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Expressive performance modeling requires different information for each 

expressive dimension. Most systems, however, rely on a single approach 

for all dimensions. Further, tempo and timing are mostly treated as one 

atomic entity instead of being decomposed into elements and treated 

separately. We propose a performance model that discriminates expres-

sive dimensions with regard to the modeling approach and, additionally, 

uses separate subsystems to model tempo and timing. 
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Modeling expressive musical performance is a complex task with information 

requirements that vary from one expressive dimension to another. For exam-

ple, dynamics is guided to a considerable extent by annotations in the score, 

whereas the overall performance tempo is more closely related to phrasing 

(Todd 1989). Timing and articulation, however, may depend more on local 

aspects of the score. 

Performance modeling systems normally rely on one of three common 

approaches: (1) probabilistic models (e.g. Grindlay and Helmbold 2006), (2) 

rule-systems (e.g. Friberg et al. 2006), or (3) case-based reasoning (e.g. 

Widmer and Tubodic 2003). The system we discuss in this study differs from 

the bulk of performance rendering systems in two significant aspects. Firstly, 

common to all the systems is that they use the same approach for all perform-

ance dimensions. The system we present takes a modular approach that 

treats dynamics, articulation, and tempo differently. Secondly, with the note-

worthy exception of Widmer and Tubodic (2003), most systems view tempo 

and timing as an atomic dimension of performance. We consider the tempo 

curve of a performance to be an aggregate of different components which we 
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treat separately: timing of individual notes (note timing), phrase-related 

tempo trends (local tempo), and global performance tempo (tempo mark-

ings). 

Our performance model has its roots in the probabilistic rendering system 

YQX, which won the Rendering Contest RENCON 2008 (Hashida et al. 

2008). A detailed description of YQX can be found in (Widmer et al. 2009). 

In the original system, a simple Bayesian Network predicted tempo, loudness, 

and articulation. While the prediction of articulation remains the same in the 

current system, tempo prediction is replaced by three subsystems, one for 

each of the components mentioned above. The loudness model is replaced by 

a model relying on a decomposition of the dynamic annotations in the score 

(Grachten and Widmer 2011). In this study, we discuss how we handle two of 

the aspects of performance tempo: local tempo and note timing. 

 

METHOD 

Data and score representation 

The system is trained using two unique corpora of performances: 13 complete 

Mozart piano sonatas performed by Roland Batik and the complete works for 

solo piano by Chopin performed on stage by Nikita Magaloff. All pieces were 

played and recorded on a Bösendorfer computer-controller grand piano and 

converted from Bösendorfer’s proprietary format to MIDI. All performed 

notes were aligned to their counterparts in symbolic representations of the 

score. This resulted in a collection of performances with detailed performance 

and complete score information for each note. 

We describe the score using a combination of local descriptors (rhythmic 

and melodic) and higher-level features from the Implication-Realization (I-R) 

model of melodic expectation by Narmour (1990): 

 

• Duration ratio describes the ratio between the score duration of a note 

and its successor. 

• Rhythm context is an abstract description of a note’s duration in relation 

to its neighbors (e.g. long-short-long). 

• Metrical strength describes the metrical importance of a note-onset. 

• Pitch interval measures the distance to the next note in semi-tones. 

• IR-label is the name of the I-R situation applicable to a note. 

• IR-arch measures the distance to the next point of strong closure accord-

ing to an I-R analysis of the score. 
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Modeling “tempo” as a composite phenomenon 

In musical performances, tempo usually refers to a combination of three as-

pects: (1) global tempo refers to the initial tempo prescription at the begin-

ning of a score; (2) local tempo describes localized tempo trends which, for 

example, outline larger musical units (e.g. phrases) and realize annotations in 

the score; (3) (local) note timing refers to local (note-wise) deviations from 

the local tempo that emphasize single notes through delay or anticipation. In 

order do make the tempo as observed in a performance independent of global 

tempo, we transform it into a series of logarithmic ratios between score and 

performance inter-onset intervals (IOIs). We call the result complete tempo 

curve and view it as a composite of local tempo and note timing. More pre-

cisely, we associate local tempo with the low-frequency content of the com-

plete tempo curve, which we extract by applying a moving average. The 

residual, the curve that remains after subtracting the local tempo from the 

complete tempo curve, is associated with note timing. 

 

Predicted tempo and timing 

Assuming that note timing is a local phenomenon, we model and predict it 

using the simple Bayesian approach of the original YQX system. The predic-

tions depend only on the immediate score characteristic of each note. With 

respect to local tempo, we consider two methods: (1) the performance-con-

text-aware Bayesian model presented in Flossmann et al. (2009; YQX-global) 

and (2) support vector machines with and without local performance context 

(SVM and SVM-C, respectively). The Bayesian network approach is an adap-

tation of the Viterbi-Algorithm for Hidden Markov Models that results in a 

tempo prediction that is optimal in the sense that at each point the prediction 

is the value with the highest probability given the current score characteristics 

and performance predictions. The SVM we use is a regression model with a 

Gaussian kernel. To incorporate performance context, we use the previously 

predicted tempo value as an additional input feature. 

