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ABSTRACT

The paper describes a simple but effective method for in-
corporating automatically learned tempo models into real-
time music tracking systems. In particular, instead of train-
ing our system with ‘rehearsal data’ by a particular per-
former, we provide it with many different interpretations
of a given piece, possibly by many different performers.
During the tracking process the system continuously re-
combines this information to come up with an accurate
tempo hypothesis. We present this approach in the context
of a real-time tracking system that is robust to almost ar-
bitrary deviations from the score (e.g. omissions, forward
and backward jumps, unexpected repetitions or re-starts)
by the live performer.

1. INTRODUCTION

Real-time audio tracking systems, which listen to a musi-
cal performance through a microphone and automatically
recognize at any time the current position in the musical
score, even if the live performance varies in tempo and
sound, promise to be useful in a wide range of applications.
They can serve as a (musical) partner to the performer(s)
by e.g. automatically accompanying them, interacting with
them or supplementing their art by the creation of visual-
izations of their performance.

In this paper we propose a very simple and general meth-
od for incorporating learned tempo models into real-time
music trackers. These tempo models need not reflect one
specific way of how to perform a piece of music, but rather
illustrate many different possible performance strategies
(in terms of timing and tempo). We present this approach
in the context of a real-time music tracking system that is
extremely robust in the face of almost arbitrary structural
changes (e.g. disruptions or re-starts) during a live perfor-
mance.

This unique ability distinguishes our real-time tracking
system from the two major advanced score followers that
have been developed in recent years. These systems have
two quite different domains in mind. While Christopher
Raphael’s ‘Music Plus One’ [1] focuses on the automatic
accompaniment of music containing a quite regular pulse,
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like western classical music, where close synchronization
between the solo and the accompanying parts are required,
Arshia Cont’s system ‘Antescofo’ [2] addresses a slightly
different domain, namely, contemporary music by com-
posers like Boulez, Cage and Stockhausen, with musical
characteristics quite different from ‘classical’ music. Dur-
ing the tracking process both systems are guided by sophis-
ticated tempo models.

In contrast to the above-mentioned systems, which are
based on probabilistic models, our music follower uses On-
line Dynamic Time Warping (ODTW) as its basic tracking
algorithm (at multiple levels – see Section 3). Even with-
out a predictive model of tempo, this algorithm is surpris-
ingly robust. But for passages with extremely expressive
timing, knowledge about plausible performance strategies
is needed to improve the precision of real-time alignment.
In this paper we will show two simple and very general
ways of doing so, the second of which actually permits the
system to adapt to different ways of playing without sepa-
rate training each time.

In the following, we first re-capitulate the basic prin-
ciples of our approach to on-line music following (Sec-
tion 2), briefly point to a recent extension that makes the
algorithm robust to almost arbitrary disruptions in a per-
formance (Section 3; the details of this are described in a
separate paper [3]), and then describe two simple, but ef-
fective ways of introducing expressive tempo information
into the tracking process in Sections 4 and 5.

2. A HIGHLY ROBUST MUSIC TRACKER

Our approach to score following is via audio-to-audio align-
ment. That is, rather than trying to transcribe the incoming
audio stream into discrete notes and align the transcrip-
tion to the score, we first convert a MIDI version of the
given score into a sound file by using a software synthe-
sizer. The result is a ‘machine-like’, low-quality rendition
of the piece, in which, due to the information stored in the
MIDI file, we know the time of every event (e.g. note on-
sets).

2.1 Data Representation

The score audio stream and the live input stream to be
aligned are represented as sequences of analysis frames,
computed via a windowed FFT of the signal with a ham-
ming window of size 46ms and a hop size of 20ms. The
data is mapped into 84 frequency bins, spread linearly up
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to 370Hz and logarithmically above, with semitone spac-
ing. In order to emphasize note onsets, which are the most
important indicators of musical timing, only the increase in
energy in each bin relative to the previous frame is stored.

2.2 On-line Dynamic Time Warping (ODTW)

This algorithm is the core of our real-time audio tracking
system. ODTW takes two time series describing the au-
dio signals – one known completely beforehand (the score)
and one coming in in real time (the live performance) –,
computes an on-line alignment, and at any time returns the
current position in the score. In the following we only give
a short intuitive description of this algorithm, for further
details we refer the reader to [4].

