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ABSTRACT

This paper describes our ’any-time’ real-time music track-
ing system which is based on an on-line version of the
well-known Dynamic Time Warping (DTW) algorithm
and includes some extensions to improve both the pre-
cision and the robustness of the alignment (e.g. a tempo
model and the ability to reconsider past decisions). A
unique feature of our system is the ability to cope with
arbitrary structural deviations (e.g. jumps, re-starts) on-
line during a live performance.

1. INTRODUCTION

In this paper we describe the current state of our real-
time music tracking system. The task of a music tracking
system is to follow a musical live performance on-line
and to output at any time the current position in the score.

While most real-time music tracking systems are based
on statistical approaches (e.g. the well-known systems
by Raphael [8] and Cont [4]), our alignment algorithm is
based on an on-line version of the Dynamic Time Warp-
ing algorithm first presented by Dixon in [5]. We sub-
sequently proposed various improvements and additional
features to this algorithm (e.g. a tempo model and the
ability to cope with ’jumps’ and ’re-starts’ by the per-
former), which are the topic of this paper (see also Figure
1 for an overview of our system).

2. DATA REPRESENTATION

Rather than trying to transcribe the incoming audio stream
into discrete notes and align the transcription to the score,
we first convert a MIDI version of the given score into a
sound file by using a software synthesizer. Due to the in-
formation stored in the MIDI file, we know the time of
every event (e.g. note onsets) in this ‘machine-like’, low-
quality rendition of the piece and can treat the problem as
a real-time audio-to-audio alignment task.

The score audio stream and the live input stream to be
aligned are represented as sequences of analysis frames,
computed via a windowed FFT of the signal with a ham-
ming window of size 46ms and a hop size of 20ms. The
data is mapped into 84 frequency bins, spread linearly up

to 370Hz and logarithmically above, with semitone spac-
ing. In order to emphasize note onsets, which are the
most important indicators of musical timing, only the in-
crease in energy in each bin relative to the previous frame
is stored.

3. ON-LINE DYNAMIC TIME WARPING

This algorithm is the core of our real-time music track-
ing system. ODTW takes two time series describing the
audio signals – one known completely beforehand (the
score) and one coming in in real time (the live perfor-
mance) –, computes an on-line alignment, and at any time
returns the current position in the score. In the follow-
ing we only give a short intuitive description of this algo-
rithm, for further details we refer the reader to [5].

Dynamic Time Warping (DTW) is an off-line align-
ment method for two time series based on a local cost
measure and an alignment cost matrix computed using
dynamic programming, where each cell contains the costs
of the optimal alignment up to this cell. After the matrix
computation is completed the optimal alignment path is
obtained by tracing the dynamic programming recursion
backwards (backward path).

Originally proposed by Dixon in [5], the ODTW al-
gorithm is based on the standard DTW algorithm, but has
two important properties making it useable in real-time
systems: the alignment is computed incrementally by al-
ways expanding the matrix into the direction (row or col-
umn) containing the minimal costs (forward path), and
it has linear time and space complexity, as only a fixed
number of cells around the forward path is computed.

At any time during the alignment it is also possible
to compute a backward path starting at the current po-
sition, producing an off-line alignment of the two time
series which generally is much more accurate. This con-
stantly updated, very accurate alignment of the last cou-
ple of seconds is used heavily in our system to improve
the alignment accuracy (see Section 4). See also Figure 2
for an illustration of the above-mentioned concepts.

4. THE FORWARD-BACKWARD STRATEGY

We presented some improvements to this algorithm, fo-
cusing both on increasing the precision and the robust-
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Figure 1: Overview of our ‘Any-time’ On-line Music Tracking System

ness of the algorithm in [3]. Most importantly, this in-
cludes the ‘forward-backward strategy’, which reconsid-
ers past decisions (using the backward path) and tries to
improve the precision of the current score position hy-
pothesis.

More precisely, the method works as follows: Af-
ter every frame of the live input a smoothed backward
path is computed, starting at the current position (i, j) of
the forward path. By following this path b = 100 steps
backwards on the y-axis (the score) one gets a new point
which lies with a high probability nearer to the globally
optimal alignment than the corresponding point of the
forward path.

