RuSSIR 2013: Content- and Context-based Music Similarity and Retrieval

Part IV: Personalization, Context-awareness, and Hybrid Methods

Markus Schedl Peter Knees

{markus.schedl, peter.knees}@jku.at

Department of Computational Perception Johannes Kepler University (JKU) Linz, Austria

Overview

- 1. Personalization and Context-awareness
- 2. Hybrid Methods

Computational Factors Influencing Music Perception and Similarity

Examples:

- mood
- activities
- social context
- spatio-temporal context
- physiological aspects

Examples:

- music preferences
- musical training
- musical experience
- demographics

user properties

Computational Factors Influencing Music Perception and Similarity

Examples:

- mood
- activities
- social context
- spatio-temporal context
- physiological aspects

user context

Examples:

- music preferences
- musical training
- musical experience
- demographics

Basic Categorization

- Personalized systems/methods
 - incorporate aspects of the user properties, i.e. static attributes
 - take into account music genre preference, music experience, age, etc.
- Context-aware systems/methods
 - incorporate aspects of the *user context*, i.e. dynamic aspects
 - active user-awareness: new user context is automatically incorporated into the system, adaptively changing its behavior
 - passive user-awareness: application presents the new context to the user for later retrieval/incorporation

Typical Features used in CA

- Temporal and spatial features
 - temporal: weekday, time of day, season, month, etc.
 - spatial: position (coordinates), location (country, city, district; home, office)
- Physiological features
 - heart rate, pace, body temperature, skin conductance, etc.
 - application scenarios: music therapy [Liu, Rautenberg; 2009], sport trainer
 [Elliot, Tomlinson; 2006] [Moens et al.; 2010]
 - achieving and maintaining a healthy heart rate in music therapy
 - adapting music to pace of runner
 - selecting music suited to stimulate a particular running behavior, reach a performance level, or fit a training program

Gathering the User Context

Implicit

- sensors: GPS, heart rate, accelerometer, pressure, light intensity,
 environmental noise level (now available in abundance through smart phones)
- derived features: location + time \rightarrow weather
- learned features (via ML): accelerometer, speed \rightarrow user activity

Explicit

- via user involvement/feedback
- e.g., mood, activity, item ratings, skipping behavior [Pampalk et al.; 2005]

Overview

- 1. Personalization and Context-awareness
- 2. Hybrid Methods
 - Music playlist generation using music content and music context
 - *#nowplaying* approaches: music taste analysis,
 browsing the world of music on the microblogosphere
 - Geospatial music recommendation
 - User-Aware music recommendation on smart phones
 - Matching places of interest and music

Music playlist generation using music content and music context

(Knees et al.; 2006)

- Idea: combine music content + music context features to improve and speed up playlist generation
- Application scenario: "The Wheel" create a circular playlist containing all tracks in a user's collection (consecutive tracks as similar as possible)
- Approach: use web features to confine search for similar songs (carried out on music content features)

Music playlist generation using music content and music context

- Audio/content features:
 - compute Mel-Frequency Cepstral Coefficients (MFCC)
 - model song's distribution of MFCCs via Gaussian Mixture Models (GMM)
 - estimate similarity between two songs *A* and *B* by sampling points from *A*'s GMM and computing probability that points "belong to" GMM of *B*

Music playlist generation using music content and music context (Knees et al.: 2006)

- Web/music context features:
 - query Google for [artist "music"]
 - fetch 50 top-ranked web pages
 - remove HTML, stop words, and infrequent terms
 - for each artist's virtual document, compute tf-idf vectors:

$$w_{ta} = \begin{cases} (1 + \log_2 tf_{ta}) \log_2 \frac{N}{df_t} & \text{if } tf_{ta} > 0\\ 0 & \text{otherwise} \end{cases}$$

- perform cosine normalization (different document length!)

Music playlist generation using music content and music context (Knees et al.: 2006)

We computed so far...