Dynamic Time Warping (DTW) is an off-line alignment
method for two time series based on a local cost measure
and an alignment cost matrix computed using dynamic pro-
gramming, where each cell contains the costs of the opti-
mal alignment up to this cell. After the matrix computa-
tion is completed the optimal alignment path is obtained
by tracing the dynamic programming recursion backwards
(backward path).

Originally proposed by Dixon in [4], the ODTW algo-
rithm is based on the standard DTW algorithm, but has two
important properties making it useable in real-time sys-
tems: the alignment is computed incrementally by always
expanding the matrix into the direction (row or column)
containing the minimal costs (forward path), and it has lin-
ear time and space complexity, as only a fixed number of
cells around the forward path is computed.

At any time during the alignment it is also possible to
compute a backward path starting at the current position,
producing an off-line alignment of the two time series which
generally is much more accurate. This constantly updated,
very accurate alignment of the last couple of seconds will
be used heavily throughout this paper. See also Figure 1
for an illustration of the above-mentioned concepts.

Improvements to this algorithm, focusing both on adap-
tivity and robustness, were presented in [5] and are incor-
porated in our system, including the ‘backward-forward
strategy’, which reconsiders past decisions (using the back-
ward path) and tries to improve the precision of the current
score position hypothesis.

In the following, we will give a short description of a
dynamic and general solution to the problem of how to
deal with structural changes effectively on-line, and then
describe and evaluate our main new contribution: two ways
to estimate the current tempo of a performance on-line, and
how to use this information to improve the alignment.

3. ‘ANY-TIME’ REAL-TIME AUDIO TRACKING

In [3] we introduced a unique feature to this system, namely
the ability to cope with arbitrary structural deviations from
the score during a live performance. At the core is a pro-
cess that continually updates and evaluates high-level hy-
potheses about possible current positions in the score, which
are then verified or rejected by multiple instances of the
basic alignment algorithm described above. To guide our

Figure 1. Illustration of the ODTW algorithm, showing
the iteratively computed forward path (white), the much
more accurate backward path (grey, also catching the one
onset that the forward path misaligned), and the correct
note onsets (yellow crosses, annotated beforehand). In the
background the local alignment costs for all pairs of cells
are displayed. Also note the white areas in the upper left
and lower right corners, illustrating the constrained path
computation around the forward path.

system in the face of possible repetitions and to avoid ran-
dom jumps between identical parts in the score, we also
introduced automatically computed information about the
structure of the piece to be tracked. We chose to call our
new approach ‘Any-time Music Tracking’, as the system is
continuously ready to receive input and find out what the
performers are doing, and where they are in the piece.

Figure 2 visually demonstrates the capabilities of our
system. In this case 5 different performances of the Prelude
in G minor Op. 23 No. 5 by Sergei Rachmaninoff are
tracked that start not at the beginning, but 20 bars into the
piece. While the basic system finds the correct position
after a long timespan (basically by chance), our ‘any-time’
tracker almost instantly identifies the correct position.

While testing this real-time tracking system with com-
plex piano music played with a lot of expressive freedom in
terms of tempo changes, we realized the need for a tempo
model to improve the alignment accuracy and the robust-
ness of our system. In the following we propose two simple
tempo models, one only based on the analysis of the most
recent couple of seconds of the live performance (Section
4) and one having access to automatically extracted ad-
ditional knowledge about possible future tempo develop-
ments (Section 5). The result will be a robust real-time
tracker that is able to adapt to and even anticipate tempo
changes of the performer, thus leading to a significant in-
crease in alignment precision.
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Figure 2. ’Starting in the middle’: A visual comparison
of the capabilities of the tracker in [5] and the ‘any-time’
real-time tracking system described in [3]. 5 performances
of the g minor Prelude by Rachmaninoff, with bars 0-20
missing, are aligned to the score by both systems. For all
performances, the ‘any-time’ real-time tracker (a) almost
instantly identifies the correct position, while the old sys-
tem (b) finds the correct position by mere chance.

