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Kurzfassung

Im Jahr 1989 entstanden im Mozartsaal des Wiener Konzerthauses im Rahmen eines

Konzertzyklus des russischen Pianisten Nikita Magaloff eine einzigartige Sammlung

von Aufnahmen: Das komplette, zu Lebzeiten des Komponisten veröffentlichte Solo-

Klavierwerk Frédéric Chopins, gespielt nicht auf einem gewöhnlichen Konzertflügel, son-

dern auf einem Bösendorfer SE Computer Controlled Grand Piano, ein Flügel, der

alle Tasten- und Pedalbewegungen als Liste von exakt vermessenen Ereignissen zur

Verfügung stellt. Im “Magaloff Corpus” ist jede Note, die Magaloff in diesen Konz-

erten gespielt hat, verknüpft mit ihrer Entsprechung im Notentext, was die Aufnahmen

zu einem unvergleichlichen Hilfsmittel für alle Anwendung und Fragen macht, die die

Untersuchung von Musik zum Inhalt haben.

Der Anfang der vorliegenden Dissertation ist der Entstehung des Corpus gewid-

met: Zusätzlich zu den Aufnahmen der Stücke müssen die Notentexte in ein computer–

lesbares und symbolisches Format gebracht werden. Diverse Probleme, die bei den Scan-,

Transformations- und Codierungsvorgängen auftreten, und mögliche Lösungen werden

diskutiert; ebenso die Alignment-Software, die eigens zu dem Zweck geschaffen wurde,

Notentext und Aufführung möglichst effizient einandern zuordnen zu können, und beste-

hende Zuordnungen überprüfen und korrigieren zu können.

Nachfolgend beschreibe Ich erste Analysen des musikalischen Inhaltes des Corpus:

Ein wesentlicher Teil der Analysen betrifft die Fehler, die Magaloff beim Spielen der

Stücke unterlaufen sind. Quantitative und qualitative Aspekte werden untersucht, die

die Häufigkeit von Fehlern in Zusammenhang setzen mit ihrer Offensichtlichkeit für ein

Konzertpublikum. Ergänzend wird im Anschluss daran eine Klassifikation von Fehlern

und Fehlergruppen vorgestellt, ein Belege dafür, dass Fehler meistens weit mehr sind,

als zufällige Ausrutscher. Dem Komplex der Fehleranalysen schließt sich eine Studie

über die Effekte des Alters von Pianisten an und in wie weit sie auf Magaloff zutreffen.

Eine Untersuchung von zeitlichen Asynchronizitäten zwischen der linken und der rechten

Hand Magaloff’s beschließt das Kapitel.

Das Hauptaugenmerk der Dissertation gilt dem Themenbereich “Expressive Perfor-
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mance Rendering”, dem Versuch, automatisch eine ausdrucksvolle, möglichst natürlich

und menschlich klingende Aufführung eines Musikstücks zu generieren. Grundlage des

hier vorgestellte Models ist ein graph-basiertes Wahrscheinlichkeitsnetzwerk (graphical

probabilistic model). Auch hier spielt das Magaloff Corpus eine zentrale Rolle, in diesem

Fall als Trainingsdatensatz für das Netzwerk. Basierend auf einem ersten, sehr einfachen

Model stelle Ich zwei Erweiterungen vor: Ein neuer Algorithmus für die Vorhersage

ermöglicht es, bereits vorhergesagte Passagen des Stücks in den aktuellen Vorhersagen

zu berücksichtigen und dadurch zeitlichen Abhängigkeiten zu modellieren. Des weiteren

sorgt ein Aufteilen der Ausdrucksdimensionen Lautstärke und Tempo in unterschiedliche

Komponenten für eine adäquatere Repräsentation, die durch das Netz besser gelernt und

wiedergegeben werden können. Sowohl das einfache System, als auch das Erweiterte wur-

den in einem internationalen Wettbewerb für Performance Rendering Systeme (2008 und

2011) mit Preisen ausgezeichnet.
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Abstract

The Magaloff corpus is a collection of on-stage recordings of essentially the complete

works of F. Chopin by a world-class pianist. The recordings were made on a Bösendorfer

SE computer controlled grand piano and contain precise information about all played

notes and pedal movements. This thesis concentrates on three topics that are closely

related to the corpus: Creating the corpus, assessing performance-related questions, and

– the main focus – rendering expressive performances with probabilistic models using

the Magaloff corpus as training data.

Creation of the corpus consists of first preparing the scores of all played pieces (scan-

ning the scores, transforming the images into symbolic scores) and then aligning the

scores with the performances. I discuss the steps and problems involved in the process,

and present a software designed to facilitate the large-scale alignment process.

Analysis of the corpus touches on three aspects related to music performance: per-

formance errors, the effects of age on a performer, and between-hand asynchronies.

Performance errors are investigated from a quantitative and a qualitative perspective,

assessing possible relations between error frequency and obviousness. A categorization

of performance errors in abstract groups and patterns depicts a phenomenon that is

much more elaborate than simple “accidents”. Possible effects of age on a performer are

discussed and assessed in Magaloff’s Chopin performances. A discussion of expressive

asynchronies between the Magaloff’s left and right hand concludes the analysis section.

Expressive performance rendering, the endeavor to generate a human-like, naturally

sounding, expressive performance automatically, is the focus of the remainder of the

thesis. I propose a probabilistic graphical model as learning and prediction mechanism.

It is both a rendering system in its own right (it won an international competition

for computer rendering systems in 2008) and serves as a basis for two extensions also

presented in this thesis: the first addresses long-term dependencies in the predicted

performance parameters (performance context), the second proposes a decomposition of

performance aspects into separate, independent components. The extended system won

the competition again three years later, in 2011.
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Chapter 1

Introduction

It’s easy to play any musical instrument: all you have to

do is touch the right key at the right time and the

instrument will play itself.

J. S. Bach

Everyday and sublime. That’s what it is.

Stephen Fry about classical music

Music is part of everyday life, it is one of the elemental forms of human communi-

cation. Making music is an expression of the most basic human feelings, desires, hopes,

and wishes. Listening to music can stir emotions, titillate our intellect, excite memories,

manipulate moods. It can be entertainment, background, working companion, pace-

maker for daily workouts, and it can be art, with beauty in every tiny detail, every facet

scrutinized, overwhelming. As Stephen Fry puts it: “Everyday and sublime. That’s

what it is.”[39]

However, there’s a long way to go from the mind of a composer creating music – often

in so very everyday environments like Beethoven’s cluttered, even squalid study – to the

sublime experience to be had in a concert hall or in the comfort of one’s living room.

Much research has already been invested at several stops along the way: The study

of acoustics has lead to concert halls being designed and built specifically to ensure,

that not only does the music indeed reach every part of the room, but also does so

pure and undistorted. Acoustics and sound engineering provide recording and playback

equipment to also enjoy the rich details of music performance at home. Hundreds of

years of experience and development in crafting have created music instruments that

give musicians the means to express their musical ideas in seemingly infinitely many

different ways. At the other end of the chain, musicological research investigates the

theory and structure of music, the art of composition.

1



2 Chapter 1. Introduction

Bach’s very tongue-in-cheek quotation that opens this thesis puts the finger on the

keystone of the whole complex: Music Performance, the production of music, both craft

and art, which brings written music to life, with the performer as a bridge between the

composer and the audience. Setting aside the aspect of music performance as a craft, a

feat of astounding motor control, precision, velocity, and memory, which in itself takes

years and years of training, there is much we think we know about music performance

and interpretation: how Mozart should be played; the correct way of phrasing Chopin;

what particular kind of ritardando to use at the end of a Bach Fugue. However, music

performances are as varied as their performer, are (among many other factors) product

of their performer’s experiences, social background, taste, and current mood. And still,

performances are far from arbitrary: for every “right” way to perform a piece there

are infinitely many ways to do it “wrong” – all of them immediately detected by a

listener. The human mind is on the one hand incredibly good at perceiving minute

differences or irregularities in tempo, loudness, or pitch, but on the other hand hopeless

at measuring and remembering absolutes1. We are fast to spot anything that might

sound inappropriate to us at a particular moment in a particular context, but often are

not able to justify, let alone quantify, this reaction.

The field of expressive performance research investigates how performers use the

means available to them – be they as generic as loudness and tempo, or as specific to

an instrument as the different lip and tongue techniques used for playing the flute – to

play a piece in a way that explains the piece’s structure to the audience, conveys its

character, the intended mood, and, on top of that, is unique and distinctive. Expressive

performance research tries to learn what sounds “right”, tries to find the commonalities

of all those “correct” Chopin phrases, and what shape a ritardando usually has. What

makes a performance expressive?

A common and sensible approach to answering such questions is by examining a large

number musical performances. However, listening to recording after recording of the

same piece will not help to explain commonalities and differences between the recordings

in a tangible, quantitative way. The help that computers have to offer regarding this

kind of analysis is limited. Extensive human involvement is required to prepare audio

recordings in a way that facilitates quantitative and objective comparisons and analyses.

And still, any manually prepared data is constrained by human perception.

At the heart of this thesis lies the Magaloff corpus, a huge collection of precisely mea-

1This obviously excludes people with perfect pitch or rhythm.
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sured recordings of a world-class pianist playing the entire Œvre of Frédéric Chopin. In

the context of expressive performance research this resource can serve multiple purposes

and gives rise to the goals of this thesis:

Create the corpus: Preparing the data, in itself an enormous task, requires new soft-

ware and techniques to cope with the size of the corpus, and will precipitate the

know-how to deal with collections of this kind.

Analyze the corpus: The collection facilitates exact, representative analyses of ex-

pressive music performance, unaffected by the limits of human perception. Studies

of aspects of performance that are impossible to investigate properly through audio

recordings, will shed more light on the elusive complex of music performance.

Use the corpus: The corpus fuels the research strand of (computational) Expressive

Performance Modeling, “an attempt at formulating hypotheses concerning expres-

sive performance in such a precise way that they can be empirically verified (or

disproved) on real measure performance data” [129]. Such hypotheses find a voice

in Expressive Rendering Systems, which sonify the hypotheses on pieces of music,

and thereby create an expressive performance automatically. Often used to test

the general validity of existing hypotheses about expression in music, rendering

systems can also serve as an alternative to analyzing audio recordings in generat-

ing and exploring new hypotheses. The most obvious goal, to be able to generate

a profoundly musical performance of a hitherto unknown piece of music automati-

cally, is hardly ever reachable. However, even crude predictive models of expression

can be of extreme help on the way to “synthetic and automatic expression”. A

possible scenarios could be a small theater that cannot afford a real orchestra and

needs to resort to digitally synthesized music. A basic, expressive version provided

by a rendering system, which is then refined manually, could be of invaluable help.

In this respect, the main objective of the thesis is to explore the use of probabilis-

tic models for the purpose of expressive performance rendering. In addition, by

gradually improving a very basic model, we hope to gain more insights into how

expressive performance works.

The remainder of this chapter is organized as follows: Section 1.1 illustrates one of the

main problems in expressive performance research – the acquisition of suitable data –

and the difficulties associated with it. To put the Magaloff corpus into context, I describe

some existing data collections in section 1.2. An introduction to the field of Expressive



4 Chapter 1. Introduction

Performance Rendering, is given in section 1.3. An outline of the thesis and overview of

the main contributions (section 1.4) concludes the chapter.

1.1 Data Acquisition

Data is the crucial element in empirical analyses of musical expression. Audio record-

ings exist by the thousands, but with current technology there are severe limitations

as to what can be extracted from the audio signal. Techniques like Nonnegative Ma-

trix Factorization [80] or Neural Networks [6] can already gain considerable information

regarding pitch and onset, especially if they know what to expect (e.g. guided by the

score of the piece). To a certain extent, this permits investigations into tempo of per-

formances. Success depends on the instrument and musical content, as much as on the

required accuracy: Dealing with instruments with fixed pitches, like the piano, is easier

than dealing with instruments like the violin, where pitches that are subject to contin-

uous expressive variation; accuracy is much higher on monophonic then on polyphonic

instruments; music where each note is articulated clearly and not played too softly, like

for instance Bach and Mozart, is much easier to process than pieces with lots of sustain

pedal, and silent legato playing, where part of the notes just set a background harmonic

texture, like sometimes found in Chopin’s Nocturnes. To study articulation, it is essen-

tial to determine when a note is terminated, which is much harder to extract from audio

recordings. As of now, extraction of loudness of individual notes is next to impossible.

Digital pianos and, even more so, computer controlled pianos, bypass all the problems

above: they record precisely and in a symbolic way everything that happens. Instead of

audio waves, they produce a list of time coded events describing the played notes and

the pedal movements. The main problem that arises is Availability. It almost never is

a problem, to collect a significant number of professional audio recordings of a (moder-

ately well-known) piece, or, in extension, of the complete works of a composer. Nor is it

often difficult to collect a substantial number of audio recordings of one specific pianist.

Professional recordings on digital pianos or computer controlled grand pianos, however,

are few and far between. It is therefore difficult to study (1) the idiosyncrasies of one

performer, (2) the stylistic and interpretational characteristics of a composer, or (3) the

differences between the interpretational strategies of different performers. Answering

those questions would require several recordings of the same pianist, recordings of dif-

ferent pieces of the same composer, or several recordings of the same piece by different
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performers.

Central to this thesis is the “Magaloff Corpus”, a unique collection of recordings,

made on a Bösendorfer SE, a computer controlled grand piano. It comprises the complete

works for solo piano by F. Chopin that was published in his lifetime, played and recorded

on stage by Nikita Magaloff, a world-class pianist.

1.2 Data Collections and Performance Research

Several collections exist that have been used very successfully to study aspects of musical

performance and expression in music. Prominent and prototypical among those are the

two collections created by Bruno Repp: (1) A set of 28 performances of Schumann’s

Träumerei by 24 professional pianists (Op. 15, No. 7), where the times of all half-

beats have been marked manually [98, 99]; (2) a set of 4 complete pieces2 recorded by 10

graduate students in the Yale School of Music on a Yamaha Disklavier (in MIDI format),

manually matched to symbolic representations of the scores [100].

Several collections exist that are similar in kind to (1): One or several pieces, played

by different pianists, with tempo information extracted manually from commercial audio

recordings. Tobudic and Widmer prepared a collection of 15 different sections of Mozart

piano sonatas by 6 different pianists (G. Gould, D. Barenboim, A. Schiff, M.J. Pires,

M. Uchida, and R. Batik) [118]; for the study on the effect of age on performance

tempo ([27] and section 3.2) W. Goebl and I prepared a collection of 289 recordings of

18 Études by Chopin played by 14 different pianists. The latter further enriched the

pool of over 500 manually beattracked recordings of pianists such as M. Argerich, V.

Horowitz, G. Gould playing pieces by various composers that had already been collected

and prepared by Gerhard Widmer. While a critical resource for all investigations into

tempo and timing, this kind of collection does not contain any information pertaining

to loudness of individual notes or articulation. Also, precision is of course limited by

human perception.

The CrestMuse Database3 is somewhere in-between (1) and (2). In its current state

it contains over a hundred scores and recordings of different pieces and performers,

manually transcribed from audio to MIDI, providing note on- and offset times as well

2Chopin Prelude Op. 28 No. 15 (Raindrop), Grieg Lyric Piece Op. 43 No. 5 (Erotik), Schumann

Op. 15 No. 7 (Träumerei), and Debussy Prélude No. 8 (Book I) (La fille aux cheveux de lin).
3www.crestmuse.jp/pedb/
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as loudness information for all notes. As all transcriptions are made by human experts,

precision of tempo and reliability of loudness and note offset times is limited.

A collection of 13 complete Mozart sonatas, recorded by the Viennese pianist R. Batik

on a Bösendorfer SE290 computer controlled grand piano, was prepared by Widmer in a

way similar to the Magaloff corpus [126]. By nature, the performance information is as

detailed, complete, and rich as in the Magaloff corpus. The score information, however,

is limited to the note content of the score and some information concerning key and

meter of the pieces. No performance annotations were included.

Apart from that, specialized datasets for psychological and psycho-acoustical exper-

iments have been prepared, containing recordings of artificial musical stimuli, designed

for specific purposes. For instance, Palmer’s study on the way music is organized and

stored in memory is based on such a collection [84].

Instigated by the nature of the available collections and technology, data oriented

performance research focussed on aspects of tempo: Clarke inspected meter and rhythm

in Satie’s Gnossienne No. 5 [14, 107], Repp analyzed expressive timing in Schumanns

Träumerei [98, 99], recent studies concern different models of final ritards [47]. The

Magaloff corpus and other collections like it open up new strands of performance research:

Repp’s study on performance errors [100], which is seminal to our own investigations

into the phenomenon, is only possible on precisely measured and score-linked data; in

addition to precision, Goebl’s study of between-hand asynchronies [45] builds on the

detailed score information only found in the Magaloff corpus.

1.3 Expressive Performance Modelling & Rendering

The possibilities of music notation are limited: the formalism is constrained to represent

only a basic skeleton of the composer’s intention. The musician is an integral part of the

system, shaping the piece, explaining its structure to the audience, making the music

engaging and effective. The result is an expressive performance of the piece, music

brought to life. Performing a music piece expressively is a highly creative process and

the number of fundamentally different performances of the classical repertoire is vast.

Performances differ in ways significant enough for humans to be able – to a certain

degree – to recognize artists by their style of playing and for computers to able to tell

pianists apart in pairwise comparisons [131].

However different performances of the same piece may be, artistic freedom still has
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its limits: an epoch’s mentality shapes the stylistic boundaries of the composition; per-

formance traditions evolve and shape what a concert audience expects; perception, both

the musician’s and the audiences’, also puts limits on what is possible to be distinguished

and, in consequence, produced. Most important in demarcating artistic freedom is the

structure of the composition itself. It is generally agreed that one of the central elements

of music performance is to explain to the audience how the piece is put together. This

usually is what hypotheses concerning expressive performance put into words: How are

structural elements of a composition represented in the performance of the piece? Cen-

tral to those hypotheses can be any element of music, be it phrasing, harmonic tension

and relief, dynamic or agogic changes (crescendo/decrescendo or accelerando/ritardando

respectively). Computational models try to formulate those hypothetical relations pre-

cisely so that they can be tested on real performance data. Many of those models have

been established over the last years. Kinematic models, for instance, relate dynamic and

agogic change to the laws of physical movement – among those, Todd’s phrase model

[120], which couples of tempo and loudness, and proposes a quadratic relation to score

time. Rule systems formulate basic “if-then” relationships between score and expressive

variation – as for example the KTH rule system by Friberg et al. [35]. A very thorough

overview of the different types of models can be found in [129].

All those models try to explain music performance, or at least certain parts or ele-

ments. Expressive performance rendering gives computational expression models a voice:

The proposed hypotheses and models, formulated based on real performances, are used

to generate new performances with the aim of giving the outcome the “human-like”

characteristics of a real performance.

Systems for expressive performance rendering usually come in two different forms:

autonomous systems and interactive systems. Interactive systems offer the user an al-

ternative medium to change and shape a musical piece, other than the instrument(s) for

which the piece was intended. Limited by the system’s range of possibilities, the user

can impose their “interpretation” on a mechanical rendering of a piece. The levels of ab-

straction are as varied as the devices and interfaces through which users interact with the

system. On one end of the scale is the very simple, but effective “Air-Worm” [22], where

a two-dimensional visualisation of performance tempo and loudness, the “performance

worm” [21], is reversed: instead of displaying the performance trajectory of a piece,

the user can actively manipulate the trajectory, which is then applied to a mechanical

rendering of a music score. The means of manipulating the trajectory can basically be
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every device capable of capturing position in two dimensions: a computer mouse moving

over a surface or a hand tracked by a MIDI Theremin. A little closer in used imagery

to the musical world is the system by T. Baba that uses an enhanced conductors baton

as controlling device. The movement of the baton is mapped to expressive dimensions

of the music [55]. An approach, that takes the medium through which the interpreta-

tion is transferred far away from the musical world, is taken by Chew in the Expression

Synthesis Project [55]. The score of the piece is analyzed and transformed into a road,

the curves of which correspond to musically important events. The user then, like in a

computer game, drives a car along the road, the speed and turns of which are translated

into expressive variations of loudness and tempo. Both of the latter participated in the

International Rendering Contest 2008 (RENCON08), held in Japan (see section 5.7.2 for

further details). Canazza and Rodà [12, 11] use a user controlled case-based approach

(CaRo, presented and entered into Rendering Contest 2011 (RENCON11), see 5.7.4),

with focus on emotions: musical parameters, such as tempo and loudness, are associated

with performance styles or intended emotional content, like happy, sad, or angry. The

user can then modify the interpretation of the piece by navigating between the different

emotional states.

In interactive rendering systems the user is indispensable. The focus is on developing

new interfaces to music, musical expression, and music interpretation. The systems act as

proxy between user and music, and replace the original instruments with an abstraction.

The range of interpretational possibilities of course is limited compared to the original

instrument, but the set of skills necessary to operate the interface is proportionally easier

to acquire. Navigating a computer mouse between four preset emotional states, like in

CaRo, only requires basic musicality and no technical skills in order to produce a musical

interpretation of a piece (within the limits of the systems). The “Air-Worm” offers more

or less direct access to two very profound expressive dimensions of musical performance,

loudness and tempo, but is much harder to control.

Autonomous rendering systems take the user out of the equation and try to come up

with a musical interpretation of a given piece without any interaction. The systems work

on abstract representations of the score, the score model. In most cases one component

of the system is learned from real performances and connects the score model to the

performance model, the expressive dimensions along which the expressive performance

is shaped. The expressive performance of a piece is then built by feeding the score

representation of a piece into the learned model and applying the output of the model,
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the predicted performance parameters, to a mechanical rendering of the piece. Hence,

instead of offering new ways to interact with music and transfer the user’s interpretation,

autonomous systems try to make the computer able to recognize, and react to, musically

important aspects of the piece and build an expressive interpretation of a piece of music

that ideally bears characteristics of a human performance.

1.4 Contributions and Organisation

The remainder of the thesis comprises five chapters, which are outlined in the following.

The Magaloff Corpus is a large collection of performances both precise in measure-

ment and representative. It comprises the complete works for solo piano by F. Chopin

played by a world-class pianist, Nikita Magaloff, on a computer-controlled grand piano.

However, the real potential of the data for performance research can only be accessed

provided that the performances are linked to the scores. Chapter 2 describes the process

of first digitizing and then converting the sheet music into a suitable digital representa-

tion. The subsequent large-scale score-performance matching provides a first alignment

between score and performances but still is very error-prone. A software is presented

that facilitates the necessary extensive manual corrections, as well as certain alterations

and additions to the scores. The resulting performance corpus is the largest of its kind

and unique in precision, and nature: one pianist playing the complete works of one com-

poser. Due to copyright issues the corpus itself cannot be made publicly available. The

techniques and software developed to prepare the data, however, include valuable con-

cepts for working with digitized sheet music and score/performance matching. Several

possible application scenarios of the corpus are discussed as a conclusion to the chapter.

Chapter 3 presents results of exploratory research into the corpus with the main focus

on performance errors. The phenomenon is ubiquitous for performers, but very hard to

investigate due to the lack of data with sufficient precision. The presented studies cover

quantitative, qualitative and perceptual aspects of error production. The data having

been gathered from live performances, the results complement Repp’s previous error

study [100], which was done under laboratory conditions. From a selection of pieces

in the corpus a catalogue of error groups was built, which made it possible to broaden

the view of performance errors from perspective of single-note or very small context to

more general groups of errors. As Magaloff was already 77 years old when recording the

corpus, this also is an opportunity to inspect possible effects of age on his performances,
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especially in comparison with his earlier recordings of the same pieces. We look at

the corpus from the point of the selection - optimization - compensation (SOC) model,

a general model for successful aging, and investigate to what degree it applies to the

Magaloff data. Lastly, a study mainly done by W. Goebl is presented as an example of

a very specialized research question that can be investigated only with data collections

like the Magaloff corpus: temporal onset asynchronies between right and left hand. We

look for a specific kind of tempo rubato, recommended by Chopin to his students, which

manifests in subtle between-hand asynchronies rather than in tempo.

Apart from its significance for expressive performance research and investigations

into performer style and idiosyncrasies, the Magaloff data can be used as training data

for expressive performance rendering systems. This is the main focus of this thesis.

Chapter 4 presents a novel approach to expressive performance rendering based on a

graphical probabilistic model. The first, very simple implementation of the model, the

system YQX, was entered to the international rendering contest RENCON 2008, in

which performance rendering systems are pitted against each other. Our system won

the competition, establishing a basis for us to build on. The system deals with the

expressive dimensions note-by-note, without taking into account how the performance

evolves. This is not the case in real performances, where large tempo changes are not

made spontaneously but gradually. We extend the system to integrate the performance

context into the current prediction. To accomplish this, a new algorithm is proposed

that also is a closed form solution to an inference problem in a special type of dynamic

bayesian network. By modifying the way performance tempo is modeled, namely treat-

ing tempo as a composite phenomenon with both slow and fast fluctuating components,

tempo prediction is improved further. A similar idea can by applied to the prediction

of loudness changes. Performance directives given in the score, like crescendo and de-

crescendo, have a considerable impact on the loudness evolution of the performance.

As our score model does not include the performance directives, we try to eliminate

their effect from the trainings performances, and train our model to predict the part not

explained by the performance directives.

In chapter 5 I am going to present the results of experiments comparing the different

algorithms and representations of performance dimensions. The problems of automatic

evaluation of performance rendering systems are discussed, specifically the use of corre-

lation as a measure of similarity between two performances. The abstraction chosen to

represent the score, the score model, has a major influence on the prediction. Which score
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model to use depends on the training data, chosen algorithm, and expressive dimension.

An experiment is presented searching for the most suitable score representation for the

different situations. After that, the merits of the different algorithms for the different

expressive dimensions are discussed. As numbers cannot do justice to considerations

of musicality, I present both evaluation of quantitative and qualitative aspects of the

predicted performance curves.

The last chapter summarizes all presented ideas and contributions and elaborates on

future work regarding expressive performance rendering systems, with special focus on

their automatic evaluation.





Chapter 2

The Magaloff Corpus

At the age of seventy, I have come to the conclusion that

only the sentiment and fear of death can induce an

immoderate passion for life

Nikita Magaloff in an interview with Eugenio Scalfari

This chapter introduces the Magaloff Corpus, a collection of recordings of all works

for solo piano by Frédéric Chopin, played by Nikita Magaloff on a Bösendorfer computer

controlled Grand Piano. Initially the corpus is a collection of recordings in a symbolic

form, listing all played notes with precise timing and loudness information. Apart from

their artistic, and historic value, the recordings have little scientific significance as such:

two notes may account for the same duration of time, but one might be a prolonged

quarter note that is part of a ritardando, the other a short half note that is part of an

accelerando. Without knowing the nominal description of the notes, we cannot inspect

how performances deviate from that, and, after all, those deviations are what constitutes

expressivity. In order to make the Magaloff Corpus the valuable resource that it can be,

we have to bring the scores of the music and Magaloff’s performances together.

Some introductory words on the pianist Magaloff (section 2.1), the concerts that were

the source of the recordings (section 2.2), and the recording device, the Bösendorfer SE

(section 2.3) precede the main parts of the chapter: preparation of the scores – digitizing

and converting the sheet music into symbolic, machine readable representations – is

covered in section 2.4; bringing Magaloff’s performances and Chopin’s scores together –

a process called score-performance matching – is discussed in section 2.5. The chapter

is concluded with an overview of possible applications of such a collection of recordings

(section 2.7). Large parts of the chapter were published in [26].

13
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2.1 Nikita Magaloff

Nikita Magaloff, born on February 21, 1912, in St. Petersburg, was a Russian pianist.

As his family was friendly with musicians like Sergei Rachmaninov, Sergei Prokofiev and

Alexander Siloti, he grew up in a very musical environment. In 1918, the family first

moved to Finland and then to Paris soon after (1922), where Nikita Magaloff started

studying piano with Isidore Philipp, graduating from the Conservatoire in 1929 [13, 7].

Magaloff started his professional career mainly in Germany and France, often appear-

ing together with the violinists Jószef Szigeti (whose daughter Irène he later married)

and Arthur Grumiaux, and the cellist Pierre Fournier. In 1949, he took over Dinu Li-

patti’s piano class at the Geneva Conservatoire where he continued teaching until 1960.

His pupils include Jean-Marc Luisada, Maria Tipo, Sergio Calligaris, Michel Dalberto,

and Martha Argerich.

Magaloff is especially known for his performances of the complete works of Frédéric

Chopin, which he usually presented live in a cycle of six recitals. He distanced himself

from the sentimental interpretations of Chopin’s work by the generation of his teacher I.

Philipp and especially by Paderewski, who he believed had falsified Chopin. Discarding

the sentimental aspects, Magaloff praised Chopin’s music as being ”incredibly musicianly

and full of feeling” [13]. He preferred and recorded Chopin’s manuscripts rather than

Paderewksi’s editions of the scores or the posthumously published versions of the Waltzes

by J.Fontana

The first ever recording of the complete works of Chopin was made by Magaloff in

the years 1954–1958 for Decca. He repeated this for Philips in 1975. Other than that,

only a few studio recordings by Magaloff exist. There exist recordings of the complete

etudes of Scriabin (under the Valois/Náıve label), Granados’ Goyescas (Decca), several

works by Mendelssohn (including Variations sérieuses, Rondo capriccioso, a selection of

Songs Without Words, and the Sonata Op. 106), and a live recital from the Salzburg

Festival in August 1969 (including Dallapiccola’s Sonatina canonica and Ravel’s Gaspard

de la nuit). The record label Philips included Magaloff in their Great Pianists of the

20th Century series and published 2 CDs with Liszt’s Paganini Études, a sonata by

Haydn, Chopin’s Sonata Op. 4 in C minor, the Bolero Op. 19, and several Nocturnes

and Mazurkas.

Nikita Magaloff died on 26 December 1992, at the age of 80 in Vevey, in the Canton

Vaud in Switzerland [13].
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2.2 The Magaloff Concerts

Between 1932 and 1991, Magaloff appeared in 36 concerts in the Wiener Konzerthaus,

one of Vienna’s most illustrious concert venues – 24 solo concerts, 10 concerts as orchestra

soloist, 2 chamber recitals together with József Szigeti.1 In 1989, he started one of his

famous Chopin cycles in which he would play all Chopin’s works for solo piano that

were published in the composer’s lifetime, essentially Op. 1 to Op. 64, in ascending

order. Each of the six concerts was concluded with an encore from the posthumously

published work of the composer. The concerts took place between January 16 and May

17, 1989, in the Mozartsaal of the Wiener Konzerthaus. At the time of the concerts,

Magaloff was already 77 years old. Daily newspapers commenting on the concerts praise

both his technique and his unsentimental, distant way of playing [108, 110]. Table 2.1

lists the programs of the six concerts.

Although the technology had only been invented a short time before (first proto-

type in 1983, official release 1985 [74]), all six concerts were played and recorded on a

Bösendorfer SE, precisely capturing every single keystroke and pedal movement (see 2.3

for further details). This was probably the first time the new Bösendorfer SE was used

to such an extent. In 1999, Gerhard Widmer received written and exclusive permission

by Irène Magaloff, Nikita Magaloff’s widow, to use the data for our research.

2.3 The Bösendorfer SE

The first model of Bösendorfer’s computer-controlled grand pianos, the Bösendorfer SE,

developed by Wayne Stahnke, was officially released in 1985 [74]. It is a combination

of a standard concert grand piano, in this case a Bösendorfer Imperial, with an array

of infrared sensors and motors that can be used to record and reproduce key and pedal

movements with very high precision. It was originally intended to facilitate the recording

process: a pianist’s keystrokes and pedal movements would be recorded, basically a list of

note on- and offset events and changes of pedal position. This symbolic data could then

be edited much more effectively than an audio recording (selection of passages or deletion

of unwanted notes). Afterwards, the reproduction unit of the grand piano would be used

to replay the data and record the sound. In case of live recordings this would eliminate

unwanted background noise, like coughing in the audience or ringing cell-phones (a need

1Information available through the program archive of the Wiener Konzerthaus, http://

konzerthaus.at/archiv/datenbanksuche.
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Date Played

16 Jan Rondo Op. 1; Piano Sonata No. 1 Op. 4; Rondo Op. 5; 4 Mazurkas

Op. 6; 5 Mazurkas Op. 7; 3 Nocturnes Op. 9; 12 Études Op. 10.

Encore: Fantaisie-Impromptus Op. posth. 66.

19 Jan Variations Op. 12; 3 Nocturnes Op. 15; Rondo Op. 16; 4 Mazurkas

Op. 17; Grande Valse Op. 18; Bolero Op. 19; Scherzo No.1 Op. 20;

Ballade No. 1 Op. 23; 4 Mazurkas Op. 24; 12 Études Op. 25.

Encore: Variations “Souvenir de Paganini” (posth.)

15 Mar 2 Polonaises Op. 26; 2 Nocturnes Op. 27; 24 Preludes Op. 28;

Impromptu No.1 Op. 29; 4 Mazurkas Op. 30; Scherzo No.2 Op. 31.

Encore: Waltz in E minor (posth.)

10 Apr 2 Nocturnes Op. 32; 4 Mazurkas Op. 33; 3 Waltzes Op. 34; Piano

Sonata No.2 Op. 35; Impromptu No.2 Op. 36; 2 Nocturnes Op. 37;

Ballade No.2 Op. 38; Scherzo No.3 Op. 39; 2 Polonaises Op. 40; 4

Mazurkas Op. 41; Waltz Op. 42; Tarantella Op. 43.

Encore: Waltz E♭-Major (posth.)

13 Apr Polonaise Op. 44; Prelude Op. 45; Allegro de Concert Op. 46;

Ballade No.3 Op. 47; 2 Nocturnes Op. 48; Fantaisie Op. 49; Im-

promptu No.3 Op. 51; 3 Mazurkas Op. 50; Polonaise Op. 53;

Scherzo No.4 Op. 54.

Encore: Ecossaises Op. posth. 72 No.3.

17 May 2 Nocturnes Op. 55; 3 Mazurkas Op. 56; Berceuse Op. 57; Pi-

ano Sonata No.3 Op. 58; 3 Mazurkas Op. 59; Barcarolle Op. 60;

Polonaise-Fantaisie Op. 61; 2 Nocturnes Op. 62; 3 Mazurkas

Op. 63; 3 Waltzes Op. 64.

Encore: Waltz Op. posth. 69 No. 1

Table 2.1: The Magaloff Konzerthaus Concerts in 1989

that only arose in the last decade). Performances could be re-recorded in a different

environment or with different recording equipment.

Below each set of strings2 an infrared sensor is mounted. The sensor is triggered twice

by a hammer striking the strings: 5 mm before the hammer strikes and upon impact. The

2Depending on pitch height one to three strings are tuned to the same frequency.
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difference between the two times is used to calculate the velocity with which the hammer

strikes the string, and, in extension, the loudness which which the note was played. The

sensor operates at 25.6 kHz, which makes 0.0391 ms the shortest measurable interval.

This corresponds to a hammer velocity of 128 m/s. The interval length is limited to 40

ms, or 0.125 m/s, a velocity at which the hammer barely reaches the string. Instead of

the length of the time interval, or the hammer velocity, the Bösendorfer data contain

the inverse hammer velocity (IHV), which is defined as IHV(h) = 128
v(h) . Typical IHV

values for pianists range from 32 − 512 IHV, which corresponds to 4 − 0.25 m/s [42].

