Towards Effective ‘Any-Time’ Music Tracking

Andreas Arzt!Y) and Gerhard Widmer(1:2) !

Abstract. The paper describes a new method that permits a com-
puter to listen to, and follow, live music in real-time, by analysing
the incoming audio stream and aligning it to a symbolic represen-
tation (e.g, score) of the piece(s) being played. In particular, we
present a multi-level music matching and tracking algorithm that,
by continually updating and evaluating multiple high-level hypothe-
ses, effectively deals with almost arbitrary deviations of the live per-
former from the score — omissions, forward and backward jumps,
unexpected repetitions, or (re-)starts in the middle of the piece. Also,
we show that additional knowledge about the structure of the piece
(which can be automatically computed by the system) can be used
to further improve the robustness of the tracking process. The result-
ing system is discussed in the context of an automatic page-turning
device for musicians, but it will be of use in a much wider class of
scenarios that require reactive and adaptive musical companions.

1 Introduction

Computers that can listen to music and follow it in real time promise
to be useful in a wide range of applications, from synchronisation
tasks to automatic monitoring of radio stations or web streams, from
live music visualisation in artistic contexts to real-time accompani-
ment of soloists. A specific application example was given in [2],
where an automatic sheet music page turner (a real mechanical de-
vice) for musicians is controlled by a computer that listens to the
musicians (e.g., a pianist), aligns the incoming audio stream to an
internal (audio) representation of the printed score of the music, fol-
lows the musician through the performance and autonomously de-
cides when to trigger the page turner. Such a system would be es-
pecially useful during practicing, where instrumentalists generally
don’t have human page turners at their disposal® and also need to
focus on the sheet music, as they have not yet memorised the piece.
For the purposes of this paper, then, we define ‘music tracking’ as
follows: for a machine to listen to live music through a microphone,
to identify and track the corresponding positions in the printed score,
and, in this way, to always ‘know’ where the musicians are in the
piece, even if the live performance varies in tempo and sound and
perhaps even deviates from the score in certain places. In this paper,
we present a new, extremely robust algorithm for score-based music
tracking, where the live music takes the form of an audio stream, and
the system has an audio representation of the printed score of the
piece being played (produced using synthesiser software). Thus, the
tracking problem is one of real-time audio-to-audio alignment.

1 (1) Department of Computational Perception, Johannes Kepler University,
Linz, Austria; (2) Austrian Research Institute for Artificial Intelligence,
Vienna, Austria

2 Note, by the way, that music page turners are highly trained and specialised
professionals!

The specific goal we wish to achieve with our algorithm is robust-
ness in the face of almost arbitrary disruptions or re-starts within a
performance, where current music tracking algorithms would simply
‘get lost’. For instance, in a practicing scenario this will be the norm:
the musician will want to repeat difficult passages an arbitrary num-
ber of times, stop after a mistake and re-start somewhere, skip some
parts, or take a break and then re-start somewhere in the middle of
the piece — all of these without having to tell the system the precise
starting position each time.

The two key aspects of the solution we propose are: (1) a two-
level hypothesis tracking process, with a high-level tracker con-
stantly evaluating all possible (!) positions in the score as potential
‘current points’, and more detailed hypothesis evaluators checking,
selecting from, and refining these hypotheses — all in real time; and
(2) the additional introduction of knowledge about the structure of
the piece being played (which, as we will show, can be computed by
the system itself), which facilitates heuristic guesses as to the most
likely points of continuation.

As the experiments will show, the resulting system is indeed ca-
pable of quickly reacting to jumps, omissions, or performers starting
at arbitrary points in the middle of a piece. For lack of a better term,
we chose to call this ‘Any-time Music Tracking’: continuously being
ready to receive input and to revise one’s hypothesis as to what the
performers are doing.

2 Related Work

While there has been quite some work on real-time music tracking,
starting as early as 1984 [4, 10] and including some recent publica-
tions on very advanced systems (e.g. [3, 9]), the problem of how to
deal with changes to the structure of a piece on-line has so far been
largely neglected (in contrast to the off-line case, see [6]), with two
notable exceptions.