 

RESULTS 

In this section, we first discuss the results of experiments using both the 

Mozart and the Chopin corpora and then inspect qualitative aspects of the 

different predictions. The experiments were conducted on subsets of the cor-

pora, selected according to stylistic criteria—fast and slow movements for the 

Mozart sonatas, different categories (ballades, nocturnes, etc.) for the Chopin 

data—as they might contain different interpretational concepts that could 
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Figure 1. Local tempo predictions by three algorithms for Waltz Op. 34 No. 3 (upper 

panel) and tempo curves for Waltz Op. 34 No. 3 (lower panel), as observed in Magaloff’s 

performance and combined from separate predictions for local tempo and note timing. 

 

 

also be reflected in the predictions. As a numerical quality indicator, we use 

the correlation coefficient that measures the similarity between the predicted 

and the real tempo curve. 

The quality of the results of the different algorithms depends heavily on 

the selected subset of score features and the tempo aspect they are trained to 
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predict. Their respective best results are based on different sets of features, 

which suggests that different dimensions of tempo indeed depend on differ-

ent aspects of the score. Trained with suitable feature sets, the note timing 

predictions of the different algorithms are numerically comparable, with the 

context-free algorithms YQX and SVM performing slightly better. For predic-

tions of local tempo it seems beneficial to incorporate the performance con-

text: both context-aware algorithms, YQX-global and SVM-C, outperform the 

context-free algorithms by roughly 15%. 

 

Qualitative evaluation 

Although the quantitative evaluation does not indicate significant differences 

between the algorithms, the curves they predict exhibit discriminating char-

acteristics. Figure 1 shows tempo curves predicted for Waltz Op. 34 No. 3 by 

Chopin. The upper panel illustrates a typical situation often found in predic-

tions for local tempo: the prediction made by the context-free Bayesian ap-

proach (YQX), while reasonably similar to the original (r=0.37), exhibits 

sharp fluctuations, which is not a desired characteristic for local tempo. The 

curve predicted by the context-free SVM is more similar to the original 

(r=0.49) but comparably unsteady. Both algorithms have only information 

about the local score context, which explains the similar behavior. Integrating 

the performance context seems to have the desired effect: the curve predicted 

by the context-aware SVM (r=0.66) is much smoother with distinctive trends. 

The lower panel shows a complete tempo curve assembled from a local tempo 

prediction with a context-aware SVM, and a note timing prediction with the 

context-free YQX. The resulting curve retains the coherent tempo trends from 

the local tempo prediction and is enriched by the local variations from the 

note timing prediction. Compared with the result of a context-aware SVM 

trained to predict the complete tempo curve directly, the correlation of the 

combined prediction is slightly lower (r=0.38 and r=0.41, respectively). How-

ever, the combined curve is steadier than the directly predicted curve and 

displays much clearer trends. 

 

DISCUSSION 

We have presented a performance model that takes a multi-level approach to 

tempo prediction: instead of searching for one model for all aspects of tempo, 

components relating to different levels of locality are modeled by specialized 

subsystems and afterwards combined to form the tempo. The resulting tempo 

curves seem to reproduce better the musicality of the performances. This is 

not always reflected in the numerical similarity, but rather than suggesting an 
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aesthetically inferior result, this casts doubt on the suitability of correlation as 

a quality indicator. Further research will explore evaluation criteria that are 

musically more meaningful. Another fundamental problem is the score 

model: simple score descriptors cannot capture abstract musical concepts 

such as phrase boundaries, cadences, and harmonic suspensions. We believe 

that the most promising line of investigation lies in creating a more musically 

meaningful score model that describes the score at several different levels. 

 

Acknowledgments 

This research is supported by the Austrian Science Fund (FWF) under project numbers 

TRP 109-N23 and Z159 (Wittgenstein Award). 

 

Address for correspondence 

Sebastian Flossmann, Department of Computational Perception, Johannes Kepler 

University, Altenbergerstr. 69, Linz 4040, Austria; Email: sebastian.flossmann@jku.at 

 

References 

Flossmann S., Grachten M., and Widmer G. (2009). Expressive performance rendering: 

Introducing performance context. Proceedings of the SMC 2009: The 6th Sound 

and Music Computing Conference. Porto, Portugal. 

Friberg A., Bresin R., and Sundberg J. (2006). Overview of the KTH rule system for 

musical performance. Advances in Cognitive Psychology, 2, pp. 145-161. 

Grachten M. and Widmer G. (2011). Explaining musical expression as a mixture of basis 

functions. Proceedings of the SMC 2011: The 8th Sound and Music Computing 

Conference (submitted). Padova, Italy. 

Grindlay G. and Helmbold D. (2006). Modeling, analyzing, and synthesizing expressive 

piano performance with graphical models. Machine Learning, 65, pp. 361-387. 

Hashida M., Nakra T. M., Katayose, H., et al. (2008). Rencon: Performance rendering 

contest for automated music systems. Proceedings of the 10th International 

Conference on Music Perception and Cognition (ICMPC 10). Sapporo, Japan. 

Narmour E. (1990). The Analysis and Cognition of Basic Melodic Structures. Chicago: 

University of Chicago Press.  

Todd N. P. (1989). A computational model of rubato. Contemporary Music Review, 3, 

pp. 69-88. 

Widmer G., Flossmann S., and Grachten M. (2009). YQX Plays Chopin. AI Magazine, 

30, pp. 35-48. 

Widmer G. and Tubodic A. (2003). Playing Mozart by analogy: Learning multi-level 

timing and dynamics strategies. Journal of New Music Research, 32, pp. 259-268. 


