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Audio Signal Pre-Processing

= Normalize to a dB-level of -0.1
= Clip silence in beginning and end of signal

= re-sampled to 32 kHz
original clipped

128 bins

435 frames 18 frame
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Audio Signhal Pre-Processing

= Normalize to a dB-level of -0.1
= Clip silence in beginning and end of signal

= re-sampled to 32 kHz

original clipped

Clipping is important for how
we will train our models.

128 bins

435 frames 1 fram
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Spectrogram Parameters

Two spectrogram types to capture different aspects of the audio

Version -1 Version - 2

STFT hop-size: 128

1024-sample hann windows
Logarithm of the power spectrogram
Log-scaled filterbank (128 bins)

= STFT hop-size: 192

= 1024-sample hann windows

= Perceptual weighting

= Mel-scaled filterbank (128 bins)
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Fraction of Samples

Spectrogram Length Distribution

0.0025 -

0.0020 A

0.0015 = Unequal length distribution
l = Few long examples

o = Many short examples
0.0005 A

0.0000 -
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Spectrogram Length Distribution

0.0025 A

0.0020 A

0.0015 -

0.0010 A

Fraction of Samples

0.0005 A

Not nice when working with
Convolution Neural Networks

0.0000 -
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Dealing with Spectrogram Lengths

Fix length to 3000 frames
= Repeat a given excerpt in case it is too short
= Clip at 3000 frames in case it is too long
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Dealing with Spectrogram Lengths

Fix length to 3000 frames
= Repeat a given excerpt in case it is too short
= Clip at 3000 frames in case it is too long

Mainly for technical reasons.
(Network architecture, Memory)
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Network Architecture

= Fully Convolutional Neural Network
= VGG-Style (3 x 3 convolutions & 2 X 2 max-pooling)
= Global Average Pooling over 41 feature maps

= Why?
= Less parameters in classification layer

= Deals with varying spectrogram length
(Nice to have for application time)
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Training Procedure

= ADAM: 500 epochs with initial lerning rate 0.001

= Linear learning rate decay starting from epoch 100

0.001

100 500
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Training Procedure

= ADAM: 500 epochs with initial lerning rate 0.001
= Linear learning rate decay starting from epoch 100

= Spectrogram Excerpt Sub-Sampling (384 frame excerpts)
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Training Procedure

ADAM: 500 epochs with initial lerning rate 0.001

Linear learning rate decay starting from epoch 100
Spectrogram Excerpt Sub-Sampling (384 frame excerpts)
Mixup Data Augmentation (a=0.3)
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4-Fold lterative Self-Verification

= Address the noisy labels in the development dataset.

= Central Idea: Gradually shift unverified labels into the verified,
trusted training set for fine-tuning the models

Is this really class Knock?

UNIVERSITY LINZ Matthias Dorfer
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4-Fold Cross-Validation Setup

= Crucial component for self-verification

= Parts of the data (to be verified) must not be
presented to the verification network for training

= Prediction would be worthless
Training Data

=  Stratifled sub-folds!

Stratified 4-Fold
Cross Validation

(keep label distribution)
‘Unveﬁﬁed

u3

u4

2HBE
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4-Fold Cross-Validation Setup

= Crucial component for self-verification

= Parts of the data (to be verified) must not be
presented to the verification network for training

“The test set is composed of ~1.6k samples with manually-verified
annotations and with a similar category distribution than that of the train set.”

F U
Unverified

u
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u3 u4 u
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lterative Self-Verification Loop

Train model on verified and 100+

unverified training data )
v 80-
>
S 60-
_
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Epoch
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lterative Self-Verification Loop

Train model on verified and
unverified training data

Probability
Probability

Class

:

Predict on “unseen®,
unverified validation data

Verification Predict posterior on
Networ K random excerpts

Verification Example
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lterative Self-Verification Loop

Train model on verified and Verification Conditions
unverified training data _ _
¢ 1) Automatic annotation and

: avg. prediction agree (y = y,)
Predict on “unseen®,

unverified validation data 2) Average target class posteriors

¢ exceeds 0.95

Seli-verify labels 3) Count of 40 self-verified examples

per class is not reached

Manually | Automatically

Verified Verified Unverified
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lterative Self-Verification Loop

Train model on verified and 102
unverified training data 101 -
* 100 =
Predict on “unseen®, <« > 99- —— |teration_1_tr
nverified validation data " o :
unverified validatio g 98- Initial model 93,87 Iterat!on_l_va
* O Iteration 7 96,01 — lteration_7_tr
Self-verify labels < 97 —— |teration_7 va

96.01287

¢ 96 T~ T e +—séi |
Finetune model with verified
and self-verified labels
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Experimental Setup

= \We evaluate the model of the iteration
with highest verified validation set score.

= Test set comprises 1600 unseen audio clips

= Evaluation Measures
= Mean Average Precison (MAP@3)
= F-Score for Individual Classes

UNIVERSITY LINZ Matthias Dorfer
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Experimental Results
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Experimental Results

Worst classes:
Fireworks, Gunshot, Squeak,
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Experimental Results

Private Kaggle Leaderboard

104 2" place
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Live Machine Listening Demo
on unseen sounds ...
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Live Demo
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Proposed Approach:

Imp

(nice but we can't expect miracles)

Reminder for how important the right ML setup is

Aud

https.//cpjku.github.io/dcase task2/

Summary and Conclusions

Iterative Self-verification Loop

Fully Convolutional Neural Network
(VGG, Global Average Pooling, 2nd place Task 1A)

rovement from 93.87% to 96.01%

l0 (Signal) Pre-Processing is still key
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