The following formula is usually used to convert hammer velocities into MIDI loudness

values:

v(k) = 57.96 + 71.3 ∗ log10(v(h)), (2.1)

where v(k) is the MIDI loudness value of the key, and v(h) is the hammer velocity in

meters per second. This relates the allowed MIDI loudness range of [0,127] to hammer

velocities [0.15,9.3]m/s, or IHV values [832,13]. The aforementioned typical range

of 32 − 512 IHV is mapped to MIDI loudness range of [15 − 101]. Stahnke proposes

a different mapping, that also factors in pitch, assigning a slightly higher loudness to

higher pitch than to a lower pitch at the same hammer velocity:

v(k) = 52 + 25 ∗ log2(v(h)) + (n − 60)/12, (2.2)

where n is the MIDI note number (middle C = 60). The differences between this and

the standard mapping can be seen in figure 2.1: with Stahnke’s conversion map a middle

C (MIDI pitch 60) with a hammer velocity below approximately 3.22 m/s is assigned a

lower MIDI loudness than with the standard map. The point beyond which Stahnke’s

conversion assigns higher values (earlier for higher pitches, later for lower pitches) is at

the upper end of the typical range. This means that pieces converted with Stahnke’s

map will on the whole be in a lower MIDI loudness range values than pieces converted

with the standard map.

For the most part, the conversion of the Magaloff Corpus into MIDI was done using

the standard mapping in equation 2.1. Both Étude collections (Opp. 10&25), the Sonatas

Opp. 4&58, and the Préludes Op. 28 were converted using the mapping suggested by

Stahnke (equation 2.2).

Each key is equipped with an infrared sensor that measures the time a key is pressed

at least 3mm and is released. The impact time of the hammer on the string is used

as note-on time of this event. Releasing the key registers the note-off event. The
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Figure 2.1: Different conversion maps from hammer velocity to MIDI loudness.

sensor resolution of 800 kHz results in a time resolution of 1.25ms [42, 43]. The on-

and offset times of note events can be converted into MIDI time codes. Pedal positions

are discretized to 256 values (8 bit) and recorded with a frequency of 100kHz (sustain

pedal) and 50 kHz (soft pedal).

2.4 Preparation of the Scores

The recorded symbolic performance data requires careful preparation to become acces-

sible for further investigations. Without any reference to the score, nothing can be said

about how specific elements were realized. A lengthened eighth note and a shortened

quarter note may account for the same amount of performed time, the former being

part of a slower passage in the same piece. Without any information about the notated

duration of the note, no assumption can be made about what kind of modification the

performer applied to the note.

We need the final state of the corpus to be a piecewise list of all performed notes
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aligned with their counterparts in the score. This requires symbolic, computer-readable

representations of all scores, which are then aligned to the MIDI data of Magaloff’s

performances. Given the nature of Chopin’s music – high note density, high degree of

expressive tempo variation – automatic matching will be error-prone and accordingly,

intensive manual correction of the alignment is required. The most intuitive way to

view a score is the sheet music itself. Inspecting and correcting an alignment manually

is therefore most efficient and tractable using a display of the score page and a piano

roll representation of the performance (MIDI) joined together by the alignment. This

requires a score representation that contains not only information pertaining to the

musical content of the piece but also to the geometrical location of each and every

element on the original printed score.

The problems involved in scanning and converting the sheet music into a symbolic,

machine readable representation (a process called Optical Music Recognition (OMR)) are

described in sections 2.4.1 and 2.4.2. Extending the results of the recognition process,

which are symbolic scores in musicXML format, with the necessary geometric informa-

tion is covered in section 2.4.3.

2.4.1 From Score Sheets to Images

The first step in digitising the score is to scan the sheet music. We have no information

as to which editions of the scores Magaloff learned the pieces from, so we used the Henle

Urtext Editions [143, 135, 140, 133, 142, 137, 139, 134, 136, 138, 141, 144, 57]. Henle

does not provide the Sonata Op. 4, and the Rondos Op. 1, Op. 5, and Op. 16. In

these cases we used the obsolete Paderewski editions [82, 81]. Edition Peters recently

(2009) published a new Urtext edition of the complete Chopin, including the Sonatas

and Rondos, which will replace the Paderewski Editions in future versions of the corpus.

The quality of the conversion process from image to symbolic score depends on the

quality of the scan. The 930 pages of sheet music were scanned in greyscale with a

resolution of 300 dpi. Additionally we tried to minimize the skewness of the scans by

allowing a maximum of 15 pixels deviation from the horizontal across the complete width

of the page. At the chosen resolution, this amounts to 0.5% of the roughly 3500 pixels

in height, an angle of 0.006○ to the horizontal.
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2.4.2 From Images to MusicXML – Optical Music Recognition

Several commercial applications exist for extracting musical content from a scanned

score sheet, a process called Optical Music Recognition (OMR). Most prominent among

those are PhotoScore by Neuratron3, which is used in the Notation Software Sibelius4,

SmartScore by Musitek5, the Lite version of which is used in the Notation Software

Finale6, and the Liszt-music OCR engine, which is used in SharpEye by Visiv7. All

three export the results of the scanning process in musicXML format.

The musical content, as recognized by all of the above, however, is not enough. In or-

der to make the alignment process between score and performance feasible, we also need

precise layout information of all score elements. Of the three applications mentioned,

SharpEye is the only one providing access to the intermediate, internal representation

of the analysed page. This information, which includes the geometrical data, is stored

in mro files, the output format of the underlying Liszt OCR engine. Access to this

information was the main reason for choosing SharpEye for this task.

Figure 2.2 shows a screenshot of the program working on Chopin’s Prelude Op. 28

No. 1. After the initial recognition process, SharpEye indicates bars that are rhythmi-

cally erroneous. In most cases this is a sign that either some notes were not detected

or their duration was misread. However, this only covers a small percentage of the

encountered problems in the recognition process, several of which are discussed in the

following.

Reading and Implementation Problems

In general, the recognition in terms of pitch and accidentals is acceptable. However,

situations occur where notes or whole sequences of notes are left out. Figure 2.3 shows

an example: The middle voice in the second half of the bar could not be read from

the scan and has to be added manually. In addition, the middle voice starting in the

beginning of the bar (B♭4) is misinterpreted as a series of sixteenth notes instead of

eighths, which is easy to miss both when reviewing the score as well as listening to a

mechanical MIDI rendering.

3see http://www.neuratron.com
4see http://www.sibelius.com
5see http://www.musitek.com
6see http://www.finalemusic.com
7see http://www.visiv.co.uk
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Figure 2.2: The SharpEye OMR software showing the printed score (lower panel) and

the manually corrected result of the recognition process (upper panel).

Especially problematic are notes with small heads – appoggiaturas, acciaccaturas

(long and short grace notes) and longer ornamentations. Figure 2.4 shows an example

taken from the Nocturne Op. 27 No. 2 in D♭ Major where all notes in the upper staff had

to be added manually. The sequence presents a further difficulty: the beam connecting

all ornamentation notes coincides with a line in the staff. SharpEye completely fails to

recognize the upper staff, and, as the software lacks the required editing capabilities, the

only way to convert the page is to edit the scanned score sheet with an image processing

software.

Another frequent problem are 8va lines, dashed lines indicating that certain notes

actually have to be played one octave higher or lower (see figure 2.4). SharpEye neither

recognises them, nor does it provide means to add them manually. The graphical align-

ment software discussed in section 2.5 was used to add those to the scores afterwards.

The same holds for the brackets used to denote different endings of repeated parts of a
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Figure 2.3: Left : Printed score of Chopin Ballade Op. 52, Bar 2. Right : First result of

the recognition process by SharpEye.

Figure 2.4: Printed score of Nocturne op. 27 No. 2 in D flat Major, Bar 52. The beam

connecting the notes in the upper staff coincides with a line in the staff, making the

complete staff unreadable for SharpEye.

piece. Out of the several different types of ornamentations (trills, mordents, schleifer,

etc.) only the standard trill is recognised and provided by SharpEye. As this is not

as important for Chopin as it is for other composers like Bach or Mozart, we made no

differentiation between different trills in our data.

The recognition quality of expressive score annotations varies. Dynamic changes, in-

dicated by wedges (> (decrescendo), < (crescendo)) are generally recognized well. Verbal

dynamic indicators (cresc., crescendo, dim.) are treated, and converted into musicXML,

like plain text lyrics and have to be replaced by > and < respectively. Loudness directives
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Figure 2.5: Left : Printed score of Ballade Op. 52, Bar 2. Right : Same bar with an added

sixteenth rest (red) to preserve the correct onset of the middle voice.

(f, ff, p, etc.) are often not properly recognized, but SharpEye provides correspond-

ing symbols, so that, once corrected, they are converted correctly into musicXML. The

graphical alignment software discussed in section 2.5 provides the means to add dynamic

annotations more efficiently.

Rhythmic problems

Given a perfectly read and recognized score, a correct interpretation of the content is still

difficult. Especially rhythmically complex situations with different independent voices

can lead to problems in the conversion. Figure 2.5 shows such a situation: the right

panel (SharpEye interface) displays the middle voice in the right hand (starting with a

B♭ on the second sixteenth note of the bar) on the correct onset. However, the voice is

treated as rhythmically independent of the surrounding voices, which, in absence of any

preceding notes, places the beginning of the voice on beat 0 in the bar. In order to have

the beginning placed correctly, a sixteenth rest has to be added.

Voices that cross from one staff to the other present a similar problem, as exemplified

in figure 2.6: sixteenth rests have to be added in the right hand to preserve the correct

rhythmic position of the outer upper voice ( @ - g - c). The quarter note rest in the left

hand was replaced by a 3-tuplet quarter rest and serves the purpose of filling the second

triplet in the left hand.
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Figure 2.6: Left : Printed score of Prelude Op. 28 No. 1, Bars 1&2. Right : Same bars

with added sixteenth rests (red) to preserve the correct rhythmic position of the outer

upper voice. Duplicated notes have been deleted.

Encoding Problems

With our particular applications of the data in mind we made additional alterations to

the scores. To emphasise a melody voice or to clarify a situation where voices cross, a

note may have two stems with different durations. The sixteenth notes G4 in figure 2.3,

and likewise the dotted eighth note G3 in figure 2.6, can be interpreted as expressive

annotation or interpretative advice rather than actual note content. Keeping the one

with the shortest duration, duplicate notes were removed, as they would bias the error

statistics we carry out on the performances (see chapter 3.1).

Common in Chopin’s work are figurations and ornamentations, that do not observe

the rhythmic grid of the piece. Figures 2.7 shows a typical example: The excerpt from

the Nocturne Op. 9 No. 3, written in a 8
6 meter, is meant to be played without the

typical characteristics of a 8
6 meter and with a very free choice of tempo (cf. the senza

tempo e legatissimo in the score). While this is obvious to a musically trained eye, from

a numerical standpoint the notes do not fit into one bar. One possible solution is to tag

all notes after the third beat, starting with the g4 ♯−f5 ♯−g5 ♯ chord in the right and

the b2 ♯−b3 ♯ octave in the left hand, as grace notes, which are treated as having zero

duration. However, this severely limits their use for investigations in tempo changes.

Instead we decided to split the long bar into several bars and use their nominal score

durations, as indicated by the dashed red lines in figure 2.7.

This is not always possible and additional changes may have to be introduced. Figure

2.8 shows an excerpt from Nocturne Op. 9 No. 2, where we introduced changes in meter,
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Figure 2.7: Nocturne Op. 9 No. 3 in B Major, Bars 153-158. Additional bar lines have

to be introduced to fit the figurations into a rhythmic grid.

from 8
12 to 8

10 to 8
14 and back to 8

12. From a musicological and interpretational point

of view, this of course changes the rhythmical characterisation, but for the purpose of

tempo analysis and prediction (see chapter 4) it is more important to maintain the even

distribution of note durations across the bars.
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Figure 2.8: Nocturne Op. 9 No. 2 in E♭ Major, Bars 32-37. Additional bar lines and

changes of meter have to be introduced to fit the figurations into a rhythmic grid.

2.4.3 From MusicXML to Extended MusicXML

SharpEye exports the recognized and corrected music into musicXML [97], an XML-

based, human readable format, originally developed by Recordare LLC for the purpose

of interchanging scores between composers and publishers. MusicXML is intended to

describe all information – musical content, expressive annotations, editorial information

– contained in a score. It does not provide any information as to the layout of the score,

which is normally taken care of by rendering engines and manual editing by the music

publisher.

However, as the format is text-based and human readable, it is easy to extend it with

the geometrical information we need. Mainly, those extensions are:

Measure Attributes: Each measure is extended by 2 attributes containing the number

of the page and system that hold the measure.
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ID: Each note is given a unique ID.

Geometric Location: Each note element is extended by a node containing its coor-

dinates within the scanned page.

System Location: The geometrical location of each system is given in terms of a

rectangle with top-left corner coordinates and height and width measurements.

Beat Onset: MusicXML implicitly encodes the onset of a note through order and du-

ration of the elements within the bar. In order to determine the onset of a note

or rest all notes and rests preceding the one in question have to be considered.

We precalculate and store the nominal onset of each note within the bar for easier

access.

As mentioned above, an important aspect of SharpEye for the purpose of this work is

that the layout information of the scanned scores is accessible. The information can be

exported to a human readable, structured format called mro, SharpEye’s own internal

file format8.

The information is stored without their musical meaning being interpreted and all

recognized elements are described graphically rather than musically: instead of storing

pitch names with octave numbers, as done in musicXML, the positions of note heads are

relative to the middle line of the staff without taking the clef into account; the duration

of a note is stored through both the shape of the head and the number of flags attached

to the stem of its chord.

The elements are grouped into the following hierarchy: page > system > staff >

bar > chord > note. Geometrical positions are stored for most elements: positions

of system and staff are relative to the page; the position of a bar is determined by

its right barline, the horizontal position of which is stored relative to the staff. The

horizontal position of a note is stored indirectly through the position of the stem of the

associated chord and the information on which side of the chord the note head is placed.

The vertical position can be calculated from the position of the staff and position of the

note head within the staff. Image coordinates are converted from pixel coordinates to

units, relative to the size of the staves: the distance between two note lines corresponds

to 16 units.

8For a full description of the format see http://visiv.co.uk/tech-mro.htm.
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Figure 2.9: A chord in the musicXML format (left panel) and its counterpart in the

SharpEye mro format (right panel).

Figure 2.9 shows the same chord represented in two different formats, musicXML

and mro. The chord is positioned 232 units (3712 pixel, flagposn −56,232) to the right

of the top left corner of the staff and consists of two notes: the first one being 5 positions

above the middle line, sitting on top of the highest line, which puts the center of the

note head 8 pixels (0.5 × 16) above the top of the staff. The second one is 2 positions

below the middle line, on the second line, which puts the note head 48 pixels (3 × 16)

below the top line of the staff. Neither has an accidental and both have a solid head.

With the additional information in the chord that the flag count is 1, and information

from the surrounding bar structure on the shape of the current clef, this translates to

an octave g4 − g5 with the duration of an eighth note.

To add the geometric location to the musicXML score, a 1-to-1 matching to the mro-

file has to be established. With very few exceptions this is straight forward. In the mro

format the notes in a system are stored staff wise: upper staff, left to right, followed by

lower staff, left to right. Storage in musicXML is bar wise: first bar, upper staff left to
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Figure 2.10: Fantasy Op. 49, Bars 248 - 249. The order in which the notes on the

last onset in the upper voice (g and e ♭) are stored, differs between musicXML and mro

format.

right, followed by lower staff, left to right, followed by the next bar. Notes on the same

vertical position (mro) or onset (musicXML) are sorted top to bottom. Hence, except

at the end of a bar the note to note order is the same in both formats.

Situations exists, however, where the local note order is changed through the inter-

pretation of the graphical content: Figure 2.10 shows two bars from the Fantasy in F

Minor, Op. 49. The triplet at the end of the second bar consisting of b ♭−a ♭−g is ac-

companied by two eighth notes d ♭−e ♭, which are printed on the same onset as the first

and last note of the triplet. In the mro file, vertically aligned elements are presented

from top to bottom, which puts the g before the e ♭. Taking the conflicting rhythms into

account, however, the e ♭ is played before the g which results in a reversed order in the

musicXML representation.

2.5 Score-Performance Matching

Score-Performance Matching is the process of aligning score and performance of a musical

piece. Depending on the representation of the performance – audio or symbolic data

– approaches and techniques differ. In the case of score-audio alignment, a standard

approach is to first render the score into an audio file, convert both score and performance



30 Chapter 2. The Magaloff Corpus

into a feature representation (spectral representation [23], chromagrams [16], or statistics

over several frames of audio data (Chroma Energy distribution Normalized Statistics

[75])), the sequences of which are then aligned using Dynamic Time Warping, Hidden

Markov Models or hybrid graphical models [93]. Applications can be found in both

online, real-time situations, like score following [2] and automatic accompaniment [94],

and offline situations, like content-based indexing of audio files [23]. A detailed overview

can be found in [2].

Aligning a score and a symbolic representation of a performance, such as MIDI,

presents different problems: For each performed note the corresponding note in the

score has to be marked and vice versa. However, even for expert performers, score

and performance rarely match one-to-one. The main differences arise from (1) perfor-

mance errors, (2) temporal deviations through expressive variations of timing, and (3)

underspecified scores (especially trills and other ornamentations) [56]. An important

distinction has to be made between online matching algorithms, mainly used for score-

following purposes [15], that have to meet robustness criteria and real-time constraints,

and offline algorithms, that need to be as accurate as possible.

The latter, offline score-performance matching with symbolic scores, reflects the sit-

uations we need to address with regard to the Magaloff data: the finished corpus should

contain an alignment of all scores with their respective performances, such that (1) each

score note is either marked as matched (and linked to the corresponding performance

note) or omitted if the score note was not played and (2) each performed note is marked

as either matched (and linked to the corresponding score note) or inserted if the played

note has no counterpart in the score.

Several matching strategies have been developed and evaluated[56, 41]. They range

from the strict matcher [59], which tries a note-by-note matching based on strict tempo-

ral constraints derived from the note order in the score, to more sophisticated approaches

clustering simultaneously played notes together and trying to find a globally optimal

alignment over the complete performance [68]. Gingras [41] presents a matcher that

uses structural score information about ornamentations and tracks local tempo changes

in the performance to map performance events to the corresponding score events.

We use the edit-distance paradigm that was initially invented for string comparisons

[122] and has been used in different music computing applications [15, 86]. In [46],

Grachten offers more detailed information on score-performance matching as an appli-

cation of edit-distance. Since the edit-distance assumes a strict order of the elements in
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the sequences to be aligned, it is not directly applicable to polyphonic music. To solve

this problem, we represent polyphonic music as sequences of homophonic slices [90], by

segmenting the polyphonic music at each note onset and offset. The segments, repre-

sented as the set of pitches in that time interval, have a strict order, and can therefore

be aligned using the edit-distance. A series of edit operations – insertion, omission,

match and trill operations in our case – then constitute the alignment between the two

sequences. Each of the applied operations comes at a cost (the better the operation fits

in a specific situation, the lower the cost), the sum of which is minimised over the two

sequences – score and performance.

2.5.1 jGraphMatch - An Interface for Graphical Score-Performance

Matching

Due to the complexity of the music, the large variations of tempo and timing in the

performances, and the considerable amount of performance errors, automatic score-

performance matching is very error-prone. As the number of notes is vast, the interface

for correcting and adjusting the alignment has to be intuitive and efficient. Figure 2.11

shows a screenshot of the Java-Application developed and used for the preparation of the

Magaloff corpus. The upper half of the application displays the scanned sheet music one

system at a time. As the position of each note element on the page is known, each click

on an element in the image can be related to the corresponding entry in the musicXML

score. The lower half displays the performance of the piece as a piano roll: pitch on the

vertical axes, time on the horizontal. The initial, automatic alignment provided by the

edit-distance matcher is displayed and can be manipulated. Score notes without associ-

ated performance note are highlighted, as are performance notes that have no partner in

the score, and aligned performance and score notes with different pitches. Apart from

visual feedback, future versions will also include sonification of the alignment: Con-

structing a MIDI version of the alignment by playing all pairs of matched notes at the

time of the nominal (score) onset but with the pitch of the matched performance note

provides a further integrity check.

The software was enhanced to also provide corrections of certain limitations of Sharp-

Eye, the software used for constructing the musicXML scores, mainly adding 8va-lines

and Volta brackets9. Expressive annotations (crescendo, diminuendo, accelerando and

9Volta Brackets denote that certain passage are to be played differently on different repetitions of the

same segment.
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Figure 2.11: jGraphMatch: a Software tool for display and manual correction of score-

performance alignments.

ritardando) and dynamics (p,f,sfz, etc) can be added and their on- and offsets modi-

fied. Possibilities for classifying errors into error categories (as done in the error studies

presented in section 3.1.5) were also integrated into the software.

A particular problem with the matching was that in some pieces there are differences

between our version of the score and the version performed by Magaloff: this ranged

from small discrepancies where, e.g., Magaloff repeats a group of notes more often than

written in the score (e.g., in the Nocturne Op. 9 No. 3, bar 111), to several skipped

measures (e.g., Waltz Op. 18, where he omitted bars 85 to 116), to major differences

that probably are the result of a different edition of the score being used by Magaloff

(e.g., in the Sonata Op. 4 Mv. 1, bars 82 to 91, where the notes he plays are completely

different from what is written in the Paderewski edition of the piece).
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2.6 Overview of the corpus

Magaloff’s performances comprise 336.581 notes. Chopin’s compositions comprise 331.080

notes. From those we exclude passages where differences between our score and the score

version performed by Magaloff seemed likely. To this end, we apply the a simple heuris-

tic: sequences with more than 10 successive insertion notes and no matched notes are

excluded, as are sequences of deletion notes spanning more than 4 onsets with no match

notes in-between. The excluded passages amount to 2808 score notes and 1859 per-

formed notes. Unmatched performance notes with a MIDI velocity below 10 are also

excluded (731 performed notes). Table 2.2 shows a summary of the corpus. The re-

maining score and performance notes fall into three categories: Matched Notes (score

note/performed note pair), Inserted Notes (performance notes without corresponding

score notes), and Omitted Notes (score notes without corresponding notes in the perfor-

mances). Substituted Notes are matched notes, where the pitches differ between score

and performance. A more detailed discussion of the different kinds of errors can be found

in 3.1.1. Grace notes and trills are mentioned separately: Grace notes do not have a

nominal duration defined by the score. Therefore they cannot contribute to discussions

of temporal aspects of the performance. As a consequence we normally exclude those

from the data. Trills constitute many-to-one matches of several performance notes to a

single score note. When counting the performance notes in the corpus, the number of

performance notes matched to a trill have to be accounted for. Accordingly, the com-

plete number of performed notes is composed of the number of matches, substitutions,

insertions, matched grace notes, and trill notes. The complete number of score notes is

composed of the number of matches, substitutions, omissions, and matched and omitted

grace notes.

Table 2.3 shows the note and matching statistics according to piece categories. The

generic category Pieces includes: Introduction and Variations Op. 12, Bolero Op. 19,

Tarantella Op. 43, Allegro de Concert Op. 46, Fantaisie Op. 49, Berceuse Op. 57, Bar-

carolle Op. 60, and Polonaise-Fantaisie Op. 61. The encores have not yet been included

in the corpus.

2.7 Applications of the Corpus

Plenty of possible applications of a corpus of this precision and dimensions exist, some

of which I will glance at in conclusion.
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Pieces/Movements 155

Score Pages 930

Score Notes 328.272

Performed Notes 333.991

Playing Time 10h 7m 52s

Matched Notes 307.680

Inserted Notes 10.769

Omitted Notes 10.522

Substituted Notes 5.330

Matched Grace Notes 4289

Omitted Grace Notes 451

Trill Notes 5923

Table 2.2: Overview of the Magaloff Corpus. The numbers do not include passages where

differences between our score and the score version performed by Magaloff seemed likely.

Unmatched performance notes with a MIDI velocity below 10 are also excluded.

First, and foremost, the corpus is a unique document of one of the great pianists of

the 20th century. It offers perspectives on Magaloff’s style, his interpretational ideas, his

image of Chopin’s work. In the course of this thesis – chapter 3 investigates Magaloff’s

performance errors, compares his interpretations of Chopin’s Études to those of other

pianists in search of effects of age, and inspects how Magaloff uses asynchronies between

right and left hand as an expressive device – I only scratch at the surface of what can

possibly be learned from this collection.

Apart from Magaloff’s own particular style, this collection is also representative of

piano performance in general, and can as such be used to validate already existing

computational models of expressivity. While it is possible to a certain extent to mark

beat times in audio recordings manually, and with the so measured data test and develop

models for tempo changes, it is impossible to do this for loudness of individual notes

or even onsets. The Magaloff corpus provides loudness information for individual notes,

which makes it possible to study loudness not only in its general shape over larges units,

like phrases, but also in surgical detail. An example for the latter are the relative loudness

values of different notes in a chord, which have substantial influence on the timbre of the

chord. This also applies to offsets of individual notes which, in case of audio recordings,
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Category Pieces Score Played Matched Inserted Omitted Substituted

Ballades 4 19511 20160 18975 911 469 274

Etudes 24 40894 40757 38697 1449 1620 609

Impromptus 3 7216 7300 7152 81 154 67

Mazurkas 41 47156 46844 45119 963 1608 521

Nocturnes 19 31108 31974 30961 595 838 318

Pieces 7 39759 40926 38281 1497 1395 976

Polonaises 7 27875 28161 26246 1372 1103 510

Preludes 25 20067 20172 19242 586 605 344

Rondos 3 18250 18301 17491 287 433 304

Scherzi 4 21957 22543 20861 1236 670 407

Sonatas 12 38631 39886 36694 1385 1413 756

Waltzes 8 18656 18826 18173 407 678 244

Table 2.3: Overview of the Magaloff Corpus by piece category.

are in most instances next to impossible to determine automatically or manually. Most

articulation-related aspects are therefore accessible only through data-collections like the

Magaloff corpus.

All machine learning applications, and, for that matter, all data-driven enterprises,

need representative data. One of those applications, expressive performance modeling, is

the main focus of this thesis. Without data as precise and representative as the Magaloff

corpus such an endeavor would not be possible. Arzt [2] uses the data as ground truth

and evaluation criteria for his score following system. As soon as audio recordings are

made from the symbolic part of the corpus, the data can been used as training data for

machine learning algorithms to automatically transcribe audio data into symbolic music.

Audio-to-Score alignment is a form of automatic transcription of audio into symbolic

music. Based on complete knowledge of the score, the task is to extract each score note’s

position within the audio recording [80]. The Magaloff corpus can serve as ground truth

data for training as well as evaluating alignment systems. Given reliable automatic tran-

scriptions, the long term objective is to build corpora of symbolic performance data for

other pianists, in order to investigate inter-artist differences and commonalities. Therein

the Magaloff corpus can play the role of a “master corpus”: for most performances of

the same piece the scores are practically identical. If for all bars or even onsets in a
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performance the corresponding bar or onset in the Magaloff corpus can be identified,

any information and manual annotation available in the Magaloff corpus can also used

for the analysis.



Chapter 3

Inspecting Magaloff

If you want me to play only the notes without any

specific dynamics, I will never make one mistake.

Vladimir Horowitz

The Magaloff corpus and similar collections open up possibilities for new strands

of performance research. The following chapter touches on three aspects of music per-

formance: (1) Performance errors, a ubiquitous element of a musician’s life, have been

studied before under laboratory conditions by Repp [100]. Section 3.1 complements the

study with a perspective on the performance errors of a professional pianist during a

live recital. The size of the corpus makes it possible to abstract from the view of single

note errors and establish error categories. (2) Section 3.2 presents a study investigating

the effect of age on a performer. (3) Section 3.3 briefly reports on a study done mainly

by W. Goebl on the Magaloff corpus (originally published as [45]) that extends previous

work on temporal asynchronies in music ensembles to the domain of solo piano.

3.1 Performance Errors

Musicians at all levels of proficiency must deal with performance errors1 and have to find

strategies for avoiding them. As their level of skill increases, errors occur less frequently

and also mostly seem to go unnoticed by the audience. Which of the errors the audience

in fact notices, depends on three main factors: (1) how exposed the note is within its

context, (2) how saliently a wrong note was played, and (3) the listener’s musical abilities

and acquaintance with the piece. A recent neuro-imaging study discovered a correlation

between the pianists’ EEG patterns and their performance errors, suggesting that they

know 70ms in advance when they are going to make a mistake [103]. So it seems that,

1As will be explained in detail in section 3.1.1, this means pitch differences between score and per-

formance.

37
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in theory, the pianist can influence how subtly or saliently a wrong note is played, and

anecdotal evidence claims that they in fact do.

While audio recordings abound, extracting information from them related to timing,

dynamics, and articulation automatically is still not possible at the level of precision

required for large-scale music performance studies. Current techniques for audio tran-

scription focus on extracting pitches and their respective onsets. Although the overall

precision is promising, parts with low intensity or extensive use of the sustain pedal are

still not sufficiently well recognized [80]. Extracting the dynamics of individual notes

from audio recordings is virtually impossible. On the whole this makes audio recordings

unusable for studying performance errors. The Magaloff corpus is an ideal source for

investigations into the matter, because it contains precise information about which notes

were played and which were left out. This allows an exact evaluation of pitch errors in

the played pieces.

Following an assessment of quantitative aspects of Magaloff’s errors, I am going

to relate them to performance tempo (section 3.1.3). Section 3.1.4 then presents the

results of a study published in [28], that focuses on perceptual aspects of single-note

errors. Many factors contribute to producing an error, among them technical deficiencies,

lack of concentration, and poor memorization. While accidentally hitting a wrong note

might be a local event, technical problems of course persist and may resurface in similar

situations, leading to errors that are systematic. The same holds true for problems

with memorization, which may lead to similar or identical sequences containing similar

or identical errors. To investigate this further, I propose a categorisation of errors

(published in [32]) in section 3.1.5.

3.1.1 Definition of Performance Errors

The first question to be dealt with is what we consider an error in a performance.

Deviations from the notated score come in many facets – tempo, note duration, dynamic

changes, note order, pitch. However, with the exception of pitch (and even this is only

true for instruments where pitches are fixed, like on the piano, and not subject to

expressive variation, like on the violin), it is hard to draw a line where deviations stop

being perceived as interpretation and start sounding wrong. A criterion commonly used

to express what is “right” and what is “wrong” in musical performance is “faithfulness

to the score”, a term that combines a plethora of different aspects of performance and

does not lend itself to an easy definition [114]. Pitch is the one aspect that is usually
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agreed on in western piano music (at least for a given edition of the score), and can also

be easily measured in our data. This makes pitch errors an objectively definable type of

performance error.

Following Repp’s definition [100], three types of pitch errors are distinguished: omis-

sions, score notes that are not played in the performance; insertions, played notes that

are not written in the score; and substitutions, notes that are played on the wrong pitch.

Figure 3.1 illustrates the different situations: in the right hand the notes f ♯−b, f ♯

(marked as red squares in the score part of the figure) were omitted, as were g, c in

the left hand. A couple of notes were inserted (red bars in the performance part of the

figure) and the c ♮ was substituted with a c ♮ one octave higher (circled in green).

Taking only insertions and omissions, the issue is well-defined. However, allowing

errors to be labeled as substitution, leaves certain decisions to interpretation. The a ♯

that was inserted alongside the octave b5−b4 in the right hand on beat 4.5 (circled in red

in the lower part of figure 3.1) does not seem to be a substitution for the omitted f ♮ “to

the same degree” as the substituted c ♮ in the left hand. Of course, it is not possible to

say with certainty which notes were played as a substitute for something written in the

score, either by accidentally hitting a wrong note or because of incorrect memorisation

or reading, and where a simultaneous but independent insertion and omission took place.

To assess the issue objectively, for every omitted score note s we search for a “suitable”

insertion note p that satisfies the following two conditions: (1) p is played closer to the

average onset of all notes with the same score onset as s than to the average onset of the

notes preceding or succeeding s (maximum allowed time difference 1 second), and (2) p

it is closer in pitch height to s than all other insertion notes that satisfy first condition.

3.1.2 Related Work

One of the few studies on the phenomenon of performance errors was done by Repp in

1996 [100]. The study focuses on pitch errors and their perceptual salience for listeners.

The assumption, based on informal observation and performer’s accounts [109], is that

skilled performers avoid mistakes that are obvious, and the committed errors are difficult

to hear. This leads to the following hypotheses about both perceptibility and distribution

of performance errors [100]:

1. Errors in inner voices are less noticeable than in the melody voice and hence will

occur more frequently.
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Figure 3.1: Polonaise Op. 40 No. 1, Bar 78. Different Error situations: Insertion (red

circle, lower panel), Omission (red circle, upper panel), and Substitution (green circles,

upper and lower panel)

2. An increasing number of simultaneously played notes makes it more difficult to

hear single voices, and, consequently errors. This is will make errors more frequent

in proportion to the number of simultaneous onsets.

3. Insertion and substitution errors will be less noticeable when they fit into the

harmonic context than when they are in conflict with it, hence the majority of

errors will be harmonically appropriate in their context.

4. Inserted and substituted notes are less likely to be noticed when they are low in

relative intensity, hence erroneous notes will be lower in intensity than the correct

notes in immediate vicinity.
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After a short rehearsal period, ten graduate piano students played four piano pieces

repeatedly on a Yamaha Disklavier:

• Op. 15, No. 7, Träumerei, by Robert Schumann

• Prélude No.8 (Book I), La fille aux cheveux de lin, by Claude Debussy

• Op. 28 No. 15, Raindrop-Prelude, by Frédéric Chopin

• Lyric Piece Op. 43 No. 5, Erotik, by Edvard Grieg

All pitch errors in the recorded MIDI data were identified and labeled. The findings

support the stated hypotheses with respect to the distribution aspect: errors occurred

mainly in subsidiary voices (1), where many notes coincided (2), were for the most

part harmonically appropriate (3), and low in intensity (4). In a listening experiment,

musicians, partly acquainted with the pieces in question, would then try to detect the

errors. From the low number of actually detected errors, Repp concluded that most

errors are indeed perceptually inconspicuous and only a very small fraction is likely to

be noticed by a concert audience.

Several aspects of the hypotheses had been inspected and confirmed before. Espe-

cially (1) and (3) were discussed by Palmer et al. [84, 83, 85]. They focus on aspects

related to the production of errors rather than the perception, and investigate how per-

formance errors may shed light on the way performers memorize and organize music in

their memory. They attribute their experimental corroboration of hypothesis (1) to the

effect of conceptual prominence of melody over accompaniment: melodic elements may

be retrieved first from memory, followed by all accompanimying voices together. This

makes it less like to confuse the melody with other items and increases the likelihood of

errors in the chordal elements. Further, the authors reason that hypothesis (3), which

they also see supported by their experiments, “suggests that retrieval of musical elements

from memory reflects multiple structural levels and units” as opposed to a retrieval in

single note units [84].