- *similarities* based on music content (song level)
- *feature vectors* (tf-idf) from web content (artist level)

- How to combine the two?
 - adapt the content similarities according to web similarity
 - penalize transitions (decrease similarity) between songs whose artists are dissimilar in terms of web features

Music playlist generation using music content and music context (Knees et al.; 2006)

To obtain the final, hybrid similarity measure:

Folk-Rock(4) Rap(4) Jazz(1) Punk-Rock(1)	Electronica(2)	Electronica(5)	Electronica(1)	Electronica(16) Acid Jazz(1)
Folk-Rock(1) Italian(1)	Electronica(1)	Acid Jazz(1)		Acid Jazz(1) Electronica(1)
Italian(3) Electronica(1)		Reggae(2) Italian(1)		Rap(2) A Cappella(1) Acid Jazz(1) Electronica(1)
Punk-Rock(4) Electronica(1)	Rap(4)		Blues(1)	Jazz(3)
Electronica(12) Punk-Rock(1)	Rap(1) Electronica(1)	Celtic(2) Reggae(1)	Celtic(3) A Cappella(1)	Jazz(5) Bossa Nova(4) Blues(3) A Cappella(2) Rap(1)

train Self-Organizing Map (SOM) on artist web features

Perception

Inceller's Sound Player

Music playlist generation using music content and music context (Knees et al.; 2006)

To obtain the final, hybrid similarity measure:

Folk-Rock(4) Rap(4) Jazz(1) Punk-Rock(1)	Electronica(2)	Electronica(5)	Electronica(1)	Electronica(16) Acid Jazz(1)
Folk-Rock(1) Italian(1)	Electronica(1)	Acid Jazz(1)		Acid Jazz(1) Electronica(1)
Italian(3) Electronica(1)		Reggae(2) Italian(1)		Rap(2) A Cappella(1) Acid Jazz(1) Electronica(1)
Punk-Rock(4) Electronica(1)			Blues(1)	Jazz(3)
Electronica(12) Punk-Rock(1)	Rap(1) Electronica(1)	Celtic(2) Reggae(1)	Celtic(3) A Cappella(1)	Jazz(5) Bossa Nova(4) Blues(3) A Cappella(2) Rap(1)

- set to zero content-based similarity of songs by dissimilar artists (according to position in SOM)
- i.e., when creating playlists, consider as potential next track only songs by artists close together on SOM

Music playlist generation using music content and music context

(Knees et al.; 2006)

Music playlist generation using music content and music context (Knees et al.; 2006)

- Evaluation:
 - dataset: 2,545 tracks from 13 genres, 103 artists
 - performance measure: consistency of playlists (for each track, how many of its 75 consecutive tracks belong to a certain genre)

Music playlist generation using music content and music context

(Knees et al.; 2006)

#nowplaying approaches: Basics

(Schedl, ECIR 2013)

- Extract listening events from microblogs
- (a) Filter Twitter stream (#nowplaying, #itunes, #np, ...)
- (b) Multi-level, rule-based analysis (artists/songs) to find relevant tweets (MusicBrainz)
- (c) Last.fm, Freebase, Allmusic, Yahoo! PlaceFinder to annotate tweets

MusicBrainz

"Alice Cooper" "BB King" "Prince" "Metallica"

#nowplaying approaches: Basics

(Schedl, ECIR 2013)

Annotate identified listening events and create a database

"MusicMicro" dataset available: http://www.cp.jku.at/datasets/musicmicro

Some statistics on spatial distribution

#nowplay	ving	#itunes			
country	tweets	country	tweets		
Brazil	725,389	USA	78,460		
USA	673,839	Japan	30,932		
Japan	458,558	Mexico	23,047		
Mexico	419,584	Brazil	16,390		
Indonesia	284,082	UK	15,134		
South Korea	251,132	Canada	11,266		
China	183, 178	South Korea	8,652		
UK	128,744	Australia	5,119		
Netherlands	121, 134	China	4,492		
Venezuela	110,336	Germany	3,157		