In [8] HMMs are used to model the structure of the piece. This
is a very static approach as only deviations which are modeled be-
forehand can be detected. The same applies for the method devised
in [2], where multiple instances of matching algorithms are started
at predefined positions (e.g. notated repeats) to detect deviations via
the alignment costs. The finding that it is possible to recognise which
instance of the matching algorithm is working at the correct position
by comparing their alignment costs sets the ground for our new and
more dynamic approach.

3 Preliminaries: Data Representation and Basic
Matching Algorithm

3.1 Data Representation

Rather than trying to transcribe the incoming audio stream into dis-
crete notes and align the transcription to the score, we first convert

Score Representation

MIDI & Audi .
(udio) Rough Position

Estimator

Score Position

Matcher 1 Matcher 2

Live Audio Input

Matcher 3 Matcher N

\ 4

Structure Model \ \
A

=
Vel

—>

Decision Maker

N

Figure 1.

a MIDI version of the given score into a sound file by using a soft-
ware synthesizer. Due to the information stored in the MIDI file, we
know the time of every event (e.g. note onsets) in this ‘machine-like’,
low-quality rendition of the piece.

The audio streams to be aligned are represented as sequences of
analysis frames, using a low-level spectral representation, at two
different resolution levels. This approach and the way the lower-
resolution features are computed are very much inspired by [7].

The high-resolution features are computed via a windowed FFT of
the signal with a hamming window of size 46ms and a hop size of
20ms. The data is mapped into 84 frequency bins, spread linearly up
to 370Hz and logarithmically above, with semitone spacing. In order
to emphasize note onsets, which are the most important indicators of
musical timing, only the increase in energy in each bin relative to the
previous frame is stored.

The low-resolution features are computed by convolving the se-
quence of high-resolution features component-wise with a Hann win-
dow with length 30 (or 600ms). This new sequence is down-sampled
by a factor of 15, resulting in a hop-size of 300ms, and each vector
is normalized to sum up to 1.

For both feature resolutions the cost of aligning two feature vec-
tors is computed as the Euclidean distance of two vectors. While the
feature extraction from the live audio signal can of course only be
done on-line, the feature extraction from the score representation is
done beforehand, so that information about the whole piece of music
is available during the matching process.

3.2 On-line Dynamic Time Warping (ODTW)

This algorithm is the core of our real-time audio tracking system;
slight variants of it are used at both levels of our system. ODTW
takes two time series describing the audio signals — one known com-
pletely beforehand (the score) and one coming in in real time (the
live performance) —, computes an on-line alignment, and at any time
returns the current position in the score.

ODTW is based on the original DTW algorithm, which works as

Overview of our ’Structure-aware Any-Time Music Tracking System’ showing the different modules and the data flow.

follows: Given 2 time series U = ui,...,unm and V. = w1, ..., vy,
an alignment between U and V' is a path W = W, ..., W; (through
a cost matrix) where each Wy, is an ordered pair (i, ji) such that
(¢,7) € W means that the points u; and v; are aligned. W is
constrained to be monotonic and continuous. A local cost function
d(1, j) assigns costs to the alignment of each pair (u;, v;). The cost
of a path W is the sum of the local alignment costs along the path.
The m x n path cost matrix D is computed using the recursion:

we * D(i,7 — 1)
wa * D(i — 1, 5))
wy* D(i— 1,5 — 1)

D(i,j) =d(i,j) + min

D(i,) is the cost of the minimum cost path from (1,1) to (¢, 7),
D(1,1) =d(1,1), we = 1 and wp, = 2. The weights w, and wy, are
used to normalize paths of different lengths to make them compara-
ble. After the computation of the matrix the path itself is obtained by
tracing the recursion backwards from D(m, n).

Originally proposed by Dixon in [5], the ODTW algorithm is
based on this algorithm, but has two important properties making it
useable in real-time systems: it has linear time and space complexity
and the alignment (a ‘forward path’) is computed incrementally.