3.1.3 Quantitative Results

We counted all instances of the different types of errors in all 153 pieces in the Magaloff

corpus and computed the error rates with respect to the overall number of performance

and score notes (Table 3.1): 3.22% of all performed notes are insertions, 3.21% of all score
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Score Notes 328.272

Performed Notes 333.991

Matched Notes 307.680

Inserted Notes 10.769 3.22%

Omitted Notes 10.522 3.21%

Substituted Notes 5.330 1.70%

Table 3.1: Overview of the errors and error rates in the Magaloff Corpus

Figure 3.2: Left panel Error percentages by piece category. Right panel: Correlation

coefficients between note-density and error rate by piece category

notes were omitted, and 1.7% of all matched notes were played at a wrong pitch. This

exceeds the percentages reported in (Repp, 1996) (1.08% insertions, 1.64% omissions,

and 0.26% substitutions). Looking only at the Chopin piece Repp used in his study

(Prelude Op.28/15, 1506 performed notes, 1521 score notes), we encounter error rates

that are more similar: 0.6%/1.58%/0.54% (Magaloff) vs. 0.98%/1.48%/ 0.21% (Repp).

Figure 3.2 gives an overview of the categories of pieces with their respective sizes

and error numbers. Assessing the pieces by category, the Scherzos and Polonaises stand

out in terms of insertion errors (5.5% and 4.9% respectively), the Rondos, Impromptus,

and Nocturnes constitute the low-insertion categories (insertion rate below 2.0%). The

Impromptus are also the category with the lowest percentage of deletion errors (2.13%),

while Etudes and Polonaises exhibit the highest percentage of deletions (around 4%).

It might be, that faster and denser pieces give rise to a larger error proportions then
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slow pieces, suggesting that slower pieces are easier to execute. Thus, as a measure for

note density, we count the number of notes per 3 second time unit and consider the

number of errors in this context. We found that a high note density goes along with a

higher error frequency: the more notes played per time unit, the larger the proportion of

errors. This holds to a varying degree for all kinds of errors. Overall, the corpus exhibits

correlation coefficients between note density and frequency of (a) insertion errors, (b)

deletion errors and (c) substitution errors of 0.42, 0.27, and 0.61, respectively. Figure 3.2

shows the correlation coefficients of error frequency and note density for the respective

categories of pieces. The Ballads and Polonaises both show a high error percentage as

well as a high correlation of error frequency and note density. This may indicate that

these are technically particularly demanding.

3.1.4 Qualitative and Perceptual Results

One of Repp’s main hypotheses is that skilled musicians avoid errors that are obvious

[100]. Whether an error is conspicuous is closely related to several factors:

1. How loud was an added note played in relation to the other notes in the vicinity?

2. How well does an insertion/substitution note fit into the harmonic context, or how

important was an omitted note for the harmony?

3. Is the error located in a melody or an inner voice, and how many simultaneous

voices surround it?

To assess the first factor, we compared the loudness of each insertion note with the

loudness of the correct notes in the immediate vertical vicinity (notes on the same score

event). On average wrong notes are inserted at 59% of the volume of the loudest, correct

note on the same onset. Only 7% of the inserted notes are the loudest in their context,

16% are louder than the average note with the same onset. 28% are inserted at less than

40% of the maximum loudness, 19% at less than 40% of the average loudness on the

same onset. In terms of absolute MIDI loudness, the average insertion loudness is 45.5.

In Repp’s study, insertion notes are reported to be mostly “of relatively low intensity”

[100]. This seems only to be true to a certain extent in Magaloff’s performances.

Considering the vast number of errors, assessing the harmonic appropriateness of

substitution and insertion errors by listening, as done in [100], is not feasible. Instead,
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we estimated the consonance of an insertion/substitution error with respect to the lo-

cal harmony automatically. Temperley [116] derived key profiles for major and minor

scales from the Essen Folksong Collection [105] that rate the probability of occurrence of

pitch classes within the context of a given harmony. We used these profiles to determine

automatically the most likely local harmony given the pitches that were identified as

correctly played. To judge the consonance of an erroneous note within an estimated

local harmony, we used the key-profiles proposed by Krumhansl and Kessler [67]. The

profiles were established via probe-tone experiments and rate how well a pitch class fits

into a harmonic context. The normalized values range from 0.0534 for the least conso-

nant (minor second upwards from the tonic) to 0.1522 for the most consonant (tonic)

pitch classes in a scale. Assuming that pitches with a value below 0.0603, the value of

the tritone in the major scale, are perceived as harmonically inappropriate, 51% of all

insertions and 44% of all substitutions are incompatible with the local harmony. This, of

course, is only a crude approximation, which completely ignores that, apart from fitting

the local harmony, pitches have additional functions (lead to different harmonies, act

as anticipation preceding harmonic relief) which can make them absolutely appropriate

regardless of the consonance value assigned above.

Repp reports lower percentages of insertions and substitutions that he judged har-

monically jarring: 31% of the insertions and 16% of the substitutions in Schumann’s

Träumerei, 36% of the insertions and substitutions in the Debussy Prélude, and 40%

and 25% in Grieg’s Erotik. The numbers in the Chopin Prélude are very different be-

tween the piano and the forte/fortissimo parts of the piece: in the soft sections (74 bars

in total) 34% of insertions were harmonically inappropriate, in the loud sections (15 bars

in total) 84%, most of which were very low in intensity. Magaloff’s errors do not follow

that particular pattern, but are mainly located in the last section of the piece.

The third facet stated above remains to be assessed: Are errors mostly located

in inner voices as opposed to melody voices, and do they mainly occur in situations

where many notes sound simultaneously? We extracted the melody voice of the pieces,

assuming that the highest pitch in the upper staff at any given time is the melody voice of

the piece2, and then calculated the error proportions for the different parts separately.

The omission rate in the melody voices is 0.8% as compared to 4.1% for voices not

belonging to the melodic part of the score. Table 3.2 shows the error rates by staff and

2In the case of Chopin, this very simple heuristic is correct often enough (though not always) to be

justifiable. Not only do we not have the resources to manually identify and label all melody notes in

Chopins complete piano works, but also is the concept of melody not unequivocally defined.
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IR[%] OR[%]

Multi Mono All Multi Mono All

Upper Staff 4.10 > 2.91 3.57 3.77 > 0.82 2.40

Lower Staff 3.15 > 3.04 3.10 5.46 > 2.27 4.17

Table 3.2: Insertion (IR) and Omission Rates (OR) by staff and surrounding musical

texture (Staffwise without regard to musical texture (All), only one score note present

in the staff (Mono), and Multi-voiced (Multi)

surrounding musical texture: The staff-wise insertion (omission) rates (columns All in

the table) were calculated relative to the overall number of performed notes (score notes)

in the respective staff. To assess errors with respect to the surrounding musical texture,

we defined an onset to be mono-voiced (relative to a staff) if there is only one score

note present, and multi-voiced otherwise. The texture-specific insertion (omission) rates

(columns Multi and Mono) are calculated relative to all performance notes (score notes)

present in the respective texture and staff. Overall, in the upper staff, insertions are

more likely to occur than omissions and vice versa in the lower one. For omission errors

the difference between multi-voiced and mono-voiced situations is obvious: A single note

is less likely to be omitted, particularly if the note is located in the right hand. Insertion

errors are slightly more likely in multi-voice situations, but the difference is less striking.

3.1.5 Error Categorization

While some errors are just local accidents – a finger “brushing” a note alongside a chord,

or hitting a wrong note due to a short lack of concentration caused by an irritation in the

audience – some errors show regularities, follow patterns, share commonalities. These

might be caused by memory problems, such that similar passages contain similar errors,

or technical deficiencies, such that certain errors become systematic.

For a part of the corpus (4 Ballades, 24 Préludes op.28, 24 Études opp.10&25, 17

Nocturnes) I categorized errors (single errors or groups of errors) manually into error

patterns. Several distinct error patterns emerged, covering roughly 40% (36% of the

insertion notes, 44% of the deletion notes, and 44% of all substituted notes) of the errors

in the pieces examined. The remaining errors could not be distinguished further. Table

3.3 shows the error categories with their respective error counts. The different categories
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Category Insertions Omissions Substitutions

Omitted Inner Voice - 630 -

Forwards Related Errors 59 9 40

Backwards Related Errors 75 8 53

Unharmonic Errors 694 - 88

Harmonic Errors 104 - 69

Tied Notes 91 294 -

Repeated Notes 123 - -

Systematic Errors 228 555 110

Note Order Errors - - 261

Total 1385 1496 635

Table 3.3: Number of errors in the different categories

are explained in the following.

Forward- and Backward-Related Errors

Errors in this category have a clear forward or backward relation. Figure 3.3 shows

typical examples: the insertion in the Nocturne Op. 9 No. 2 (left panel) is caused the

pitch B♭ in the immediately following chord; in the right panel (Nocturne Op. 9 No. 3)

the opening melody note d in the first of the displayed bars is unaccompanied by the

right hand, which probably caused the omission of the right hand chords accompanying

the following two melody notes c ♯−d ♯. Analogous situations occur for substitutions with

both forward and backward relations. In almost all cases, the most probable cause is a

memorization problem.

Repeated Notes

A special form of backward-related insertions are repeated notes, notes that were (most

likely unintentionally) played twice, or notes that were first played too soft and then

re-struck. In many cases, one of the performed notes is much softer than the other one.

Possible causes include a silent finger change on the particular note where the finger was

lifted too high in the transfer, thus striking the note twice. Figure 3.4 (left panel) shows

a typical example.
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Figure 3.3: Left panel : Forward related insertion in Nocturne Op. 9 No. 2, Bar 29; Right

panel : Backward related deletion in Nocturne Op. 9 No. 3, Bars 89-90

Tied Notes

Two kinds of errors are related to the concept of tied notes: (1) A tied note might be

struck again, resulting in an insertion note (figure 3.4, middle panel); this is either a

problem of memorization (mostly in inner voices) or done intentionally to emphasize

a melody line or harmonic component that otherwise lacked continuation. (2) Two

successive notes of the same pitch might be played only once, as if they were notated as

tied, resulting in an omission of the second note. Especially in fast passages this suggests

the need for technical simplification. Figure 3.4 (right panel) shows a very soft part in

the Ballade Op. 52, where tying the A ♭ might help emphasizing the melody without

letting the inner voice get too loud.
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Figure 3.4: Left panel : Repeated Note in Nocturne Op. 9 No. 3, Bar 23; Middle Panel :

Replayed tied note in Prélude Op. 28 No. 22, Bar 29; Right panel : Incorrectly tied note

in Ballade Op.52, Bars 44-45.

Unharmonic Errors

Errors that obviously disrupt the harmonic context were classified as unharmonic. This

mainly involves insertions one semitone above or below the notated pitch. Nearly half

of those occurred in octave runs in either one or both hands. Figure 3.5 shows a passage

from Nocturne Op. 48 No. 1.

Harmonic Errors

Insertion or Substitution notes associated with this category do not disrupt the harmonic

context of the piece. In most cases, these are added octaves in the accompaniment

or accompanying notes that were shifted by one octave. While the latter points to a

memorization problem, the former could also be deliberate harmonic emphasis. Rare
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Figure 3.5: Sequence of unharmonic insertions in Nocturne Op. 48 No. 1, Bar 46.

cases involve added figurative elements, such as trills, that were not notated in the score.

Systematic Errors

I call an error systematic if it occurs in more than 60% of instances of the same or an

analogous context. This covers a variety of situations. Figure 3.6 shows a systematic

insertion from Ballade op.38: In almost all instances where the right hand starts with a

downward run accompanied by a rising sequence of octaves in the left hand (e.g. bars

46, 48, and 50), Magaloff inserted a note shortly before or after the first octave in the

left hand. This could be an indication of the Limburg-Comstock Syndrome, a condition

found mainly among writers and musicians that can cause the last two phalanges of

thumb and index finger to link together [123]. As an effect, when playing octaves, the

index finger can not be kept straight and might accidentally hit a key. As noted before,

octave runs show a particularly high number of inserted notes in both hands.

Étude op.25 No.6 contains several downward runs in thirds. In each of these runs,



50 Chapter 3. Inspecting Magaloff

Figure 3.6: Systematic Insertions in Ballade Op. 38, Bars 46 (left), 50 (middle), and 58

(right panel).

Magaloff omitted notes from the highest voice at regular intervals (every third or fourth

note). The regularity suggests a technical problem with the fingering in this passage (see

Figure 3.7). In Étude op.25 No.1 Magaloff often omitted the second note of the figure in

the left hand. This suggests a weak third finger and a problem covering the large span

required in the left hand. A systematic substitution can, for instance, be found in Étude

op.25 No.6, bars 7 and 8, where Magaloff consistently played A instead of A♯. This is

probably a problem of memorization.

Omitted Inner Voice

A special case of systematic deletion is the omission of an inner voice: throughout a

sequence of onsets, an inner voice is omitted partially or completely. In most instances

the most likely cause is either a memorization problem (the least significant voice was

simply forgotten) or the need for technical simplification, depending on the complexity
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Figure 3.7: Systematic Omissions in Étude Op. 25 No. 6, Bars 13, 45, and 47.

of the passage. For instance, in Étude op.25 No.10, Bar 16 (figure 3.8, left panel),

Magaloff omitted one of the two inner voices from a sequence in which the two hands

move in parallel octaves. In this highly homogeneous context, the omission is obvious to

the audience and clearly not a problem of memorization but a result of the technically

demanding nature of the piece.

Note Order Errors

Note Order Errors are the only category that relates to timing rather than pitch: The

order in which two (or more) successive notes are played is switched, resulting in two (or

more) substitution notes. Instances of this pattern are mainly found in Étude op.25 No.

3 and Prélude op.28 No.8. In both pieces, the affected group of notes is a descending

pattern in the left hand, consisting of 4 notes. In the Étude, the lower of the two notes

at the first onset is played after the third note in the group, resulting in a downward

sequence of 4 notes. In the Prélude, the affected group is very similar, with the slight

difference that the first two notes are to be played successively instead of simultaneously.

Again, the two middle notes are often switched, producing the same downward sequence

as in the Étude. Figure 3.9 shows an excerpt from the Prélude. As the performance

tempo of both pieces is very high, the change in note order is impossible to discern for
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Figure 3.8: Left panel : Omitted Inner Voice in Étude Op. 25 No. 10, Bar 16; Right

panel : Note Order Errors in Étude Op. 25 No. 3.

the audience. For the Étude intentional simplification is more likely to be the reason

for the errors, as the figuration is characteristic for the complete piece. In the Prélude

both technical simplification and memorization could be the cause. However, as the

accompaniment does not change over the course of the piece, and some of the groups

are played in the correct order, technical simplification seems to be more likely.

3.1.6 Conclusion

Comparing the 1989 concerts with his earlier recordings (both in the studio and on

stage) it is obvious that Magaloff’s age affected his playing. The chapter opens with

a quote from V. Horowitz, effectively postulating that any error he makes are due to

the realization of his musical ideas. Perhaps it is in this spirit, that the error analysis

of Magaloff’s Chopin has to be interpreted: He was not willing to sacrifice his musical

ideas and ideals at the altar of pitch perfection. This seems warranted especially when
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Figure 3.9: Note Order Errors in Prelude Op. 28 No. 8.

taking into account the considerations of performance tempo and performer age, that

are presented in the following section 3.2.

Nevertheless, the Magaloff corpus contains performance errors in abundance and

therefore offers a unique insight into the phenomenon; all the more so since the record-

ings have been on-stage without any editing, as would be the case for studio recordings.

Overall, the results corroborate and complete the previous studies on the matter: er-

roneous notes have the tendency to be inconspicuous and mostly will go unnoticed by

the audience. The inventory of occurring error patterns and situations can help un-

derstanding why errors are happening in the first place. Given suitable data, it would

also be interesting to compare how other pianists cope with technically demanding sit-

uations: whether they share techniques to simplify passages by harmonic substitutions

and whether there are pieces that all find particularly hard to memorize.

The analyses presented here are mostly based on the Henle Urtext Editions of the

scores. As mentioned in section 2.1, Magaloff was known for having studied Chopin’s
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manuscripts extensively. Recently, a collection of all first editions of Chopin’s scores was

made available under the direction of John Rink at the Royal Holloway, University of

London3. Together with the here discussed differences between Magaloff’s performances

and the Henle Urtext editions, this resource could be used to narrow down the editions

Magaloff might have used to study the pieces in the first place. This might offer further

explanation for some of the disparities.

3.2 Performer Age

One of the remarkable aspects of Magaloff’s Chopin concerts is the age at which he

undertook this formidable task: he was 77 years old.4 The demands posed by performing

publicly are enormous (motor skills, memory, physical endurance, stress factors, see

[132]). Theories of human life-span development identify three factors to be mainly

responsible for successful aging: selection, optimization, and compensation (SOC model,

[3]). Applied to piano performance this would imply that older pianists play a smaller

repertoire (selection), practice these few pieces more (optimization), and hide technical

deficiencies by reducing the tempo of fast passages, while maintaining tempo contrasts

between fast and slow passages (compensation) [121]. In [27], a study conducted in

cooperation with W. Goebl, we test whether Magaloff actually used strategies identified

in the SOC model.

The first aspect of the SOC model, selection, seems not to be supported in this case:

Magaloff performed the entire piano works by Chopin within four months.5 We cannot

make a statement about optimisation processes due to our lack of information about his

practice regime before and during the concert period. Regarding possible compensation

strategies, we first examine Magaloff’s performance tempi of the Etudes in the context

of other recordings (section 3.2.1). We then compare the tempo ratios between fast

and slow passages in Magaloff’s performance of a Nocturne to the tempo ratios seen in

recordings of several other pianists (section 3.2.2).

3http://www.cfeo.org.uk
4At age 77, Alfred Brendel performed one solo program and one Mozart Concerto for his last season

in 2008
5Of course, Magaloff’s repertoire might have been broader in younger years, which would then indicate

otherwise. A systematic comparison of earlier concerts seasons and all concerts in 1989 would provide

further insights into that particular aspect.
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3.2.1 Performance Tempo in Chopin’s Etudes

To assess Magaloff’s compensation strategies, we examine the performance tempo of

difficult pieces, such as the Etudes, and compare them to his earlier recording at the age

of 63 and to recordings by several renowned pianists. These audio recordings, a total of

289 performances of 18 Études by 16 performers6, were beat-tracked semi-automatically

using the software Beatroot [19, 20]. A basic tempo value was estimated by the mode

value, the most frequent bin of an inter-beat interval histogram with a bin size of 4% of

the mean inter-beat interval.

Op.10 No.1 Op.10 No.2 Op.10 No.4 Op.10 No.5

BI49 157 BI49 129 HA29 157 SH32 104

HA29 159 MA77 139 BI49 157 MA63 111

SH32 163 SG32 140 AR53 161 LO27 115

CO56 164 HEN 144 SC31 165 MA77 115

MA63 165 HA29 145 MA63 166 AS38 115

SC31 169 MA63 145 SH32 169 HEN 116

AS38 170 CO56 149 LO27 169 BI49 117

MA77 170 AR53 152 PO30 169 SC31 117

HEN 176 SC31 152 MA77 170 Gi33 118

PO30 178 PO30 152 GI33 174 CO56 120

LO27 179 LO27 156 AS38 174 LU27 120

BA44 179 AS38 157 CO56 175 AR53 121

LU27 180 LU27 159 HEN 176 HA29 122

GA30 190 GI33 165 LU27 179 PO30 123

GI33 191 GA30 173 BA44 191 GA30 131

AR53 196 BA44 176 GA30 197 BA44 139

Table 3.4: Tempo values for selected Etudes from Chopin Op. 10. Each performance is

named by the first two letters of the pianist followed by the pianists age at the time of

the recording. Columns are sorted by ascending tempo values.

6Arrau (recorded 1956), Ashkenazy (1975), Backhaus (1928), Biret (1990), Cortot (1934), Gavrilov

(1985), Giusiano (2006), Harasiewicz (1961), Lortie (1986), Lugansky (1999), Magaloff (1975), Magaloff

(1989), Pollini (1972), Schirmer (2003), Shaboyan (2007), Sokolov (1985).
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Op.10 No.7 Op.10 No.8 Op.10 No.10 Op.10 No.12

BI49 232 BI49 142 BI49 426 PO30 64

MA63 237 HA29 157 BA44 450 LO27 64

HA29 242 SH32 157 MA63 467 MA63 65

SC31 243 MA63 159 SC31 471 SC31 66

MA77 244 BA44 168 HEN 480 LU27 66

SH32 248 SC31 173 SH32 480 AS38 66

HEN 252 LO27 174 AR53 483 HA29 68

AR53 252 GI33 174 LU27 487 BA44 71

GA30 254 MA77 174 HA29 505 SH32 71

LU27 256 HEN 176 GA30 508 MA77 72

LO27 256 AS38 177 AS38 512 BI49 74

CO56 263 CO56 178 PO30 513 CO56 75

AS38 264 AR53 179 LO27 529 HEN 76

PO30 266 PO30 180 CO56 542 GI33 77

GI33 271 GA30 188 MA77 550 GA30 87

BA44 285 LU27 190 GI33 574 AR53 88

Table 3.5: Tempo values for selected Etudes from Chopin Op. 10 (continued).

Tables 3.4 and 3.5 show the tempo modes obtained for all pianists on the Etudes

selected from Op. 10. Tables D.1 - D (see appendix D) contain the measurements for the

remaining pieces. For the sake of comparison the metronome indications from the Henle

Edition [137] of the Etudes were added (HEN). In 12 of the 18 pieces Magaloff’s tempo

is within a 10% range of the metronome markings of the Henle edition. Three pieces are

more than 5% slower and three pieces more than 5% faster compared to the metronome

markings. Compared to the performances by other pianists, Magaloff’s performances of

the Op. 10 Etudes are on average 1.2% slower than the average over all other recordings.

The Op. 25 Etudes are on average about 5.6% slower than the average performance.

Comparing Magaloff’s recordings at the age of 63 and 77, the tempi vary to a surprising

degree, but no systematic tempo decrease in the latter can be found. On the contrary: in

12 pieces out of 18 the recording at age 77 is faster, sometimes to a considerable degree

(up to 17% in op. 10 No. 10).

On the whole, Magaloff’s performances do not suggest a correlation between age and
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tempo, while the tempi of the other pianists’ recordings show a slight age effect (with

piecewise correlations between pianist age and tempo ranging from −0.66 to 0.51, with an

average of −0.17). These considerations are based on the underlying assumption that the

difficulty of a piece increases with the tempo. This is not universally true. However, for

the pieces in question – the fast pieces of the Études – the assumption seems warranted.

3.2.2 Age effects and tempo contrast in a Nocturne

In his interpretation of the SOC model Vitouch reasons, that compensation takes place

by an overall decrease of performance tempo, while the contrast between fast and slow

passages is kept constant [121]. To assess this we examined the tempo values in 14

performance of the Nocturne op. 15 No. 1 by other pianists7. The piece has an A-B-A

form, with a fast middle part (Andante cantabile (Bars 1-24) – con fuoco (25-48) – Tempo

I (49-75)). We found a significant correlation between the performance tempo of the

middle section and the age of the performer (the older, the slower, see figure 3.10, left

panel). However, the tempo ratios between the contrasting sections of the piece showed

no overall age effect, confirming Vitouchs [121] interpretation of the SOC model. Age

seemed to have no effect on Magaloff’s Nocturne: he played faster than the youngest of

the performers while keeping a comparable tempo ratio. The same tendency could be

found in the Etude Op. 25 No. 10, however the negative correlation was not significant.

3.2.3 Conclusion

Based purely on the fact that Magaloff performed the entire piano works by Chopin,

we can refute the selection part of the SOC model. Due to missing information about

Magaloff’s practice regime before and during the performance period, we cannot make a

statement about optimization processes. Magaloff’s performance tempi do not point to

compensation processes, which were indeed found in recordings by other famous pianists.

In sum, Magaloff’s data does not seem to corroborate the SOC model.

7Argerich (recorded 1965), Arrau (1978), Ashkenazy (1985), Barenboim (1981), Harasiewicz (1961),

Horowitz (1957), Leonskaja (1992), Maisenberg (1995), Magaloff (1975), Perahia (1994), Pires (96),

Pollini (68), Richter (68), and Rubinstein (1965).
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Figure 3.10: Left panel: Tempo and performer age of 14 different pianists playing the

middle section of Nocturne Op. 15, No. 1, including the tempo prescribed by the Henle

edition of the score. A significant effect of age (the older, the slower) can be identi-

fied. Right panel: Tempo ratio between the middle section and the first section of the

Nocturne. No significant effect of age can be identified.

3.3 Between-hand Asynchronies as Expressive Device

The following is a recount of a study done mainly by W. Goebl [45]. The study discusses

another example of a musicological phenomenon, the examination of which requires data

as precise, and as representative for a composer and a musician as the Magaloff corpus.

The summary of this study can also be found in [26].

Temporal offsets between the members of musical ensembles have been reported to

carry specific characteristics that might reflect expressive intentions of the performers; for

instance, the principal player in wind or string trios precedes the others by several tens of

milliseconds [95], and soloists in jazz performances have been shown to synchronise with

the rhythm section at offbeats [38]. As the hands of a pianist are capable of producing

different musical parts independently, the temporal asynchronies between the hands may

be an expressive means for the pianist. The asynchronies were computed automatically

over the entire corpus based on staff information contained in the score, assuming that

overall the right hand played the upper staff and the left hand the lower. For the
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Figure 3.11: Left panel : Absolute asynchronies plotted against the mean event rate by

piece category. Right panel : The number of out-of-sync regions plotted against the mean

event rate plotted. (Picture from [44])

analysis of this phenomenon we excluded all onsets marked in the score as arpeggiated ;

in these cases temporal deviations are prescribed by the score rather than being part

of the interpretation. The main results of this study [45, 44] are reported briefly in the

following.

The analysis of over 160,000 nominally simultaneous events revealed tempo effects:

slower pieces were played by Magaloff with larger asynchronies than faster pieces. Figure

3.11 (left panel) shows the correspondence between event rate and asynchrony. Moreover,

pieces with chordal texture were more synchronous than pieces with melodic textures.

Subsequent analyses focussed on specific kinds of between-hand asynchronies: bass an-

ticipations and occurrences of “tempo rubato in the earlier meaning” [61].

As bass anticipations we consider events where a bass note precedes the other voices

by more than 50 ms. They can be clearly perceived due to their large asynchronies and

can be considered to be expressive decisions by the performer. Magaloff’s performances

contain a considerable number of these bass anticipations (about 1% of all simultaneous

events). Again, higher proportions are found in slower pieces.

The “tempo rubato in the earlier meaning” refers to particular situations in which

the right hand deviates temporally from a stable timing grid established by the left hand

[61]. Chopin, in particular, recommended to his students this earlier type of rubato as

opposed to the later type that refers to a parallel slowing down and speeding up of all
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parts of the music (today referred to as expressive timing). We automatically identified

sequences where Magaloff apparently employed an “earlier tempo rubato” by searching

for out-of-sync regions in the pieces. An out-of-sync region is defined as a sequence of

consecutive asynchronies that are larger than the typical perceptual threshold (30ms)

and that comprises more events than the average event rate of that piece. On average,

1.8 such regions were found per piece (283 in total) with particularly high counts in the

Nocturnes – a genre within Chopin’s music that leaves most room for letting the melody

move freely above the accompaniment. Figure 3.11 shows the correspondence between

event density and number of “earlier tempo rubato” sequences, suggesting that slower

pieces leave room for tempo rubato than faster pieces

3.3.1 Conclusion

On the whole, this is a strong indication that indeed asynchronies between a pianist’s

right and left hand serve an expressive purpose. Magaloff is known for having studied

Chopin’s manuscripts extensively, so it can be safely assumed that he was familiar with

Chopin’s recommendation of how to “steal time” (the literal translation of tempo ru-

bato). Obviously, this also translated into his interpretations. This behavior is neither

unique to Magaloff’s way of playing nor particular to Chopin. Daniel Barenboim teaches

this understanding of tempo rubato in his masterclasses on Beethoven’s Sonatas8. Up

to now, however, this has not been investigated and confirmed empirically. These first

investigations into between-hand asynchronies illustrate how specific musicological ques-

tions may be assessed by elaborate quantitative means.

8Miller, A. (Director). Barenboim on Beethoven – Masterclasses. EMI Music (2005).



Chapter 4

YQX – Expressive Performance Rendering

Train your senses. Music without interpretation is music

without meaning.

W. B. Bailey, ”Piano Pointers”

The Etude, July 1923

The Magaloff corpus is a versatile resource. As demonstrated in chapter 3 it facilitates

performance analyses at the highest level of precision, and makes it possible to examine

musicological questions empirically. The following chapter shows the corpus in its role

as training data for a machine learning endeavor: Expressive Performance Rendering.

As introduced in section 1.3, Expressive Performance Rendering systems sonify hy-

potheses on expressive music performance, and thereby try to create expressive per-

formances automatically. The most obvious goal, to be able to generate a profoundly

musical performance of a hitherto unknown piece of music automatically, is hardly ever

reachable. However, even crude predictive models of expression can be of extreme help

on the way to expressive, synthetic performances. This chapter explores the use of

probabilistic models for the purpose of expressive performance rendering. By gradu-

ally improving a very basic model, we hope to additionally gain more insights into how

expressive performance works.

First, the different components of our approach are put into context (section 4.1).

Following a description of the score and performance models we use (sections 4.2 and 4.3),

the basic model is introduced (section 4.4, first published alongside a general introduction

to the field in [128]). Two extensions of the prediction algorithm are presented in section

4.5 (first published as [30]), that make the system aware of performance context. To use

the proposed extensions to their advantage, adaptations of the performance model have

to be made (section 4.6, published in part in [33], and as part of a general introduction

to performance rendering with probabilistic models [31]).

The presented model is based on a method called graphical probabilistic models, the

basics of which are outlined in appendix A.

61
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4.1 Related Work

Systems can be compared in terms of four main components: the score representation,

the learning and prediction model, which and how performance parameters are con-

trolled, and the way expressive directives given in the score are rendered.

4.1.1 Score Models

Any representation of a music score and/or its structure can be seen as a score model.

It is used to capture any aspect of music that seems important for the particular task.

The most obvious and straight-forward model would be a list of all notes in the score

by pitch, duration, and temporal position. This representation, however, still has a lot

of information that is not made explicit, but just implicitly present: strong and weak

rhythmic positions imposed by the meter, harmonic tension and relief created through

the vertical and horizontal context, melodic patterns and repetitions, phrase structure

and sub phrases. All of these can only be made apparent by putting the notes in context

of melody and accompaniment, and viewing them as parts of larger musically meaningful

units rather than just as a sequence of single notes.

Several music theories exist that provide methodology for analyzing and understand-

ing a piece, explaining its structure, its harmonic progression (and related tension and re-

lief) or climactic points. Most prominent among those are: (1) Schenkerian analysis [34],

which shows hierarchical relationships among the pitches of a passage of music by rhyth-

mic reduction, and infers structural cues from this hierarchy; (2) Lerdahl&Jackendoff’s

Generative Theory of Tonal Music (GTTM) [69], which explains the structure of a piece

by applying the supposed mental procedures that lead to the insights an experienced

listener forms about a piece [52]; (3) Narmous’s Implication-Realization (IR) model [78],

which draws conclusions about structure from the listener’s melodic expectations and

how they are evoked and satisfied by the composition (see section 4.2.5 for a short

overview); (4) Parncutt’s accent theory [87], which searches for moments that attract

the listener’s attention that are immanent in the score, for example through metrical,

melodic, and harmonic saliences or grouping boundaries; (5) Cambouropoulos’ Local

Boundary Detection Method (LBDM) [9, 10] applies rules related to the Gestalt prin-

ciples [72] to hypothesize about possible groups based on the amount of local change.

The approach can be applied to arbitrary musical aspects that contribute to perceived

segmentation, like melodic texture, harmonic progression, or rhythmic change.
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The goal, segmenting a piece into musically meaningful and perceptually relevant

units, is in some way addressed by all of the above. Phrases, an example of such units,

are one of the most important and noticeable elements of human performance, and per-

formance modeling systems can benefit greatly from such structural cues [124]. However,

even this elemental aspect of music performance is subjective, unequivocal, and result

of too complex a combination of factors, such as personal taste and interpretational

intention, to be cast into a definite and determinate set of rules with satisfactory re-

sults. This is reflected in the generally rather low quality of the automatically generated

segmentations for moderately complex music.

Of the above mentioned, only the LBDM is formulated precisely enough to be auto-

mated. All other analyses leave certain details to interpretation, and in that reflect the

subjectivity and complexity of the issue. This of course makes it difficult to automate

the analyses, and renders each attempt to quantify and implement them a subjective in-

terpretation. For both the GTTM and the IR model efforts have been made to provide a

faithful implementation ([52], and [46] respectively). Temperley’s Melisma project [115]

is an implementation of parts of the GTTM. Automatically finding accents in music

according to Parncutt’s theory is the focus of active research.

Score descriptors, or features, are a simple and (mostly) computationally inexpensive

way to provide basic abstraction from the pitch/duration/position representation. They

just characterize local melodic, rhythmic, and harmonic aspects of the score. Section 4.2

shows an example of such a feature based approach: notes are put into context of their

immediate vicinity, describing for example melodic contour (pitch intervals to the next

note), rhythmic evolution (ratio of the durations of two successive notes), and harmonic

tension (dissonance with the current accompaniment) on a very local level.

Several systems exist that rely on simple score features as a score model, among them

Widmer’s Rule System [127] and Teramura’s statistical model [117]. Both Grindlay’s

probabilistic approach [50, 51] and Widmer’s case-based system [119, 130] use local de-

scriptors combined with a manual segmentation of the pieces into phrases (in Widmer’s

case even four hierarchical phrase levels). SaxEx, the system by Arcos et al. [1], is based

on a combination of local score descriptors and parts of the GTTM. As no implementa-

tion of the theory existed at that time, the analysis was done by hand. The accent-based

approach presented by Bisesi et al. [5] relies on the user to manually annotate the accents

in the score according to Parncutt’s taxonomy.

Any manual annotation is laborious, requires musical knowledge and thus limits the
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applicability of the systems to experiments on a smaller scale. Our system YQX is

exceptional in using a computational implementation of a music theory, the IR model,

enriched by local score descriptors. Grachten’s parser, used to compute the IR analysis,

is described in [46].

4.1.2 Performance Models

The performance model is the set of dimensions that is manipulated to make a perfor-

mance expressive. As we deal with piano performances, the most obvious are tempo,

loudness, and articulation, which are, in some way or other, addressed by all systems.

Generally, there is not much variation across the different systems in the way tempo

and loudness are defined. Instead of absolute values, tempo is modeled through inter-

onset-intervals between successive notes, which makes it independent of the globally

established tempo. Loudness in some cases is represented in absolute terms [117], which

excludes a global regulative, as opposed to a model of loudness relative to a reference

value (e.g. the loudness mean), which allows raising or lowering the global loudness with-

out changing the relative intensities. Expressive rendering systems deal with articulation

only in terms of gaps between notes (staccato vs. legato), although, from a performer’s

perspective, several articulation techniques and effects also involve loudness modulation

(e.g. martellato and marcato). Teramura [117] models the difference between the offset

prescribed by the score and the time a note is actually released. This is only one half of

the picture, as it does not consider the onset of the following note. The KTH rule system

[36] defines articulation, or the amount of legato/staccato, as a ratio between duration

of a note in the performance and the inter-onset-interval to the successive note, which

is the approach we take.