4. A (VERY) SIMPLE TEMPO MODEL

4.1 Computation of the Current Tempo

The computation of the current tempo of the performance
(relative to the score representation) is based on a con-
stantly updated backward path starting in the current po-
sition of the forward calculation. As the backward path, in
contrast to the forward path which has to make its decisions
on-line, has perfect information about the performance – at
least up to the current position in the performance –, it is
much more accurate and reliable than the forward path (see
also Figure 1).

Intuitively, the slope of such a backward path represents
the relative tempo differences between the score represen-
tation and the actual performance. Given a perfect align-
ment, the slope between the last two onsets would give a
very good estimation about the current tempo. But as the
correctness of the alignment of these last onsets generally
is quite uncertain, one has to discard the last few onsets
and use a larger window over more note onsets to come up
with a reliable tempo estimation.

In particular, our tempo computation algorithm uses a
method described in [6]. It is based on a rectified version of
the backward alignment path, where the path between note
onsets is discarded and the onsets (known from the score
representation) are instead linearly connected. In this way,
possible instabilities of the alignment path between onsets
(as, e.g., between the 2nd and 3rd onset in the lower left
corner in Fig.1) are smoothed away.

After computing this path, the n = 20 most recent note
onsets which lie at least 1 second in the past are selected,
and the local tempo for each onset is computed by consid-
ering the slope of the rectified path in a window with size 3
seconds centered on the onset. This results in a vector vt of
length n of relative tempo deviations from the score repre-
sentation. Finally, an estimate of the current relative tempo
t is computed using Eq.1, which emphasizes more recent
tempo developments while not discarding older tempo in-

formation completely, for robustness considerations.

t =

∑n
i=1(ti ∗ i)∑n

i=1 i
(1)

Of course, due to the simplicity of the procedure and
especially the fact that only information older than 1 sec-
ond is used, this tempo estimation can recognize tempo
changes only with some delay. However, the computation
is very fast, which is important for real-time applications,
and it proved very useful for the task we have in mind.

4.2 Feeding Tempo Information to the ODTW

Based on the observation that both the alignment preci-
sion and the robustness directly depend on the similarity
between the tempo of the performance and the score rep-
resentation, we now use the current tempo estimate to alter
the score representation on the fly, stretching or compress-
ing it to match the tempo of the performance as closely as
possible. This is done by altering the sequence of feature
vectors representing the score audio. The relative tempo is
directly used as the probability to compress or extend the
sequence by either adding new vectors or removing vec-
tors.

More precisely, after every incoming frame from the
live performance, and before the actual path computation,
the current relative tempo t is computed as given above,
where t = 1 means that the live performance and the score
representation currently are in the exact same tempo and
t > 1 means that the performance is faster than the score
representation. The current position in the score ps is given
by the forward path and thus coincides with the index of
the last processed frame of the score representation. If
a newly computed random number r between 0 and 1 is
larger than t (or 1

t if t > 1) an alteration step takes place.
If t > 1, a feature vector is removed from the score repre-
sentation by replacing ps+1 and ps+2 with a mean vector
of ps + 1 and ps + 2. And if t < 1, a new feature vector,
computed as the mean of ps and ps+1 is inserted next into
the sequence between ps and ps+1. As our system is based
on features emphasizing note onsets, score feature vectors
representing onsets (which are known from the score) are
not duplicated, as more (and wrong) onsets would be in-
troduced to the score representation. In such cases the al-
teration process is postponed until the next frame. Further-
more, to avoid that the system could get stuck at one frame,
alterations may take place at most 3 times in a row.

5. ‘LEARNING’ TEMPO DEVIATIONS FROM
DIFFERENT PERFORMERS

As will be shown later in Section 6, the introduction of this
very simple tempo model – simply using the current esti-
mated tempo to stretch/compress the reference score audio
– already leads to considerably improved tracking results.
But especially at phrase boundaries with huge changes in
tempo (e.g. a slow-down or a speed-up by a factor of 2
is not uncommon, see also Figure 3) the above-mentioned
delay in the recognition of tempo changes still results in
large alignment errors. Furthermore, such tempo changes
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Figure 3. Tempo curves (at the level of quarter notes) automatically extracted from 5 different commercial recordings of
the Prelude Op. 23 No. 5 by Rachmaninoff. Note especially the slow-down around beat 130 and the subsequent speed-up
around beat 190 and the generally big differences in timing between the performances.

are very hard to catch instantly, even with more reactive
tempo models. To cope with this problem we came up with
an automatic and very general way to provide the system
with information about possible ways in which a performer
might shape the tempo of the piece.