For every iteration the number of cells calculated is given by a
search width parameter ¢ = 500, e.g. for a new column ¢ the local
distances d(, j—c), d(i, j—(¢—1)), ..., d(4, j) are calculated, where
j is the index of the current row. The calculation of the minimum cost
paths using formula 1 is restricted to using only calculated cells, thus
reducing time and space complexity from quadratic to linear.

During every iteration the minimum path cost matrix is expanded
by either calculating a new row or a new column. Calculating a row
(column) means incrementing the pointer to the next element of the
respective time series, calculating the new local distances within the
defined search width ¢, and updating the cost matrix D by using for-
mula 1.

To decide if a row or a column should be computed (i.e., which of
the two time series to advance), the minimum path cost for each cell

in the current row j and column ¢ is found. If this occurs in the cur-
rent position (¢, j) both a new row and column are calculated. If this
occurs elsewhere in row j a new row is calculated and if this occurs
elsewhere in column ¢ a new column is calculated. If one time series
has been incremented more than MaxRunCount = 3 times, the
other series is incremented. In our musical setting, this embodies the
assumption that a given performance will not be more than 3 times
faster or slower than the reference score, and prevents the alignment
algorithm from ‘running away’ too far.

At any time during the alignment it is possible to compute a ‘back-
ward path’, i.e. a path starting at the current position and computed
backwards in time, leading to an off-line alignment of the two time
series which generally is much more accurate.

Improvements to this algorithm, focusing both on adaptivity and
robustness, were presented in [2] and are incorporated in our sys-
tem. That includes the ‘backward-forward strategy’, which reconsid-
ers past decisions and tries to improve the precision of the current
score position hypothesis, and the utilization of onset information
derived from the MIDI score.

Both of these strategies aim at an improvement in alignment pre-
cision. In the present paper, we provide a more dynamic and more
general solution to the third problem discussed in [2], namely the
problem of how to deal with structural changes effectively on-line.

4 ‘Any-time’ Music Following via Two-level
Tracking

While previous systems — if they did deal at all with serious devia-
tions from the score — had to rely on explicitly provided information
about the structure of a piece of music and points of possible devi-
ation (e.g., notated repeats, which a performer might or might not
obey), our system does without any such information and continu-
ously checks all (!) time points in the score as alternatives to the
currently assumed score position, thus theoretically being able to re-
act to arbitrary deviations (jumps etc.) by the performer. The overall
structure is shown in Figure 1. A ‘Rough Position Finder’ continually
evaluates every possible score position by computing a very rough
alignment of the last few seconds of the live audio input to the score
at that point; that is done at the level of low-resolution features and
600ms frames. A ‘Decision Maker’ takes these candidate score po-
sitions and tries to verify or falsify them via several parallel ODTW
matchers at the detailed, high-resolution level. At any time one in-
stance of the matching algorithm is marked as ‘trusted’, representing
the system’s current belief about the correct position. A model of the
structure of the piece, which is computed automatically, proves to be
very useful during this process, as will become clear later.

4.1 Rough Position Estimator (RPE)

The task of the Rough Position Estimator (RPE) is to continually
provide our system with rough but reliable hypotheses about possible
current positions in the score. It takes two low-resolution time series
(with frame size 600ms and hop time 300ms; thus a piece of, say,
10 minutes will consists of 2,000 such frames) as input. At any time
the RPE has a set of hypotheses about possible score positions. The
number of hypotheses is not limited, but they are ordered by a value
representing the ‘probability’ that the score position in question is
corresponding to the current position in the live input.

For every new incoming low-resolution audio frame the RPE is
updated in the following way. First the local ‘low resolution’ cost
matrix, which contains the Euclidean distances of the frames of the

live input series to every frame of the score representation, is up-
dated. As the live input stream sits on the x-axis this means adding a
new column to the matrix.