An effect specific to the piano is the sustain pedal, with which a pianist can raise and

lower the dampers onto the strings. This affects the produced sound immensely. As it

raises the dampers from all strings, they all can resonate, giving the piano a fuller sound.

In addition, pianists use the pedal to generate various effects: for instance, “collect”

the sounds of several consecutive notes and chords and hereby aggregate harmony, or

facilitate highly legato passages. Because of the significant influence on the generated

sound, the sustain pedal can ruin a lot, if applied incorrectly. As pedaling is to a

large extent related to accompaniment and phrasing – the former we do not explicitly

consider, the latter we cannot reliably address – we set modeling the pedal aside for the

time being. To the author’s knowledge Coper by Kenji Noike [55] is the only system
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actively modeling pedal, but, due to the above mentioned risk, with rather poor results.

4.1.3 Learning and Prediction Models

Regarding the learning and prediction models used, three different categories can be

distinguished [129]: Case-based Reasoning (CBR), rule extraction, and probabilistic

approaches.

Case-based approaches

Case-based approaches use a database of example performances of music segments. The

underlying assumption is that, given a suitable distance or similarity metric between

score models, segments that have a similar score also entail a similar performance. Hence

new segments are played by imitating the stored ones that have the most similar score.

Prototypical case-based performance models are SaxEx [1] and Kagurame Phase II [113].

Widmer and Tubodic developed a CBR system based on a hierarchical phrase segmen-

tation of the music score [119, 130]. The results are exceedingly good, but the approach

is limited to small-scale experiments, as the problem of algorithmic phrase detection is

still not solved in a satisfactory way. Dorard et al. [24] used Kernel methods to connect

their score model to a corpus of performance worms, aiming to reproduce the style of

certain performers.

Rule-based systems

Rule-based systems map score features directly to performance modifications, governed

by a set of rules. Widmer [127] developed an inductive rule learning algorithm that

extracted performance rules from piano performances; it discovered a small set of rules

that accounted for a surprisingly large amount of expressivity in the data. Ramirez et al.

[91] followed a similar approach using inductive logic programming to learn performance

rules for Jazz saxophone from audio recordings. Perez et al. [89] used a similar technique

on violin recordings. The well-known KTH rule system was first introduced in [112] and

has been extended in more than 20 years of research. A comprehensive description is

given in [36]. The rules in the system refer to low-level musical situations and theoretical

concepts, and relate them to predictions of timing, dynamics, and articulation. In con-

trast to Widmer’s rules, the KTH rules have not been learned automatically from real
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performance data, but developed via an analysis-by-synthesis-approach, where profes-

sional musicians evaluated rules brought forward by researchers. The Director Musices

system is an implementation of the KTH system that allows for expressive rendering

of musical scores. All rules are governed by parameters set by the user. Rendering a

performance involves tuning the parameters until the result complies with one’s musical

ideas. The rendering of a Bach Prelude won the RENCON 2004, proving the validity of

the approach. A problem, however, is that one parameter controls the application of a

rule for the complete piece, requiring careful tuning. Also, good parameter settings vary

from piece to piece.

In a recent extension, rules have been added that implement Parncutt’s accent theory

[5]. The user can choose how the system will react to (manually) annotated metrical,

harmonic, rhythmical and grouping accents in the score. In the RENCON 2011 the

“Accent based approach to performance Rendering” achieved the third prize with a suc-

cessful rendering of the third movement of Beethoven’s Sonata Pathethique (see section

5.7.4).

Probabilistic approaches

In probabilistic approaches, performance and score model are regarded as a joint mul-

tivariate probability distribution, which is estimated from a large set of training per-

formances. Based on the assumption that a new piece and an appropriate performance

thereof come from the same underlying distribution as the training performances, the

idea is that, as the new score is known, the performance part of the distribution can be

inferred. The approaches differ in how the inference is carried out. The Naist model

[117] applies Gaussian processes to fit a parametric output function to the training per-

formances. Grindlay and Helmbold first proposed a Hidden Markov Model (HMM) [51]

that they later extended to a Hierarchical HMM [50], where phrase information is coded

into the structure of the model. All approaches mentioned above learn a monophonic

performance model, predict the melody voice of the piece and, in the rendering, syn-

chronize the accompaniment accordingly. Kim et al. [65] proposed a model of three

sub-models: local expressivity models for the two outer voices (highest and lowest pitch

of any given onset) and a harmony model for the inner voices.

Mazzola follows a different concept, building on a complex mathematical theory of

musical structure [70], implemented in the Rubato system [71, 73].
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4.1.4 Rendering of expressive annotations

To a certain degree expressivity is determined by the note content of the score, like

pitch, duration, and temporal position of the notes, meter and key. This is evident

from the fact that the validity of the music theories mentioned in section 4.1.1 can

indeed be verified [106]. Printed musical scores usually contain much more information:

depending on composer, and edition of the score, additional directives to the player

are given regarding tempo, dynamics, articulation, phrasing et cetera. They constitute

expressive content that is proposed or intended by the composer or the editor. The

directives might underline what could be read from the score alone (through experience,

performance tradition, composer style etc.), they might enhance a segment that does

not by itself suggest a certain interpretation, or they might even contradict what one

would expect from the note content. Musicians performing the piece should observe

the directives, and arrange their interpretation around them. To quote Schulz from the

“Allgemeine Theorie der schönen Künste” (General Theory of the Beaux Arts)[111]:

[...] the few signs with which the composer describes the execution of single

notes of phrases must be observed as exactly as possible because for certain

movements they are as essential as the notes themselves.

A discussion of how a musician should realize the directives is for example given in [102].

A system striving to generate a performance that is as “human” as possible should

strictly adhere to the directives given in the score.

Regarding the question of how to computationally render expressive performance

directives given in the score (e.g., rit., cresc., fermatas etc.) in a natural or musical way,

there is little directly relevant literature. The question of what sounds natural, and why,

is discussed in research that attempts to relate musical expression to other natural or

physical phenomena. Kinematic models of expressive timing (and, in part, dynamics)

have been proposed most prominently by Todd [120], who uses particle movement under

constant acceleration/deceleration as an analogy, and Friberg and Sundberg [37], who

derive their model of constant deceleration from observing human runners coming to a

halt. Honing [60] argues that kinematic models ignore certain essential characteristics

of music – namely event-density, rhythmic structure and overall performance tempo –

and proposes a perceptual model that puts bounds on the range of acceptable tempo

curves for ritards. Nevertheless, [120] and [37] show that kinematic models can predict

final ritards quite accurately when fitted to empirical data.
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A very recent approach by Grachten formulates the problem as a machine learning

task [48]. Each loudness directive is assigned a basis function that represents loudness as

a function of time. A weighted sum of all expressive functions for one piece approximates

a loudness curve for a performance. In [48] Grachten shows that a considerable amount

of dynamic variation can indeed be explained by realizations of the expressive directives

in the score, suggesting that those are major cues for performance musicians. There is

no indication if and how competing rendering systems realize cues from the expressive

annotations at all.

4.2 Score Model

For us to be able to evaluate the system on a larger scale, like the Magaloff Corpus,

we have to be able to compute the score model automatically, as opposed to manually

analyze and annotate the scores. Between the methodolgies that, as of now, have been

implemented as computational models, the GTTM [52], the IR-model [46], and the

LBDM [10], we decided to use the IR-model. In addition to an approximation of the

phrase structure, it provides descriptions of melodic patterns that we can also use as

score features. Moreover, the implementation by M. Grachten [46] was readily available.

In addition to the IR-model, we decided on a number of local descriptors of the score,

that provide some very crude abstractions regarding melodic, rhythmic, and harmonic

aspects, and put score events in context of their close vicinity.

Most of the proposed features and targets require a monophonic stream of notes:

trying to connect, for example, the pitch interval to the next note to a pianist’s choice of

tempo modification only makes sense if the next note is a successor in the same melodic

idea and not part of a different voice. The same principle applies to most of the other

features. Consequently, with the exception of features using harmonic aspects of the

score, we only look at the “melody” voice of the pieces. For a part of our data, the

Mozart sonatas (see 5.1), the melody voice was marked by hand. For the Chopin data,

such an annotation is not available. Instead we apply the following, very simple heuristic:

at any given time, the highest pitch in the upper staff is considered to be part of the

melody voice. This certainly is not always true, but in case of Chopin, is correct often

enough to be justifiable.

Some of the features produce discrete, categorical values, and are later on treated as

discrete random variables, while others are continuously valued, and are later on treated
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as continuous random variables.

4.2.1 Rhythmic features

Rhythmic features describe the relations of score durations of successive notes and their

rhythmic context. In our system, we use:

Duration Ratio (continuous): The numeric relation between the durations of two

successive score notes si and si+1. Let duri be the score duration of note si mea-

sured in beats; the duration ratio durRi is then defined by:

durRi =
duri
duri+1

.

An example of a sequence of duration ratios can be seen in figure 4.1.

Rhythmic Context (discrete): A symbolic description of the rhythmic context of

a note. The score durations of notes si−1, si, and si+1 are sorted, compared, and

assigned 3 different labels: the shortest of the three is labeled short (s), the longest

long (l), and the third neutral (n). The triplet of rhythmic labels rlsi−1 , rlsi , and

rlsi+1 for the three notes si−1, si, and si+1 put together form the rhythmic context

rhyCi of si. Examples of different rhythmic contexts and how they are labeled can

be seen in Figure 4.1.

As we do not take the absolute durations into account, the triplets lsl and lnl

describe the same situation. This is the case every time two of the three durations

are the same. In those cases we always label the longer one l and the shorter one

n. How rests are treated depends on their duration: a rest immediately before

si shorter than half the duration of si−1 is ignored and the durations of si and

si−1 are used for the triplet; a rest longer than that is dealt with by replacing the

respective labels with (-).

4.2.2 Melodic features

Melodic features describe the shape of the soprano voice of the piece. We include pitch

intervals between two successive notes, both as they are and clustered into groups. The

peak - features try to locate meaningful turning-points in the melodic trend: points

where absolute or average pitch reaches a local maximum or minimum. Narmour’s
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Figure 4.1: A sequence of notes with different durations illustrating two rhythmic fea-

tures: Duration Ratio (red) is the ratio of the durations of two successive score notes;

Rhythmic Context (green) describes the duration of note in relation to the preceding

and the following note.

Implication-Realization model provides a characterization of note triplets, describing

the expectations they raise in a listener.

Pitch interval (discrete): The interval to the next melody note, measured in semi-

tones. The values are cut off at −13 and +13 so that all intervals greater than one

octave are treated as identical. See figure 4.2 for an example.

Grouped pitch interval (discrete): The pitch interval pii to the next melody note is

not used directly, but put into one of the following groups: pii ≤ −9, −9 < pii ≤ −5,

−5 < pii ≤ −2, −2 < pii ≤ 2, 2 < pii ≤ 5, 5 < pii ≤ 9, and 9 < pii. An example can is

shown in figure 4.2.

Figure 4.2: The soprano voice of the opening bars of Chopin’s Nocturne, Op. 9 No. 2;

shown are the features Pitch Interval (green) and Grouped Pitch Interval (red).
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Melodic Max (Min) Peaks (discrete): The sequence of pitches is first smoothed by

applying a moving average with a window of size 5 (2 preceding notes, the central

note, and 2 subsequent notes). The resulting series of average pitches is then

segmented at the points where the gradient changes – either from a rising average

pitch to a falling average pitch (for max peaks) or vice versa for min peaks. The

note with the maximum (minimum) pitch in the segment is called melodic max

(min) peak. The distances of the remaining notes to the peak in the surrounding

segment – negative prior to the peak, 0 at the peak, and positive subsequently –

define the feature. Figure 4.3 shows both features – max and min peaks – for the

opening bars of the Nocturne Op. 9 No. 2.

Max (Min) Average Peak (discrete): The sequence of pitches is smoothed with a

window of size 5 (2 preceding notes, the central note, and 2 subsequent notes). The

maxima (minima) of this sequence are call max (min) average peaks. For groups

of 4 notes surrounding the peaks the distances to the respective peak defines the

value for the notes. Distances are negative prior to the peak, 0 at the peak, and

positive subsequently. Groups that overlap by 2 notes are merged into a group

with the larger (smaller) of the two peaks as a reference. Notes not within the

scope of a maximum or minimum default to the value −3. Figure 4.3 shows both

features – max and min average peaks – for the opening bars of the Nocturne Op. 9

No. 2.

Figure 4.3: Soprano voice of the opening bars of Nocturne, Op. 9 No. 2. The numbers

in red form the sequence of Melodic Max/Min Peak features – notes with value 0 are

the melodic peaks, non-zero values are distances to the peak. The numbers in green

representing the corresponding sequence for the Max (Min) Average Peak feature.
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IR Label (discrete): Narmour’s Implication–Realization model provides a categoriza-

tion of triplets of notes according to the expectations they raise in the listener, see

section 4.2.5 for a short description. We use the label assigned to each melody note

as a score feature. Figure 4.4 shows examples for a subset of the IR categories we

use.

Figure 4.4: The soprano voice of the opening bars of Nocturne Op. 9, No. 2; green shapes

represent a selection of the IR-structures determined for the sequence by Grachten’s

IR-parser; red lines indicate the note the structure is associated with. Blue numbers

represent the IR-Arch features described below: the numbers indicate the position of

the soprano note with respect to the next point with strong closure.

xD Dyadic Unit involving only 2 notes, spanning an interval of x semitones. B ♭

and G are 9 semitones apart, which makes the instance in figure 4.4 a 9D.

ID Intervallic Duplication, a small interval followed by an identical small interval,

in different registral directions.

VR Registral Reversal, a large interval followed by a large interval, different regis-

tral directions.

[VR ] Retrospective Registral Reversal, a VR that was determined in retrospect:

the first interval is too small to qualify as a large interval, but together with

the following interval, in retrospect, VR seems the best fitting situation.

IP Intervallic Process, a small interval followed by a similar small interval in dif-

ferent registral directions.
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P Process, two small intervals in the same registral direction.

4.2.3 Harmonic features

Harmonic features describe perceptual aspects related to consonance. Possible char-

acterizations include harmonic progression throughout the piece, identifying harmonic

tension and relief, and the consonance between the melody notes and the local harmony.

Both are based on automatic harmonic analysis of the piece, a process called key-finding.

Temperley developed a dynamic programming algorithm to establish the most likely se-

quence of keys for an entire piece [116]. The resulting sequence is locally stable: key

does not change on spontaneous, local deviations from the current key and only switches

when the transition is stable over a longer period. The sequence of keys can serve as a

basis for a functional analysis of the local harmonies, or as part of a structural analysis

of the piece. However, for our purpose, it is more useful to known how the local harmony

changes from onset to onset than to know where the rather few changes in key occur:

the former may give new information for each onset, the latter only for a handful of

onsets in the entire piece.

We collect all pitches that occur within a beat and its predecessor and calculate

which key has the highest probability given the set of pitches. The calculation is based

on key profiles constructed by Temperley from the Essen Folk Song Corpus, where all

keys have been manually labelled throughout the corpus. The profiles list occurrence

probabilities for all steps of the diatonic scale. Figure 4.5 shows the key estimate for

the opening bars of Chopin’s Nocturne Op. 9 No. 2. According to the key profiles, the

dominant is slightly more likely to occur than the tonic, which explains why the opening

note, B ♭, is labelled as E ♭ major. The change to C minor is obviously incorrect from a

musicological point of view. However, from a probabilistic point of view, the C ♭, which

is viewed as a B, is equally likely in E ♭ Major as the minor sixth, as in C minor as the

major seventh. The G in the melody voice, and the two A ♭ (one on the preceding onset),

yield a higher probability as the fifth and minor sixth in C minor, than as major third

and fourth in E ♭ major. The change to F Major in the second bar on beat 3 is equally

surprising and incorrect. However, C occurs 3 times in the collected pitches from beats

3 and 4, and, apart from being the tonic in C Major (which is the correct key here),

is also the dominant in F Major. In addition, B ♭ has a higher probability of being the

subdominant to F Major than the minor seventh in C Major, which tips the scale in

favor of F Major.
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Even though the analysis does not work well from a musicological point of view, it

is at least consistent in the kind of errors it makes, and thus still an informative score

descriptor. We base the following harmonic features on the harmonic analysis:

Local Consonance (continuous): Given the most probable local harmony, the con-

sonance of a melody note within the estimated harmony is judged using the key-

profiles proposed by Krumhansl and Kessler [67].

Consonance Difference (continuous): The difference between two successive local

consonance values.

Figure 4.5: Result of an automatic harmonic analysis of the opening bars of Chopin

Nocturne Op. 9, No. 2. Grey Areas indicate sequences where the key is the same,

numbers in green represent the local Consonance feature value of the soprano note on

the corresponding onset.

4.2.4 Phrase related features

The phrase structure in pieces can be coded by marking the phrase boundaries. However,

much more information can be provided if instead the distance to the next boundary

is used as a descriptor. Manual phrase analysis can give a more accurate segmentation

than the one estimated from the Implication-Realization analysis. However, it requires
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somebody with musical training and lots of experience to provide such an analysis.

While for parts of our data, the Mozart sonatas, such an analysis is available (provided

by Werner Goebl), for the Chopin data we have to rely on the IR approximation.

IR Arch (continuous): Points of closure – situations where listeners might expect a

caesura – can be thought of as an approximation of phrase boundaries. The IR-

model calculates those on the basis of changes in melodic, harmonic, and rhythmic

intervals (see section 4.2.5). We use the distance to the next point of strong closure

as a continuous phrase feature. See Figure 4.4 for an example.

4.2.5 Narmour’s Implication-Realization (IR) model

The Implication-Realization (I-R) Model proposed by Narmour [79, 78] is a cognitively

motivated model of musical structure. It tries to describe explicitly the patterns of

listener expectation with respect to the continuation of the melody. It applies the prin-

ciples of Gestalt theory to melody perception, an approach introduced by Meyer [72].

The model describes both the continuation implied by particular melodic intervals and

the extent to which this (expected) continuation is actually realized by the following in-

terval. Schellenberg [106] provides evidence for the validity of the model: across different

levels of musical education and background listeners’ expectations were predicted suc-

cessfully. Grachten [46] not only provides a short introduction to the processes involved

but also an implementation to automatically analyze a score accordingly.

Figure 4.6: Examples of eight IR-structures (picture from [46])

.

Two main principles of the theory concern the direction and size of melodic intervals:

(1) Small intervals imply a following interval in the same registral direction, and large

intervals imply a change in registral direction. (2) A small interval implies a following

similarly-sized interval, a large interval implies a smaller interval. Based on these two

principles, melodic patterns, or structures, can be identified that either satisfy or vio-

late the implications predicted by the principles. Figure 4.6 shows eight such structures:
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Process (P), Duplication(D), Intervallic Duplication (ID), Intervallic Process (IP), Regis-

tral Process (VP), Reversal (R), Intervallic Reversal (IR), and Registral Reversal (VR).

The Process structure, for instance, satisfies both registral and intervallic implications.

Intervallic Process satisfies the intervallic difference principle, but violates the registral

implication.

Another notion derived from the concept of implied expectations is closure, which

refers to situations in which listeners might expect a caesura. In the IR model, closure

can be evoked along several dimensions of the music: intervallic progression, metrical

position, rhythm, and harmony. The accumulated degrees of closure in each dimension

constitute the perceived overall closure at any point in the score. Occurrences of strong

closure may coincide with a more commonly used concept of closure in music theory that

refers to the completion of a musical entity, for example a phrase. Hence, calculating

the distance of each note to the nearest point of closure can provide a segmentation of

a piece similar to phrasal analysis.

4.3 Performance Model

The performance model is the interface through which a rendering system can manipulate

the expressive dimensions of a performance. As we deal with piano performances we

focus on articulation, loudness, and tempo. Following the usual nomenclature in machine

learning, we call the different dimensions performance targets.

4.3.1 Articulation

Articulation in music refers to the transition between notes. The possibilities and tech-

niques vary for different types of instruments. In case of the piano, the dominant aspect

is the degree to which two notes are joined together: the smaller the audible gap be-

tween two successive notes, the more legato (it.: “joined together”) the first one becomes;

the larger the gap, the more staccato (it.: “detached”). Some articulation marks (e.g.

martellato and marcato) involve in their realization also the loudness of the affected

notes. This is not covered in this definition of articulation but subsumed in the loudness

component.

Articulation: Let ioisi,i+1 and ioipi,i+1 be the score and performance IOIs between the

successive notes si and si+1, and dursi and durpi the nominal score duration and
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the played duration of si respectively. The articulation arti of a note si is defined

as

arti =
ioisi,i+1 ∗ dur

p
i

dursi ∗ ioi
p
i,i+1

. (4.1)

4.3.2 Loudness

The loudness1, of a performed note is characterized as the ratio between the loudness

of the note and the mean loudness of the performance. Logarithms are used to scale

the values to a range symmetrical around zero, with values above 0 being louder than

average and those below 0 softer than average.

Loudness: Let mldi be the midi loudness of note si, and n the number of score notes

in the piece. The loudness mldi is then calculated by

mldi = log
mldi

1
n ∑jmldj

. (4.2)

4.3.3 Tempo

We define the local tempo at a note through the notion of inter-onset-intervals (IOI),

i.e., the time between two successive notes. Relating the IOI prescribed by the score

(score IOI ) and the IOI of the same two notes in the performance (performance IOI ),

determines if the second note was placed early, on time, or late2. The description is

independent of the absolute tempo and focuses on changes.

We refer to the sequence of ratios between score IOIs and performance IOIs as com-

plete tempo curve:

Complete Tempo Curve: Let si and si+1 be two successive melody notes, pi and

pi+1 the corresponding notes in the performance, ioisi,i+1 the score IOI, ioipi,i+1 the

performance IOI of the two notes3, ls the duration of the complete piece in beats,

1Computer-controlled Pianos measure loudness by measuring the velocity at which a hammer strikes

a string. Especially in the context of MIDI, this lead to loudness sometimes being referred to as velocity.
2Tempo, of course, needs more than one note to manifest. When we talk about the tempo of one

note we actually talk about the relative placement of the following note.
3The unit of the duration does not matter in this case, as it cancels out with the unit of the complete

duration of the performance
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and lp the length of the performance. The IOI ratio ioiRi of si is then defined as:

ioiRi = log
ioipi,i+1 ∗ ls

ioisi,i+1 ∗ lp
. (4.3)

Normalising both score and performance IOIs to fractions of the complete score

and performance respectively, makes this measure independent of the actual tempo.

Loosely speaking this relates the performed duration to the expected duration. The

logarithm is used to scale the values to a range symmetrical around zero, where

ioiRi > 0 indicates a prolonged IOI, i.e., a tempo slower than notated, and ioiRi < 0

indicates a shortened IOI, i.e., a tempo faster than notated.

4.4 YQX - the First Step

Our performance rendering system, called YQX, models the dependencies between the

score model, the set of features, and the performance model, the set of targets, by means

of a probabilistic network. For an introduction to basic concepts and notations of prob-

abilistic networks, see appendix A. The network consists of several interacting nodes

representing different features and targets. Each node is associated with a probabil-

ity distribution over the values of the corresponding feature or target. A connection

between two nodes in the graph implies a conditioning of one feature or target distri-

bution on the other. Discrete score features (the set of which we call Q) are associated

with discrete probability tables, while continuous score features (X) are modelled by

Gaussian distributions. The predicted performance characteristics, the set of targets

Y = {articulation, loudness, tempo}, are continuously valued and conditioned on the

set of discrete and continuous features. Figure 4.7 shows the general layout. The seman-

tics is that of a linear Gaussian model [76]. This implies that the case of a continuous

distribution parenting a continuous distribution is implemented by making the mean of

the child distribution linearly dependent on the value of the condition.

Mathematically speaking, a target, viewed as a continuous random variable Y , is

modelled as a conditional distribution P (Y ∣Q,X). Following the linear Gaussian model,

this is a Gaussian distribution N(y;µ,σ2) with the mean µ varying linearly with X,

and with a fixed variance σ2. Given specific values Q = q and X = Ð→x (treating the

real-valued set of continuous score features as a vector):

µ = dq +
Ð→
k q ⋅

Ð→x (4.4)
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      Performance
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      Score
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features

continuous score 
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continuous 
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Figure 4.7: The probabilistic network forming the YQX system.

where dq and
Ð→
k q are estimated from the data by least squares linear regression. The

average residual error of the regression is the variance σ2 of the distribution.

From a practical point of view, training this model only requires estimating the

probability distributions. This is done in two steps: first, we collect all instances in

the data that share the same combination of discrete feature values and build a joint

probability distribution of the continuous features and targets of these instances. This

implements the conditioning on the discrete features Q. In the second step, an affine,

linear function (equation 4.4) is determined via linear regression. The function relates

the mean µ of the target distribution to the values Ð→x of the continuous features X.

The average residual of the regression provides the variance of the target distribution.

Hence, the target distribution is a gaussian, that is conditioned on the discrete features

and linearly dependent on the continuous features. Estimating
Ð→
k q and dq for all possible

q ∈ D(Q) constitutes the training phase.

Performance prediction is done note by note. The score features of a note are en-

tered into the network as evidence Ð→x and q. The instantiation of the discrete features

determines the appropriate probability table and the parameterisation dq and
Ð→
k q, and

the continuous features are used to calculate the mean µ of the target distribution. This

value is used as the prediction for the specific note. We ignore all dependencies and in-

teractions that may exist between tempo, loudness, and articulation and create models

and predictions for each target separately.
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Q
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Figure 4.8: The network unfolded in time. Qt−1 are instantiations of {Q1,⋯,Qm1} at

time t − 1; Xt−1 likewise for {X1,⋯,Xm2}.

4.5 Introducing performance context - Step Two

The predictions of the basic YQX system are note-wise; each prediction depends only on

the score features at that particular score onset. In a real performance this is of course

not the case: typically, dynamics or tempo evolve gradually. Clearly, this necessitates

awareness of the surrounding expressive context.

In this section we present two extensions to the system that both introduce a dynamic

component by incorporating the prediction made for the preceding score note into the

prediction of the current score note. Graphically, this corresponds to first unfolding the

network in time and then adding an arc from the target in time-step t − 1 to the target

in time-step t. Figure 4.8 shows the unfolded network. This should lead to smoother

and more consistent performances with less abrupt changes and, ideally, to an increase

in the overall prediction quality.

The context-aware prediction can be done in two different ways: (1) Using the previ-

ous target simply as an additional parenting probability distribution to the current target

allows local optimisation with respect to one preceding prediction. Minimal adaptation

has to be made to the algorithm (see 4.5.1). (2) Using an adaptation of the Viterbi

decoding in Hidden Markov Models results in a predicted series that is optimal with

respect to the complete piece (see 4.5.2).



4.5. Introducing performance context - Step Two 81

4.5.1 YQX with local maximisation

The first method is rather straightforward: We use the linear Gaussian model and treat

the additional parent (the target Yt−1) to the target Yt as an additional feature that we

calculate from the performance data. In the training process, the joint distribution of the

continuous features, the target Yt, and the target in the previous time-step Yt−1 given the

discrete score features – in mathematical terms P (Yt−1, Yt,
Ð→x t∣qt) – is estimated. This

alters the conditional distribution of the target Yt to P (Yt∣Q,X, Yt−1) = N(yt;µ,σ
2)

with4

µ = dq,yt−1 +
Ð→
k q,yt−1 ⋅ (

Ð→x , yt−1).

The prediction phase is equally straightforward. The already predicted yt−1 is treated

like additional evidence, and, as in the simple model, the mean of P (Yt∣qt,
Ð→x t, yt−1) is

used as the prediction for the score note in time-step t. This is the value with the highest

local probability.

4.5.2 Global Optimization

The second approach drops the concept of a linear Gaussian model. The goal is to

construct a performance with maximum probability with respect to the complete history

of predictions made up to that point.

In the training phase the joint gaussian distributions of the continuous features

X = {X1,⋯,Xm1}, the target Yt, and the previous target Yt−1 conditioned on the

set of discrete features Q = {Q1,⋯,Qm2} are estimated from the training data. In math-

ematical terms those are P (Yt−1, Yt,X∣Q), and, as before, one joint distribution exists

per possible instantiation q ∈ D(Q) of the discrete features Q. Mean and variance of

the distributions can be estimated via relative frequencies (component-wise mean and

covariance) or with a prior distribution. The latter is especially advisable if the number

of discrete features and their respective domains are large: if the training data does not

provide samples for each possible combination of discrete score features, prior distribu-

tions provide a controllable fallback in case the underrepresented combinations occur in

the test data. We use a simple zero-mean gaussian with unity covariance as a default.

Simply put, the training of the model only requires grouping together all samples shar-

ing the same combination of values in the discrete feature, and calculating mean and

4The construct (Ð→x , yt−1) is a concatenation of the vector Ð→x and the value yt−1 leading to a new

vector of dimension dim(Ð→x ) + 1.
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covariance of the continuous features for all the samples in the separate groups.

In the prediction phase, given the score features of the test piece, we construct a

sequence of predictions that maximizes the conditional probability with respect to the

complete history of predictions made up to that point. This is calculated in analogy to

the Viterbi-decoding in Hidden Markov Models, which tries to find the best explanation

for the observed data [63]. Aside from the fact that the roles of evidence nodes and query

nodes are switched, the main conceptual difference is that – unlike the HMM setup, which

uses tabular distributions – our approach must deal with continuous distributions. This

rules out the dynamic programming algorithm usually applied. Kalman filters also use

continuous state-space variables, but use a different system of connections between the

nodes [76]. We have a very specific network layout, and the algorithm does not have

to account for arbitrary combinations of connections and variables. We can therefore

search for a specialized, analytical rather than an algorithmic solution to our inference

problem. As in the Viterbi algorithm, the calculation is done in two steps: a forward

and a backward sweep. In the forward movement the most probable target is calculated

relative to the previous time-step. In the backward movement, knowing the final point

of the optimal path, the sequence of predictions is found via backtracking through all

time-steps. The prediction phase, the forward and backward calculation is explained in

detail in the following.

The forward calculation

Let Ð→x t,qt be the sets of continuous and discrete features at time t, and N be the number

of data points in a piece. Further, let α(Yt) be a probability distribution over the values

yt of Yt, indicating the probability that the optimal path from time-steps 1 to t ends in

yt. By means of a recursive formula, α(Yt) can be calculated for all time-steps of the

unfolded network:

α(Y1 = y1) = P (Y1 = y1∣x1,q1) (4.5)

α(Yt = yt) = max
yt−1∈R

[P (Yt = yt, Yt−1 = yt−1∣
Ð→x t,qt) ⋅ α(Yt−1 = yt−1)] (4.6)

This formula can be interpreted as follows: Assuming that we know for all the target

values yt−1 in time step t − 1 the probability of being part of the optimal path, we

can calculate for each target value yt in time step t the predecessor that yields the

highest probability for each specific yt of being on the optimal path. In the backward

movement we start with the most probable final point of the path (the mean of the
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last α) and then backtrack to the beginning by choosing the best predecessors. As we

cannot calculate the maximum over all yt−1 ∈ R directly, we need an analytical way of

calculating α(Yt) from α(Yt−1), which we derive below. We will also show that α(Yt)

remains Gaussian through all time-steps. This is particularly important because we rely

on the parametric representation using mean and variance. Anticipating our proof that

the α(Yt) are Gaussian, we refer to the mean and variance as µα,t and σ2
α,t. For the sake

of simplicity, we abbreviate the probabilities of specific values such as α(Yt = yt) and

P (Yt = yt, Yt−1 = yt−1) to the short forms α(yt) and P (yt, yt−1) respectively. In cases in

which not a specific value but the distribution as a whole is addressed, we write α(Yt)

and P (Yt, Yt−1).

Indexing the target variables by time steps (t and t − 1) might be misleading, as

actually only two and not N target variables exist. The variable called Yt represents the

current prediction, Yt−1 the prediction made in the previous time step. Accordingly, there

is only two sets of feature variables, continuous (X = {X1,⋯,Xm1}) and discrete (Q =

{Q1,⋯,Qm2}), that take on different values in every time step t (Ð→x t = (x1,t,⋯, xm1,t)

and qt = {q1,t,⋯, qm2,t} respectively).

Given evidence qt of the states of the discrete features at time t the joint proba-

bility of targets Yt and Yt−1 and continuous features X = {X1,⋯,Xm1} is the following

multivariate gaussian:

P (Yt−1, Yt,X∣qt) ∝ N(

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

yt−1

yt
x1

⋮

xmx

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

;

⎛
⎜
⎜
⎜
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⎜
⎝

µyt−1
µyt
µx1
⋮

µxmx

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

; Σt), (4.7)

with µyt−1 , µyt , and µx1 ,⋯, µxmx and the following covariance matrix Σt as estimated

from the data:

Σt =

⎡
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⎢
⎢
⎢
⎢
⎢
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⎢
⎣

σ2
yt−1 σ2
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The conditional joint distribution of targets Yt and Yt−1 given both discrete and contin-

uous features as evidence can be calculated from 4.7 in the following form (for details

see e.g. [96], or appendix A):

P (Yt−1, Yt∣qt,
Ð→x t) ∝ N((

yt−1

yt
) ;(

µ̂yt−1
µ̂yt

) ; Σ̂t) (4.8)

with

(
µ̂yt−1
µ̂yt

) = (
µyt−1
µyt

) +CB−1
⎛
⎜
⎜
⎝

x1 − µx1
⋮

xmx − µxmx

⎞
⎟
⎟
⎠

,and

Σ̂t = [
σ2
yt−1 σ2

yt−1,yt
σ2
yt−1,yt σ2

yt

] .

Using the same technique, the conditional probability of the previous target given the

current target under the current evidence, P (Yt−1∣Yt,qt,
Ð→x t), can then be formulated as

follows:

P (Yt−1∣Yt,qt,
Ð→x t) ∝ N(yt−1; µ̃yt−1 , σ̃

2
yt−1) (4.9)

µ̃yt−1 = µ̂yt−1 +
σ2
yt,yt−1(yt − µ̂yt)

σ2
yt

σ̃2
yt−1 = σ

2
yt−1 −

σ4
yt,yt−1
σ2
t

From the definition of the conditional joint distribution of Yt and Yt−1 (equation 4.8) the

marginal distribution of Yt (conditioned on qt and Ð→x t) can easily be read:

P (Yt∣qt,
Ð→x t) ∝ N(yt; µ̃yt , σ̃

2
yt) (4.10)

µ̃yt = µ̂yt

σ̃2
yt = σ

2
yt

Under the basic laws of conditional probability, the inductive definition of α (eq.