most active countries

Some statistics on artist distribution

mont from up the listop of artists	#nowplayin	g	#itunes		
most frequently listened artists	artist	tweets	artist	tweets	
	Paramore	9,066	The Beatles	939	
	Drake	$7,\!697$	Daft Punk	683	
	Katy Perry	6,998	Britney Spears	567	
	Bruno Mars	6,932	Adele	462	
	Lady Gaga	6,919	Coldplay	428	
	Coldplay	$6,\!434$	Bruno Mars	416	
	Eminem	6,352	Katy Perry	374	
	Rihanna	6,038	The Black Eyes Peas	373	
	Taylor Swift	5,844	Kanye West	367	
	Usher	$5,\!445$	Lady Gaga	358	
	Muse	5,383	Avril Lavigne	308	
	Justin Bieber	5,028	Arcade Fire	299	
	The Beatles	4,579	Radiohead	266	
	Michael Jackson	4,476	Kings of Leon	240	
	Linkin Park	4,285	Duran Duran	238	
	Oasis	4,190	Michael Jackson	229	
	Kanye West	4,013	Linkin Park	228	
	Chris Brown	3,943	Eminem	211	
	Avril Lavigne	3,780	Muse	209	
	Radiohead	3,756	The Black Keys	203	

#nowplaying approaches: Music taste analysis Most mainstreamy countries

(Schedl, Hauger; 2012)

#nowplaying approaches: Music taste analysis Least mainstreamy countries

(Schedl, Hauger; 2012)

#nowplaying approaches: Music taste analysis Usage of specific products

(Schedl, Hauger; 2012)

- "MusicTweetMap"
 - Info: <u>http://www.cp.jku.at/projects/MusicTweetMap</u>
 - App: <u>http://songwitch.cp.jku.at/cp/maps/tweetMapOverlay.php</u>
 - Features:
 - browse by specific date/day or time range
 - show similar artists (based on co-occurrences in tweets)
 - restrict to country, state, city, and longitude/latitude coordinates
 - metadata-based search (artist, track)
 - clustering based on Non-negative Matrix Factorization (NMF) on Last.fm tags \rightarrow genres
 - artist charts, genre charts
 - artist histories on plays

Visualization and browsing of geospatial music taste

0	or: enter a date: 2011-11-0	9 number of days: 1	< > ignore date	
used date: 2011-11-09 [hid	e tweets] [show artist charts] [show genre of	harts] [show artist history (day)] [show artist history (week)] 🗷 a	auto refresh
limit region: longitude:	- latitude: -	aggregate charts by user		
artist:	track:	max items: 0	\square only items with music available	play music while hovering
explore similar artists	efresh stop music			
search - in artist name:	in track title:		number of clusters: 10 -	
✓ [no cluster] ✓ cluster	🛿 cluster 2 🗵 cluster 3 🗹 cluster 4 🗵 cluster 5	✓ cluster 6 ✓ cluster 7 ✓ cluster	er 8 🗹 cluster 9 🗹 cluster 10 🗹 [selec	t all/none]
		Iceland Norway	Russia	Map Satellite
North Pacific Ocean	Canada Chris Tomlin - I Will Follow [search] United eta Mexico Venezuela Colombia	Algeria Libya Egypt Mali Niger Nigeri Egypt	key Kazakhstan Mongolia key Afghanistan China Iraq Iran Pakistan Saudi Arabia India Thailanu thiopia	Japan South Kore
South Google Pacific Ocean	Peru Bolivia Chile	DR Congo Tan Angola Namibia South Atlantic Ocean South	nya zania Madagascar In dia n Ocea n Map data © 2011:	donc la Papua New Guinea Australia 2 MapLink, Tele Atlas - <u>Terms of Use</u>