Next, starting in every new cell rough backward alignments on the
last n = 9 seconds of the live performance are computed using a
greedy local search algorithm constrained to step at most 3 times in a
row into a single direction. The alignment costs of the resulting paths
are normalized by the number of steps and then scaled to lie between
0 and 1. The result is a vector giving the similarity values of rough
alignments of the last n seconds of the live audio to score passages
ending at any possible score position (with a resolution of 600ms).

To reduce the computational complexity and to add some robust-
ness to the algorithm, only the cells (‘score positions’) with a simi-
larity value of at least 0.95 are selected as possible hypotheses to be
passed on to the lower-level matchers for evaluation (see 4.2 below).

As only the last n seconds on the live input axis are needed and due
to the low resolution of the two streams, the necessary computations
are easily done in real time, even for pieces as long as 30 minutes.

4.2 Detailed Matching Algorithm (DMA)

Our system maintains a fixed number of instances of the ODTW
matching algorithm, working on the high-resolution features (frame
size 46ms, hop time 20ms — thus a piece of 10 minutes consists
of 30, 000 frames), which are managed by the ‘Decision Maker’ (see
below). The number of matcher instances is limited by the computing
power of the computer in use, but usually 3 or 4 instances are suffi-
cient. The matching algorithm is identical to the one described in 3.2
above, including all extensions proposed in [2] with one notable dif-
ference: In [1] we introduced a simple reactive tempo model based on
the performed tempo relative to the score representation, computed
over the last couple of seconds of the live performance. This model
is used to stretch or compress the score representation accordingly
and therefore reduce differences in absolute tempo between the score
representation and the live performance. This increases robustness in
the face of global and local tempo deviations.

4.3 Decision Maker (DM)

The Decision Making Component (DM) decides on which hypothe-
ses to investigate in detail, and which to accept or reject. To achieve
this it manages instances of the DMA of which at any time at least
one is active. One of the active instances is marked as ‘trusted’, rep-
resenting the system’s current belief about the score position.

If there is an idle DMA instance available, the first step in every
iteration is to analyse the output of the RPE and to find the best hy-
pothesis for which further investigation is not in progress. The idle
DMA instance is initialised accordingly, but not with the current time
points in score and live audio, but with points a few seconds in the
past — the end positions of the rough backward alignment leading
to this hypothesis, as computed by the RPE. The DMA then starts
aligning there. That gives the DMA more context for evaluating the
current hypothesis and accelerates the DM’s decision making pro-
cess (because it will not have to wait for several seconds of new live
audio until the hypothesis can be evaluated).

Next, the DM iterates through the instances of the DMA, trying
to decide, for each matcher, whether to reject it, to accept it as the
new ‘trusted’ one, or to postpone the decision. Only matching algo-
rithms that have tracked at least 5 seconds of audio input are consid-
ered here, as of course no decision should be made without sufficient

grounding. A matcher may need some time to converge on the correct
alignment path as the RPE’s hypotheses are only rough estimates.
The decision itself is made as follows: for each matcher 7, the dif-
ference d; between the current alignment cost of matcher ¢ and the
alignment cost c¢¢ of the currently ‘trusted’” matcher is computed;
these differences are summed up over the whole lifetime of the
matcher. After every iteration the sums are compared to two heuristic
thresholds. If the sum is lower than ¢, = —rc; the hypothesis is re-
jected and the matcher is set to idle. If the sum exceeds ¢, = sc¢, the
hypothesis is accepted and the matcher is marked as the new ‘trusted’
one. In our system we use » = 2 and s = 10, which gives a good
trade-off between fast response times and overall robustness.

5 Adding Musical Knowledge

Music is a highly structured artifact, and most music exhibits a cer-
tain degree of repetition — a significant motif may reappear many
times, a refrain is a repeated part by definition, whole sections are
sometimes repeated. Thus, we generally have repeating passages at
many levels — from short segments of just a few beats, to segments
lasting several minutes.