4.6) can be rewritten to replace the joint distribution with a conditional distribution
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(the conditioning on qt,
Ð→x t is omitted for simplicity):

α(Yt) = max
yt−1∈R

[P (Yt−1 = yt−1∣Yt) ⋅ P (Yt) ⋅ α(Yt−1 = yt−1)] (4.11)

= max
yt−1∈R

[P (Yt−1 = yt−1∣yt) ⋅ α(Yt−1 = yt−1)] ⋅ P (Yt) (4.12)

= max
yt−1∈R

[N(yt−1; µ̃yt−1 , σ̃
2
yt−1) ⋅ α(Yt−1 = yt−1)] ⋅ P (Yt) (4.13)

The distribution P (Yt) in equation 4.11 can be put outside of the scope of the maximum

because it is does not depend on yt−1. In 4.12 we can then plug in the distribution

calculated in 4.9. Assuming that α(Yt−1) is Gaussian, multiplying the two distributions

under the maximum in 4.13 results in the following Gaussian distribution:

N(yt−1;µ∗t , σ
∗2
t ) (4.14)

with

µ∗t = σ
∗2
t

⎛

⎝

µ̃yt−1
σ̃2
yt−1

+
µα,t−1

σ2
α,t−1

⎞

⎠

σ∗2
t =

σ̃2
yt−1 ⋅ σ

2
α,t−1

σ̃2
yt−1 + σα,t−1

The normalising constant z of N(yt−1;µ∗t , σ
∗2
t ) itself is gaussian in the means of both

factors of the multiplication, µ̃yt−1 and µα,t−1 :

z =
1

√
2π∣σ̃2

yt−1 + σ
2
α,t−1∣

e
(
−(µ̃yt−1−µα,t−1)

2

2(σ̃2yt−1+σ
2
α,t−1)

)
(4.15)

Later, z will be multiplied with a Gaussian distribution over yt. Hence, z must

be transformed into a distribution over the same variable. By finding a yt such that

the exponent in eq. 4.15 equals 0 we can construct the mean µz and variance σ2
z of z

as a distribution over yt. Note that the variable µ̃yt−1 is dependent on yt due to the

conditioning of P (Yt−1∣Yt) on yt. With respect to yt, the normalizing constant z follows

the distribution in equation 4.16:

z ∝N(yt;µz, σ
2
z) (4.16)

µz = −
σ2
yt ⋅ (µ̃yt−1 + µα,t−1) + µyt ⋅ σ

2
t,t−1

σ2
t,t−1

σ2
z = σ̃

2
yt−1 + σ

2
α,t−1
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The calculation of α(Yt) (equation 4.13) can now be simplified further:

α(Yt) ∝ max
yt−1∈R

[N(yt−1; µ̃yt−1 , σ̃
2
yt−1) ⋅ α(Yt−1 = yt−1)] ⋅ P (Yt)

= max
yt−1∈R

[z ⋅ N̂ (yt−1;µ∗t , σ
∗2
t )] ⋅ P (Yt) (4.17)

∝ max
yt−1∈R

[N(yt;µz, σ
2
z) ⋅ N̂ (yt−1;µ∗t , σ

∗2
t )] ⋅ P (Yt) (4.18)

In equation 4.17 we separate N(yt−1;µ∗t , σ
∗2
t ) from its normalizing constant z, leaving an

unnormalized distribution N̂ (yt−1;µ∗t , σ
∗2
t ). As z is independent of yt−1, it is not affected

by the calculation of the maximum in equation 4.18. Therefore we can put N(yt;µz, σ
2
z)

outside of the scope of the maximum (equation 4.19). The yt−1 that maximizes the

remaining N̂ (yt−1;µ∗t , σ
∗2
t ) is the mean of the distribution, µ∗t . As the distribution

N̂ (yt−1;µ∗t , σ
∗2
t ) is unnormalized, the result is 1 (equation 4.20):

α(Yt) ∝ max
yt−1∈R

[N̂ (yt−1;µ∗t , σ
∗2
t )] ⋅ N(yt;µz, σ

2
z) ⋅ P (Yt) (4.19)

= 1 ⋅ N (yt;µz, σ
2
z) ⋅ P (Yt). (4.20)

The distribution P (Yt) (the conditional, marginal distribution P (Yt∣qt,
Ð→x t) defined

in equation 4.10) is Gaussian by design, and hence the remaining product again results

in a Gaussian and a normalising constant. As the means of both factors are fixed, the

normalising constant in this case is a single factor. The mean µα,t and variance σ2
α,t of

α(Yt) follow:

α(Yt) ∝ N(yt;µα,t, σ
2
α,t) (4.21)

σα,t =
σ2
t ⋅ σ

2
z

σ2
t + σ

2
z

(4.22)

µα,t = σα,t (
µz
σ2
z

+
µ̃yt
σ2
yt

) . (4.23)

Thus, α(Yt) is Gaussian in yt, assuming that α(Yt−1) is Gaussian. Since α(Y1) is

Gaussian, it follows that α(Yt) is Gaussian for 1 ≤ t ≤ N . This equation shows that

the mean and variance of α(yt) can be computed recursively using the mean µα,t−1 and

variance σ2
α,t−1 of α(Yt−1). The parameters of α(Y1) equal µy1 and σ2

y1 , which are the

mean and the variance of the distribution P (Y1∣
Ð→x 1,q1), and are estimated from the

data.
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The backward calculation

Once the mean and variance µt, σ
2
t of α(yt) are known for 1 ≤ t ≤ N , the optimal

sequence ẏ1, ..., ẏN can be calculated. The final point of the sequence ẏN is calculated

first. By design, the value α(Yt = yt) indicates the probability that the optimal path

from time-steps 1 to t ends in yt. This means that the optimal path ends in the mean

µα,N as it is the most probable value of the final distribution α(YN). The predecessor

to ẏN , ẏN−1, is the value of Yt−1 that maximized equation 4.19. The optimal sequence

is calculated with the following two equations. The definition of µ∗t (equation 4.14) is

dependent on yt, which, in this case is substituted with ẏt.

ẏN = µα,N (4.24)

ẏt−1 = argmax
yt−1

[N(yt−1;µ∗t , σ
∗2
t ] (4.25)

= µ∗t (4.26)

4.6 Composite Performance Dimensions - Step Three

Up to now, expressive dimensions were considered as atomic entities, in the sense that

they represent one aspect of music performance that manifests in a single number per

note. Alternative definitions for tempo and loudness are introduced in the following sec-

tion, which constitute the final extension to our rendering system. Regarding loudness,

we take into account the expressive annotations that are given in the score; regarding

tempo, we propose a way to split up the complete tempo curve into two components.

Consequently, instead of expecting a single model to come up with an explanation for

all facets of performance tempo or loudness, we can use several specialized models for

the different aspects.

4.6.1 Loudness & Performance Directives

Section 4.1.4 discusses the importance of expressive annotations in the score. Musicians

obey and realize those to a certain degree. This implies, and studies exist that support

this experimentally [48, 49], that the loudness curve calculated from a performance can,

at least partly, be explained by the annotations in the score. Given a loudness curve that

only represents the expressive annotations, we can separate that from the performance

curve, which reduces the amount of variation left for the model to explain. Obtaining
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such a curve, of course, poses problems: (1) Which expressive annotations did the artist

obey? This is to a certain degree related to the score edition they used, a question we

cannot answer with certainty. However, when it comes to shaping a piece in terms of

large gestures and shape, there is substantial common ground among musicians. This, in

turn, makes it reasonable to assume that they all work on a basis that, if not identical,

at least is somehow similar. (2) How expressive annotations are realized in detail is by

no means generic. Shape and extent of each is dependent on context (and artist). Not

only is there not one generic way to execute a crescendo which is then applied in all

relevant situations, but also, even if two pianists obviously both play a crescendo, there

can be substantial differences in the realization.

Conceptually, this also applies to tempo. However, annotations regarding tempo are

much rarer in the Chopin scores than annotations regarding dynamics; in Mozart scores

they are practically non-existent. While it is still important for a convincing rendition

of a piece to obey the few annotations that are given in the score, the information is too

sparse to be significant for the process of learning.

Grachten formulates the problem as a machine learning task [48, 49]: a least squares

fitting of a set of basis functions is used to model the influence of notated loudness

directives. The loudness trajectory of a piece is thought of as a linear sum of active

loudness directives, each represented by a weighted basis function. Given suitable data,

like the Magaloff Corpus, the weights can be estimated using least-squares optimization,

minimizing the sum of the squared differences between the observed loudness values and

the values predicted for the score the summed basis functions. This is the technique we

use for our experiments in chapter 5.

We call the approximation of what we assume is the contribution of the score an-

notations annotated loudness. Based on this estimate we define local loudness as the

residual of the complete loudness curve after removing the annotated loudness.

Local loudness: Let annLi be the annotated loudness estimate for the loudness for

note si and veli the loudness calculated from the real performance. The local

loudness locLi for si is calculated by:

locLi =
veli − annLi
annLi

. (4.27)

In order to produce a loudness curve vel for a piece, the two elements, rendered

expressive annotations annL and prediction of local loudness locL, can then be combined
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by reversing the decomposition in equation 4.27:

veli = locLi ⋅ annLi + annLi (4.28)

4.6.2 Tempo as a composite phenomenon

In music performances, tempo usually refers to a combination of three aspects: (1)global

tempo refers to the initial tempo prescriptions at the beginning of a score; (2) local tempo

describes localized tempo trends which, for example, outline larger musical units (e.g.

phrases) and realize annotations in the score (like ritardando or accelerando); (3) (local)

note timing refers to local (note-wise) deviations from the local tempo that emphasize

single notes through delay or anticipation.

Viewing the previously defined complete tempo curve as a composite of local tempo

and note timing, we associate local tempo with its low-frequency content, which we

extract by applying a windowed, moving average. The residual, the curve that remains

after subtracting the local tempo from the complete tempo curve, is associated with note

timing. Formally, we define the two aspects as follows:

Local tempo: Let ioiRi be the IOI ratio of note si, and n ∈ N the window length in

beats. Let further be S±ni = {sj ∶ ∣oni − onj ∣ <
n−1

2 }, where oni is the onset of score

note si, the set of melody notes that have an onset within the window of n beats

surrounding si. The local tempo lti of the note si is calculated by:

lti =
1

∣S±ni ∣
∑
S±n
i

ioiRj . (4.29)

Note timing The residual high-frequency content can be considered as the local timing

nti and, in relation to the local tempo, indicates that a note is either played faster

or slower with respect to the local tempo:

nti =
ioiRj − lti

lti
. (4.30)

Figure 4.9 shows the result of applying the decomposition to the tempo curve of

Magaloff’s performance of the Chopin Mazurka Op. 56 No. 1. How n, the size of the

window in the definition of local tempo, is set, influences the result of the decomposition.

Informal experiments suggested 4 beats as a reasonable value for the Chopin pieces.
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Figure 4.9: Tempo decomposition of Magaloff’s performance of Mazurka Op. 56, No. 1:

Magaloff’s complete tempo (logarithmic IOI-ratios), the local tempo component, and

the local timing residual.

Possibilities include making the window size dependent on the meter (bar length) of the

piece, or, if a phrase segmentation of the piece is available, varying the window size in

relation to the phrase length. However, as of now, we have not been able to establish a

well-founded understanding of what constitutes a good split of the complete tempo, or

what a local tempo curve should look like.

After predicting the two components separately, reversing the decomposition process

in equation 4.30 provides a complete tempo curve for the piece:

ioiRi = nti ∗ lti + lti (4.31)

A further notion that comes into play when combining the two predicted curves is

balance: instead of just reversing the decomposition, an additional influence factor β can

be introduced such that either one of the components can be made dominant. Given the

local tempo lti and note timing nti of note si, and an influence factor 0 < β ≤ 1, β ∈ R
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the final tempo value ioiRi can be calculated using the following formula:

ioiRi = β̂ ⋅ nti ⋅ lti + lti (4.32)

where β̂ scales the note timing to a fraction of the local tempo, according to the intended

influence:

β̂ =
1 − β

β
⋅

maxi lti
maxi nti

(4.33)





Chapter 5

Evaluation and Experiments

It is important to be looking with eagle-ears.

R. Hagelauer, February 8, 2012

The goal of expressive performance rendering is to automatically generate perfor-

mances that sound as “human” and “naturally expressive” as possible. The question

then of course is, how can “humanness” or “naturalness” be measured? Human percep-

tion is exceptionally good at detecting irregularities in music performances. Minuscule

differences in any expressive dimensions are perceived, and can draw the line between a

note or sequence of notes sounding natural of completely out of place. It is not possible

to emulate this ability algorithmically: A plethora of factors is at play – including aspects

like musical background, personal taste, and the expectations that are formed accord-

ingly – that are subjective and far too complex to be formalized and quantified. What

makes human judgement impossible to implement, also makes it inherently subjective

and unsuitable for representative large-scale evaluations across several datasets.

As measuring aesthetic quality in absolute terms is out of the question, a possible

alternative is to attempt to judge similarity between computer-rendered and human

performances. Although it has severe limitations with respect to musical considerations

(further discussed in 5.2), correlation is an easy-to-compute similarity measure for two

curves. As such it can serve as a similarity measure for automatic evaluation of expressive

rendering systems.

At some point, however, human judgement has to come into play as the only adequate

measure of aesthetic quality. The annual rendering contest RENCON offers a scientific

platform on which performance rendering systems can be compared and rated by the

audience. Although it only provides an evaluation of a few selected pieces, this is the

closest an automatically rendered performance can come to an object evaluation.

The experiments described in the following chapter try to paint a picture of the

qualities and limitations of our rendering system. The score model, the selection of

features characterizing the score, is evaluated first. Its influence on the prediction is

93
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immense. Key is the distribution of the targets across the values of a score feature, which

essentially determines the predicted performance. Section 5.3 inspects the separation

qualities of score features with respect to the different expressive dimensions and training

datasets and describes an experiment searching for the most suitable feature sets for

different prediction scenarios.

Using the so generated feature sets, the expressive dimensions are evaluated sepa-

rately: First, experiments examining the similarity between predicted and original per-

formances give a quantitative perspective of the generalization qualities of the different

models. As the merits of correlation as a measure of aesthetic quality are debatable (see

section 5.2), I then inspect qualitative aspects of the predicted performance trajectories.

This will illustrate the advantages of the different approaches in the various scenarios,

and show how the extensions described in sections 4.5 and 4.6 affect and, in some cases,

improve the predictions.

The qualitative aspect we tried to emphasize with the different extensions, were based

on the author’s intuition and experience with the data. They find justification through

the final evaluation in the Rendering Contest RENCON, where listener perception vali-

dated our models twice. Details of the competitions in 2008 and 2011, both of which we

won, are given in section 5.7.

5.1 Data and Experiment Setup

All experiments are based on the following two datasets: (1) the complete works for solo

piano by Chopin played by N. Magaloff, the corpus described in chapter 2, and (2) Mozart

piano sonatas played by the Viennese pianist Roland Batik. The latter is a collection of

13 complete piano sonatas by W. A. Mozart (K.279, 280, 281, 282, 283, 284, 330, 331,

332, 333, 457, 475, and 533) performed on a Bösendorfer SE290 computer-controlled

grand piano. G. Widmer, who prepared the data, gives a more detailed description [125].

As with the Magaloff data, all notes were matched to their counterparts in the score,

resulting in a performance corpus consisting of roughly 106.000 played notes (about four

hours of music). Melody notes were marked manually. As mentioned in section 4.2, our

score and performance model, especially tempo and articulation, can only be calculated

on homophonic music. Using only the matched melody notes reduces the number of

usable data points from 307.900 to 100.236 in the Chopin corpus, and to 48.427 in the

Mozart sonatas.
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How the pieces are organized differs between the two datasets. In the Chopin data

the smallest unit is a complete piece. This might be a complete opus (e.g. Scherzo

Op. 31), part of an opus that contains several pieces (e.g. Nocturnes Op. 9 No. 2), or a

movement of a sonata. In the Mozart data, most of the sonata movements are segmented

into several parts, which are then treated separately and form the smallest unit in the

dataset. The movements are split whenever a repetition, a change of key, or a change

of meter is indicated in the score. This implies that the score part of passages that are

repeated is stored twice in the dataset, once with each performance of the passage. For

our approach, the effect of a repetition of the to-be-rendered test-piece being present

in the training data is considerable, as can be observed in the respective quantitative

evaluations. There are of course slight differences between the first and the second time

the part is played, be they unintentional or on purpose, and one would expect the effect

to be negligible due to the large number of pieces in the dataset. However, situations

occur where score situations are unique under the chosen representation, and the only

other occurrence being the repetition of the sequence. In absence of the repetition in the

training data, the score situation has no performance information and the algorithm has

to interpolate between known points preceding and following the gap. Thus, to evaluate

a model on a set of test pieces in one fold of a cross validation run (see below), we have

to exclude from the training data all pieces that are repetitions pieces in the test set.

The Mozart data were split into two different datasets – fast movements and slow

movements – as they might reflect different interpretational concepts that would also

be reproduced in the predictions. We also show the results for the Chopin data for

different categories (ballades, nocturnes, etc.). The experiments consist of k-fold cross

validations of the different datasets: fast Mozart movements (MOZ/F, k = 10), slow

Mozart movements (MOZ/S, k = 10), the complete Chopin dataset (CHP, k = 10), and

the separate categories (k = 3). In a k-fold crossvalidation each piece (i.e. a complete

piece in the Chopin data, and a segment of a sonata movement in the Mozart data) is

used once as a test piece, and k − 1 times as a training piece. The average performance

quality over all test pieces in the k folds, which amounts to all pieces of a dataset, serves

as a quality indicator for a model.
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5.2 Problems of Automatic Evaluation

Every optimization process needs a measure of quality to compare different (partial)

solutions of the problem and decide which is better. In the case of expressive performance

rendering, the musicality of the rendered performance is the key factor. However, this

is not only a highly subjective matter, but also a complex interaction of a plethora of

factors, all of which are subject to the peculiarities of human perception and personal

taste.

As a substitute to judging the absolute quality of a performance, assessing the simi-

larity between two performances of the same piece, one played by a human, the other one

computer generated, can give an estimate of how “human” and “natural” the generated

performance might sound. This seems easier to quantify. Few examples of automatic

evaluation of performance rendering systems can be found in the literature. Teramura

[117] calculates the pointwise differences between prediction and target, and uses the

standard deviation of the differences – normalized with respect to the standard devia-

tion of the original – as a measure of quality (normalized difference). Widmer [130] and

Grindlay [50] both employ correlation coefficients as a quality indicator, which is what

we also use in the following experiments.

The correlation rp,t between the original target curve t = (t1,⋯, tn) and the predicted

curve p = (p1,⋯, pn) is calculated as follows:

rp,t =
Σp,t

σp ⋅ σt
(5.1)

=
∑
n
i=1(pi − p)(ti − t)

√
∑
n
i=1(pi − p)

2
√
∑
n
i=1(ti − t)

2
(5.2)

Both curves are treated as random variables, with Σp,t being the covariance of the two

variables, σp and σt their respective standard deviations, and t and p the means of the

curves. Values range from −1 to 1, with 1 being perfectly (linearly) correlated, −1 being

in perfect negative (linear) correlation, 0 indicating no (linear) correlation.

Three major problems arise with the use of correlation as a similarity measure for

music performances: (1) Correlation constitutes a point-wise comparison of the two

curves by assessing the differences in deviation from the mean of corresponding elements.

By design this is order invariant, and hence ignores the natural context dependency of

time-series. However, perception of music is sensitive to context: the relative loudness of

a note with respect to its immediate context is much more important than the relative
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loudness with respect to the absolute mean of the complete piece. (2) Some points in a

performance bear greater significance than others in transporting expressivity. For the

perception of a phrase, for example, it is more important where a concluding ritardando

reaches its slowest point than where it starts. In the correlation coefficient, each point

carries the same importance. (3) Determining whether a prediction technique is suitable

for a specific prediction scenario involves assessing certain qualitative aspects of the

produced curves. The prediction of the local tempo of a piece, for example, is expected

to be a smooth, slowly evolving curve as opposed to the fast fluctuations expected in the

predictions for articulation, which does not carry long-term dependencies. Correlation

does not provide the means for this kind of qualitative assessment.

Calculating the similarity between the prediction of a model and the desired out-

come is a very common problem, encountered in such diverse flavours as predicting the

stock market or the streamflow in water catchments [66]. However, the requirements are

application specific: Given a suitable representation of the modeled system and its out-

come, similar outcomes lead to representations that share certain characteristics. What

those characteristics are depends on the chosen representation and the modeled system.

Thoughts on how a music-specific similarity measure could be implemented can be found

in 6.2.2.

For the time being we use the following compromise: Curves produced by different

instances of the same concept (same algorithm, different score models), usually exhibit

the same overall qualities. Correlation is used to decide which of the instances is more

suitable. However, the decision which approach to use for specific scenarios is based

mainly on a separate, manual assessment of the desired general qualities of the produced

curves. Ultimately, of course, only listener perception can verify if those qualities lead

to musically sensible performances.

5.3 Score model evaluation

5.3.1 Separation Qualities of Different Score Features

The main characteristic for discrete score features is how differently target values are

distributed across the values of the feature. For the simple YQX prediction, the means

of the target distributions for the individual values of a feature can be seen as building

blocks with which the systems tries to reconstruct the performances. If those building

blocks are very similar, the capacities for learning and reproducing highly variant perfor-
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mances are small. If the means are different from each other, the base for reconstruction

is more expressive; the feature discriminates situations that require different realizations.

We refer to that characteristic as separation.

Generally, across all features, the Chopin data are much harder to separate than the

Mozart sonatas. The differences in size (the Chopin dataset is three times the size of the

fast Mozart movements and eight times the size of the slow movements) play a major

role in this, as the means have to account for more instances and hence even out more

easily. Also, in the Chopin data the features have to account for much more extensive

expressive variations.

Figure 5.1 displays how the discrete feature Rhythm Context separates the target

IOI Ratio in the different datasets. Shared across all three datasets, and the most

pronounced of all relations between rhythmic context and tempo, is the tendency to

delay a note that is preceded by a shorter note and a rest (-nl). This seems to hold

true also for other situations where the last note of a triplet is longer than the other

two: ssl, nsl and snl. In the fast Mozart movements the pattern snl is more pronounced

than ssl, and vice versa in the slow movements. The Chopin data only share this trend

for the -nl pattern. However, a tendency to speed up the middle note of a triplet of

equal durations nnn can be discerned, which is unremarkable in the Mozart data. The

tendency to delay the third note in short-short-long patterns was also discovered in rule

extraction experiments by Widmer [127].

For articulation an effect of pitch interval to the next note can be seen. In both

the fast Mozart movements and the Chopin data there is a strong trend to join notes

together if they are close in pitch, but to separate notes on the same pitch, and notes

with a large interval. This is less pronounced in the slow Mozart movements, where

generally the melody is played more legato.

5.3.2 Feature Selection

Playing Mozart requires fundamentally different interpretational approaches than play-

ing Chopin. Fast and slow movements of Mozart sonatas also follow (slightly) different

rules. The (supposedly) systematic differences in performance result in largely different

feature/target distributions. Establishing a set of features for each target and each of

the three datasets, Chopin, fast and slow Mozart movements, seems a reasonable middle

ground between searching a general (and unspecific) representation and overfitting to

the data.
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Figure 5.1: Separation of ioiRatio in the three different datasets by the feature Rhythm

Context. Red Boxes indicate mean and variance of the target distribution for individual

values of the feature. Top to bottom: Mozart Fast, Mozart Slow, Chopin complete.



100 Chapter 5. Evaluation and Experiments

−13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

  Pitch Interval  

  
A

rt
ic

u
la

ti
o

n
  

   Mozart (Fast Movements)   

−13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

  Pitch Interval  

  
A

rt
ic

u
la

ti
o

n
  

   Mozart (Slow Movements)   

−13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

  Pitch Interval  

  
A

rt
ic

u
la

ti
o

n
  

Chopin

Figure 5.2: Separation of articulation in the three different datasets by the feature Pitch

Interval. Red Boxes indicate mean and variance of the target distribution for individual

values of the feature. Top to bottom: Mozart Fast, Mozart Slow, Chopin complete.
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Searching for the overall best set of features for the respective datasets and targets

is computationally very expensive, due to the exponential growth of the number of

possible combinations of features. Instead, we conducted a greedy hill-climbing search in

the space of possible feature combinations: starting with an empty feature set, in each

iteration the one feature is added that increases the average correlation of a ten fold

cross validation of the dataset most. A decrease in correlation by 0.02 is allowed once

per search to avoid one local minimum and favor more features over a slightly higher

correlation. Table D.5 shows the results for the different datasets and targets, based

on the following set of features: IR Arch (IR-A), IR Label (IR-L), Pitch Interval (PI),

Grouped Pitch Interval (PI-G), Consonance Difference (CD), Local Consonance (LC),

Melodic Max Peaks (MaxP), Melodic Min Peaks (MinP), Average Max Peaks (AvMax),

Average Min Peaks (AvMin), Metrical Strength (MS), Rhythmic Context (RC), and

Duration Ratio (DR). The experiment was done separately for all three models (YQX,

YQX/L, and YQX/G) described in chapter 4.

In the experiments that follow, I will use the features sets determined for YQX

also for YQX/L, although feature selection indicates differently. The algorithms are

conceptually similar and this way a direct comparison is more meaningful. For the

Mozart data it seems justified, for the sake of simplicity and comparability, to use the

complete set of features for all targets and both fast and slow movements (although we

will continue to train separate models).

In situations where the new data is limited, as it is the case in the RENCON, it can

be beneficial to tailor the set of features and the trained model specifically to the piece(s)

in question. Given a good intuition about the desired stylistic elements and profound

knowledge of the training datasets, one can select the set of features that performed best

on a subset of the training data that is stylistically similar to the test piece.

5.4 Articulation Prediction

Articulation describes how closely two successive notes are joined together. As defined

in section 4.3.1 we measure articulation by relating the size of the gap between two notes

in the performance to the gap notated in the score. Values theoretically start at 0 and

can take any positive real number. However, in practice we limit the values to a range

from 0.15 to 1.5, as anything below 0.15 sounds unnaturally short, and above 1.5 just

blurs the acoustic image.
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5.4.1 Quantitative Evaluation

For the experiments we use the following sets of features, as determined by the feature

selection algorithm in section 5.3.2. YQX+/L stands for both simple YQX prediction

(see section 4.4) and the locally optimized version described in 4.5.1, YQX/G refers to

the globally optimized system described in 4.5.2.

Chopin (YQX+/L) IR-Arch, Pitch Interval, Grouped Pitch Interval, Rhythm Con-

text, and Duration Ratio.

Chopin (YQX/G) Pitch Interval, Grouped Pitch Interval, Consonance Difference,

Metrical Strength

Mozart (YQX+/L) IR-Arch, IR-Label, Pitch Interval, Grouped Pitch Interval, Con-

sonance Difference, Local Consonance, Average Max Peaks, Average Min Peaks,

Metrical Strength, Rhythm Context, and Duration Ratio

Mozart (YQX/G) Pitch Interval, Grouped Pitch Interval, Metrical Strength, and

Rhythm Context.

Table 5.1 shows the correlation achieved on average for the datasets. Values in

brackets show the results on the Mozart data with repetitions not excluded from the

training set (see section 5.1). All algorithm work best on the fast Mozart movements.

MOZ/S seems to follow a different articulation regime than MOZ/F that is more difficult

to model. Across the different categories of Chopin pieces results differ considerably. The

Études and Scherzos score lowest. In the case of the Etudes this could be due to the

fact that, while within a single Étude there is usually very little stylistic variation (with

the exceptions of Op. 25 No. 5 and No. 10), the differences between Études can be

substantial (for example Op. 10 No. 4, with its fast and sharply articulated runs in the

right hand and Op. 25 No. 1, where the right hand is to be played highly legato and

only a selection of notes needs to be heard very clearly and above all others).

Prediction quality decreases with the introduction of performance context (YQX/L

and YQX/G). This is not surprising, as articulation is a local phenomenon that does not

benefit from long-term modeling. It is noteworthy that the average correlation is higher

for the complete Chopin dataset than for all subsets of the data. While this is clearly

because we chose the feature set optimizing efficiency on the complete Chopin dataset,

the effect is still surprising given the sheer differences in size and the expected diminished
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Ballades Études Mazurkas Nocturnes Pieces

YQX 0.29 0.17 0.20 0.21 0.26

YQX/L 0.27 0.18 0.19 0.22 0.26

YQX/G 0.29 0.09 0.20 0.19 0.19

Polonaises Préludes Scherzos Sonatas Waltzes

YQX 0.30 0.16 0.12 0.23 0.29

YQX/L 0.29 0.19 0.11 0.22 0.26

YQX/G 0.19 0.14 0.00 0.14 0.18

Chopin Mozart fast Mozart slow

YQX 0.31 0.41 (0.61) 0.22 (0.54)

YQX/L 0.30 0.41 (0.61) 0.26 (0.56)

YQX/G 0.32 0.31 (0.36) 0.17 (0.21)

Table 5.1: Articulation prediction: Average correlations achieved by the different pre-

diction methods over different datasets. Values in parentheses are the results on the

Mozart data with repetitions not excluded from the training set. The generic cate-

gory Pieces comprises: Rondos (Opp. 1, 5 & 16), Variations Op. 12, Bolero Op. 19,

Impromptus (Opp. 36 & 51), Tarantelle Op. 43, Allegro de Concert Op. 46, Fantaisie

Op. 49, Berceuse Op. 57, and Barcarolle Op. 61.

explanatory power of the features. The set of features seems to be more suitable to

represent the overall Chopin perspective than the more specific characteristics of single

categories.

5.4.2 Qualitative Evaluation

Figure 5.3 shows a prototypical constellation for the prediction of articulation. The

plot shows the articulation values extracted from Magaloff’s performance of the Chopin

Marzuka Op. 6 No. 2, and three predictions made by YQX, YQX/L, and YQX/G. Ma-

galoff’s curve presents with fast fluctuations, spanning a range from around 0.05 to the

cut-off value 1.5. Of the three predictions, both simple inference and local optimization

seem to reproduce the general shape to a certain degree. At 0.38, local optimization

ranks slightly higher in terms of correlation than simple inference at 0.36. Global opti-

mization (correlation of 0.31 to the original) dampens the curve suppressing fast fluctua-
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Figure 5.3: Articulation curve predicted for Chopin Mazurka Op. 6 No. 2 with Simple

Inference, Local Optimization, and Global Optimization. Also shown is the original

articulation curve measured from Magaloff’s performance.

tions and introduces a counter-intuitive context-sensitivity. Therefore, regardless of the

fact that global optimization numerically increases correlation in some cases, qualitative

considerations argue against applying that approach to the prediction of articulation.

5.5 Loudness Prediction

Two definitions of loudness are suggested in chapter 4: (1) loudness as measured from

a performance, which we call complete loudness curve, introduced in 4.3.2 and (2) lo-

cal loudness, the residual after subtracting the loudness curve rendered based on the

expressive annotations in the score, introduced in 4.6. I evaluate the two definitions

separately.
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5.5.1 Complete Loudness Curve

Loudness is modeled not in absolute MIDI loudness values, but as a ratio of current

loudness and average loudness of the complete piece. Hence, the predictions also rep-

resent relative loudness values, and are independent of the general loudness chosen for

a piece. As defined in 4.3.2 we use the logarithm of the loudness ratio, which results

in values usually ranging between −1 and +1. In practice, we restrict the final MIDI

loudness values to lie between 15 and 105.

Quantitative Evaluation

Experiments were conducted using the following sets of features, as determined by the

feature selection algorithm in section 5.3.2. YQX+/L stands for both simple YQX

prediction (see section 4.4) and the locally optimized version described in 4.5.1, YQX/G

refers to the globally optimized system described in 4.5.2.

Chopin (YQX/+L) Average Max Peaks, Melodic Min Peaks, and Duration Ratio.

Chopin (YQX/G) Average Max Peaks, Melodic Max Peaks, Melodic Min Peaks, and

Metrical Strength.

Mozart (YQX/+L) IR-Arch, IR-Label, Pitch Interval, Grouped Pitch Interval, Con-

sonance Difference, Local Consonance, Average Max Peaks, Average Min Peaks,

Melodic Max Peaks, Melodic Min Peaks, Metrical Strength, Rhythm Context, and

Duration Ratio.

Mozart (YQX/G) IR-Label, Pitch Interval, Grouped Pitch Interval, Average Max

Peaks, Melodic Min Peaks, Metrical Strength, and Rhythm Context.

Table 5.2 shows the correlation achieved on average for the datasets. Values in

brackets show the results on the Mozart data with repetitions not excluded from the

training set. The prediction quality for the Mozart sonatas is on par with the articulation

predictions, and, as before, the fast movements are considerably easier to model than

the slow movements. For both, the prediction quality is noticeably higher than for the

Chopin data. The difference between the complete Chopin dataset and the individual

categories is even more prominent for loudness than for articulation. For the Mozart

sonatas and the majority of Chopin datasets the average correlation decreases with

the introduction of performance context, although not as pronouncedly as with the

articulation predictions.
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Ballades Etudes Mazurkas Nocturnes Pieces

YQX 0.08 0.14 0.11 0.11 0.09

YQX/L 0.11 0.13 0.09 0.09 0.07

YQX/G 0.10 0.14 0.10 0.12 0.13

Polonaises Preludes Scherzos Sonatas Waltzes

YQX 0.03 0.07 0.07 0.07 0.08

YQX/L 0.02 0.07 0.04 0.05 0.03

YQX/G 0.05 0.02 0.11 0.11 0.05

Chopin Mozart fast Mozart slow

YQX 0.17 0.39 (0.66) 0.27 (0.65)

YQX/L 0.15 0.37 (0.64) 0.23 (0.64)

YQX/G 0.17 0.31 (0.47) 0.24 (0.39)

Table 5.2: Complete Loudness prediction: Average correlations achieved by the different

prediction methods over different datasets. Values in parentheses are the results on the

Mozart data with repetitions not excluded from the training set.

5.5.2 Local Loudness

As discussed in sections 4.1.4 and 4.6.1, expressive annotations in the score already

establish a coarse picture of the loudness evolution throughout the piece. By eliminating

this (presumably already explained) part from the loudness curves, the training focuses

the model on the part that is not accounted for by score annotations. Loudness can

therefore be understood as a composite of two elements: (1) annotated loudness, the part

prescribed by score annotations, and (2) local loudness, the residual local variations. As

a prerequisite we need to construct a loudness curve from the annotations in the score,

in a way that fits the realizations of the annotations by the pianist. The following

experiments were done based on loudness curves generated by Grachten’s Basis Mixer

[48, 49].

The Basis Mixer assigns functions to all loudness annotations in the score, which

are active at the same time as the annotations. The weighted sum of all functions

forms the loudness curve accounted for by the annotations. The weights associated with

individual annotations can be learned from the Magaloff data. In a scenario where one

tries to predict a loudness curve for a new piece, the weights learned for a specific type
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of annotation would be averaged and applied to render all instances of this annotation.

Here however, as we want to eliminate as much “annotated loudness” as possible and

examine if our approach works better on the residual, we need to fit the annotated

loudness curve as closely as possible to Magaloff’s real performance. Therefore, the

weights for each individual annotation are chosen optimally, which makes the resulting

curves fittings rather than actual predictions. As described in section 4.6.1, the local

loudness is than calculated by subtracting the annotated loudness from the Magaloff’s

loudness curve and viewing the remaining values relative to the annotated loudness.

Expressive Annotations are relatively sparse in Mozart’s Urtext compared to Chopin’s

extensively annotated scores. The effect of disentangling the variations assumed to be

caused by expressive annotations from the measured loudness is therefore marginal in

the Mozart sonatas. Moreover, the Mozart corpus not being available as musicXML but

only as MIDI files makes it much more difficult and laborious to add the annotations

to the corpus. Hence, the following experiments only include the Chopin Data. Ex-

cept for the Nocturnes, where every expressive direction given in the printed score was

consistently transferred to the musicXML files, mainly the crescendo and decrescendo

wedges have be transcribed from the printed score. Consistently including the remaining

annotations, which I intend to do for future versions of the corpus (see section sec:CON-

Future-CORP), should further improve the situation.