Investigating geospatial music taste: 1 month

	< > or: enter a	date: 2012-01-01	number of days: 31	< >	ignore date	
used date: 2012-01-01 to 2012-01	l-31 [hide tweets] [s	how artist charts] [s	how genre charts] [show	v artist histor	ry (day)] [show artist histor	<u>y (week)</u>] 🗷 auto refresh
limit region: longitude:	- latitude:	- [aggregate charts by u	ser		
artist:	track:		max items: 0	only i	tems with music available	play music while hovering
explore similar artists refresh	stop music					
search - in artist name:		in track title:		number	r of clusters: 10 -	
🔽 [no cluster] 🔽 cluster 1 🗹 cluster	2 🗹 cluster 3 🗹 clus	ter 4 🔽 cluster 5 🔽 d	luster 6 🗹 cluster 7 🗹 clu	ıster 8 🔽 clu	ster 9 🗹 cluster 10 🗹 [select	all/none]
		und a		$\mathbf{A} \in \mathcal{A}$		Map Satellite
Canada				Charts for A	rtists	×
	•		Kazakhstan C	Genre Ran	k Artist	Playcount 🚔
	North	100 C 10 C	ev R L SR	1	Chris Brown	6350
	Atlantic Ocean		Iraq Iran Afghani	2	Drake	1601
		Algeria Libya Eg	Saul Pakistan	3	Rihanna	1566
·····	1	Mali Niger St	idan (4	Adele	1365
	5	Chao Ministria	Ethiopia	5	Coldplay	1199
Coli mia	۶ <u>ــــــــــــــــــــــــــــــــــــ</u>	DR Cone	ya	6	Paramore	1114
Bra	zil	- DK Cong	Tanzalia	7	Wale	934
Bolha	20 C	Angola	5	8	BoB feat. Bruno Mars	861
	Sou	th Namibia	Madagasca	9	Mario	828
Chie	Atlan Oce	an South		10	Oasis	816 🖛
Google Argentina	000	Allica	•		Map data ©2012	MagLink, Tele Atlas - Terms of Use

Geospatial music taste: "hip-hop" vs. "rock"

Geospatial music taste: "hip-hop" vs. "rock" (USA)

Geospatial music taste: "hip-hop" vs. "rock" (South America)

Exploring similar artists: Example "Tiziano Ferro"

0(< > or: enter a	a date: 2011-11-09 number of days	:1 <>	ignore date		
used date: [all days] [hide tweets]	show artist charts]	[show genre charts] [show artist histor	y (day)] [show	artist history (week)]	✓ auto refresh	1
limit region: longitude:	latitude:	- aggregate charts	by user			
artist: Tiziano Ferro	track:	max items: 0	on	lv items with music ava	ilable 🗌 plav n	ausic while hovering
explore similar artists refresh	stop music		Charts for A	rtists		×
search - in artist name:		in track title:	8	Tiziano Ferro	41	
✓ [no cluster] ✓ cluster	2 🗸 cluster 3 🗸 clu	ster 4 🗸 cluster 5 🗸 cluster 7	9	Falamansa	34	
			10	Ximena Sariñana	26	lito
			11	Chayanne	24	litte
			11	My Darkest Days	24	E
			13	Elefante	23	
	Greenland		14	Ha-Ash	20	
		Finland	14	Nick Jonas & The Administration	20	
	Icel	Norway	16	Fagner	19	
CITETY (M		United	16	Vasco Rossi	19	
Canada		Kingdom Poland	18	Chino & Nacho	10	
n.		Sermany Ukraine Ka	19	Amaral	9	
		s	19	Stephen Jerzak	9	
	North Atlantic	Ate	21	De Saloon	8	
The Pair and	Ocean	Algeria Libya Egypt Bard	22	Bruno & Marrone	7	-
Google Mere		Mall Niger Sudan	•	Map data	a ©2012 MapLink, T	► Fele Atlas - <u>Terms of Use</u>

Exploring similar artists: Example "Xavier Naidoo"