First we extract tempo curves from various different
performances (audio recordings) of the piece in question.
Again, as for the real-time tempo estimation, this is done
completely automatically using the method described in
[6] (see Section 4.1), but as the whole performance is known
beforehand and the tempo analysis can be done off-line
there is now no need for further smoothing of the tempo
computation. These tempo curves (see Figure 3) are di-
rectly imported into our real-time tracking system.

We use this additional information during the tracking
process to compute a tempo estimate based not only on
tracking information about the last couple of seconds, but
also on similarities to other known performances. More
precisely, as before, after every iteration of the path com-
putation algorithm the vector vt containing tempo infor-
mation at note onsets is updated based on the backward
path and the above-mentioned local tempo computation
method. But now the tempo curve of the live performance
over the last w = 50 onsets, again located at least 1 sec-
ond in the past, is compared to the previously stored tempo
curves at the same position. To do this all n tempo curves
are first normalized to represent the same mean tempo over
these w onsets as the live performance. The Euclidean dis-
tances between the curve of the live performance and the
stored curves are computed. These distances are inverted
and normalized to sum up to 1, thus now representing the
similarity to the tempo curve of the live performance.

Based on the stored tempo curves our system can now
estimate the tempo at the current position. As the current
position should be somewhere between the last aligned on-
set oj and the onset oj+1 to be aligned next, we compute
the current tempo t according to Formula 2, where ti,oj and
ti,oj+1 represent the (scaled) tempo information of curve i
at onset oj and oj+1 respectively, and si is the similarity

value of tempo curve i.

t =

∑n
i=1[(ti,oj + ti,oj+1)si]

2
(2)

Intuitively, the tempo is estimated as the mean of the tempo
estimates at these 2 onsets, which in turn are computed
as a weighted sum of the (scaled) tempi in the stored per-
formance curves, with each curve contributing according
to its local similarity to the current performance. Please
note that this approach somewhat differs from typical ways
of training a score follower to follow a particular perfor-
mance. We are not feeding the system with ‘rehearsal data’
by a particular musician, but with many different ways of
how to perform the piece in question, as the analyzed per-
formances may be by different performers and differ heav-
ily in their interpretation style. The system then decides
on-line at every iteration how to weigh the curves, effec-
tively selecting a mixture of the curves which represents
the current performance best.

6. EVALUATION

The precision of our system was thoroughly tested on vari-
ous pieces of music (see Table 1), with very well known
musicians like Vladimir Horowitz, Vladimir Ashkenazy
and Daniel Barenboim amongst the performers. While we
currently focus on classical piano music, to show the inde-
pendence of specific instruments we also tested our system
on an oboe sonata by Mozart and the 1st movement of the
5th symphony by Beethoven.

As for the evaluation reference alignments of the perfor-
mances are needed, Table 1 also indicates how the ground
truth data was prepared. For the performance excerpts of
the Ballade Op. 38 No. 1 by Chopin (CB) we have ac-
cess to very accurate data about every note onset (‘match-
files’), as these were recorded on a computer-monitored
grand piano. For the performances of the 3 movements of
Mozart’s Sonata KV279 (MS) the evaluation is based on
exact information about every beat time, which was manu-
ally compiled. The evaluation of the other pieces is based
on off-line alignments produced by our system, which gen-
erally are much more precise than on-line alignments. We



ID Composer Piece Name Instruments # Perf. Eval. Type
BF Bach Fugue BMV847 Piano 7 Offline Align.
BS Beethoven 5th Symphony, 1st Movement Orchestra 5 Offline Align.
CB Chopin Ballade Op. 38 No. 1 (excerpt) Piano 22 Match
CW Chopin Waltz Op. 34 No. 1 Piano 8 Offline Align.
MO1 Mozart Oboe Quartet KV370 Mov. 1 Oboe, Violin, Viola, Cello 5 Offline Align.
MO3 Mozart Oboe Quartet KV370 Mov. 3 Oboe, Violin, Viola, Cello 5 Offline Align.
MS1 Mozart Sonata KV279 Mov. 1 Piano 5 Beats
MS2 Mozart Sonata KV279 Mov. 2 Piano 5 Beats
MS3 Mozart Sonata KV279 Mov. 3 Piano 5 Beats
RP Rachmaninoff Prelude Op. 23 No. 5 Piano 5 Offline Align.
SI Schubert Impromptu D935 No. 2 Piano 12 Offline Align.

