
The Cosine distance, however, is not robust to transposi-
tions, i.e., shifts of one of the chroma vectors.

To compensate for possible changes of key, when com-
puting the similarity measures between two feature sequen-
ces, each of the 12 shifts is considered. The one yielding
the best result is kept and its deviation from the original
key is remembered.

4.3 Segmentation

Listening to many recordings of different musical automata
has revealed that the lengths of the themes played by these
instruments vary significantly from less than 30 seconds up
to several minutes. This can also be the case when the orig-
inal piece or even the particular theme was the same. For
instance, there are pairs of musical boxes where one per-
forms only the second half of what the other one is playing.

To address this problem, the recordings were split into
fragments of equal length. Instead of comparing two whole
pieces, each combination of two such chunks was consid-
ered. This might seem inefficient from a computational
costs point of view. However, the effects are moderate
since the effort required to run the alignment algorithm
(which is of complexity O(n2)) and compute the similar-
ity measure (including operations of complexity O(n3)) is
reduced accordingly. In addition, the processing of pairs of
fragments is fully parallelizable and also, due to the fixed
chunk size, the amount of memory needed is limited and
independent of the actual length of the full audio record-
ings.



A fragment length of 25 seconds and an overlap ratio of
about 50% have been found to yield good results. The
overlap ratio was adapted slightly, such that the last frag-
ments are positioned at the very end of each piece and
there is no remainder left. When trying to align pairs of
fragments from two pieces, all possible transpositions are
considered, and different fragments from the same piece
are allowed to be transposed by different numbers of semi-
tones. Conflicts arising from this are handled later when
the results from the individual fragment pairs are merged
(see Section 5.3).

4.4 Alignment

To calculate a compact similarity measure, two sequences
of features have to be aligned first. A well known method
to perform this task is Dynamic Time Warping (DTW).
Here, one starts by defining a cost function, measuring the
error made when aligning a frame Ai within one feature
sequence A to a frame Bj within another feature sequence
B. Preliminary experiments have shown that the cosine
distance dc between two chroma vectors, defined as

dc(Ai, Bj) =
〈Ai, Bj〉
|Ai| ∗ |Bj |

(3)

yields good results.
Given the cost function, the next step is to calculate the

dissimilarity matrix D, where each element Di,j equals
dc(Ai, Bj). From this data an accumulated cost matrix
C can be computed efficiently. Here, each cell Ci,j gives
the minimum cost of an alignment between the two subse-
quences A0 – Ai and B0 – Bj . Starting from C0,0 = D0,0,
it is calculated iteratively by

Ci,j = min


Ci−1,j−1 +Di,j

Ci−1,j +Di,j

Ci,j−1 +Di,j

(4)

The alignment is finally determined by the path through
D that leads to the optimal global alignment cost given by
CN−1,M−1. Backtracking the path can easily be done by
remembering which of the three options in equation 4 was
used in each step of the calculation of C. For a more de-
tailed description of the Dynamic Time Warping algorithm
and its properties or a possible refinement strategy, we re-
fer the interested reader to [7] and [5] respectively.

5. SIMILARITY MEASUREMENT

Given the alignment, an intuitive similarity measure for
two pieces of music would be the average cost along the
alignment path. However, preliminary experiments have
shown that this measure is too simple. One the one hand, it
allows for insertions or deletions of notes and thus a change
of melody up to certain amount, while on the other hand,
it penalizes a change in the structure of a piece. In addi-
tion, although chroma vectors are relatively robust to these
effects, higher average alignment costs can still be caused
be changes in instrumentation or accompaniment.

5.1 Relative Path Cost

One approach to account for differences in instrumentation
or accompaniment is to calculate the average cost along
the alignment path in relation to the overall average cost
D over all Di,j . Assuming that the two pieces of music
under consideration share some similar sections, the pitch
classes in the chroma feature will have similar underlying
distributions. In such cases the overall average cost D is
a good baseline, estimating the average path cost of a ran-
dom alignment. It can account for specifics of the two au-
dio signals that the chroma feature is not invariant to, such
as changed recording conditions, varying levels of noise,
or different arrangements. In [5] a similar metric is pro-
posed and shown to outperform others that fully rely on
absolute costs along the alignment path.

5.2 Off-Diagonal Cost

An inherent property of the DTW algorithm is that it is
robust to small deviations of one piece compared to an-
other one. This is necessary in order to compensate for
different performance styles or playing errors. However,
the DTW algorithm’s flexibility can also result in relatively
low alignment costs when two meloies are compared that
are really to be considered different – especially in cases
where one performance contains a lot of additional orna-
mentation. The algorithm may decide to delete the main
melody notes while matching the auxiliary notes, produc-
ing a good-looking alignment of what are really different
melodies.

This undesired behavior can be detected by investigating
the shape of the alignment path. Matching melodies, al-
though with varying ornamentations, are likely to result in
approximately linear paths along the main diagonal. On
the other hand, different melodies which still yield low
global alignment costs are characterized by major stretches
and compressions of notes. This corresponds to significant
horizontal or vertical segments within the alignment path.
To measure this effect, we define the Off-Diagonal Cost as
the deviation of the optimal alignment path from the best
strictly linear alignment path.