Repetition in music presents a problem to a music following sys-
tem that always considers all possible positions in the score: which
of the instance of a repeating pattern corresponds to the passage cur-
rently played by the performer? In order to cope with this problem,
we introduce knowledge about the structure of the current piece, by
way of a Structure Model (SM) that identifies repeated parts at all
levels and builds an equivalence relation that specifies which parts
are instances of the same class. As shown in 6.2 below, without such
knowledge it is not possible to distinguish these parts and make mu-
sically sensible decisions about the current position in the score. Fur-
thermore the SM also adds to the robustness of our system.

The SM is extracted automatically from the score by computing
a self-similarity matrix based on the rough feature representation of
the score. In this matrix the diagonal represents a performance of the
piece as annotated in the score. Simple image processing techniques
are used to identify connected lines with maximum similarity which
are parallel to the diagonal. These represent repetitions of the same
part at another time in the score (see Figure 1, which shows the struc-
ture model computed for the Impromptu in A-flat major D.935-2 by
Franz Schubert).

This additional knowledge proves useful for several tasks in our
system: It is used to (1) prune the list of hypotheses by identify-
ing equivalent hypotheses and discarding all hypotheses equivalent
to positions that are already checked in detail. This greatly reduces
computation time and gives the system the ability to track more dif-
ferent hypotheses at once. Furthermore, the DM is used to (2) control
the pruning process by introducing a configurable matching strategy.
Therewith it is possible to affect the behaviour of the system, e.g.
by using the strategy ‘always prefer the shortest jump in the score’.
And (3) we use information from the model to double the acceptance
threshold ¢, if an active hypothesis supports (i.e., belongs to the same
class as the segment processed by) the ‘trusted’ matcher, which add
to the robustness of the system.

6 Evaluation
Our system was evaluated on 3 classical piano pieces: the Valse bril-

lante Op. 34 No. 1 by Frédéric Chopin, the Impromptu in Ab major
D 935-2 by Franz Schubert and the Prelude in G minor Op. 23 No.

5 by Sergei Rachmaninoff. For each piece we selected as least 5 dif-
ferent performances by well-known classical pianists, including e.g.
Vladimir Horowitz, Evgeny Kissin, and Vladimir Ashkenazy. The
pieces are of considerable complexity, with a rich structure of repe-
titions at various levels and, belonging to the romantic piano genre,
they are generally played with a lot of expressive freedom (in terms
of tempo changes etc.), which is a challenge to the ODTW matching
algorithms. The experiments were performed off-line but, except for
a very small latency, the results are the same for on-line alignments.

For a quantitative evaluation a correct reference alignment is
needed. As the goal of our experiments was not to evaluate the over-
all accuracy of the alignments — this was already done in [2] — but
the performance of the multi-level approach in reacting to structural
changes to the piece, data acquired by off-line alignments was suf-
ficiently accurate as ground truth for this task. Manual examination
guaranteed that no large errors were included in the reference align-
ments. As shown in [5] these alignments are generally very accurate.

6.1 Evaluation of the ‘Rough Position Estimator’

The overall performance of our system depends heavily on the ac-
curacy of the RPE. If its hypotheses about possible score positions
are poor, the whole system will rarely detect jumps during a per-
formance or, even worse, may get confused even in the course of a
‘normal’ performance. The RPE, which at any time gives an ordered
list of possible current score positions, was first evaluated in isola-
tion, by analysing the output at every note onset in our test set. For
every output the minimum distance to the actual score position or an
equivalent position (e.g. due to a repetition) was computed.

As Table 1 shows, the performance of the RPE is sufficient for the
task we have in mind. In general, due to the robustness of the ODTW
matching algorithm, even hypotheses with an error of up to 5 bars
are useable as a starting point for our detailed matchers.

Error < Selecting ‘best’ of top n hypotheses
1 [2 [3 [4 [5

0 bars 41% | 56% | 58% | 60% | 60%

1 bar 70% | 78% 83% 85% 86%

2 bars 78% 83% 87% 89% 90%
3 bars 80% 85% 89% 91% 92%
4 bars 82% 87% 90% 92% 93%
5 bars 83% 87% 91% 93% 94%

Table 1. Cumulative percentages of the best of the top n proposed
hypotheses of the RPE with an error up to the given value — e.g. cell (3,2)
should be read as ‘at 83% of all note events in the performances, the best of
the top 3 hypotheses proposed by the RPE is at most 1 bar away from the
correct position (or an equivalent position according to the structure model)’.