Quantitative Evaluation

The following sets of features were used, as determined by the feature selection algorithm

in section 5.3.2:

Chopin (YQX/+L) IR-Arch, Melodic Min Peaks, Local Consonance, Metrical Strength,

and Rhythm Context

Chopin (YQX/G) Average Max Peaks, Average Min Peaks, Metrical Strength, and

Rhythm Context

Table 5.3 shows the correlations achieved on average over three-fold crossvalidations

of the datasets. The results are similarly low as for the complete loudness predictions.

For the individual categories, no clear advantage of one algorithm over the others can

be detected. Averaged over the complete Chopin, the globally optimized model has a

clear lead.
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Ballades Etudes Mazurkas Nocturnes Pieces

YQX 0.13 0.06 0.04 0.06 0.06

YQX/L 0.16 0.05 0.04 0.07 0.12

YQX/G 0.06 0.08 0.08 0.05 0.05

Polonaises Preludes Scherzos Sonatas Waltzes

YQX 0.05 0.10 0.15 0.07 0.05

YQX/L 0.08 0.08 0.17 0.07 0.07

YQX/G 0.06 0.06 0.17 0.10 0.00

Chopin

YQX 0.12

YQX/L 0.10

YQX/G 0.18

Table 5.3: Local Loudness prediction: Average correlations achieved by the different

prediction methods over different datasets.

5.5.3 Qualitative Evaluation

Complete Loudness Curve

Figure 5.4 shows the loudness predictions of YQX and YQX/G together with the original

loudness curve extracted from R. Batiks performance of an excerpt of Mozarts Sontata

KV 280 in F Major (3rd Movement, Presto, Bars 1−77). In the upper panel the training

set contained the repetition of the passage, in the lower panel, the repetition was ex-

cluded. The locally optimized prediction is virtually identical with the simple inference

and is not shown in the plots.

Both predictions in the upper panel score an exceptionally high correlation (0.73 and

0.63 for YQX and YQX/G, respectively), copy almost all major trends of the original,

agreeing in many peaks and fluctuations. The global optimization seems more conserva-

tive than the simple inference, smoothing over some of the faster changes and generally

reacting more slowly and less lively. The original curve in this case justifies many of

the peaks and fluctuations in the YQX curve. In practice however, a more conservative

rendering might be more advisable, as an undue peak at a prominent position can very

easily disrupt the rendering.

Correlations for the predictions in the lower panel (trained without the repetition)
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Figure 5.4: Loudness curve predicted for Mozart Sonata KV 280, 3rd Movement, Bars 1-

77 with Simple Inference, and Global Optimization. Also shown is the original loudness

curve measured from Batik’s performance of the piece. Upper panel: Training data

did include Batik’s performance of the repetition of the passage. Lower panel : Batik’s

performance of the repetition of the passage was not included in the training data.
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are still very high (0.62 and 0.49 respectively). YQX still follows the major trends and

most of the local peaks and fluctuations. Some situations, however, are clearly worse

than in the “informed” prediction. Most prominently around beat 100 where YQX

misses the overall softest point in the piece, and, probably even worse, places its softest

point where Batik is at a loudness peak. YQX/G skips over several of the larger trends

(also around beat 100 and again near beat 200), but, while being less expressive, the

prediction is less prone to mishaps.

Loudness predictions for the Chopin data paint a less favorable picture. Figure 5.5

shows the loudness predictions for the Chopin Etude Op. 25 No. 2 in F minor. The

predictions in the upper panel were made by a model trained on the complete Chopin

dataset, while in the lower panel, a model trained only on the Etudes was used. The

most obvious difference between the two are the large, negative peaks in the latter. The

situations occur at beats 36, 58, 93, and 95, completely unwarranted by the musical

content of the score. The first two occur with the first notes in bars 19 and 30 (Pitches

C5 and E ♭5 respectively) and in the middle of (identical) bars 46 and 47 (Pitch B ♭4).

Where the peaks come from is hard to trace, but in all likelihood, only very few instances

populate the specific score situation, and by chance represent very soft notes. The peaks

are missing in the model trained on the complete Chopin dataset, hence, the score

situation is now represented by more instances and the loudness evened out to a less

extreme value. This, of course, also affects all other score situations, and generally leads

to interpretations with a less expressive variation. The much less pronounced crescendo-

descrescendo combination near beat 20 serves as an example. As before, the difference

between simple inference and local optimization was marginal, which is why the curve is

not displayed here. In both cases (upper and lower panel), the curves predicted by YQX

and YQX/G leave a lot to be desired. The globally optimized prediction exhibits some

coherent trends, consistent with crescendo-decrescendo combinations, some of which have

corresponding movements in the original. Some of the trends are also present in the YQX

curve, but are blurred by the fast fluctuations, which will also impede perception of the

trends in the corresponding audio.

Generally, the amplitude of the predictions is significantly smaller. In order to create

a “more expressive” performance, it is possible to scale the curve, such that it either

covers a specified range or that its absolute maximum has a specified value. This,

however, should be done with extreme care, as too excessive variation can very easily

sound unnatural.
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Figure 5.5: Loudness curve predicted for Chopin Etude Op. 25 No. 2 with Simple In-

ference, and Global Optimization. Also shown is the original loudness curve measured

from Magaloff’s performance of the piece. Upper panel : The models were trained on

the complete Chopin dataset. Lower panel: The training data contained only the Etude

subset of the data.
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Local and annotated loudness

Figure 5.6 shows the effect of eliminating the annotated loudness from Magaloff’s per-

formed loudness curve (again for the Etude Op. 25 No. 2 in F minor). At places with no

annotated dynamic changes, the two performance targets complete loudness and local

loudness are congruent. The effect of removing annotated dynamic changes from the

loudness curve can be seen, for instance, from onsets 110-128: the annotated loudness

describes a crescendo-decrescendo combination which is also contained in the complete

loudness curve. The local loudness remains more stationary and displays only a reduced

version of this. Consequently, the prediction model does not have to account for the

crescendo-decrescendo combination in full.
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Figure 5.6: Local loudness curves for Chopin Etude Op. 25 No. 2, measured from Mag-

aloff’s performance of the piece. Left Axis: Complete loudness curve (grey, logarithmic

and relative to the mean loudness of the piece) and local loudness (red, relative to the

Basis Mixer fitting). Right Axis: the Basis Mixer fitting for the same piece (green).

Figure 5.7, finally, shows the predictions of the global model for the local loudness of

the first 15 bars of the Etude. The prediction has been scaled to match the overall mean
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Figure 5.7: Local loudness predicted for the first 16 bars of Chopin Etude Op. 25 No. 2

with Global Optimization. Dotted vertical lines indicate bar lines (bar numbers in

green). Red lines roughly represent phrases (straight) and subphrases (curved). Black

wedges correspond to the crescendos and decrescendos annotated in the score.

(−0.0241) and variance (0.0536) seen over the complete corpus. As indicated by the red

lines on top of the plot, this excerpt roughly corresponds to the first two major phrases

of the piece, each of which consists of a longer subphrase (6 and 5 bars, respectively)

followed by a shorter 2 bar phrase. Figure 5.8 shows the score of the excerpt together with

the suggested phrasing. A common hypothesis (e.g. [120]) about expressive variation of

loudness postulates that phrases are framed by local loudness minima. With respect to

local minima, the YQX/G prediction of the local loudness curve can be considered to

consist of three main parts: (1) Onsets 3 to 17 (part A) , (2) Onsets 17 to 26.6 (part B)

, and (3) Onsets 27 to 31 (part C). The end of part A in the predicted curve coincides

almost precisely with end of the first main phrase. The first subsegment in part A, an

arc spanning onsets 3 to 9 (the first local minimum in A), surrounds the crescendo-

decrescendo combination annotated in the score. The decrescendo wedge at the end of
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1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16
Figure 5.8: The first 15 bars of Chopin Etude Op. 25 No. 2 (Henle Urtext Edition [137]).

Double vertical red lines indicate phrase boundaries, single vertical red lines indicate

sub phrase boundaries. Black wedges correspond to the crescendos and decrescendos

annotated in the score. Green brackets indicate a suggested partition of the predicted

curve in three parts (A, B, and C)
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part A (bar 8) is also reflected in the predicted curve. Parts B and C coincide with

the two sub phrases of the second main phrase, both demarcating beginning and end of

the respective phrases with local minima and describing an arc in-between. Although

the overall correlation between prediction and Magaloff’s original curve is not very high

(0.17 for the complete piece), the curve predicted for the shown excerpt contains all

expected major loudness trends.

The reason why this example works, is that here the intended loudness variations

(as indicated e.g. by the phrase structure and the supporting dynamic annotations) are

closely related to mainly one aspect in the score, namely pitch: the suggested peaks in

loudness roughly correspond to the locally highest pitch (and the middle of the phrase),

while local pitch minima often coincide with phrase boundaries. In the score model

used for this prediction pitch is represented by the distance to the next turning point of

the pitch sequence (Average Max Peaks and Average Min Peaks). Most of the time the

links between score and performance are much more complex and not as obvious as here.

However, sometimes a simple score model like the one used here is able to capture such

connections. To some extent, this might be seen as proof of concept for the complete

approach. Regarding the separation of local loudness and annotated loudness, what can

be seen in this example is that both are indispensable parts of the whole complex. The

annotated loudness can only account for the directives given the score. Hence, in 6 of the

15 bars of the example above the annotated loudness curve is completely flat. This does

never happen in a real performance, which means that the annotated directives alone are

insufficient. This is even more evident in pieces, where annotations are scarcer than in

this example. The same holds true for the local loudness variation: in pieces, where the

connection between score and performance is less obvious than here, or the interpretation

intended by the composer (indicated by according dynamic annotations) contradicts that

connection the predicted loudness curve will often lead to an unacceptable performance.

Obeying the annotations in the score ensures that the performance stays in acceptable

limits.

5.6 Tempo Prediction

Two conceptually different possibilities of defining and modeling performance tempo are

proposed in section 4: (1) directly modeling the complete tempo curve of a performance

(section 4.3.3); (2) viewing tempo as a composite phenomenon of several components
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(section 4.6).

5.6.1 Complete Tempo Curve

As defined in 4.3.3, we call the series of logarithmic ratios of score and performance

inter-onset-intervals (IOIs), the complete tempo curve. It contains all aspects of tempo

note-by-note, relative to the beat tempo chosen for the complete piece. A value below

0 describes an IOI that was, with respect to the current tempo, played shorter than

indicated in the score, which anticipates the succeeding note. A positive value describes

an IOI that was lengthened, delaying the succeeding note, and therefore slowing down.

The predicted tempo curves usually have a much smaller amplitude than the curves

measured in performances. In practice it sometimes can be beneficial to linearly scale

the prediction to make the expressive variations more pronounced and audible. Care has

to be exercised, because a misplaced, large tempo change can easily destroy all favorable

impressions of the generated performance. This issue is much more prominent with

the Chopin data, because the overall range of expressive variations is larger. The most

obvious solution to this problem is to scale the predictions to match the training data

in overall mean (−0.02) and variance (0.026).

Quantitative Evaluation

Automatic feature selection (section 5.3.2) suggests the following sets of features for the

different algorithms and datasets:

Chopin (YQX/+L) IR-Arch, Consonance Difference, Metrical Strength, Rhythm Con-

text, and Duration Ratio

Chopin (YQX/G) Pitch Interval, Grouped Pitch Interval, Metrical Strength, and

Rhythm Context.

Mozart (YQX/+L) IR-Arch, IR-Label, Pitch Interval, Grouped Pitch Interval, Con-

sonance Difference, Local Consonance, Average Max Peaks, Average Min Peaks,

Metrical Strength, Rhythm Context, and Duration Ratio

Mozart (YQX/G) IR-Label, Pitch Interval, Grouped Pitch Interval, Average Max

Peaks, Metrical Strength, and Rhythm Context.
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Ballades Études Mazurkas Nocturnes Pieces

YQX 0.23 0.14 0.20 0.13 0.14

YQX/L 0.20 0.13 0.18 0.11 0.13

YQX/G 0.31 0.09 0.17 0.12 0.21

Polonaises Préludes Scherzos Sonatas Waltzes

YQX 0.18 0.16 0.27 0.11 0.30

YQX/L 0.18 0.13 0.24 0.08 0.32

YQX/G 0.15 0.07 0.18 0.11 0.33

Chopin Mozart fast Mozart slow

YQX 0.22 0.39 (0.60) 0.37 (0.67)

YQX/L 0.20 0.39 (0.60) 0.34 (0.67)

YQX/G 0.21 0.34 (0.41) 0.36 (0.47)

Table 5.4: Complete tempo curve prediction: Average correlations achieved by the dif-

ferent prediction methods over different datasets. Values in parentheses are the results

on the Mozart data with repetitions not excluded from the training set.

Table 5.4 shows the correlation achieved on average for the datasets. Values in

brackets show the results on the Mozart data with repetitions not excluded from the

training set. Overall, the prediction quality is higher than for the loudness curves,

and, as before, the Mozart data lends itself more easily to modeling efforts than the

Chopin pieces. Considering the fact, that the chosen feature set represents the complete

Chopin data best, the Ballades, Mazurkas, Scherzos, and Waltzes seem to be the most

characteristic of the categories for Chopin’s particular style.

In same cases, most notably the Chopin Ballades, Pieces, and Waltzes performance

context increases the numerical prediction quality.

5.6.2 Tempo as a composite phenomenon

Tempo can be considered to be an aggregation of several components: (1) the basic

tempo of the piece, often indicated by an initial tempo marking, which we call global

tempo, (2) a slowly evolving tempo trend, which we call local tempo, used for instance to

carry ritardandi and accelerandi, and shape phrases, and (3) deviations of the individual

notes from the local tempo, which we call note timing, shaping each note through antic-
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ipation and delay, generating tension and relief. As defined in section 4.6.2, we extract

aspects (2) and (3) from the complete tempo curve (which is already independent of

global tempo) in two steps: First, we extract the low-frequency components from the

curve by applying a moving average filter. This we associate with local tempo. Second,

we calculate the residual of the complete tempo curve relative to the local tempo. This

constitutes note timing.

Instead of training the model with complete tempo curves, and then interpreting

the prediction in the same way, models can be trained on local tempo and note timing

separately. The separation process can afterwards be reversed, and the two predictions

reassembled to represent the complete tempo curve. This way, the (different) character-

istics of the two components can be handled, and attended to, separately by different

models.

By construction the extracted local tempo curves are smoother than the complete

tempo curves, a quality we deem desirable for the slowly evolving tempo trend. Accord-

ingly, we search for a model that reproduces that particular quality in its predictions.

The principle also holds for note timing, which is much more specific to an individual

note and less context-dependent. The curves, by construction, exhibit fast fluctuations,

and sharp peaks, qualities we like to see retained in predictions of the target. All exper-

iments are based on a window size of 4 beats for calculating the local tempo component,

see section 6.2.2 for a further discussion.

Quantitative Evaluation

The feature sets established by the selection algorithm in section 5.3.2 for the Mozart

data are the same for local tempo, note timing, and complete tempo (with the exception

of the addition feature local consonance for the globally optimized version). For the

Chopin data the suggested feature sets are the same for local tempo and note timing for

the simple YQX and the locally optimized version (YQX/+L), but differ in one feature

for the globally optimized version (melodic min peaks for tempo, grouped pitch interval

for timing).

Local tempo prediction is based on the following feature sets:

Chopin (YQX/+L) IR-Arch, Consonance Difference, Metrical Strength, Rhythm Con-

text, Duration Ratio

Chopin (YQX/G) IR-Label, Metrical Strength, Rhythm Context
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Mozart (YQX/+L) IR-Arch, IR-Label, Pitch Interval, Grouped Pitch Interval, Local

Consonance, Melodic Max Peaks, Melodic Min Peaks, Metrical Strength, Rhythm

Context, Duration Ratio

Mozart (YQX/G) IR-Label, Grouped Pitch Interval, Melodic Min Peaks, Metrical

Strength, Rhythm Context

Ballades Etudes Mazurkas Nocturnes Pieces

YQX 0.25 0.13 0.06 0.05 0.13

YQX/L 0.13 0.16 0.11 0.07 0.07

YQX/G 0.34 0.17 0.17 0.07 0.23

Polonaises Preludes Scherzos Sonatas Waltzes

YQX 0.11 0.05 0.15 0.12 0.31

YQX/L 0.10 0.12 0.03 0.08 0.33

YQX/G 0.12 0.08 0.36 0.20 0.44

Chopin Mozart fast Mozart slow

YQX 0.14 0.37 (0.69) 0.21 (0.61)

YQX/L 0.15 0.38 (0.68) 0.21 (0.62)

YQX/G 0.19 0.39 (0.48) 0.18 (0.29)

Table 5.5: Local tempo prediction: Average correlations achieved by the different pre-

diction methods over different datasets. Values in parentheses are the results on the

Mozart data with repetitions not excluded from the training set.

The following features are suggested for the prediction of note timing:

Chopin (YQX/+L) IR-Arch, Consonance Difference, Metrical Strength, Rhythm Con-

text, Duration Ratio

Chopin (YQX/G) Grouped Pitch Interval, Metrical Strength, Rhythm Context

Mozart (YQX/+L) IR-Arch, IR-Label, Pitch Interval, Grouped Pitch Interval, Con-

sonance Difference, Local Consonance, Average Max Peaks, Average Min Peaks,

Metrical Strength, Rhythm Context, Duration Ratio

Mozart (YQX/G) Pitch Interval, Grouped Pitch Interval, Average Max Peaks, Met-

rical Strength, Rhythm Context
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Tables 5.5 and 5.6 show the correlation achieved on average for the datasets. Values

in brackets refer to the results on the Mozart data with repetitions not excluded from the

training set. Local tempo prediction of the Chopin data, individual categories as well

as the complete dataset, benefits greatly from using the performance context: in all in-

stances the average correlation is higher for the globally optimized model (YQX/G) than

for the context-free version (YQX). Gains range from 0.02 (Nocturnes and Mazurkas)

to 0.21 (Scherzos) in correlation.

Note timing presents with considerably lower correlations, suggesting that the target

is much harder to learn, and generalize. Contrary to expectation, performance context

and global optimization seems to have a positive effect in some cases. A noteworthy

detail is that for the slow Mozart movements timing prediction is much more successful

than local tempo, as opposed to the fast Mozart movements where the local tempo seems

to be easier to generalize and learn than note timing.

Ballades Etudes Mazurkas Nocturnes Pieces

YQX 0.07 0.05 0.18 0.08 0.03

YQX/L 0.06 0.05 0.19 0.08 0.05

YQX/G 0.05 0.05 0.16 0.08 0.09

Polonaises Preludes Scherzos Sonatas Waltzes

YQX 0.07 0.09 0.06 0.02 0.14

YQX/L 0.06 0.09 0.06 0.02 0.14

YQX/G 0.11 0.05 0.10 0.07 0.16

Chopin Mozart fast Mozart slow

YQX 0.13 0.36 (0.58) 0.37 (0.66)

YQX/L 0.13 0.35 (0.57) 0.33 (0.65)

YQX/G 0.14 0.30 (0.37) 0.38 (0.45)

Table 5.6: Note timing prediction: Average correlations achieved by the different pre-

diction methods over different datasets. Values in parentheses are the results on the

Mozart data with repetitions not excluded from the training set.

As described above, the predicted local tempo and note timing curves can be re-

assembled to form a complete tempo curve. The correlations presented in table 5.7 are

calculated between the reassembled curves and the original complete tempo curves of the

pieces in question. The results vary with the prediction paradigms used for the two com-
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ponents. For the Mozart data, combined tempo prediction, while numerically slightly

inferior to prediction of the complete tempo curve, still presents with a very high aver-

age correlation for both slow and fast movements. In both cases, the correlations only

take a severe plunge when the globally optimized prediction is used for the note timing

component. From a numerical point of view, the other combinations are equivalent. The

correlations for combined and complete tempo prediction do not feature big differences

in case of the Chopin data. With the exception of the Ballades and the Waltzes, only

minor differences can be noticed. No clear tendency can be stated suggesting that one

combination of models is superior for all subsets of the data. A numerical comparison

with the results of the complete tempo curve prediction (table 5.4) does not show a sig-

nificant improvement in terms of average correlation. With the exception of the Preludes

and the Scherzos, the highest average correlation achieved by combining local tempo and

note timing is equal or lower than the highest average correlation with a single model

approach. This might suggest that the two methods, complete tempo prediction and

combined tempo prediction, are equivalent and hence recommend the former as it is the

simpler of the two. This, however, ignores all qualitative considerations of the different

prediction strategies, which will be examined in the next section.

5.6.3 Qualitative Evaluation

A comparison between the average correlation coefficients for the complete tempo predic-

tions (5.6.1) and the combined tempo (5.6.2) predictions does not reveal any advantage of

one method over the other. However, the curves predicted by the different algorithms in

the different prediction scenarios feature certain qualities, that make them more appro-

priate in some contexts than others. Starting with the complete tempo curve prediction,

the examples in the following section examine the different scenarios and show how a

combined prediction can be superior.

Complete Tempo Curve

Figure 5.9 shows complete tempo curve predictions for the Mozart Sonata KV280 in

F Major, Bars 1-40, generated with the simple YQX model and the YQX/G. Both

algorithms score reasonably high correlations for this example. The paradigmatic dif-

ferences of the two algorithms are very obvious in the two displayed predictions: the

context-free YQX presents with fast fluctuations, which, in this case, very often mirror
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Timing Tempo Ballades Etudes Mazurkas Nocturnes Pieces

YQX YQX 0.22 0.10 0.19 0.11 0.12

YQX YQX/L 0.18 0.09 0.19 0.10 0.08

YQX YQX/G 0.22 0.10 0.19 0.11 0.11

YQX/L YQX/L 0.15 0.11 0.19 0.11 0.08

YQX/L YQX/G 0.18 0.11 0.20 0.11 0.11

YQX/G YQX/G 0.25 0.10 0.19 0.13 0.19

Polonaises Preludes Scherzos Sonatas Waltzes

YQX YQX 0.13 0.14 0.27 0.07 0.24

YQX YQX/L 0.12 0.12 0.21 0.07 0.23

YQX YQX/G 0.12 0.11 0.28 0.07 0.24

YQX/L YQX/L 0.11 0.12 0.22 0.07 0.22

YQX/L YQX/G 0.11 0.11 0.29 0.07 0.23

YQX/G YQX/G 0.13 0.06 0.25 0.12 0.31

Chopin Mozart fast Mozart slow

YQX YQX 0.20 0.37 (0.58) 0.36 (0.65)

YQX YQX/L 0.19 0.37 (0.58) 0.36 (0.65)

YQX YQX/G 0.19 0.37 (0.58) 0.36 (0.64)

YQX/L YQX/L 0.19 0.36 (0.57) 0.32 (0.64)

YQX/L YQX/G 0.19 0.36 (0.58) 0.32 (0.64)

YQX/G YQX/G 0.22 0.34 (0.40) 0.38 (0.44)

Table 5.7: Combined tempo prediction: Average correlations achieved by the different

prediction methods over different datasets. Values in parentheses are the results on the

Mozart data with repetitions not excluded from the training set.

the original curve. Taking the previously predicted values into account, the context-

sensitive YQX/G leads to a much smoother curve, rather outlining the general trends.

The latter approach does not seem to fit the Mozart data very well. The reason for

that lies in the stylistic characteristics of Mozart: Gradual tempo changes, like ritar-

dandi or accelerandi, are extremely rare; tempo variations are much more constrained

than for instance in the Chopin pieces; small, local variations are much more important

and dominant. As confirmed by the quantitative comparison of the different algorithms

(section 5.6.1), the Mozart data cannot profit from long term optimization over the of
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performance context. Simple inference and local optimization, which, in this example,

again, are virtually identical, both reproduce the necessary qualities for Mozart better

than global optimization.
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Figure 5.9: Complete tempo curve predicted for Mozart Sonata KV280, 1st Movement,

Bars 1-40 with Simple Inference, and Global Optimization. Also shown is the original

loudness curve measured from Batik’s performance of the piece. The training data did

not contain the repetition of passage.

The Chopin pieces pose a much harder nut to crack. Figure 5.10 (upper panel)

shows predictions of complete tempo curves for the Mazurka, Op. 56 No. 1, generated

by YQX/L and YQX/G. Both algorithms achieve a correlation that is exceptionally

high for the Chopin corpus (0.61 (YQX/L) and 0.58 (YQX/G), respectively). How-

ever, inspecting the curves behind those numbers, reveals very poor resemblance to the

original tempo curve extracted from Magaloff’s performance. Scaling and shifting the

curves, such that mean and variance are congruent with the average mean and variance

encountered in the Chopin data, leads to the curves displayed in the lower panel of figure
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5.10. The two faster passages (beats 132-240, and 303-426), can be clearly distinguished

in both predictions. Like before in the prediction of the local loudness curve (section

5.5.3), this is due to a coupling between one particular aspect, in the case the rhythmic

patterns, and the tempo: predominant in the first, slower 44 bars (beats 1-132, Allegro

non tanto) is the syncopated rhythm typical for Mazurkas, while the melody voice in

the following faster section (Poco piu mosso, leggiero) only contains eighth notes.

Composite Tempo

Employing the idea of a composite tempo and exploiting the characteristics of the differ-

ent algorithms can lead to a tempo prediction that appears more sensible and related to

the expected results. Figure 5.11 shows the decomposition of Magaloff’s complete tempo

curve into the local tempo and note timing components. The local tempo is a smooth

curve, setting the general trend of the tempo: the transitions to the fast passages and

back are clearly visible, as are small local peaks, consistent with ritardando-accelerando

combinations, that could coincide with phrase boundaries. The note timing curve is

centered around 0 and with rapidly changing values.

Training with local tempo curves instead of complete tempo curves affects the models

differently. The upper panel of figure 5.12 shows the respective results. The YQX/L

prediction, although heading in the same general direction as Magaloff’s local tempo

curve, adapts the tempo very slowly. Consequently, the highest tempo is reached at the

very end of the fast passage, after an unnaturally long accelerando. Global optimization

and simple inference depict the same general tempo, the former a dampened version

of the latter, and are in that more similar to the local tempo curve extracted from

Magaloff’s performance.

The opposite can be observed in the lower panel of figure 5.12. Here, the timing

predictions generated by YQX and YQX/G are displayed (differences between local

optimization and simple inference are marginal). Again, the curve predicted by the

context-sensitive global optimization algorithm, although not as smooth as before, dis-

plays discernible trends, and passages coherent with ritardando-accelerando combina-

tions. However, a comparison with the targeted note timing curve suggests that this

is not appropriate. The curve left after removing the local tempo trends contains the

temporal placement of individual notes with respect to the current tempo: Its mean is

around 0 (a note being on time) and large positive values (late placement) and large

negative values (early placement) may alternate free. The prediction generated without
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Figure 5.10: Upper Panel: Complete tempo curve predictions for Chopin Mazurka Op. 56

No. 1 with local and Global Optimization. Lower Panel: Same curves, scaled to match

the overall mean and variance in the corpus.
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Figure 5.11: Effect of the tempo decomposition applied to Magaloff’s performance of

Mazurka Op. 56 No. 1.

consideration of the performance context, captures this general idea more adequately.

The two separately predicted curves can be recombined to form the complete tempo

curve of the piece. Figure 5.13 shows the result of combining the local tempo curve

predicted by YQX/G and the note timing curve predicted by YQX. This seems a rea-

sonable choice considering the characteristics of the individual models. The single model

prediction for the complete tempo curve of piece yielded a correlation of 0.61 and 0.58

for Local Optimization and Global Optimization, respectively. The correlations of the

combined tempo predictions with the original curve are similar (0.54, 0.62, and 0.63 for

influence parameters of 0.3, 0.5, and 0.7, respectively). However, generating the tempo

curve this way has two major advantages. (1) Separate models can be based on different

score models, taking different aspects of the score into account. The different aspects

tempo and timing may prescribe opposite behavior for the same note: For example,

a note can at the same time be part of an accelerando and still be placed late with

respect to the current tempo. In a setup with two models, the two models base their

decisions on different aspects of the score and the local tempo model may decide to
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Figure 5.12: Upper Panel: Local tempo curve predicted for Chopin Mazurka Op. 56 No. 1

with Simple Inference, Local Optimization, and Global Optimization.Lower Panel: Note

timing predicted for Chopin Mazurka Op. 56 No. 1 with Simple Inference, and Global

Optimization.
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Figure 5.13: Tempo curve for Chopin Mazurka Op. 56 No. 1 as a combination of a

note timing prediction with Simple Inference, and local tempo prediction with Global

Optimization (three different influence factors). Also shown is the original tempo curve

measured from Magaloff’s performance of the piece.

predict an accelerando, while the timing model predicts a late placement independently.

In a single model setup, the model in a way has to draw two different conclusions from

one characterization of the score, and merge them into one prediction. (2) Equation

4.33 in section 4.6.2 introduces a way to assign different levels of influence to the sepa-

rate curves. Figure 5.13 shows three different combinations of the same curves, with a

varying balance between the two components. As expected, the higher the influence, the

closer the resulting curve follows the local tempo curve. Provided that a reasonable local

tempo curve is established, this can prevent the note timing component disrupting the

perception of the tempo trends. The underlying assumption is that local tempo is more

important to a expressive rendering than note timing. While this might be unwarranted

as a general rule, what can be said is that a discernible local trend – regardless, how

musically (in)appropriate it might be in that particular situation – is easier to process
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for the human perception than a series of randomly placed notes. Moreover, larger dif-

ferences between successive values lead to more obvious effects. While obvious effects

are desirable in the right places, in the wrong places they disrupt the overall effect much

more than applying no effect at all. However, a passage without any fluctuations in

the placement of notes sounds equally unnatural. A “safe” approach is therefore to first

establish a local tempo curve to introduce discernible tempo trends and then introducing

local variation into that curve, with an influence parameter representing the confidence

in the local prediction.

5.7 Listener Evaluation – the Rendering Contest REN-

CON

The Rendering Contest RENCON [53] is an annual international competition, where

computer rendered performances are judged and evaluated by a jury and an audience.

Ultimately, the event serves as a turing test for performance rendering systems. The

project started in 2002 as a satellite workshop of the International Conference on Audi-

tory Display (ICAD2002), and “aims at winning the Chopin Piano Competition, one of

the most prestigious international piano competitions, in 2050” [58]1. In the following I

am going to describe the two contests we entered our system into, the RENCON 2008

and 2011, and how the systems were set up.

5.7.1 Putting it all together

Prediction mechanisms, like YQX, form the heart of expressive rendering systems. Sev-

eral more elements are needed for a complete system. Generally, the following steps have

to be executed to render an expressive performance, assuming that the prediction model

is already trained. We assume the piece is represented in musicXML format. While not

1This is the goal proposed by the originators of the competition, which is, in my opinion, misleading.

This contest is the only international scientific forum committed to the quasi-representative evaluation of

research in this area. While this in itself is essential and of the utmost importance for any computerized

approach to aesthetics and art, this should not be done with the purpose of trying to best human beings

in what is a highly creative process. This is, in my opinion neither possible, nor even desirable. It also

draws the focus away from trying to understand the elusive art of expressive music performance and

find the role computers an artificial intelligence can play in this. Instead it ties up many resources in

producing dedicated software, with the sole purpose of trying to win a piano contest. I refer the reader

to [128] for some thoughts on creativity in expressive rendering systems.
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necessary for the prediction part of the process, rendering the score annotations requires

a format able to store this information:

1. Parse the musicXML file of the new piece and convert the musical content to an

“expressionless” MIDI

2. Extract the expressive annotations, and generate the corresponding basic tempo

and loudness curves.

3. Extract the score model (Feature Extraction)

4. Predict performance trajectories and combine the predicted performance parame-

ters with the result of 2

5. Post processing (Apply additional rules, limit loudness to sensible range, etc.)

A description of the rendering systems we used in the rendering contests RENCON 2008

and RENCON 2011 follows.

5.7.2 RENCON 2008

The RENCON 2008 [55] was hosted alongside the 10th International Conference on

Music Perception and Cognition (ICMPC10) in Sapporo, Japan. The 2008 competition

introduced on-site expression generation: two previously unknown pieces, composed

specifically for the competition by Prof. Tadahiro Murao, were to be rendered within

the time frame of one hour. The two pieces, “My Nocturne” in a Chopin-like style and

“My Mozart in Sentiment” in a Mozart-like style (scores of the pieces can be found

in appendix C), were intended to capture very prototypical stylistic elements of piano

music: the classic, constrained, and delicate Mozart and the romantic Chopin, which

requires more pronounced tempo and velocity fluctuations. In contests prior to 2008,

participants had been handed the evaluation piece beforehand, and had time to prepare

and fine-tune their systems to it.

Two sections were available for the contestants: the interactive section, and the au-

tonomous section. Time frame and pieces were the same for both sections. Entrants to

the autonomous section were not allowed any audio feedback from the system during the

rendering process. Hence, the expressive content of the rendered piece was generated

without any human adjustments or tailoring parameters to the pieces at hand. Competi-

tors in the interactive section were allowed audio output from their systems which made
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it possible to fine-tune the performance. Performances from the different categories were

judged separately.

Four contestants entered the autonomous section and competed for three awards:

The Rencon award was to be given to a winner selected by audience vote (both through

web and on-site voting), the Rencon technical award was to be given to the entrant

judged most interesting from a technical point of view, and finally the Rencon Murao

Award was to be given to the entrant that most impressed the composer Prof. T.

Murao. Our system YQX, as described in section 4.4 won all three prizes (see appendix

C). While this is no proof of the absolute quality of the model, it does give some

evidence that the model is able to capture and reproduce certain aesthetic qualities of

music performance. Videos of YQX performing “My Nocturne” and “My Mozart in

Sentiment” at RENCON08 can be seen at http://www.cp.jku.at/projects/yqx

5.7.3 YQX 0.1 - the RENCON 2008 model

The system presented in the RENCON 2008 was the first attempt at expressive render-

ing. Figure 5.14 shows an overview of the system. Prediction of all expressive dimensions

was done by the context-free, local YQX model described in 4.4. Based on our experience

with the different stylistic attributes of two specific composers and types of pieces, we

used different sets of score features for the two test pieces and the different performance

targets. For the Chopin-like piece “My Nocturne” we used Duration Ratio and Pitch

Interval for articulation, Rhythm Context and IR-arch for tempo, and Duration Ratio

and IR-arch for loudness. For the Mozart-like piece “My Mozart in Sentiment” we used

Rhythm Context, IR-label, IR-arch and Pitch Interval for all three targets (see 4.2 for a

description of the features).

Rendering of expressive annotations in the score was done in a very straight forward

way: The global tempo was set as suggested by the metronome markings provided in the

score. A basic tempo curve was then set up in the following way: for each accelerando

(ritardando) in the score, the final tempo was determined by multiplying the tempo value

with 1.2 (0.8) and interpolating linearly between the values at the beginning and the

end. The same was done for loudness, where we used a combination of simple mapping

of absolute dynamic annotations, like p, pp, and f, to fixed midi velocities, and the same

linear interpolation as for tempo.