A method to retrieve linear segments, known from the
field of image processing, is the Hough transform [8, 9]. It
transforms points (i, j)T from the image domain – in our
case, the element-wise inverse of the dissimilarity matrix
D – into the Hough space H , where each point (ρ, θ)T

represents a line given by θ – the angle with respect to the
image domain’s positive x-axis – and ρ – the distance from
the origin, such that

ρ− i cos θ − j sin θ = 0 (5)

A single point (i, j)T of the image domain lies on in-
finitely many lines. Thus, its Hough transform is a function
ri,j , following from equation 5 as

ri,j(θ) = i cos θ + j sin θ (6)

ri,j is a sinusoid of period 2π having a magnitude of
|(i, j)T | and a phase of arctan j/i.



In the discrete case the Hough space is sampled and rep-
resented by an accumulator array Ĥ of size N ×M . The
function ri,j then becomes a set of corresponding cells, de-
fined as

Ri,j = {Ĥt,P−1(hi,j(Θ(t))) : t ∈ [0, N − 1]} (7)

where Θ(t) is the angle θ corresponding to index t and
P−1(ρ) is the sampling index ρ resolves to.

When applying the Hough transform to the dissimilarity
matrix D, for each element (i, j)T , all accumulator cells
in Ri,j are increased by D−1

i,j . High values within the re-
sulting Ĥ indicate prominent lines in the image domain.
Figure 3 shows the accumulator arrays Ĥ that result from
comparing two versions of the same piece of music and
and two independent recordings, respectively.

In the proposed system, the size of the accumulator array
was set to the size of the dissimilarity matrix D. Doing
so yields fine resolutions if D is large and coarser resolu-
tions if input data is scarce. In addition, the angle θ was
restricted to have a maximum deviation from the main di-
agonal of ±30◦. Since the dominant line is assumed to be
the best linear alignment path, this restricts the slopes –
i.e., the tempo deviations – to reasonable values.

In summary, the Hough transform is used as a line detec-
tor. Applied on the inverse alignment costs, it finds linear
segments within the dissimilarity matrix D along which
the two pieces under consideration match relatively well.
Such alignments allow only for an offset between the be-
ginnings and a constant tempo change. The highest value
of the accumulator array Ĥ represents the best alignment
under these constraints.

To finally calculate the Off-Diagonal cost, for each point
along the alignment path as computed by the DTW algo-
rithm, the shortest distance to the linear one is measured.
These distances are then squared and averaged to obtain
the final cost measure. In doing so, the first and last 5%
of the paths are disregarded, so as not to penalize different
offsets.

5.3 Data Merging

So far, we have proposed splitting the audio recordings into
chunks to compensate for structural changes between ver-
sions of the same piece of music, described a basic method
to align two such chunks, and introduced two similarity
measures that indicate whether the alignment has indeed
matched notes of a same melody. To finally obtain a com-
pact similarity measure these pieces of information need to
be integrated.

First, the two similarity measures need to be combined.
The Relative Path cost describes the difference between
feature vectors along the alignment path in comparison to
a specific baseline influenced by changes in instrumenta-
tion or recording conditions between the two audio record-
ings. The Off-Diagonal cost, on the other hand, measures
the severity of changes in rhythm or local tempo. Prelimi-
nary experiments have shown that simply taking the prod-
uct of these two measures results in a meaningful aggre-
gated matching cost.

Next, conflicts between evidence for transpositions of seg-
ments by different intervals need to be resolved. To this
end, a majority vote is taken from the n most similar pairs
of segments. To determine this number n, the lengths of
valid alignment paths given different scenarios are consid-
ered. Let one piece be split into a chunks and the one it
is compared to into b fragments, then the minimum num-
ber nmin of pairs needed to fully reflect an alignment path
over the whole recordings along the diagonal is max(a, b).
On the other hand, the maximum number nmax of pairs
needed to cover an alignment path in the worst case – if
it consists of many horizontal and vertical segments – is
a+b−1. Therefore a reasonable number of pairs of chunks
to take into consideration is chosen as n = αmax(a, b)
with 1 ≤ α < 2, depending on how much deviation from
the main diagonal an overall alignment path should be al-
lowed to exhibit.

The main idea of splitting pieces into chunks was to com-
pensate for major structural changes, e.g. the insertion or
deletion of a prominent section of a piece. A large differ-
ence in performance time would be a cue for such a mod-
ification. Therefore, instead of forcing two whole pieces
to be aligned, parts of the longer recordings are allowed to
be left out. To this end, the length of the shorter record-
ing was chosen to be the determining factor, resulting in
ñ = αmin(a, b). We set α to 1.5, to still give considera-
tion to deviations in tempo. Experiments have shown that
the number ñ of pairs taken into account outperforms the
original n.