6.2 Evaluation of the Any-Time Music Tracker

In the following the basic system without the SM will be referred to
as ‘Any-Time Music Tracker’ (AMT), and the system including the
SM will be referred to as ‘Structure-aware Any-Time Music Tracker’
(SAMT). The evaluation of the systems is based on versions of the
performances in our data set which were edited by removing parts of
various length, ranging from 10 to 250 bars.

. .) AMT SAMT
Alignment Errors on the Prelude by Rachmaninov (without bars 0-20) C [R [S C [R [S
2 Best 352 | 518 | 0.2 || 351 | 498 | 460
Quartile 1 6.78 8.10 7.52 6.62 8.88 7.36
Median 7.42 10.32 | 1044 || 7.16 10.52 | 8.74
4 Quartile 3 10.18 | 14.56 | 30.70 || 8.04 15.76 | 11.92
E Worst 60.26 | 51.96 | 128.86|| 56.18 | 56.04 | 68.7
5
w Table 2. Statistics about the erroneous matching time (in seconds) until the
system actively jumps to the next correct score position (error measure M1).
The data is computed on performances of the pieces by Chopin (C),
5 Rachmaninov (R) and Schubert (S) starting somewhere in the middle of the
0 50 100 150 200 250 score instead of at the beginning (see text).
Time (Seconds)
Figure 2. ’Starting in the middle’: A visual comparison of the capabilities

of the old and the new AMT real-time tracking system. 5 performances of
the Prelude by Rachmaninov, with bars 0-20 missing, are aligned to the
score by the old and the new system. For all performances, the new one (a)
almost instantly identifies the correct position, while the old one (b)finds the
correct position by mere chance.

6.2.1 ‘Starting in the Middle’

For the first experiment we deleted the first x = 10, 15, 20, ... bars
from the performances, resulting in performances where the pianist
skips some bars at the beginning, thus simulating ‘random’ starts
somewhere in the score. In total we computed alignments on 600
performances, with = ranging from 10 up to 250 (the larger value of
course depending on the total number of bars of the piece), amount-
ing to about 38 hours of live performance. We provide 2 different
measures for the performance of the algorithm:

e Measure 1 (M1): The time spent matching wrong positions until
the algorithm actively jumps to a bar in the score corresponding to
the actual performance. It is important to note that this might not
be the exact same position as in the performance, as parts often
occur more than once in a piece completely identical and without
some context it is impossible, even for humans, to decide which
instance of a part is currently being played.

e Measure 2 (M2): The time spent matching wrong positions until
the algorithm reaches (possibly by jumping more than once) the
exact bar corresponding to the live performance.

In both cases time spent matching positions which according to
the structure model are equivalent is not added to this measure.

The results of this experiment can be found in Tables 2 and 3.
Just for comparison, Table 3 also shows the results of the system de-
scribed in [2], on the same data. The latter can only detect predefined
structural changes and thus has no means to cope with the arbitrary
changes we made to the performances. Loosely speaking, it is mere
chance if the correct position is ever detected, which becomes more
improbable as the changes grow bigger (see also Figure 2).

The performance of the AMT (the system without Structure
Model) depends on the characteristics of the piece in question. While
the results on the Chopin and Rachmaninov pieces are quite similar
— especially considering M2 as shown in Table 3 — the results for the
Schubert piece are considerably worse. Considering the structure of
this piece, which consists of a lot of repetitions, this does not come
as a surprise as the AMT has no means to distinguish these parts
and does not use any context that would allow for musically sensi-
ble decisions. This leads to a very annoying behaviour, which is not
reflected in these tables: The algorithm sometimes jumps between
different instances of the repetion in the score — not only while trying

to find the correct position, but also after such a position is found (see
Table 4).