Starting at this new point another forward path is com-
puted until a border of the current matrix (either column i
or row j) is reached. If this new path ends in (i, j) again,
this can be seen as a confirmation of the current position.
If the path ends in a column k < i, new rows are calcu-
lated until the current column i is reached again. If the
path ends in a row l < j, the calculation of new rows is
stopped until the current row j is reached.

5. A SIMPLE TEMPO MODEL

We also introduced a tempo model to our system [1], a
feature which has so far been neglected by music trackers
based on DTW.

5.1. Computation of the Current Tempo

The computation of the current tempo of the performance
(relative to the score representation) is based on a con-
stantly updated backward path starting in the current po-
sition of the forward calculation. Intuitively, the slope of
such a backward path represents the relative tempo dif-
ferences between the score representation and the actual
performance. Given a perfect alignment, the slope be-
tween the last two onsets would give a very good estima-
tion about the current tempo. But as the correctness of
the alignment of these last onsets generally is quite un-
certain, one has to discard the last few onsets and use a
larger window over more note onsets to come up with a
reliable tempo estimation.

In particular, our tempo computation algorithm uses a
method described in [6]. It is based on a rectified version
of the backward alignment path, where the path between
note onsets is discarded and the onsets (known from the
score representation) are instead linearly connected. In
this way, possible instabilities of the alignment path be-
tween onsets (as, e.g., between the 2nd and 3rd onset in
the lower left corner in Fig.2) are smoothed away.

After computing this path, the n = 20 most recent
note onsets which lie at least 1 second in the past are se-
lected, and the local tempo for each onset is computed
by considering the slope of the rectified path in a window
with size 3 seconds centered on the onset. This results
in a vector vt of length n of relative tempo deviations
from the score representation. Finally, an estimate of the
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Figure 2: Illustration of the ODTW algorithm, showing
the iteratively computed forward path (white), the much
more accurate backward path (grey, also catching the one
onset that the forward path misaligned), and the correct
note onsets (yellow crosses, annotated beforehand). In
the background the local alignment costs for all pairs of
cells are displayed. Also note the white areas in the upper
left and lower right corners, illustrating the constrained
path computation around the forward path.

current relative tempo t is computed using Eq.1, which
emphasizes more recent tempo developments while not
discarding older tempo information completely, for ro-
bustness considerations.

t =

∑n
i=1(ti ∗ i)∑n

i=1 i
(1)

Of course, due to the simplicity of the procedure and
especially the fact that only information older than 1 sec-
ond is used, this tempo estimation can recognize tempo
changes only with some delay. However, the computation
is very fast, which is important for real-time applications.

5.2. Feeding Tempo Information to the ODTW

Based on the observation that both the alignment preci-
sion and the robustness directly depend on the similar-
ity between the tempo of the performance and the score
representation, we now use the current tempo estimate
to alter the score representation on the fly, stretching or
compressing it to match the tempo of the performance as
closely as possible. This is done by altering the sequence
of feature vectors representing the score audio. The rela-
tive tempo is directly used as the probability to compress
or extend the sequence by either adding new vectors or
removing vectors.

6. ‘LEARNING’ TEMPO DEVIATIONS FROM
DIFFERENT PERFORMERS

The introduction of this very simple tempo model already
leads to considerably improved tracking results. But es-
pecially at phrase boundaries with huge changes in tempo
the above-mentioned delay in the recognition of tempo
changes still results in large alignment errors. Further-
more, such tempo changes are very hard to catch instantly,
even with more reactive tempo models. To cope with this
problem we came up with an automatic and very general
way to provide the system with information about possi-
ble ways in which a performer might shape the tempo of
the piece.

First we extract tempo curves from various different
performances (audio recordings) of the piece in question.
Again, as for the real-time tempo estimation, this is done
completely automatically using the method described in
[6] (see Section 5.1), but as the whole performance is
known beforehand and the tempo analysis can be done
off-line there is now no need for further smoothing of the
tempo computation. These tempo curves are directly im-
ported into our real-time tracking system.