Table 1. The data set used for the evaluation of our real-time tracking system.

are well aware that this information is not guaranteed to
be entirely accurate, but we manually checked the align-
ments for obvious errors and are quite confident that the re-
sults based on these alignments are reasonable, especially
as evaluations of CB and MS based on these alignments
led to very similar numbers compared to the evaluation on
the correct reference alignments.

For all pieces we used audio files synthesized from pub-
licly available ‘flat’ MIDI files with fixed tempo as score
representation, only the MIDI representing the Beethoven
Symphony contained sparse tempo annotations.

The evaluation took the form of a cross-validation. Ev-
ery performance in our data set (Table 1) was aligned with
3 algorithms: the system introduced in [5] with only mi-
nor changes and optimizations; the system including the
simple tempo model (Section 4); and the tempo model that
has access to a set of possible performance strategies (Sec-
tion 5). For the latter, all recordings pertaining to the given
piece were used except, of course, for the performance cur-
rently being aligned. The result, for each performance and
each algorithm, is a set of events with detection times in
milliseconds.

The evaluation itself was performed as proposed in [7].
For each event i the difference (offset ei) in milliseconds
to the reference alignment is computed. An event i is re-
ported as missing if it is aligned with ei > 250ms. This
percentage of notes thus misaligned (or, inversely, the per-
centage of correctly aligned notes) is the main performance
measure for a real-time music tracking system. Further
statistics, providing information about the alignment preci-
sion on those events that were correctly matched, and thus
computed on ei excluding missed events (eci), are the av-
erage error, defined as the mean over the absolute values
of all eci, the mean error, defined as the regular mean with-
out taking the absolute value, and the standard deviation of
eci. Finally two measures are computed which sum up the
overall performance of the system: the piecewise precision
rate (PP) as the average of the percentage of correctly de-
tected events for each group of performances (see Table 1)
and the overall precision rate (OP) on the whole database.

Table 2 summarizes the results. Clearly, both tempo
models lead to large improvements in tracking accuracy
for pieces played with a lot of expressive freedom, espe-

cially for the Schubert Impromptu (SI), the Rachmaninov
Prelude (RP) and the Chopin Waltz (CW), for which the
number of missed notes is more than halved. Nonetheless
these kinds of music still pose a great challenge to real-
time tracking systems. As the results for the Beethoven
Symphony (BS) show, our system can also cope quite well
with orchestral music and does not depend on specific in-
struments. This is also supported by the results on the
Oboe Quartet (MO).

As was to be expected, the results for pieces with less
extreme tempo deviations were improved to a much smaller
extent. Further investigation showed that as intended, the
‘learned’ tempo curves guided the alignment path more ac-
curately and more reactively during huge tempo changes
(i.e., at phrase boundaries).

Unfortunately it is not easy to make comparisons be-
tween different approaches in the literature, as the focus
on a particular kind of music (e.g. contemporary vs. ro-
mantic piano music or monophonic vs. heavily polyphonic
music) and the area of application (e.g. automatic accom-
paniment vs. visualization of music) have a huge influence
on the design of the system. That makes it hard to com-
pile a well-balanced ground truth database suitable for all
systems.