This behaviour, which for musicians is very tiresome, finally led us
to introduce the Structure Model (see Section 5). For our experiments
we used the structure model to make SAMT prefer the linearly next
segment if several alternative positions pertaining to a class of re-
peated segments are available. As discussed in Section 7, other strate-
gies are entirely possible and in fact depend on the usage scenario of
the system.

As can be seen in Tables 2 and 3 the introduction of a SM leads
to a similar performance on the pieces by Chopin and Rachmaninov
while reducing the time needed to adapt to deviations in the Schubert
piece, which is rich in repetitions. But even more important is the in-
crease in robustness, as shown in Table 4. There still occurred some
erroneous jumps in the Chopin piece, but over all aligned perfor-
mances a wrong jump or an unnecessary jump roughly occurs only
once every 2 hours of a live performance. Moreover, due to the abil-
ity of the algorithm to identify equivalent hypothesis, SAMT needs
only half of the computation time of AMT.

6.2.2 ‘Leaving out Parts’

In the course of a second experiment we simulated performances
where an arbitrary part in the middle of the piece is skipped. In total
we used 394 performances in which parts with lengths from 20 to
200 bars were removed at different positions. The results (see Table
5) show that it generally takes a little bit longer to find the correct po-
sition than in the first experiment. Closer investigation showed that
this is caused by the extra (and misleading) context given by the last
couple of seconds of the live performance which increases the time
the RPE needs to supply the correct position as hypothesis. This also
accounts for the noticeably bigger difference in the results between
the two experiments for the piece by Rachmaninov. It seems that the
similarity of many short segments of this pieces makes the task of the
algorithm more difficult. A possible improvement may be to make
the thresholds t, and ¢, adaptive, thus speeding up the detection. Of
course there is a trade-off between detection speed and robustness.

6.3 Conclusions from the Experiments

Although during the evaluation we focused on cases where parts
from the score are left out during the performance, insertions or back-
ward jumps should make no difference. This estimation is also sup-
ported by preliminary experiments.

In general the performance of our approach depends very much
on how a piece of music is performed and where jumps occur. The

Old System (ECAI 08) AMT SAMT
C [R ['S C R IE C [R IE
Best 15.98 24.74 25.08 4.74 5.18 0.86 4.64 4.98 4.60
Quartile 1 130.8 106.88 243.14 7.14 8.10 7.84 7.2 8.88 8.16
Median not found | notfound | not found 8.36 10.32 14.32 8.34 10.52 13.04
Quartile 3 || not found | not found | not found 15.42 14.56 43.66 13.09 15.76 19.04
Worst not found | not found | notfound 60.26 51.96 128.86 56.18 56.04 82.36
Table 3. ’Starting in the Middle’: Statistics about the erroneous matching time (in seconds) until the system reaches the exact same position in the score as in

the live performance (error measure M2). The data is computed on performances of the pieces by Chopin (C), Rachmaninov (R) and Schubert (S) starting
somewhere in the middle of the score (with omissions up to 250 bars) instead of at the beginning (see text).

AMT SAMT
C [R TS T [R TS
Jwrong 2% 0% 28% 2% 0% 0%
Jequiv 4% 2% 30% 3% 0% 0%
Table 4. ’Starting in the Middle’: Percentage of performances in which

AMT/SAMT jumps to a completely wrong position (Jyrong), or

‘unnecessarily’ jumps to equivalent parts after reaching the correct position

(Jequiv), which is also musically wrong.