In 2003, Widmer developed a rule extraction algorithm for musical expression [127,

126]. In Batik’s performances of the Mozart sonatas, the algorithm discovered a small
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Figure 5.14: Schematic overview of the YQX system used in the RENCON 2008 in

Sapporo, Japan. Green boxes only involve the probabilistic graphical model, yellow boxes

concern Widmer’s performance rules, green and yellow boxes are a result of combining

both.

number of simple rules suggesting expressive change under certain melodic or rhythmic

circumstances. We use two of the rules to further enhance the aesthetic qualities of the

rendered performances:

Staccato Rule: If two successive notes (not exceeding a certain duration) have the

same pitch, and the second of the two is longer, then the first note is played

staccato. In our implementation the predicted articulation is substituted with a

fixed small value, usually around 0.15, which amounts to 15% of the duration in
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the score in terms of the current performance tempo.

Delay Next Rule: If two notes of the same length are followed by a longer note, the

last note is played with a slight delay. The IOI ratio of the middle note of a triple

satisfying the condition is calculated by taking the average of the two preceding

notes and adding a fixed amount.

5.7.4 RENCON 2011

The RENCON 2011 [54] was hosted alongside the 8th Conference on Sound and Music

Computing (SMC2011) in Padua, Italy. The contest was held in two stages. In the first

stage, which took place three months before the conference, contestants were given 2

days time to render “A Little Consolation” – a piece specifically composed by Prof. T.

Murao for the competition (the score can be found in appendix C). The musical quality

of the submissions was rated blindly by 7 reviewers with a strong musical background.

The contestants were also required to submit a two-page extended abstract which was

reviewed and rated blindly by a technical jury with regard to the technical relevance and

interestingness of the submission. The latter established the ”Rencon 2011 Technical

Award”.

The second part of the competition was held in Padua, Italy, as part of the SMC

Conference. The set piece, an excerpt from the third movement of Beethoven’s Piano

Sonata No. 8, op. 13 (“Pathetique”), (the score is displayed in appendix C) was selected

randomly from the list of 20 pieces shown in table 5.8, that was announced 2 weeks before

the competition. As before, the rendering had to be finished within one hour. Two

different performances of the set piece were asked for, displaying different performance

styles. The musical quality of the performances was then rated by the audience (both

through web and on-site voting) based on the following criterion: ‘How much applause

would you give the performance?’.

Although systems were marked either autonomous or interactive, they were not

judged separately: in both stages the musical evaluation did not distinguish between

autonomously and interactively generated performances. The scores from both stages

were combined to establish the winner of the ”Rencon 2011 Award” for the system with

the best musical qualities. Our system, ’YQX featuring the BasisMixer’ (which was

completely autonomous), won both the technical and the musical award.
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J. S. Bach Wohltemperiertes Klavier Book I, Prelude C Major

J. S. Bach Two-part Invention No. 15 in B minor

J. S. Bach Menuette from “Little Notebook for A. M. Bach”

T. Badarzewska A Maiden’s Prayer, Op. 4

L. v. Beethoven Piano Sonata Op. 13, 3rd Mv.

L. v. Beethoven Bagatelle No. 25 in A minor ’For Elise’, WoO 59

J. Brahms Hungarian Dance No. 5 in F♯ minor

F. Chopin Nocturne Op. 9 No. 2 in E♭ Major

F. Chopin Etude Op. 10 No. 3 in E Major

F. Chopin Waltz Op. 69 No. 1 in A♭ Major

E. Elgar Salut d’amour Op. 12

G. Faur Sicilienne Op. 78 in G minor

G.F. Händel Aria from ’The Harmonious Blacksmith’

F. Liszt Etude S. 145, No. 1, ’Waldesrauschen’

F. Mendelssohn Songs Without Words Op. 30 No. 6 in F♯ minor

W. A. Mozart Piano Sonata K. 545, 1st Mv.

W. A. Mozart Piano Sonata K. 331, 3rd Mv.

D. Scarlatti Sonata in C Major, K. 159

R. Schumann Abegg Variations Op.1, ’Theme’

P.I. Tchaikovsky The Seasons Op. 37a No. 7, ’July’

Table 5.8: List of potential set pieces for Stage II of the RENCON 2011.

5.7.5 YQX 0.2 Featuring the BasisMixer - the RENCON 2011 model

The system entered into the RENCON 2011 introduced a multi-level tempo prediction

– tempo considered as composed of local tempo and note timing – and an alternative

concept of loudness modeling. As proposed in section 4.6, tempo was modeled as a

composite dimension. Local tempo and note timing were predicted separately by algo-

rithms with different levels of context awareness: the globally optimized version of YQX

(section 4.5.2) was used for local tempo, and the locally optimized version (section 4.5.1)

for note timing. The two predictions were then combined to form the prediction for the

complete tempo curve, retaining the slow evolving tempo trends of the former for the

local tempo component and the fast fluctuations of the latter for the note timing. For

articulation, we used the non context-aware predictions of the original YQX. The idea
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of combining a rendition of the expressive annotations with a prediction of the residual,

local loudness variations (as proposed in section 4.6),was established after the compe-

tition. Instead, loudness was entirely modeled by Grachten’s Basis Mixer. The two

note-level rules described in 5.7.3 were, as before, used to post-process the performance.

Loudness 
Prediction

Loudness

New Piece
(MusicXML)

Training Data

Dynamic 
Annotations

Tempo 
Annotations

Feature 
Extraction

Local Tempo 
Prediction

Note Timing 
Prediction

Note Level 
Rules

Articulation 
Prediction

Tempo 
Prediction

Tempo Articulation

Expressive MIDI

Articulation 
Annotations

YQX (No Performance Context)

Rule Extraction

Context Aware YQX

The Basis Mixer

Figure 5.15: Schematic overview of YQX 0.2 Featuring the BasisMixer, as used in the

RENCON 2011 in Padua, Italy. Light green boxes indicate a performance context aware

probabilistic model, dark green boxes a context-free probabilistic model, yellow boxes

concern Widmer’s performance rules. Red boxes involve the Basis Mixer.
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5.8 Summary

This chapter shows experiments done with the models presented in chapter 4. The

different performance dimensions are evaluated separately. First, for each performance

dimension the numerical prediction quality of the different algorithms, measured through

the similarity between the predicted performance dimension and Magaloff’s real perfor-

mance, is assessed. Then, the results of the different algorithms are evaluated from

a qualitative point of view to determine if the produced performance curves exhibit

characteristics similar to the real performance curves. A summary of the results follows:

Articulation: The results reflect the fact that articulation is a very local phenomenon

without long term dependencies: Sensitivity to the immediate, local context can be

beneficial. Integrating a large performance context leads to a prediction with qual-

ities uncharacteristic of the fast fluctuations of the articulation measured in Mag-

aloff’s performances. Consequently, although the quantitative evaluation shows a

slight lead for the global optimization, it is advisable to use local methods.

Loudness: Loudness seems to be the toughest of the three performance targets to

model with our current statistical model. In the original formulation none of the

three algorithms produces good results consistently on the Chopin data. Loudness

is evidently much more related to the dynamic annotations in the scores. The

proposed split of the loudness curve into “annotated loudness” and residual, and

assigning focused approaches to each of the problems seems promising. With the

current score model the three proposed algorithms still struggle with predicting

the residual. A score characterization with more information on phrase boundaries

could probably ameliorate the performance. On the Mozart sonatas the results are

on the whole acceptable with a clear lead of the context insensitive simple inference

algorithm.

Tempo: The benefits of the two proposed extensions are most obvious in the tempo pre-

dictions of the Chopin data: Splitting the tempo in local tempo trends and timing

of individual notes, and predicting the two components separately with different

algorithms achieves two goals: (1) The different algorithms create curves with very

different characteristics. The context-aware curves share characteristics of the lo-

cal tempo curves, the context-insensitive simple inference shares characteristics of

the note timing component. This way we can preserve the qualities of both compo-
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nents in the result. (2) We can use different score models for the two components.

This is congruent with the author’s intuition about the matter: decisions how to

shape a larger unit, e.g. a phrase, are made based on different information from

the score than decisions related to anticipation or delay of individual notes.





Chapter 6

Conclusions and Future Work

This thesis is centered around the Magaloff corpus, a unique collection of performances

comprising the complete works for solo piano by Chopin. It describes how we prepared

the data, and presents studies of some of the peculiarities of Magaloff’s style of playing.

The main focus is the application of the data in the field of expressive performance

rendering. This chapter summarizes the different parts presented in this thesis, describes

further possible applications, and proposes ideas for supplementing and enhancing the

results.

6.1 Main Contributions and Results

What sets the Magaloff corpus apart from other collections of recordings is (1) its size

– over 10 hours of music, over 150 pieces, around 330.000 played notes, (2) its content

– a single pianist playing all pieces of one composer in front of an audience, and (3) its

precision – recorded as precisely measured list of note and pedal events on a Bösendorfer

computer controlled grand piano instead of audio picked up by a microphone. Making

the corpus accessible and preparing the data for research was the firs dt major goal of this

thesis. Apart from resulting in a unique resource, this very time-consuming task (digi-

tizing over 900 pages of music scores, converting them into computer readable symbolic

scores, correcting the errors of the conversion process, and aligning the digital scores

to the performances) yielded a software tool for handling (assembling, inspecting, and

correcting) alignments between score and performance, and annotating musical scores.

Several application scenarios exist for a corpus of this precision and dimensions.

From an expressive performance research perspective it is both testament of Magaloff’s

personal style and idiosyncrasies, and representative of piano performance in general.

Regarding the former, we examined to what extent Magaloff conformed to a general

model of successful aging. As it turned out, the two criteria of the model that were

testable – reduction of repertoire, and reduction of performance tempo – are not fulfilled.

139
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This suggests that instead of compromising his musical ideals, Magaloff rather chose to

risk an increase in performance errors. Two further exploratory studies were conducted

assessing musicological questions. Although, strictly speaking, the results of the studies

only apply to Magaloff’s performances, the corpus is large enough for the results to

still have a certain validity in general. The first study investigated performance errors.

More specifically, we examined if, and to what extent, erroneous notes are played in

a way that make them more subtle and less noticeable by the audience. The findings

mostly corroborate an earlier study by Repp [100], who examined the same question

under different circumstances (laboratory conditions rather than a concert situation,

graduate piano students instead of a world-class pianist). Further investigations of the

phenomenon of errors lead to a catalogue of error patterns: sequences of errors that share

commonalities are grouped together and viewed in context. A considerable number of

errors are not just isolated mishaps but reoccur and form patterns. Finally, we presented

the results of an analysis done in cooperation with W. Goebl that explored the matter

of between-hand asynchronies. Similar to ensembles, where often the player currently

in charge of the melody voice precedes the others by a perceptible amount of time,

Magaloff uses asynchronies between his left and right hand as an expressive device. Two

specific types of asynchrony – bass anticipation and tempo rubato – were automatically

identified in the data. Both were used to a considerable extent.

Apart from analyzing the artistic and musical content, the corpus plays an essential

role as ground truth or training data for data-driven applications. One example for such

an endeavor is expressive performance rendering, which is the main focus of this thesis.

Chapter 4 proposes a rendering system based on a graphical probabilistic model. Based

on a simple model, we develop two important extensions of the system. The first exten-

sion integrates awareness of performance context into the design. From a technical point

of view, the algorithm developed for this purpose is a closed-form solution to calculate

exact inference in a special type of probabilistic network. With regard to the predicted

performances this reduces fast fluctuations in the predictions, and emphasizes long term

trends. As frequent large changes without discernible trend lead to an unsatisfactory

overall shape of a piece, this is a desirable effect for the overall development of tempo

or loudness. However, it impedes the equally important local tempo variation. Combin-

ing both aspects, long term development and local variation, is the goal of the second

extension, which re-defines tempo and loudness: Tempo is regarded as composed of a

slowly evolving tempo component and local timing variation. Loudness is also split in
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two: one component associated with the performance directives in the score setting the

overall evolution and the other one containing local deviations from that. An evaluation

of the different components leads to the following conclusions:

• Articulation is best modeled with simple inference or local optimization. Global

optimization destroys the characteristic properties of this expressive dimension.

• Decomposing tempo into local tempo trends and note timing improves the predic-

tion quality considerably. This is especially the case when the long term compo-

nents are predicted using the context-aware model with global optimization, and

the local variations are predicted with either short-term performance context or

no performance context at all.

• Loudness prediction is the most difficult of the three. As with tempo, it is necessary

to regard loudness not as an atomic component, but to deal with different aspects of

dynamic change separately. The performance directives in the score are an integral

part of loudness evolution and need special treatment. Using the here proposed

model to predict the residual local loudness does not yet work to a satisfying degree.

All of the above point in the following direction: While probabilistic models certainly

are a reasonable approach to performance rendering, there is not one single model that

is capable of handling all different aspects of expressive performance. The system we

used in the 2011 Rendering contest, as described in 5.7.5, is a combination of several

specialized subsystems, using different approaches for different aspects of music perfor-

mance. The concluding accounts of the two Rendering Contests we participated in and

which we won, have to be taken cum grano salis: It is warranted to say that there are

certain statistical relationships between score and performance which, given a suitable

score characterization, can be learned and reproduced, to some degree, by a graphical

model. However, there is still a long way to go for computers to be able to a produce

something profoundly musical. One major obstacle here is that it is not possible to an-

alyze a music score automatically at the level of understanding and complexity achieved

by a musician.
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6.2 Future Directions...

6.2.1 ... concerning the state of the corpus

Several aspects can further improve the Magaloff corpus and open up more application

scenarios. Audio recordings of all pieces in a studio environment will make the corpus

an ideal resource for research on automatic transcription [6]. A collection comprising

several hours of audio material with precise timing, pitch, and loudness information of

all played notes is both invaluable training data for machine learning algorithms, and

ground truth for evaluation. Another application that could greatly benefit from having

audio recordings of the complete corpus, is score-following [2]. Efforts are currently

made, to record the data on the newer Bösendorfer CEUS system, which replaced the

Bösendorfer SE in 2005. This is proving difficult, as the way Magaloff played was tailored

to the instrument he played on and the concert hall with its acoustic properties. As no

two instruments are identical, some of the elements of Magaloff’s performances do not

translate well to a different grand piano. Adjustments have to be made to the loudness

and pedaling measurements, which introduces a subjective bias into the recordings.

As of now, the score information contained in the corpus mainly concerns the actual

note content. Performance directives are only included consistently in selected parts of

the data, mainly the Nocturnes. Including these annotations in the complete corpus

facilitates detailed studies of how they were realized in the performances.

The interactive score display developed in the jGraphMatch interface (see section

2.5.1) can be extended in a way that broadens the field of application considerably.

Replacing the piano roll display with a general graph display the tool can also be used

to inspect performance curves interactively and replay performances note-by-note.

6.2.2 ... concerning performance rendering

Hierarchical Score Model

Music is an essentially hierarchical construct of phrases and subphrases, which are re-

flected in the performance trajectories [119, 130]. By viewing tempo as a composite

phenomenon we tried to account for this in the performance model; choosing different

sets of score descriptors for the different components is a first approach to extend this

to the score model. Eventually, our score model should account for the hierarchy in the

compositions. This, however, requires much more elaborate automatic music analysis
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of scores than possible at the moment – most important, reliable detection of phrase

boundaries, which is, as described in section 4.1.1, only possible with restrictions.

One aspect that might ameliorate the results of phrase analysis in case of the Magaloff

corpus is that it contains slurs, symbols indicating that the embraced notes are to be

played without separation. Consequently, phrase boundaries are more likely to occur

on end- or starting points of slurs, than on notes were no slurs begin or end, and very

unlikely to occur in the midst of a slur. Hence, the slurs printed in the sheet music

give a good indication of structural entities, and can serve as additional cue for phrase

detection algorithms.

Performance Target Dependencies

At the moment we predict the three performance targets separately. The underlying

assumption is that the performance dimensions are independent of each other. This,

of course, is not true. An obvious counterexample are accentuated notes which may

combine an increased loudness with a staccato articulation and a slightly delayed onset.

Todd proposes that loudness and tempo are coupled together in a “faster equals louder”

relation [120]. While this, in general, oversimplifies the issue, the two performance

dimensions are certainly linked together. With the proposed model it is possible to

simulate this effect by not only considering the performance context of one but of all

performance dimensions.

Smoothed Score Features

In [29], we investigated the influence of the scope of features, the size of the context

they describe, on the prediction quality for tempo and timing. Experiments, in which

we predicted note timing and local tempo for the Mozart Sonatas, suggested that the

prediction quality for local tempo increased when certain features were averaged over a

window of up to four beats, while the quality for note timing prediction decreased with

the smoothing. This idea has not been applied in the present scenario, and might lead

to additional improvement for the local tempo predictions.

Local Tempo Calculation - Smoothing Window Size

Crucial in the decomposition of the complete tempo into local tempo and note timing

it the window size of the moving average. For the presented evaluation we chose the
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parameter based on informal experiments and intuition. Especially at phrase boundaries,

the wrong choice can have an adverse effect on the result: If we assume that the tempo

is reduced rapidly towards a phrase boundary, reaches a minimum at or around a phrase

boundary, and rises again, then the average will be considerably higher then the tempo

curve at the minimum. So, instead of having the expected pronounced minimum in the

local tempo, we actually get a moderate curve for the local tempo while all activity is

captured in the residual. This suggests that a sensible smoothing window should not

cross phrase boundaries. This, however, requires reliable automatic phrase analysis.

A first step in this direction could be to use slurs in the scores as restrictions for the

smoothing window (see above).

Alternative efficiency criteria

All quantitative evaluations of our model are based on correlation coefficients between

original and predicted curve as a quality measurement. As discussed in section 5.2, this

seems inadequate, as musical considerations have no part in the measurement. The ob-

jective would be to develop a measurement that works on different hierarchical levels,

and on different levels emphasizes different criteria – similar to the different qualitative

evaluation criteria applied for the different performance dimensions in chapter 5. Ac-

cordingly, for the evaluation of tempo predictions, such a quality measurement could

incorporate the following ideas.

Tempo Evaluation: In analogy to the proposed tempo decomposition, the evaluation

should be done for local tempo and note timing separately. The local tempo evalu-

ation should focus on overall shape, as well as piecewise trends. One possibility is,

to use a segmentation of the piece in musically sensible units, preferably phrases,

fit parameterized functions to the local tempo curve in the segments, and calculate

the similarity between the fitted functions. For note timing emphasis lies not on the

overall trends, but in the realization of individual notes. Furthermore, a suitable

quality criterion should take into account that some notes are much more exposed

and/or important for the overall impression of the interpretation, and consequently

penalize large differences to the original more for important notes. Comprehen-

sively ranking the relative importance of individual notes is of course impossible.

Very basic heuristics could be applied, considering, for example, rhythmic position

(notes on full beats over notes in-between beats), rhythmic context (notes that dis-

rupt an otherwise homogenous rhythmic pattern more important than notes that
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blend into the pattern), and harmonic context (obvious dissonances and harmonic

turning points over harmonical “stuffing”). Parncutt’s theory of accents [87, 88] is

an even more sophisticated alternative to determine salient and important notes

in the score.

The local loudness component, the residual after subtracting the part explained by

performance directives, could be evaluated in analogy to note timing.

1/f Fractal Noise

Studies of the random fluctuations arising naturally in psychological experiments dis-

covered that they follow the power distribution of 1/f noise (pink noise) [40]. It is

assumed that the hitherto “unexplained variance” is an intrinsic aspect of tasks involv-

ing cognition. Repp [101] also suggests that pianistic expression is not controlled by

a deterministic motor system but subject to random variation. Listening and tapping

experiments by Rankin et al. [92] lend further evidence to the “determinism of ran-

domness” involved in music performance and cognition. As this seems to be a factor

inseparable from music production, and although very subtle, present even in expert per-

formances, it seems appropriate to include this in a system modeling music performance

and expression. The GERM model by Juslin et. al. [64] includes a random component

based on this observation. This, of course, also applies to the Magaloff Corpus. Hence,

all models trying to learn from the data also have to account for the implicit random

component. The variance in the data, and with it the complexity of the learning task,

could be reduced by eliminating the noise from the data.
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Appendix A

Graphical Probabilistic Networks

The following describes a very generic setup, encountered frequently in all types of

different situations: several interdependent factors constitute a system; some of the

factors can be measured (e.g. through any kind of sensor) and some can be determined

indirectly or only guessed at from the state of the rest of the system; changing one

factor influences the most likely state the other factors are in. Together the factors form

a (possibly very large) joint probability distribution that covers all possible states the

complete system can be in. As the number of possible states of the complete system grows

exponentially with the number of variables, calculating the joint probability distribution

is unfeasible in most cases.

Probabilistic graphical models use graphs to encode such distributions over multi-

dimensional spaces. The graph is a representation of the set of statistical (in)dependences

between the variables in the system. If the edges in the graph are directed, the model

is called a Bayesian Network (BN) (or Belief Network, causal model, etc), undirected

graphs are the characteristic of Markov Random Fields (MRF) (or Markov Networks).

Due to the independence statements that can be encoded by Markov Networks, undi-

rected models are mainly used in image processing, computer vision, and physics. The

family will not be covered here. Bayesian Networks are used to model expert knowledge

in a variety of fields ranging from risk calculation in cancer research [4] and law [17] to In-

formation Retrieval in Process management [18]. Dynamic Bayesian Networks (DBNs)

are an extension of BNs that can be used to monitor systems over time, with variables

depending not only on the current but also on previous states of the system. Algorithms

exist that (1) estimate the model parameters from data, which is called training, and

(2) calculate the changes in the probability distributions caused by parts of the system

becoming known, a process called inference.

A short, informal overview to Bayesian networks (A.2) and Dynamic Bayesian Net-

works (A.3) is given in this chapter. This only serves the purpose of introducing notation

and general concepts and is by no means meant to be exhaustive. A very thorough and

161
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excellent introduction can be found in [76].

A.1 Basic statistical concepts

In this section the statistical elements used in this introduction and in chapter 4 of the

thesis are listed and defined. A thorough introduction to random processes and variables,

and probability theory can for instance be found in [25].

A.1.1 Discrete Random Variables

A random variable, denoted by a capital letter, either has continuous or discrete states.

Continuous variables are here usually marked X or Y , discrete variables are marked

Q. The different states {q1,⋯, qn} that a discrete variable Q can be in, are finite and

countable, and form the domain Q of Q. The distribution P (Q) of a discrete random

variable Q assigns a probability P (Q = qi) to all qi ∈ Q. This is often abbreviated to

P (qi). The probability distribution of a single discrete variable is represented by a vector

containing the probabilities of the different states. A set of several random variables is

denoted by a bold letter: Q = {Q1,⋯,Qn}.

Joint and Conditional Probability Distributions

Joint probability distributions (JPDs) set probabilities for two or more variables simul-

taneously being in designated states and are represented by P (Q1,⋯,Qn), P (Qi), or

P (Q). P (Q1 = q1,⋯,Qn = qn), or P (q1,⋯, qn) for simplicity, represents the probability

of variables Q1 to Qn simultaneously being in states q1 to qn respectively. The joint

domain D(Q) of variables Q = {Q1,⋯,Qn} is the product of all domains:

D(Q) =
n

∏
i=1

Qi (A.1)

= Q1 ×Q2 ×⋯ ×Qn (A.2)

= {(q1,⋯, qn)∣q1 ∈ Q1,⋯, qn ∈ Qn} (A.3)

The elements in D(Q) are n-dimensional tuples q = (q1,⋯, qn). The size of a JPD is the

product of the sizes of all involved variables. For P (Q) to be a well-defined probability

distribution, the probabilities for all q ∈ D(Q) have sum to 1. A JPD of 2 variables

can be represented by a table (Joint probability Table, JPT) with one variable along the
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vertical and one along the horizontal axis of the table. Each additional variable adds one

dimension. Usually, JPDs of more than 2 variables are represented by a 2 dimensional

table with one variable along the top, and all possible combinations of the remaining

variables along the left side.

The conditional probability distribution (CPD) of a variable Q1 given that the state

of another variable Q2 is known to be q2, is indicated by P (Q1∣Q2). The CPD of Q1

given Q2 = q2 is calculated by normalizing the joint probability of the two variables with

the total probability of Q2 being in state q2:

P (Q1∣Q2 = q2) =
P (Q1,Q2 = q2)

P (Q2 = q2)
. (A.4)

If the JPD of Q1 and Q2 is known, the probability P (Q2 = q2) can be calculated using

the law of total probability :

P (Q2 = q2) = ∑
q1∈Q1

P (Q1 = q1,Q2 = q2) = ∑
q1∈Q1

P (q2∣q1)P (q1). (A.5)

For n random variables Q = {Q1,⋯,Qn} this takes the following form:

P (Q1) = ∑
q∈D(Q∖Q1)

P (Q1,q) (A.6)

= ∑
q∈D(Q∖Q1)

P (Q1∣q)P (q) (A.7)

= ∑
(q2,⋯,qn)∈D(Q∖Q1)

P (Q1∣Q2 = q2,⋯,Qn = qn)P (Q2 = q2,⋯,Qn = qn). (A.8)

Instead of calculating the probabilities of one variable (Q1 in the formula above) this can

be formulated to cover the joint probability of a subset of Q. Let R = {Q1,⋯,Qm},m <

n ∈ N be a subset of Q = {Q1,⋯,Qn}, then

P (R) = ∑
q∈D(Q∖R)

P (R,q) (A.9)

= ∑
q∈D(Q∖R)

P (R∣q)P (q). (A.10)

Formula A.10 expresses a process called Marginalization of the variables in Q ∖R.

Bayes’ Rule, finally, makes it possible to switch the variable with the condition in a

CPD, which is essential for all inference calculations in Bayesian Networks:

P (Q1∣Q2)P (Q2) = P (Q2∣Q1)P (Q1). (A.11)
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A.1.2 Continuous Random Variables - Gaussian Distributions

The domain X ⊆ R of a continuous random variable X is an interval (or collection of

intervals). A probability density function (pdf) P (X) assigns a nonnegative value to

events in X. The integral of P (X) over the complete domain is 1. The probability of

X taking on a particular x ∈ X is always zero (or infinitesimally small). Instead, the

probability of X to fall within a particular region or interval equals the integral of P (X)

over the interval1.

There are several well-known probability density functions or continuous probabil-

ity distributions. For the purpose of this introduction I only consider the normal, or

Gaussian distribution N ∶ R→ R+:

N(x;µ,σ2
) =

1
√

2πσ2
e−
(x−µ)2
2σ2 (A.12)

where µ ∈ R is the mean of the distribution, and σ2 > 0 the variance2. Mean and variance

are called sufficient statistics of N : the mean is the expected value of the distribution,

the value that gets assigned the highest probability, and the variance is a measure of

how concentrated the distribution is around the mean. The function N(x) is unimodal

and symmetric around x = µ, the inflection points of the curve occur 1 σ away from µ

(at x = µ ± σ)

Joint and Conditional Gaussians

The joint (gaussian) distribution of variables X1,⋯,Xn (Xi distributed normally with

N(xi;µi, σ
2
i ) for all i ∈ {1,⋯, n}) is the multivariate gaussian distribution

N(Ð→x ;Ð→µ ,Σ) =
1

√
(2π)n∣Σ∣

exp(−
1

2
(Ð→x −Ð→µ )

T
)Σ−1

(Ð→x −Ð→µ )), (A.13)

1Formally, X has density f (f being non-negative and Lebesgue-integrable) if the probability of X

to fall within [a,b] is the integral of f over [a,b].
2σ is known as standard deviation.
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where

Ð→x =

⎛
⎜
⎜
⎝

x1

⋮

xn

⎞
⎟
⎟
⎠

∈
n

∏
i=1

Xi = Rn,

Ð→µ =

⎛
⎜
⎜
⎝

µ1

⋮

µn

⎞
⎟
⎟
⎠

∈ Rn,

Σ =

⎛
⎜
⎜
⎜
⎜
⎝

σ2
1 σ1,2 ⋯ σ1,n

σ1,2 σ2
2 ⋯ σ2,n

⋮ ⋮ ⋱ ⋮

σ1,n σ2,n ⋯ σ2
n

⎞
⎟
⎟
⎟
⎟
⎠

∈ Rn×n,

and ∣Σ∣ the determinant of Σ. The matrix Σ is called covariance matrix of the dis-

tribution, and consists of the variances σ2
i of the distributions Ni and the covariances

σi,j of all pairs Xi and Xj of random variables. The covariance σi,j measures how the

variables Xi and Xj change together: A positive covariance indicates that they show

similar behavior, negative covariance indicates opposite behavior. If the two variables

are independent, their covariance is zero. The covariance is calculated as follows3:

σi,j = E[(Xi −E[Xi])(Xj −E[Xj])], (A.14)

where E[X] is the expected value, or mean, of the random variable X. The sample

covariance of a set of observed value pairs {(x
(1)
i , x

(1)
j ),⋯, (x

(m)
i , x

(m)
j )} can be calculated

via:

σ2
i,j =

1

m

m

∑
k=1

(x
(k)
i − µ(Xi))(x

(k)
j − µ(Xj)), (A.15)

with

µ(Xi) =
1

m

m

∑
k=1

x
(k)
i the sample mean.

The normalized version of the covariance is the correlation coefficient, which is often

used to measure the strength of linear dependence between two variables:

ri,j =
σ2
i,j

σiσj
. (A.16)

3The calculation is valid for arbitrary random variables, which is why the general concept of expected

value, or first moment E is used here.
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From the joint gaussian distribution of several continuous variables, arbitrary condi-

tional distributions, as well as the joint distributions of subsets of the variables can be

calculated. Let P (X) = N(Ð→x ;Ð→µ ,Σ) be a joint gaussian distribution over the variables

X = {X1,⋯,Xn}, with Ð→µ and Σ as defined above. Let further Y1 and Y2 be a partition

of X, such that Y1 = {X1,⋯,Xk}, and Y2 = {Xk+1,⋯,Xn}, 1 ≤ k < n. Accordingly,

Ð→µ =

⎛
⎜
⎜
⎝

µ1

⋮

µn

⎞
⎟
⎟
⎠

= (

Ð→µY1
Ð→µYn

) , and

Σ = (
A C

CT B
) ,

where A, B, and C are the following submatrices of Σ:

A =

⎛
⎜
⎜
⎝

σ2
1 ⋯ σ1,k

⋮ ⋱ ⋮

σ1,k ⋯ σ2
k

⎞
⎟
⎟
⎠

∈ Rk×k

B =

⎛
⎜
⎜
⎝

σ2
k+1 ⋯ σk+1,n

⋮ ⋱ ⋮

σk+1,n ⋯ σ2
n

⎞
⎟
⎟
⎠

∈ R(n−k)×(n−k)

C =

⎛
⎜
⎜
⎝

σ1,k+1 ⋯ σ1,n

⋮ ⋱ ⋮

σk,k+1 ⋯ σk,n

⎞
⎟
⎟
⎠

∈ Rk×(n−k)

The joint distributions of the subsets Y1 and Y2 are then simply:

P (Y1) ∝ N(Ð→y1;Ð→µY1 ,A), and (A.17)

P (Y2) ∝ N(Ð→y2;Ð→µY2 ,B). (A.18)

The conditional distributions have the following form:

P (Y1 =
Ð→y1 ∣Y2 =

Ð→y2) ∝ N(Ð→y1;Ð→µY1 +CB−1
(Ð→y2 −

Ð→µY2),A −CB−1CT
), (A.19)

P (Y2 =
Ð→y2 ∣Y1 =

Ð→y1) ∝ N(Ð→y2;Ð→µY2 +CTA−1
(Ð→y1 −

Ð→µY1),B −CTA−1C). (A.20)

Multiplying two gaussian functions (over the same set of variables X = {X1,⋯,Xn})

results in another gaussian function:

N(Ð→x ;Ð→µ 1,Σ1) ⋅ N(Ð→x ;Ð→µ 2,Σ2) ∝ N(Ð→x ;Ð→µ 3,Σ3), (A.21)
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where

Σ3 = (Σ−1
1 +Σ−1

2 )
−1

Ð→µ 3 = Σ3Σ−1
1
Ð→µ 1 +Σ3Σ−1

2
Ð→µ 2.

The factor z, that normalizes the resulting distribution N(Ð→µ 3,Σ3) is a Gaussian itself,

either in Ð→µ 1 or Ð→µ 2:

z =

√
∣Σ3∣

√
(2π)n∣Σ1∣∣Σ2∣

exp(−
1

2
(Ð→µ T1 Σ−1

1
Ð→µ 1 +

Ð→µ T2 Σ−1
2
Ð→µ 2 +

Ð→µ T3 Σ−1
3
Ð→µ 3)) (A.22)

z(Ð→µ 1) ∝ N(Ð→µ 1; (Σ−1
1 Σ3Σ−1

1 )
−1

(Σ−1
1 Σ3Σ−1

2 )Ð→µ 2,Σ
−1
1 Σ3Σ−1

1 )
−1

) (A.23)

z(Ð→µ 2) ∝ N(Ð→µ 2; (Σ−1
2 Σ3Σ−1

2 )
−1

(Σ−1
2 Σ3Σ−1

1 )Ð→µ 1,Σ
−1
2 Σ3Σ−1

2 )
−1

) (A.24)

A.2 Bayesian Networks

Let Q = {Q1,⋯,Qn} be a set of discrete random variables with distributions P (Qi).

Let further G = (V,E) be a directed acyclic graph, V = {vQ1 ,⋯, vQn}, n ∈ N the set of

nodes in G, E = {(vQi , vQj)∣vQi ∈ V, vQj ∈ V, i ≠ j} the set of edges between nodes in

G. Each node vQi in the graph represents one of the random variables Qi, and each

edge (vQi , vQj) in G indicates a direct statistical dependence between the variables Qi
and Qj represented by the two nodes. Associated with each node is the probability

distribution of the corresponding variable conditioned on all parent nodes in the graph.

Given, for example, V = {vQ1 , vQ2 , vQ3} and E = {(vQ1 , vQ3), (vQ2 , vQ3)}, associated

with the parentless nodes vQ1 and vQ2 are the marginal distributions of Q1 and Q2, and

associated with vQ3 is the conditional distribution P (Q3∣Q1,Q2). From here on I often

use Qi instead of vQi to address the node associated with Qi to simplify the notation.

Accordingly, Q = {Q1,⋯,Qn} can either be a set of nodes in the graph or the random

variables associated with the set of nodes.

The following popular example (figure A.1, [77]) demonstrates basic principles of

Bayesian Networks. The system models the state of a lawn in the summer: the grass

being wet (W=True) has two possible causes: the water sprinkler (S) or a bout of rain

(R). The probability of the sprinkler being turned on or a bout of rain happening depends

on the sky (C): a cloudy sky raises the probability of rain, a clear sky the probability of

the sprinkler being turned on.
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P(Cloudy=T) P(Cloudy=F)

0.5 0.5

Sprinkler Rain P(Wet=T) P(Wet=F)

T T 0.99 0.01

T F 0.9 0.1

F T 0.9 0.1

F F 0.0 1.0

Cloudy P(Rain=T) P(Rain=F)

T 0.8 0.2

F 0.2 0.8

Cloudy P(Sprinkler=T) P(Sprinkler=F)

T 0.1 0.9

F 0.5 0.5

Figure A.1: The Sprinkler network, a simple example for a Bayesian Network, connecting

the probability distributions of a water sprinkler (S), a bout of rain (R), the sky being

cloudy (C), and the grass being wet on a lawn (W). The tables contain the conditional

probability distributions of the variables given their parents.