With this in mind, and the fact that most of our results
are currently only computed relative to off-line alignments
as ground truth, we merely want to point out some obser-
vations. First there is an overlap between our data set and
the one used for the evaluation of ‘Antescofo’ [2], which
was already used professionally in a number of live per-
formances. Using the same evaluation metrics, our sys-
tem performed significantly better (1.9% vs. 9.33% missed
notes) on the Fugue by Bach (BF). Of course the result for
‘Antescofo’ is based on only 1 single performance, which
may not even be in our data set. Furthermore, we are
quite sure that our system will perform significantly worse
than ‘Antescofo’ on sparse monophonic data, as we do not
explicitly detect note onsets and our forward path tends
to ‘randomly’ wander around during long pauses between
note onsets. Also, we allow our system to report notes
early while ‘Antescofo’ is purely reactive, thus effectively
giving our system twice as large a window to report onsets
‘correctly’. While for the task of automatic accompani-



No Tempo Model Simple Tempo Model ‘Learned’ Tempo Model
Offset (ms) % Offset (ms) % Offset (ms) %

ID Avg. Mean STD Miss Avg. Mean STD Miss Avg. Mean STD Miss
BF 52.1 -15.3 70.4 2.7% 41.7 0.1 61.3 2.2% 41.3 -0.3 59.3 1.9%
BS 84.1 4.3 106.5 15.9% 79.0 -11.6 100.8 15.0% 78.3 -6.4 100.3 13.9%
CB 63.1 16.6 83.7 10.9% 62.4 8.6 83.8 10.0% 63.1 3.9 85.2 9.9%
CW 86.3 -24.6 107.1 27.6% 78.7 -23.2 99.2 16.3% 75.4 -20.2 95.7 11.9%
MO1 94.8 -75.7 89.1 15.0% 70.1 -22.8 90.0 7.0% 72.1 -30.5 89.9 6.9%
MO3 99.9 -84.5 85.3 18.4% 64.3 -18.0 84.0 7.9% 65.7 -16.9 85.8 7.0%
MS1 47.4 13.8 64.5 3.6% 44.9 9.7 62.5 3.3% 42.7 10.1 59.5 3.2%
MS2 85.6 -21.3 104.8 19.8% 71.8 -4.7 93.7 13.8% 73.3 -6.4 94.5 11.3%
MS3 44.1 28.7 58.4 3.9% 40.2 6.7 59.5 3.3% 39.5 9.9 58.5 2.1%
RP 79.8 -18.7 102.0 31.8% 75.5 -10.5 96.8 17.1% 70.9 -10.6 93.2 14.8%
SI 107.3 -59.2 113.9 41.8% 77.9 -32.8 95.2 23.6% 78.7 -33.1 95.7 20.1%
OP 83.2% 89.7% 91.1%
PP 81.1% 87.9% 91.4%

Table 2. Real-time alignment results for all 3 evaluated systems (see text).

ment notes reported early are very bothersome, we think
that for the task of real-time music visualization, which is
our current focus, this is more tolerable.

Unfortunately, we could not find a comparable evalu-
ation of ‘Music Plus One’ [1], which, like our system,
focuses on classical music. However, a number of live
demonstrations and available videos suggest that the sys-
tem works very well in real-time accompaniment settings,
not only reacting to tempo changes, but actually predicting
them quite well.

That said, our real-time tracking system combines com-
petitive alignment results with a unique feature not found
in the above-mentioned systems: the ability to cope with
arbitrary jumps of the performer(s) on-line by continuously
tracking the performance at a coarser level and refining hy-
potheses about the current score position (see Section 3).
This not only allows to, e.g., automatically cope with arbi-
trary rehearsal situations, where the musician(s) may keep
repeating parts of the piece over and over, but effectively
makes it impossible for the system to get lost. (Detailed
experimental proof of that can be found in [3].)

7. CONCLUSION AND FUTURE WORK

We have presented a new approach to the incorporation
of tempo information into a very robust real-time track-
ing system that is capable of dealing on-line with almost
arbitrary structural deviations from the score. We demon-
strated two ways to compute a tempo estimate, one only
based on the alignment of the last couple of seconds of the
performance, and one additionally based on a collection of
previously extracted possible timing patterns, thus giving
the system the means to anticipate tempo changes of the
performer. The system was evaluated on a range of pieces
from Western classical music. Both tempo models lead
to significantly improved alignment results, especially for
pieces played with a lot of expressive freedom.

An important direction for future work is the introduc-
tion of explicit event detection into our system, based on

both an estimation of the timing and an analysis of the in-
coming audio frames. Furthermore we should think about
ways to use the extracted tempo information to further im-
prove the high level ‘any-time’ tracking process (not de-
scribed in this paper – see [3]).
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