M1 M2
C [R ['S C [R ['S
Best 3.98 3.08 3.26 3.98 3.08 3.26
Quartile 1 6.38 8.86 6.12 7.30 1042 | 6.12
Median 9.62 14.68 | 9.28 12.82 | 1520 | 9.28
Quartile 3 15.38 | 20.60 | 13.46 || 19.6 23772 | 15.84
Worst 55.02 | 41.48 | 86.76 || 55.02 | 55.62 | 86.76
Table 5. ’Leaving out Parts’: Statistics about the erroneous matching times

(in seconds) until SAMT actively jumps to the (next) correct score position
(M1 and M2). The data is computed on performances of the pieces by
Chopin (C), Rachmaninov (R) and Schubert (S) which skip parts of different
length somewhere during the performance (see text).

performance decreases with extreme tempo changes within a perfor-
mance, and with large differences in absolute tempo between the (au-
dio representation of) the score and the live performance. Problems
are especially apparent at phrase boundaries, where huge differences
in timing occur. Jumps to these areas account for many of the bigger
errors found in Tables 2, 3 and 5.

Depending on the scenario one could think of a different align-
ment strategy than we used for our experiments, e.g. if it is known
beforehand that the musician is practicing and therefore may repeat
parts multiple times the strategy ‘always jump to the nearest hypoth-
esis’ instead of ‘always jump to the linearly next hypothesis’ would
be more appropriate.

7 Conclusion and Future Work

The paper has presented an robust on-line audio alignment algorithm
which is capable of coping with arbitrary structural changes during a
musical performance. The algorithm may also prove useful for other
domains that need robust on-line alignment of time series which pos-
sibly include structural deviations.

A possible future scenario would be to extend this algorithm to op-

erate on a whole database of musical pieces, automatically recognis-
ing both the piece being played, and the current position. An oft-line
matching/retrieval scenario related to this has been described in [7].
Practically this will require a clever indexing scheme based on mu-
sically relevant high-level features to quickly find those pieces and
time points most likely to match the ongoing sound stream.

More directions for future work are to find ways to cope with
phrase boundaries and more elaborate methods to determine the ac-
tually played part from a number of equivalent hypotheses (e.g. by
analysis of the musical context). To achieve the latter the additional
use of high-level musical features for the RPE should be considered.

ACKNOWLEDGEMENTS

This research is supported by the City of Linz, the Federal State of
Upper Austria, the Austrian Federal Ministry for Transport, Innova-
tion and Technology, and the Austrian Science Fund (FWF) under
project number TRP 109-N23.

REFERENCES

[1] Andreas Arzt and Gerhard Widmer, ‘Simple tempo models for real-time
music tracking’, in Proc. of the Sound and Music Computing Confer-
ence (SMC), Barcelona, Spain, (2010).

[2] Andreas Arzt, Gerhard Widmer, and Simon Dixon, ‘Automatic page
turning for musicians via real-time machine listening’, in Proc. of the
18th European Conference on Artificial Intelligence (ECAI), Patras,
Greece, (2008).

[3] Arshia Cont, ‘A coupled duration-focused architecture for realtime mu-
sic to score alignment’, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 99, (2009).

[4] Roger Dannenberg, ‘An on-line algorithm for real-time accompa-
niment’, in Proc. of the International Computer Music Conference
(ICMC), San Francisco, (1984).

[5] Simon Dixon, ‘An on-line time warping algorithm for tracking musical
performances’, in Proc. of the 19th International Joint Conference on
Artificial Intelligence (IJCAI), Edinburgh, (2005).

[6] Meinard Mueller and Daniel Appelt, ‘Path-constrained partial music
synchronization’, in Proc. of the International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP), Las Vegas, (2008).

[7] Meinard Mueller, Frank Kurth, and Michael Clausen, ‘Audio matching
via chroma-based statistical features’, in Proc. of the 5th International
Conference on Music Information Retrieval (ISMIR), London, (2005).

[8] Bryan Pardo and William Birmingham, ‘Modeling form for on-line fol-
lowing of musical performances’, in Proc. of the 20th National Confer-
ence on Artificial Intelligence (AAAI), Pittsburgh, (2005).

[9] Christopher Raphael, ‘Current directions with music plus one’, in Proc.

of the Sound and Music Computing Conference (SMC), Porto, (2009).

Barry Vercoe, ‘The synthetic performer in the context of live per-

formance’, in Proc. of the International Computer Music Conference

(ICMC), San Francisco, (1984).

[10]

