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Audio Signal Pre-Processing

 Normalize to a dB-level of -0.1

 Clip silence in beginning and end of signal

 re-sampled to 32 kHz
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Audio Signal Pre-Processing

 Normalize to a dB-level of -0.1

 Clip silence in beginning and end of signal

 re-sampled to 32 kHz

Clipping is important for how
we will train our models.



 
Matthias Dorfer 4

Spectrogram Parameters

Two spectrogram types to capture different aspects of the audio

Version – 1
 STFT hop-size: 192
 1024-sample hann windows
 Perceptual weighting
 Mel-scaled filterbank (128 bins)

Version – 2
 STFT hop-size: 128
 1024-sample hann windows
 Logarithm of the power spectrogram
 Log-scaled filterbank (128 bins)
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Spectrogram Length Distribution

 Unequal length distribution

 Few long examples

 Many short examples



 
Matthias Dorfer 6

Spectrogram Length Distribution

 Unequal length distribution

 Few long examples

 Many short examples

Not nice when working with
Convolution Neural Networks
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Dealing with Spectrogram Lengths

Fix length to 3000 frames
 Repeat a given excerpt in case it is too short
 Clip at 3000 frames in case it is too long

Repeat

Clip
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Dealing with Spectrogram Lengths

Fix length to 3000 frames
 Repeat a given excerpt in case it is too short
 Clip at 3000 frames in case it is too long

Mainly for technical reasons.
(Network architecture, Memory)

Repeat

Clip
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Network Architecture

 Fully Convolutional Neural Network
 VGG-Style (3 x 3 convolutions  &  2 x 2 max-pooling)
 Global Average Pooling over 41 feature maps

 Why?
 Less parameters in classification layer
 Deals with varying spectrogram length

(Nice to have for application time)
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Training Procedure

 ADAM: 500 epochs with initial lerning rate 0.001

 Linear learning rate decay starting from epoch 100

0.001

500100
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Training Procedure

 ADAM: 500 epochs with initial lerning rate 0.001

 Linear learning rate decay starting from epoch 100

 Spectrogram Excerpt Sub-Sampling (384 frame excerpts)
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Training Procedure

 ADAM: 500 epochs with initial lerning rate 0.001

 Linear learning rate decay starting from epoch 100

 Spectrogram Excerpt Sub-Sampling (384 frame excerpts)

 Mixup Data Augmentation (α=0.3)

α X
1

(1 - α) X
2

+

α y
1

(1 - α) y
2
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4-Fold Iterative Self-Verification

 Address the noisy labels in the development dataset.

 Central Idea: Gradually shift unverified labels into the verified, 
trusted training set for fine-tuning the models

Is this really class Knock?
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4-Fold Cross-Validation Setup

 Crucial component for self-verification

 Parts of the data (to be verified) must not be
presented to the verification network for training

 Prediction would be worthless

 Stratified sub-folds!
(keep label distribution)
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4-Fold Cross-Validation Setup

 Crucial component for self-verification

 Parts of the data (to be verified) must not be
presented to the verification network for training

 Prediction would be worthless

 Stratified sub-folds!
(keep label distribution)

“The test set is composed of ~1.6k samples with manually-verified
annotations and with a similar category distribution than that of the train set.”
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Iterative Self-Verification Loop

Train model on verified and
unverified training data
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Iterative Self-Verification Loop

Train model on verified and
unverified training data

Predict on “unseen“,
unverified validation data

...

Verification 
Network

Predict posterior on
K random excerpts

Verification Example
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Iterative Self-Verification Loop

Train model on verified and
unverified training data

Predict on “unseen“,
unverified validation data

Self-verify labels

Verification Conditions

1) Automatic annotation and
avg. prediction agree (y = yp)

2) Average target class posteriors
exceeds 0.95

3) Count of 40 self-verified examples
per class is not reached

Manually
Verified Unverified

Automatically
Verified
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Iterative Self-Verification Loop

Train model on verified and
unverified training data

Predict on “unseen“,
unverified validation data

Self-verify labels

Finetune model with verified
and self-verified labels

Initial model 93,87
Iteration 7   96,01
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Experimental Setup

 We evaluate the model of the iteration
with highest verified validation set score.

 Test set comprises 1600 unseen audio clips

 Evaluation Measures
 Mean Average Precison (MAP@3)
 F-Score for Individual Classes



 
Matthias Dorfer 21

Experimental Results

MAP@3

Public 0.9563

Private 0.9518
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Experimental Results

MAP@3

Public 0.9563

Private 0.9518 Worst classes:
Fireworks, Gunshot, Squeak,

Scissors, Glockenspiel, Chime



 
Matthias Dorfer 23

Experimental Results

MAP@3

Public 0.9563

Private 0.9518

Private Kaggle Leaderboard
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Live Machine Listening Demo
on unseen sounds ...
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Live Demo
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Summary and Conclusions

 Proposed Approach:
 Iterative Self-verification Loop
 Fully Convolutional Neural Network

(VGG, Global Average Pooling, 2nd place Task 1A)

 Improvement from 93.87% to 96.01%
(nice but we can't expect miracles)

 Reminder for how important the right ML setup is

 Audio (Signal) Pre-Processing is still key

 https://cpjku.github.io/dcase_task2/
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