More precisely, as before, after every iteration of the
path computation algorithm the vector vt containing tempo
information at note onsets is updated based on the back-
ward path and the above-mentioned local tempo compu-
tation method. But now the tempo curve of the live per-
formance over the last w = 50 onsets, again located at
least 1 second in the past, is compared to the previously
stored tempo curves at the same position. To do this all
n tempo curves are first normalized to represent the same
mean tempo over these w onsets as the live performance.
The Euclidean distances between the curve of the live
performance and the stored curves are computed. These
distances are inverted and normalized to sum up to 1, thus
now representing the similarity to the tempo curve of the
live performance.

Based on the stored tempo curves our system can now
estimate the tempo at the current position. As the current
position should be somewhere between the last aligned
onset oj and the onset oj+1 to be aligned next, we com-
pute the current tempo t according to Formula 2, where
ti,oj and ti,oj+1

represent the (scaled) tempo information
of curve i at onset oj and oj+1 respectively, and si is the
similarity value of tempo curve i.

t =

∑n
i=1[(ti,oj + ti,oj+1

)si]

2
(2)

Intuitively, the tempo is estimated as the mean of the
tempo estimates at these 2 onsets, which in turn are com-
puted as a weighted sum of the (scaled) tempi in the stored
performance curves, with each curve contributing accord-
ing to its local similarity to the current performance. Please
note that this approach somewhat differs from typical ways
of training a score follower to follow a particular perfor-
mance. We are not feeding the system with ‘rehearsal
data’ by a particular musician, but with many different
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ways of how to perform the piece in question, as the
analysed performances may be by different performers
and differ heavily in their interpretation style. The sys-
tem then decides on-line at every iteration how to weigh
the curves, effectively selecting a mixture of the curves
which represents the current performance best.

7. ‘ANY-TIME’ MUSIC TRACKING

Our system (see Figure 1 for an overview) also includes a
unique feature, namely the ability to cope with arbitrary
structural deviations (e.g. large omission, (re-)starts in
the middle of a piece) during a live performance. While
previous systems – if they did deal at all with serious de-
viations from the score – had to rely on explicitly pro-
vided information about the structure of a piece of mu-
sic and points of possible deviation (e.g., notated repeats,
which a performer might or might not obey), our sys-
tem does without any such information and continuously
checks all (!) time points in the score as alternatives to
the currently assumed score position, thus theoretically
being able to react to arbitrary deviations (jumps etc.) by
the performer.

At the core is a process (the ‘Rough Position Estima-
tor’, see Figure 1) that continually updates and evaluates
high-level hypotheses about possible current positions in
the score, which are then verified or rejected by multiple
instances of the basic alignment algorithm (‘Tracker 1–
n’, each including its own tempo model) described above.
To guide our system in the face of possible repetitions
and to avoid random jumps between identical parts in the
score, we also introduced automatically computed infor-
mation about the structure of the piece to be tracked. We
chose to call our new approach ‘Any-time Music Track-
ing’, as the system is continuously ready to receive input
and find out what the performers are doing, and where
they are in the piece. For more details we refer the reader
to [2].

8. EVALUATION

All above-mentioned improvements to the original algo-
rithm were extensively evaluated. We have shown that
the resulting system is both more robust and more accu-
rate than the original system. Furthermore we already
demonstrated the systems accuracy and reliability live on
stage during a real piano performance. For detailed eval-
uation results we refer the reader to [3], [1] and [2].

9. FUTURE WORK

An important direction for future work is the introduc-
tion of explicit event detection into our system, based on
both an estimation of the timing and an analysis of the in-
coming audio frames. This would increase the alignment
precision especially for sparse and/or monophonic music.

A possible future scenario would be to extend our
‘any-time’ algorithm to operate on a whole database of

musical pieces, automatically recognising both the piece
being played, and the current position. An off-line match-
ing/retrieval scenario related to this has been described in
[7]. Practically this will require a clever indexing scheme
based on musically relevant high-level features to quickly
find those pieces and time points most likely to match the
ongoing sound stream.
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