The view of cause and effect helps in building and understanding the network. For

inference, the process of calculating posterior probabilities, it is more useful to look at

the conditional independences encoded by the structure of the network. In analogy to

statistical independence, the following defines conditional independence:

Two random variables X and Z are conditionally independent given a random

variable Y (written: X á Z ∣Y ) iff the probability distribution of X is the same

for all values of Z (and vice versa), given any value of Y.

Alternatively:

X ⊥⊥ Z ∣Y ⇐⇒ P (X,Z ∣Y ) = P (X ∣Y )P (Z ∣Y ).
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X Y Z

X Z

Y X Z

Y

A serial connection

B divergent connection C convergent connection

Figure A.2:

Conditioning on a variable or a set of variables can either make variables independent

or induce dependencies, depending on the layout of the network. The following 3 basic

situation can be distinguished:

Serial Connection: If the variable Y figure A.2 (A) is unknown, the variables X and

Z are connected: The state of X influences the probability distribution of Y, which

in turn influences the variable Z. If the state of Y is known, the influence of X is

blocked. Hence, X and Z are conditionally independent given Y (X á Z ∣Y ).

Divergent Connection: In the situation depicted in figure A.2 (B), sometimes called

näıve Bayes, the two variables X and Z again are conditionally independent given

Y: A change in the conditional probabilities P (X ∣Y ) translates into a change of

P (Y ∣X) via Bayes’ Rule (equation A.11), which in turn influences P (Z ∣Y ). In

case the state of Y is known, the connection is blocked (X á Z ∣Y ).

Convergent Connection: The opposite is true in figure A.2 (C): If the state Y is

unknown, changes in X only influence the probability of Y, but not of Z and vice

versa. However, once the state of Y is fixed, X and Z become connected. This

effect if often referred to as “explaining away”: If X is confirmed as a cause of Y

then the need to consider Z as an alternative or additional cause is reduced.

Applied to the sprinkler network in figure A.1 for example the following independence

statements can be made:
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• If we know neither the state of the lawn (W) nor of the sky (C), the probabilities

of sprinkler (S) and rain (R) are connected. Knowing that it has rained makes

it less likely that the sprinkler was on and vice versa. The divergent connection

S ← C → R connects S and R as long as C is unknown (figure A.2 (B)). This

changes as soon as we observe the sky. Knowing that the sky is clear fixes both

the probabilities of sprinkler and rain, and observing one does not influence the

other any more. In both cases, influence via the convergent connection S →W ← R

is blocked, because W (the lawn) is unknown (figure A.2 (C)). Formally:

Sprinkler ⊥⊥ Rain∣Sky.

• Knowing the state of the lawn induces a dependency between Sprinkler and Rain

(figure A.2 (C), divergent connection): Knowing that a gush of rain just came down

makes this the probable explanation for a wet lawn and lowers the probability that

the wet lawn is also caused by the sprinkler.

In probability theory, the chain rule of probability permits the calculation of any member

of the joint distribution of a set of random variables using conditional probabilities [104].

Given random variables X1,⋯,Xn, n ∈ N the joint probability P (X1,⋯,Xn) of all n

variables can be calculated as follows:

P (X1,⋯,Xn) =
n

∏
i

P (Xi∣Xi−1,⋯,X1) (A.25)

For the sprinkler network that leads to the following term for the joint probability of all

four variables:

P (C,S,R,W ) = P (C) × P (S∣C) × P (R∣S,C) × P (W ∣R,S,C).

Applying the rules for conditional independence the third fourth term can be simplified:

Rain is independent of Sprinkler given the state of the sky, so P (R∣S,C) = P (R∣C),

and the state of the lawn is independent of the state of the sky given both Rain and

Sprinkler, so P (W ∣R,S,C) = P (W ∣R,S), hence:

P (C,S,R,W ) = P (C) × P (S∣C) × P (R∣C) × P (W ∣R,S).

In general, the joint probability distribution represented by a bayesian network is the
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product of all the individual distributions conditioned on the parent variables.

P (Q) = P (q1,⋯, qn)

= ∏
vQ∈V

P (Q∣pa(Q)), (A.26)

where pa(Q) is the set of parent nodes of the node associated with the variable Q.

Without simplification the representation of the joint probability of n binary nodes

needs O(2n) factors, using the conditional independences reduces the number of factors

to O(n2k), where k is the maximum number of parents a node has [76].

A.2.1 Inference in Bayesian Networks

Observing the state of a subset of variables (evidence variables) in a BN may change the

probability distributions of other variables in the system. Calculating those posterior

distributions is called inference. The most obvious way to calculate posterior distribu-

tions is using the joint probability distribution. Let E be a set of evidence variables

E = {E1,⋯,Em} ⊂ Q that are in known states E1 = e1,⋯,Em = em, and Q1 ∉ E the

variable the posterior probability of which we want to know (P (Q1∣E)).

P (Q1∣E) =
P (Q1,E)

P (E)
(A.27)

=
P (Q1,E1 = e1,⋯,Em = em)

P (E1 = e1,⋯,Em = em)
(A.28)

Both factors can be calculated from the joint probability distribution through equation

A.5 (total probability):

P (E) = ∑
q∈D(Q∖E)

P (E,q) (A.29)

P (Q1,E) = ∑
q∈D(Q∖{Q1,E}

P (Q1,E,q). (A.30)

For the sprinkler example, questions like “Given that the grass is wet, how likely is

it that the sky was cloudy?” (P (C = true∣W = true)), or “Given that it has rained, how

likely is it that the sprinkler was on?” (P (S = true∣R = true)) can be answered using the
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Cloudy Sprinkler Rain Wet=True Wet=False

T T T 0.0396 0.0004

T T F 0.009 0.001

T F T 0.324 0.036

T F F 0 0.09

F T T 0.0495 0.0005

F T F 0.18 0.02

F F T 0.045 0.005

F F F 0 0.2

Figure A.3: Joint probability table for the complete sprinkler network P (C,S,R,W )

joint probability table of the network shown in A.3

P (C = t∣W = t) =
∑(r,s)∈D(R,S) P (C = T,W = T, (r, s))

∑(r,s,c)∈D(R,S,C) P (W = T, (r, s, c))
=

= 0.576

P (S = t∣R = t) =
∑(c,w)∈D(C,W ) P (S = T,R = T, (c,w))

∑(c,r,w)∈D(C,R,W ) P (R = T, (c, s,w)
=

= 0.18

This, however, requires the complete joint probability table to be calculated, which is

computationally expensive. There are several more efficient ways to calculate inference,

three of which will be briefly outlined in the following. A detailed introduction to all

the concepts can be found in [76].

Variable Elimination is a method to solve one inference query at a time. Instead of

using the product rule to calculate the joint probability (eq. A.26), new evidence is

directly entered into the equation. Making use of distributivity (a⋅b+a⋅c = a⋅(b+c))

the non-observed non-query variables are eliminated one by one until only the query

variables remain.

Message Passing algorithms are designed to calculate exact inference on trees. Usu-

ally they are not applied directly to a Bayesian Network but to a junction– or
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cluster tree, a modified version of the graph guaranteed to be a tree. The nodes in

the junction tree are supernodes containing several variables of the original model,

based on maximal cliques in the triangulated graph. New evidence is distributed

to all nodes, which results in all distributions being updated to the new evidence.

Inference is solved not only for one, but for all nodes simultaneously.

Sampling Methods don’t calculate exact but approximate inference and are generally

much more efficient than exact algorithms. New evidence is entered into the model

(the probabilities of states that are impossible according to the new evidence are

set to 0) and all unobserved nodes are randomly sampled repeatedly according to

their (adapted) distributions. The occurrences of the different states approximate

the posterior probabilities.

Variable elimination and message passing algorithms calculate inference exactly. How-

ever, the same NP-hard problem is the key to efficiency in both: To be maximally

effective the order in which variables are eliminated needs to be optimal. The problem

of finding the optimal order is the same as finding a way to triangulate a graph with

the fewest possible edges. The construction of cluster trees also requires a triangulated

graph, which has a major influence on the tree width and consequently on computational

cost.

A.2.2 Types of CPDs

Representing the JPD of a Bayesian network, and the CPD of a node for that matter,

is only possible if all variables follow a discrete probability distribution. Expressing

conditional probabilities when continuous distributions are involved needs different rep-

resentations of the CPDs in the nodes, depending on the type of the variable and the

type of the parents. Table A.1, taken from [76], gives an overview of the different CDPs

for the situation displayed in figure A.4.

Multinomial and conditional multinomial are discrete probabilities, that can be dis-

played by a vector (π(y)) or a matrix (A(y, q)) respectively. The softmax function is

a generalization of the sigmoid function to have ∣Y ∣ different “outputs” instead of two

(also known as multi-logistic regression). The function σ(x,w, y) is parametrized by w,

and maps a value x (the state of the continuous parent) to a multinomial distribution

over the states of Y . Given a mixture of discrete and continuous parents, one parameter

per state of the discrete parent Q exists.
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X

Y

Q X
1

Y

X
n

Q
1

Q
m …..…..

Figure A.4: Left panel : very simple network consisting of one discrete variable Q and one

continuous variable X parenting a variable Y that is either continuous or discrete. Right

panel: same situation with m discrete (Q1,⋯,Qm) and n continuous parents X1,⋯,Xn.

Q X Name CPD

Y disc.

- - Multinomial P (Y = y) = π(y)

q - Cond. Multinomial P (Y = y∣Q = q) = A(y, q)

- x Softmax P (Y = y∣X = x) = σ(x,w, y)

q x Cond. softmax P (Y = y∣Q = q,X = x) = σ(x,wq, y)

Y cont.

- - Gaussian P (Y = y) = N(y;µ,σ)

q - Cond. Gaussian P (Y = y∣Q = q) = N(y;µq, σq)

- x Linear Gaussian P (Y = y∣X = x) = N(y;wx + µ,σ)

q x Cond. lin. Gaussian P (Y = y∣Q = q,X = x) = N(y;wqx + µq, σq)

Table A.1: CPDs for different child/parent combinations: Y has either no discrete parent

(Q= -) or one discrete parent Q, which is in state q (Q = q), and either no continuous

parent (X = -) or one continuous parent that has taken the value x (X = x). The CPDs

are valid for the setup displayed in the left panel of figure A.4. (Table taken from [76])
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Continuously distributed variables in bayesian networks are usually modeled as Gaus-

sians P (Y = y) = N(y;µ,σ2) with mean µ and variance σ2. In the conditional gaussian

case, a discrete variable parenting a continuous variable, µ and σ2 depend on the values

of the parenting discrete variables, and a pair of µq and σ2
q exists for each possible state

of Q. In the linear gaussian case the mean of the child distribution depends linearly on

the value x of the parenting continuous node through a parameter w. In the conditional

linear case the weight parameter wq, mean µq, and variance σ2
q depend on the state of

the discrete parents Q.

The CPDs for cases where Y has several discrete and/or continuous parents (Q =

{Q1,⋯,Qm} and X = {X1,⋯,Xn} respectively, depicted in the right panel of figure

A.4), can be generalized from the table above. Single variables (X and Q) and the

states they are in, are replaced by sets of variables (X and Q) and state vectors/tuples

(Ð→x = (x1,⋯, xn) and q = (q1,⋯, qm), respectively). One-dimensional parameters w are

replaced by n×n weight matrices W , one-dimensional means µ by n-dimensional vectors
Ð→µ , and variances σ2 by covariance matrices Σ.

A number of alternative ways of coding and parametrizing the conditional dependen-

cies in a network exist, differing in degrees of freedom, how easy they are to interpret,

and how efficiently inference can be calculated. See, for example, [76].

A.2.3 Learning in Bayesian Networks

Structure and parameters (prior distributions) of a BN can either be set by a domain

expert, or learned and estimated from measured data. The theory and pertinent litera-

ture on learning in graphical networks is vast and will only be briefly outlined here. An

overview of the literature and an introduction to the field can be found in [8]. Learning

in BNs comes in the following four situations, in ascending difficulty:

1. Estimate parameters from a complete dataset

2. Estimate parameters from a dataset with missing values

3. Learning structure

4. Learning structure with hidden variables

For the estimation of the parameters (case 1) the two most popular approaches are

maximum likelihood estimation (ML) and maximum a posteriori estimation (MAP). Let
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Θ be the set of free parameters (the sufficient statistics of continuous distributions, or the

different state probabilities of discrete distributions), and D = {d1,⋯,dN} a collection

of data, where each di = (di1,⋯, d
i
n) is a measured state of the network (the values of

variables X1,⋯,Xn). The goal of ML estimation is to compute the set of parameters

Θ∗ that maximizes the (log)-likelihood of the data set, which is the probability of the

model producing the measured data D:

Θ∗
= arg max

Θ
P (D∣Θ) = arg max

Θ
logP (D∣Θ),

where

logP (D∣Θ) = log
N

∏
i=1

P (di
∣Θ) =

N

∑
i=1

logP (di
∣Θ)

=
N

∑
i=1

n

∑
j=1

P (Xj ∣pa(Xj),d
j
)

is the likelihood of the data. Hence, ML estimation boils down to estimating the param-

eters of each CPD given the local data. That essentially means counting occurrences of

events for discrete variables, and computing sufficient statistics for continuous distribu-

tions.

Maximum a posteriori (MAP) estimation is the bayesian statistics variant of ML

that includes a prior distribution on the parameters:

Θ∗
= arg max

Θ
logP (D∣Θ) + logP (Θ).

This has several advantages: (1) it is possible to outfit the model with prior knowledge,

(2) it can prevent overfitting to the data in case the number of free parameters is much

larger than the size of the dataset, and (3) it enables online learning, where instead

of having the complete dataset available from the start, the dataset grows in time and

the model adapts to the new data. For many types of distributions there exist prior

distributions, so called conjugate priors, that make it possible to compute the posterior

in closed form.

The case of maximum likelihood estimation in a partially observed network (case 2)

– some variables being generally unobservable, or just not measured in some instances –

is usually solved either through gradient ascent or expectation maximization (EM). Both

return a point estimate of all parameters in the network.
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The problem becomes much more difficult and computationally expensive when the

structure of the network is not known and shall be learned from the data (case 3). Given

a scoring function for a network structure a greedy hill climbing algorithm can be used

to search a space of possible network structures. To score a network all parameters

have to be estimated with ML or MAP estimation. Searching in the space of possible

networks can be done, for example, by starting with a random network and changing

its structure locally: adding or removing edges, or inverting their direction. If there

might be hidden influences (variables) that are not in the dataset but supposed to be

part of the system (case 4), the search includes adding variables, and then structurally

optimizing the network.

A.3 Dynamic Bayesian Networks

The situation described above (section A.2) assumes that the variables are independent

in time: the previous state of a variable does not have any influence on its current

state. Dynamic Bayesian Networks (DBNs) can deal with situations that are observed

over time: the states of the observed variables form a time-series, where the probability

distributions over the states may not only depend on the current state of the system

but also on previous events. Unlike datasets produced by a BN D = {d1,⋯,dN}, where

the order of the di is not important, DBNs produce (and are learned from) sets of data

sequences D = {d1
1∶N1

,⋯,dk1∶Nk}, where each di1∶Ni is a sequence of measurements of the

complete network: di1∶Ni = (di1,⋯,d
i
Ni

) with dij = (dij,1,⋯, d
i
j,n) a measured state of the

network (the values of variables X1,⋯,Xn)

DBNs are represented by a BN that is duplicated over time, one instance of the

network for every time step t ∈ {1,⋯,N}, where N is the length of the sequence. In

addition to the edges within the BN there are edges connecting the networks from one

time step to the next. Normally, the model is assumed to be first-order Markov, which

means that the state at time t does not depend on anything before t−1: P (Xt∣X1∶t−1) =

P (Xt∣Xt−1), where X is the set of variables in the network, and P (Xt) is the JPD of all

variables at time t.

Hidden Markov Models (HMMs) ([62, 104]) are a very simple Dynamic Bayesian

Network consisting of 2 nodes: the discrete state space variable (the distribution over

the states that the model can be in) and the output variable (the distribution over the

possible outputs in the current state). The state space node is connected from one time-
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step to the next. The goal is usually to infer the most probable sequence of (unobserved)

states from the sequence of (observed) outputs, a process called Viterbi decoding and

calculated by the forwards-backwards algorithm. The transition and output probabilities

are learned from data sequences using Expectation Maximization.

A major problem with HMMs is that they are constrained to a single discrete state

space variable. Casting several discrete variables into a “super-variable” distributed over

the cartesian product of the domains, the domain of the super-variable has exponentially

many states, and, consequently, parameters to estimate. This requires very large datasets

to learn from. Also, the complexity of the forwards-backwards inference algorithm, which

is exponential in the number of variables coded into the state space, becomes intractable.

Kalman Filter Models (KFMs) [104] can also be viewed as DBNs with 2 nodes and the

same topology as HMMs. Both state-space and observation variables are (continuous)

gaussian distributions, transition and observation functions (the way conditioning is

implemented between the nodes) are linear-Gaussian (see A.2.2). Learning and inference

in KFMs is conceptually very similar to HMMs. The major constraint of KFMs is that

they represent a jointly gaussian distribution, which is unimodal, and therefore not

appropriate for most problems. Switching KFMs introduce additional discrete variables

that enable shifting between several distinct gaussian distributions.

Dynamic Bayesian Networks are a generalized view on state space models: other

than the general restrictions on Bayesian Networks there are no restrictions on the state

space regarding types and number of variables, or topology. This makes them a very

powerful paradigm, applicable and adaptable to a variety of problems. Murphy proposed

the frontier algorithm [76], a general message passing algorithm to calculate inference

and learn dynamic bayesian networks.
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B.1 The Magaloff Corpus

Opus Type Key Tempo Measure Score

Pages

January 16, 1989

Op.1 Rondo E♭ Major Allegro 2/4 15

Op.4 Mv.1 Sonata C Minor Allegro maestoso 2/2 15

Mv.2 E♭ Minor Trio 3/4 3

Mv.3 A♭ Major Larghetto 5/4 3

Mv.4 E♭ Major Presto 2/2 18

Op.5 Rondo F Dur Vivace 3/4 19

Op.6 No.1 Mazurka A Major 1/4 = 132 3/4 3

No.2 E Major 1/4 = 63 3/4 2

No.3 E Major Vivace 3/4 3

No.4 G♭ Major Presto m. n. troppo 3/4 1

Op.7 No.1 Mazurka B♭ Major Vivace 3/4 2

No.2 C Major Vivo m. n. troppo 3/4 2

No.3 F Minor 3/4 = 54 3/4 3

No.4 A♭ Major Presto ma non troppo 3/4 2

No.5 C Major Vivo 3/4 1

Op.9 No.1 Nocturne B♭ Minor Larghetto 6/4 5

No.2 E♭ Major Andante 12/4 3

No.3 B Major Allegretto 6/8 9

Op.10 No.1 Étude C Major Allegro 4/4 5

No.2 A Minor Allegro 4/4 4

No.3 E Major Lento ma non troppo 2/4 4

179
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No.4 C♯ Minor Presto 4/4 6

No.5 G♭ Major Vivace 2/4 4

No.6 E♭ Minor Andante 6/8 3

No.7 C Major Vivace 6/8 3

No.8 F Major Allegro 4/4 6

No.9 F Minor Allegro molto agitato 6/8 4

No.10 A♭ Major Vivace assai 12/8 5

No.11 E♭ Major Allegretto 3/4 3

No.12 C Minor Allegro con fuoco 2/2 5

January 19, 1989

Op.12 Introduction B♭ Dur Allegro maestoso 4/4 2

Variations B♭ Major Allegro moderato 6/8 11

Op.15 No.1 Nocturne F Major Andante cantabile 3/4 4

No.2 F♯ Major Larghetto 2/4 4

No.3 G Minor Lento 3/4 4

Op.16 Rondo E♭ Dur Andante 4/4 22

Op.17 No.1 Mazurka B♭ Major Vivo e risoluto 3/4 2

No.2 E Minor Lento ma non troppo 3/4 2

No.3 A♭ Major Legato assai 3/4 2

No.4 A Minor Lento ma non troppo 3/4 4

Op.18 Waltz E♭ Dur Vivo 3/4 9

Op.19 Bolero C Dur Allegro molto 3/8 13

Op.20 Scherzo B Minor Presto con fuoco 3/4 18

Op.23 Ballade G Minor Moderato 6/8 15

Op.24 No.1 Mazurka G Minor Lento 3/4 2

No.2 C Major Allegro non troppo 3/4 4

No.3 A♭ Major Moderato 3/4 2

No.4 B♭ Minor Moderato 3/4 4

Op.25 No.1 Étude A♭ Major Allegro sostenuto 4/4 5

No.2 F Minor Presto 2/2 4

No.3 F Major Allegro 3/4 4

No.4 A Minor Agitato 2/2 3

No.5 E Minor Vivace 3/4 6

No.6 G♯ Minor Allegro 2/2 6
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No.7 C♯ Minor Lento 3/4 4

No.8 D♭ Major Vivace 2/2 3

No.9 G♭ Major Allegro assai 2/4 2

No.10 B Minor Allegro con fuoco 2/2 6

No.11 A Minor Allegro con brio 2/2 8

No.12 C Minor Allegro molto con fuoco 2/2 6

March 15, 1989

Op.26 No.1 Polonaise C♯ Minor Allegro appassionato 3/4 6

No.2 E♭ Minor Maestoso 3/4 11

Op.27 No.1 Nocturne C♯ Minor Larghetto 4/4 6

No.2 D♭ Major Lento sostenuto 6/8 6

Op.28 No.1 Prélude C Major Agitato 2/8 1

No.2 A Minor Lento 2/2 1

No.3 G Major Vivace 2/2 2

No.4 E Minor Largo 2/2 1

No.5 D Major Allegro molto 3/8 1

No.6 B Minor Lento assai 3/4 1

No.7 A Major Andantino 3/4 1

No.8 F♯ Minor Molto agitato 4/4 3

No.9 E Major Largo 4/4 1

No.10 C♯ Minor Allegro molto 3/4 1

No.11 B Major Vivace 6/8 1

No.12 G♯ Minor Presto 3/4 3

No.13 F♯ Major Lento 6/4 2

No.14 E♭ Minor Allegro 2/2 1

No.15 D♭ Major Sostenuto 4/4 3

No.16 B♭ Minor Presto con fuoco 2/2 4

No.17 A♭ Major Allegretto 6/8 4

No.18 F Minor Allegro molto 2/2 2

No.19 E♭ Major Vivace 3/4 3

No.20 C Minor Largo 4/4 1

No.21 B♭ Major Cantabile 3/4 3

No.22 G Minor Molto agitato 6/8 2

No.23 F Major Moderato 4/4 2
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No.24 D Minor Allegro appassionato 6/8 4

Op.29 Impromptus A♭ Major Allegro assai quasi presto 2/2 6

Op.30 No.1 Mazurka C Minor Allegro non tanto 3/4 2

No.2 D Major Vivace 3/4 2

No.3 D♭ Major Allegro non troppo 3/4 3

No.4 C♯ Minor Allegretto 3/4 5

Op.31 Scherzo B♭ Minor Presto 3/4 23

April 10, 1989

Op.32 No.1 Nocturne B Major Andante sostenuto 4/4 4

No.2 A♭ Major Lento 4/4 6

Op.33 No.1 Mazurka G♯ Minor Mesto 3/4 2

No.2 D Major Vivace 3/4 4

No.3 C Major Simplice 3/4 2

No.4 B Minor - 3/4 6

Op.34 No.1 Waltz A♭ Major Vivace 3/4 9

No.2 A Minor Lento 3/4 5

No.3 F Major Vivace 3/4 4

Op.35 Mv.1 Sonata B♭ Minor Grave 2/2 10

Mv.2 E♭ Minor Scherzo 3/4 8

Mv.3 B♭ Minor Marche funébre 4/4 3

Mv.4 B♭ Minor Presto 2/2 4

Op.36 Impromptus F♯ Major Andantino 4/4 8

Op.37 No.1 Nocturne G Minor Andante sostenuto 4/4 4

No.2 G Major Andantino 6/8 6

Op.38 Ballade F Major Andantino 6/8 10

Op.39 Scherzo C♯ Minor Presto con fuoco 3/4 16

Op.40 No.1 Polonaise A Major Allegro con brio 3/4 8

No.2 C Minor Allegro maestoso 3/4 8

Op.41 No.1 Mazurka E Minor Andantino 3/4 2

No.2 B Major Animato 3/4 2

No.3 A♭ Major Allegretto 3/4 2

No.4 C♯ Minor Maestoso 3/4 4

Op.42 Waltz A♭ Major leggiero 3/4 10

Op.43 Tarentella A♭ Major Presto 6/8 10
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April 13, 1989

Op.44 Polonaise F♯ Minor - 3/4 20

Op.45 Prélude C♯ Minor Sostenuto 2/2 4

Op.46 Allegro de

Concert

A Major Allegro Maestoso 2/2 22

Op.47 Ballade A♭ Major Allegretto 6/8 13

Op.48 No.1 Nocturne C Minor Lento 4/4 6

No.2 F♯ Minor Andantino 4/4 6

Op.49 Fantasie F Minor Grave 4/4 20

Op.50 No.1 Mazurka G Major Vivace 3/4 4

No.2 A♭ Major Allegretto 3/4 4

No.3 C♯ Minor Moderato 3/4 6

Op.51 Impromptus G♭ Major Tempo giusto 12/8 8

Op.52 Ballade F Minor Andante con moto 6/8 17

Op.53 Polonaise A♭ Major Maestoso 3/4 14

Op.54 Scherzo E Major Presto 3/4 23

May 17, 1989

Op.55 No.1 Nocturne F Minor Andante 4/4 4

No.2 E♭ Major Lento sostenuto 12/8 4

Op.56 No.1 Mazurka B Major Allegro non tanto 3/4 6

No.2 C Major Vivace 3/4 2

No.3 E♭ Major Moderato 3/4 6

Op.57 Berceuse D♭ Major Andante 6/8 6

Op.58 Mv.1 Sonata B Minor Allegro maestoso 4/4 15

Mv.2 E♭ Major Scherzo (molto vivace) 3/4 5

Mv.3 B Major Largo 4/4 6

Mv.4 B Minor Finale (Presto non tanto) 6/8 15

Op.59 No.1 Mazurka A Minor Moderato 3/4 4

No.2 A♭ Major Allegretto 3/4 3

No.3 A Major Vivace 3/4 5

Op.60 Barcarolle F♯ Major Allegretto 12/8 12

Op.61 Polonaise A♭ Major Allegro Maestoso 3/4 18

Op.62 No.1 Nocturne B Major Andante 4/4 6
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No.2 E Major Lento 4/4 5

Op.63 No.1 Mazurka B Major Vivace 3/4 4

No.2 F Minor Lento 3/4 2

No.3 E Major Allegretto 3/4 2

Op.64 No.1 Waltz D♭ Major Molto vivace 3/4 4

No.2 Waltz C♯ Minor Tempo giusto 3/4 6

No.3 Waltz A♭ Major Moderato 3/4 6
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RECON 2008 & 2011 – Pieces and Awards

C.1 Rencon Set Pieces 2008
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C.4 Rencon Awards 2011
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Appendix D

Tables

Op.10 No.1 Op.10 No.2 Op.10 No.4 Op.10 No.5 Op.10 No.7 Op.10 No.8

BI49 157 BI49 129 HA29 157 SH32 104 BI49 232 BI49 142

HA29 159 MA77 139 BI49 157 MA63 111 MA63 237 HA29 157

SH32 163 SG32 140 AR53 161 LO27 115 HA29 242 SH32 157

CO56 164 HEN 144 SC31 165 MA77 115 SC31 243 MA63 159

MA63 165 HA29 145 MA63 166 AS38 115 MA77 244 BA44 168

SC31 169 MA63 145 SH32 169 HEN 116 SH32 248 SC31 173

AS38 170 CO56 149 LO27 169 BI49 117 HEN 252 LO27 174

MA77 170 AR53 152 PO30 169 SC31 117 AR53 252 GI33 174

HEN 176 SC31 152 MA77 170 Gi33 118 GA30 254 MA77 174

PO30 178 PO30 152 GI33 174 CO56 120 LU27 256 HEN 176

LO27 179 LO27 156 AS38 174 LU27 120 LO27 256 AS38 177

BA44 179 AS38 157 CO56 175 AR53 121 CO56 263 CO56 178

LU27 180 LU27 159 HEN 176 HA29 122 AS38 264 AR53 179

GA30 190 GI33 165 LU27 179 PO30 123 PO30 266 PO30 180

GI33 191 GA30 173 BA44 191 GA30 131 GI33 271 GA30 188

AR53 196 BA44 176 GA30 197 BA44 139 BA44 285 LU27 190

Table D.1: Tempo values for selected Chopin Etudes. Entries are the first to letters of

a pianists name followed by their age at the time of recording. Columns are sorted by

ascending tempo.
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Op.10 No.10 Op.10 No.12 Op.25 No.1 Op.25 No.2 Op.25 No.4 Op.25 No.5

BI49 426 PO30 64 HA29 77 AS38 102 AR53 65 MA63 168-157-179

BA44 450 LO27 64 AS38 84 HA29 103 HEN 80 HEN 184-168-184

MA63 467 MA63 65 LO27 91 LO27 104 BA44 84 HA29 189-108-190

SC31 471 SC31 66 LU27 93 MA77 106 MA77 85 MA77 190-178-184

HEN 480 LU27 66 SO35 94 AR53 109 BI49 87 GI33 190-156-204

SH32 480 AS38 66 GA30 102 MA63 111 MA63 87 LO27 191-109-217

AR53 483 HA29 68 MA63 102 HEN 112 PO30 88 AR53 198-116-180

LU27 487 BA44 71 BI49 103 GA30 113 CO57 89 GA30 198-144-210

HA29 505 SH32 71 HEN 104 LU27 116 HA29 92 LU27 198-150-185

GA30 508 MA77 72 MA77 104 SO35 118 GI33 93 BI49 198-150-185

AS38 512 BI49 74 AR53 104 GI33 122 GA30 95 PO30 210-160-210

PO30 513 CO56 75 Gi33 105 BI49 123 SP35 100 AS38 210-112-226

LO27 529 HEN 76 BA44 109 PO30 125 LU27 100 SO35 211-125-195

CO56 542 GI33 77 PO30 111 CO57 128 LO27 102 BA44 218-173-203

MA77 550 GA30 87 CO57 118 BA44 138 AS38 106 CO57 243-168-242

GI33 574 AR53 88

Table D.2: Tempo values for selected Chopin Etudes. Entries are the first to letters of

a pianists name followed by their age at the time of recording. Columns are sorted by

ascending tempo. (Ctd.)
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Op.25 No.6 Op.25 No.8 Op.25 No.9 Op.25 No.10 Op.25 No.11 Op.25 No.12

HEN 69 BI49 64 BI49 94 MA77 64-90-65 HA29 51 HA29 58

MA63 70 HA29 66 HA29 104 BI49 64-106-68 BI49 53 MA77 62

BI49 71 HEN 69 AR53 107 LO27 67-86-70 MA63 58 MA63 69

AR53 71 GA30 69 MA77 107 BA44 71-112-70 GI33 59 AS38 70

CO57 73 MA63 69 LU27 107 AR53 71-96-68 MA77 60 LO27 73

PO30 74 AR53 70 CO57 110 AS38 71-84-70 LO27 61 CO57 73

BA44 74 LO27 71 HEN 112 MA63 71-110-70 CO57 61 BI49 74

MA77 75 MA77 71 PO30 113 CO57 71-127-71 AS38 62 GI33 74

AS38 75 CO57 73 MA63 115 HEN 72-126-72 LU27 63 SO35 76

HA29 75 GI33 73 GI33 117 PO30 72-104-74 PO30 63 LU27 76

LO27 77 AS38 73 LO27 118 GI33 74-129-73 AR53 63 PO30 76

GI33 78 PO30 76 GA30 120 HA29 74-112-76 SO35 66 AR53 77

LU27 83 LU27 77 AS38 125 LU27 75-96-71 HEN 69 HEN 80

GA30 84 BA44 78 SO35 125 SO35 83-86-87 BA44 69 BA44 82

SO35 85 SO35 81 BA44 131 GA30 86-117-81 GA30 71 GA30 83

Table D.3: Tempo values for selected Chopin Etudes. Entries are the first to letters of

a pianists name followed by their age at the time of recording. Columns are sorted by

ascending tempo.
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ART IOI VEL

YQX YQX/L YQX/G YQX YQX/L YQX/G YQX YQX/L YQX/G

C
H

P

IR-A PI PI IR-A IR-A PI MinP MinP MinP

PI PI-G PI-G CD PI-G PI-G AvMax AvMax AvMax

PI-G RC CD MS LC MS DR DR AvMin

RC DR MS RC RC RC MS

DR

0.328 0.320 0.326 0.221 0.216 0.222 0.176 0.163 0.183

M
O

Z
/F

IR-A IR-A IR-A IR-A

IR-L IR-L IR-L IR-L IR-L IR-L IR-L IR-L

PI PI PI PI PI PI PI PI PI

PI-G PI-G PI-G PI-G PI-G PI-G PI-G PI-G PI-G

CD CD CD

LC LC LC

MaxP

MinP MinP MinP

AvMax AvMax AvMax AvMax AvMax AvMax

AvMin AvMin AvMin AvMin AvMin

MS MS MS MS MS MS MS MS MS

RC RC RC RC RC RC RC RC

DR DR DR DR DR DR

0.411 0.414 0.361 0.389 0.380 0.340 0.395 0.393 0.353

M
O

Z
/S

IR-A IR-A IR-A IR-A IR-A IR-A

IR-L IR-L IR-L IR-L

PI PI PI

PI-G PI-G PI-G PI-G PI-G

CD CD CD CD CD

LC LC LC LC LC

MinP

AvMax AvMax

AvMin

MS MS MS MS MS MS

RC RC RC RC RC RC RC RC

DR DR

0.277 0.256 0.257 0.409 0.409 0.442 0.250 0.235 0.235

Table D.4: Results of Feature Selection for Simple YQX Prediction on three different

data sets
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TEM TIM VEL-D

YQX YQX/L YQX/G YQX YQX/L YQX/G YQX YQX/L YQX/G

C
H

P

IR-A IR-A IR-L IR-A IR-A PI-G AvMax IR-A AvMax

RC CD MS CD PI MS MinP LC AvMin

DR MS RC MS PI-G RC MS MS MS

RC RC RC RC RC

DR DR DR

0.193 0.150 0.211 0.150 0.130 0.158 0.210 0.182 0.202

M
O

Z
/F

IR-A IR-A IR-A IR-A

IR-L IR-L IR-L IR-L

PI PI PI PI

PI-G PI-G PI-G PI-G PI-G

CD CD CD

LC LC LC

MaxP

MinP MinP

AvMax AvMax AvMax

AvMin AvMin

MS MS MS MS MS MS

RC RC RC RC RC RC

DR DR DR

0.268 0.381 0.399 0.368 0.360 0.289

M
O

Z
/S

IR-A IR-A

IR-L IR-L

PI PI

PI-G PI-G

CD

LC LC

MinP MinP

AvMin

MS MS MS MS

RC RC RC RC RC

DR DR

0.181 0.210 0.264 0.412 0.408 0.426

Table D.5: Results of Feature Selection for Simple YQX Prediction on three different

data sets
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