Once the main transposition interval has been obtained
via voting among these ñ selected pairs of segments, de-
viating transposition intervals of individual pairs are pe-
nalized by multiplying the respective matching costs by a
factor β. In the context of our data, β = 2 is sufficient to
prevent low matching costs as a result of arbitrarily many
different transpositions. The final matching cost is then
obtained by averaging over the costs of the ñ most similar
pairs of fragments.

6. EVALUATION

6.1 Data Corpus

The data corpus used for the evaluation comprises record-
ings of 89 mechanical music instruments, collected by the
Phonogram Archive of the Austrian Academy of Sciences.
About half of the pieces are played by flute clocks while
the other half is performed by musical boxes. As described
in Section 3, there are also significant differences in perfor-
mance style and accompaniment. While some instruments
only play the main melody notes, others make use of rich
ornamentations.

Amongst the test data are three pairs of recordings per-
taining to the same underlying piece (all of them performed
by music boxes). They comprise (several) themes from
Auber’s opera Fra Diavolo, Mendelssohn’s oratorio Elias,
and Haydn’s oratorio The Creation, respectively. These are
the ‘cover versions’ we wish to discover in the experiment.



(a) (b)

Figure 3. Hough transform of two versions of the same piece of music (a) and two independent recordings (b).

Query Piece Proposed System Standard Alg
Ver. 1 Ver. 2 Ver. 1 Ver. 2

Fra Diavolo 1 3 5 8
Elias 4 3 12 6
The Creation 5 9 8 11

Table 1. Rank of the corresponding version of the same
piece within a list of 88 candidates, i.e, rank of version 2
when the query was version 1 and the other way around.
‘Standard Alg’ refers to a DTW-based matching algorithm
without our two new extensions split-and-merge and off-
diagonal cost (but with relative path cost, which was al-
ready proposed by [5]).

6.2 Results

In analogy to the MIREX audio cover song detection task,
each of the 3×2 test recordings is in turn used as the query
file. The respective ranking of the 88 remaining candidates
is then examined and given in Table 1.

Although there is only one perfect match, we consider
the results promising, given the nature of the data. In com-
parison to popular music, a different version of a piece is
not only played on a different instrument, but, as can be
presumed from the durations in Table 2, there are signifi-
cant differences in which subset of the underlying piece is
performed at all.

Table 1 also shows that the proposed system significantly
outperforms a reference system – a ‘standard’ audio match-
ing algorithm without the split-and-merge approach and
the off-diagonal cost (but with relative path cost, which
was already proposed by [5]). Looking at the mean rank
of the corresponding version of the 6 query recordings, the
two systems achieve values of 4.2 and 8.3 respectively.

Clearly, our algorithm is not precise enough for the fully
automatic identification of matching recordings in a mu-
sic collection as difficult as the one we are targeting. (In

Query Piece Ver. 1 Ver. 2
Fra Diavolo 2:13 3:25
Elias 0:58 1:53
The Creation 0:58 1:55

Table 2. Performance times of different versions of same
piece of music.

fact, neither are other state-of-the-art cover version detec-
tion algorithms in their domains of pop and rock music.)
However, it may be useful as a component in an interactive
search process. Also, we do have some ideas for possi-
ble improvements via quasi-transcription and higher-level
representations (see below).

7. CONCLUSIONS

The paper has presented a first approach towards the au-
tomatic detection of versions of the same piece of mu-
sic played by different musical automata. We have de-
scribed the difficulties arising from the characteristics of
these kinds of musical instruments and the different ways
of arranging pieces for them. The proposed system is de-
signed to be robust to the degrees of freedom instrument
makers have, such as implementation of different subsec-
tions of the same theme, transpositions, or slight varia-
tions in tempo. To this end, each piece is split into several
chunks which are compared separately, allowing each pos-
sible transposition. The comparison is based on an align-
ment obtained by the DTW algorithm and is evaluated via
a similarity measure that combines match quality along the
alignment path and plausibility of this path itself. Results
from individual pairs of chunks are then combined to a fi-
nal judgment about the similarity between two recordings.

The data set used for testing comprised 89 pieces includ-
ing 3 pairs of recordings which share the same original.
(Finding these three pairs of matching recordings in the



collection involved quite some effort.) That leaves us with
only a small number of possible test setups. Future work
will focus on extending the data set, including ‘ground
truth’ concerning subsets of recordings that relate to the
same piece.

Generally, historical mechanical instruments are limited
in various ways – for instance, they generally have a rather
restricted tonal range, little freedom or variation in terms
of how tones are produced or modulated, etc. That might
make it possible to perform some kind of automatic tran-
scription, or at least a mapping onto a high-level represen-
tation (e.g., a list of played pitches), which again would fa-
cilitate a comparison at a higher level. On the other hand,
each instrument has different tonal characteristics. There-
fore, for each piece, individual tone models would need
to be learned in an unsupervised manner. Given that the
length of many recordings is less than 30 seconds, this is
error prone as well. Still, the idea of introducing a higher-
level representation of the audio signals is intriguing and
will be investigated in future work.
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