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Social Media for Expert Search

 72% of the companies use internal social media to find 
experts within the organization and improve collaboration
 McKinsey Global Institute survey with >4200 companies
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 56% of the companies use social media for recruiting
 SHRM 2011 survey on ‘Social Networking Websites and Staffing’ 
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Expert Retrieval Background

 Expert Finding Task 
 TREC Enterprise Track 2005-2008

 W3C and CSIRO Collections

 State-of-the-art Approaches
 Profile-based Models [Balog, 2006]

 Document-based Models [Balog, 2006; Macdonald, 2006]

 Graph-based Models [Serdyukov, 2008]

 Learning-based Models [Fang, 2010]
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Expert Retrieval in Social Media 
4

 Is writing topic-specific content enough 
for being considered an expert ?

 One also needs to have topic-specific 
influence over other users
 authority estimation

 user authority networks
 reading, commenting or voting
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Outline
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 Authority-based approaches
 PageRank [Brin and Page, 1998]

 Topic-Sensitive PageRank [Haveliwala, 2002]

 HITS [Kleinberg, 1999]

 Topic-Candidate Graphs 

 Experiments
 Finding topic-specific expert bloggers

 Conclusion

PageRank (PR) [Brin and Page, 1998]
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 Graph
 topic-independent
 all users 

 all user activities over all 
documents 
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Topic-Sensitive PageRank (TSPR)   
[Haveliwala, 2002] 
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 the PageRank graph
 TSPR Approach

 PageRank approach +
 Teleportation is possible only to users that are 

associated with topic-relevant content

Query

Hyperlink-Induced Topic Search (HITS) 
[Kleinberg, 1999]
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 Hub: Sum of authority scores of outgoing edges

 Authority: Sum of hub scores of incoming edges

 Applied to more topic-specific authority networks
 to focus the computational effort on relevant nodes 

AuthorityHub
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Constructing HITS Graph
9

 Step 1: Retrieve an initial list of expert candidates, 
which is called the root set

Query

Constructing HITS Graph
10

 Step 2 : Expand root set into base set, which consists 
of users who are connected to/from users in the root 
set        
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Constructing HITS Graph
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 Step 3 : Use all users in base set as nodes and all 
existing interactions among them as edges        

Graph Properties: Nodes & Edges
12

PageRank Graph HITS Graph
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HITS on web pages
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HITS on users
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HITS on users
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Topic-Candidate (TC) graphs
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Constructing Topic-Candidate Graph
17

 Step 1: Retrieve an initial list of expert candidates, 
which is called the root set

Query

18

 Step 2 : Expand root set into base set, which consists 
of users who are connected to/from users in root set 
due to topic-relevant interactions       

Constructing Topic-Candidate Graph
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Comparison of Graphs
19

PageRank Graph

HITS Graph

Topic-Candidate Graph

 Finding topic-specific expert bloggers
 Reading and commenting activity as authority signals 

Experiments
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 Intra-organizational blog collection from a large 
multinational IT firm

 Access logs 
 cover 44 of the 56 months of the collection 

Dataset
21

# Posts 165,414

# Comments 783,356

# Employees >100,000

# Posters 20,354

# Commenters 42,169

# Readers 92,360

Evaluation Data
22

 40 work related topics
 Selected from the access logs of company search engine

 Created by the company employees

 Candidate Pools
 Top 10 candidates retrieved from content-based 

approaches

 Assessments – (The collection is not public)
 Performed by author Yeniterzi

 4-point scale
 not an expert, some expertise, an expert, very expert
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Authority Networks
23

Reading Commenting

Content-based Experiments
24

NDCG
@1

NDCG
@3

NDCG
@10

Profile [Balog, 2006] .7000 .6689 .6494

Votes [MacDonald, 2006] .3667 .4090 .4140

ReciprocalRank [MacDonald, 2006] .7083 .7003 .7281

CombSUM [MacDonald, 2006] .6417 .6334 .6168

CombMNZ [MacDonald, 2006] .5333 .5295 .5124

IRW [Serdyukov, 2008] .5167 .5189 .5159
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Authority-based Re-ranking
25

݂݈݅݊ܽ ൌ 	 ఊ݃݊݅ݐ݊݁݉݉݋ܿ	ఉ݃݊݅݀ܽ݁ݎ	ఈݐ݊݁ݐ݊݋ܿ

where  
ߙ ൅ ߚ	 ൅ ߛ ൌ 1

 Parameter optimization
 5-fold cross validation

PageRank on Three Types of Graph 
26
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MRR (VE) improvement is statistically significant with p< 0.05
MAP (VE) improvement is statistically significant with p< 0.10
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PageRank on Three Types of Graph 
27
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Ave. # unassessed candidates introduced

MRR (VE) improvement is statistically significant with p< 0.05
MAP (VE) improvement is statistically significant with p< 0.10

TSPR on Three Types of Graph 
28

MRR (VE) improvement is statistically significant with p< 0.05
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HITS on Three Types of Graph 
29
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Graph Size and Running Time Analysis
30

Graph
Average 
# Nodes

Average 
# Edges

R C R C

PR 92K 43K 1,631K 214K

HITS 57K 14K 1,480K 138K

TC 7K 1K 9K 2K

Approach Graph
Approximate  

Running Times 
(in sec)

R C

PR

PR 1,203 85

HITS 1,116 49

TC 4 1

TSPR

PR 1,222 93

HITS 1,248 65

TC 2 0.4

HITS

PR 478 73

HITS 344 26

TC 3 0.5
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Conclusion
31

 Topic-Candidate graphs

 Statistically significant improvements @ MRR (p<0.05) 
with PageRank and TSPR approaches 
 Effectiveness
 4% @ NDCG@1

 8% @ MAP(VE)

 17% @ MRR(VE)

 Efficiency
 Reading: 20 min to 2 sec

 Commenting: 1 min to 0.4 sec

Thank you