	< > or: enter a	date: 2012-03-25	number of days:	Charts for Ar	tists		×
used date: [all days] [hide ty	weets] [show artist charts]	[show genre charts]	show artist history	Genre Rank	Artist	Playcount Similarit	у
limit region: longitude: 7.3	36365 - 13.3402 latitude: 5	4.8256 - 47.7536	aggregate charts l	1	Katy Perry	6466	
artist: Xavier Naidoo	track:		max items: 0	2	BoB feat. Bruno Mars	6037	ing
explore similar artists re	fresh stop music			3	Lady GaGa	4556	
search - in artist name:		in track title:		4	Taio Cruz	2334	=
				5	Avicci	2301	
[no cluster] ▶ nuster 1 ▶	cluster 2 M cluster 3 M clus	ter 4 M cluster 9 M cr	uster o M cluster /	6	Gotye	2221	-
	Iceland	Nonvoir	2 · · · ·	7	Silbermond	1858	
		in invay	Sec. Sec.	8	Juli	1842	
- Canada		Kin m	s so	9	Rosenstolz	1802	
Total a		unse Un-	aine Kazakhst	10	Glasperlenspiel	1664	
		1. V.S.	. pr has	11	Sia	1504	
	North Atlantic		Afohanist	12	Marlon Roudette	1402	
10 ° W	Ocean	Algeria Libya Egy	pt Iraq Iran Pakista	13	Olly Murs	1378	
Me into	ہ _	NA-	Sarii. Arabia	14	B.E.P.	1350	
а Т	, î	Mail Niger Suda	an	15	Unheilig	1314	
Coki Jaa	ezuela	ALL WART	Ethiopia	16	Hurts	1242	
		DR Congo	K-nya	17	Nena	1124	
FTU	Brazil	Angola		18	Sunrise Avenue	1083	
B	ioli-ia	Namibia	Madagasca	19	The BossHoss	792	
Google chile	Sout Atlan	th Jotswana		20	Frida Gold	783	+ S
				•			•

Exploring music trends: Example "The Beatles"

Exploring music trends: Example "Madonna"

Geospatial Music Recommendation

(Schedl, Schnitzer; SIGIR 2013)

- Combining music content + music context features
 - audio features: PS09 award-winning feature extractors (rhythm and timbre)
 - text/web: TFIDF-weighted artist profiles from artist-related web pages
- Using collection of geo-located music tweets (cf. (Schedl; ECIR 2013))
- Aims:

(i) determining ideal combination of music content and –context(ii) ameliorate music recommendation by user's location information

Ideal combination of music content and context

(Schedl, Schnitzer; SIGIR 2013)

ξ	K = 1	K = 3	K = 5
web only -0.00	.5829	.5753	.5774
.05	.6421	.6280	.6257
.15	.6432	.6286	.6261
.25	.6433	.6275	.6258
.35	.6430	.6275	.6257
.45	.6408	.6266	.6252
.55	.6394	.6259	.6244
.65	.6379	.6255	.6232
.75	.6368	.6234	.6221
.85	.6330	.6202	.6188
.95	.6215	.6083	.6059
audio only – 1.00	.5436	.5302	.5247

Adding user context (different approaches)

(Schedl, Schnitzer; SIGIR 2013)

Abbreviation	Description
BL	random baseline
MU	hybrid music model
CF	collaborative filtering model
CF-GEO-Lin	CF model: geospatial user weighting
	using linear spatial distances
CF-GEO-Gauss	CF model: geospatial user weighting
	weighting using a Gauss kernel

Evaluation Results

T: minimum number of distinct artists a users must have listened to to be included

User-Aware Music Recommendation on **Smart Phones**

(Breitschopf; 2013)

"Mobile Music Genius": music player for the Android platform

- collecting user context data while playing
- adaptive system that learns user taste/preferences from implicit feedback (player interaction: play, skip, duration played, playlists, etc.)
- ultimate aim: dynamically and seamlessly update the user's playlist according to his/her current context

Mobile Music Genius: Approach

"Mobile Music Genius": music player for the Android platform

- standard, non-context-aware playlists are created using Last.fm tag features (weighted tag vectors on artists and tracks); cosine similarity between linear combination (of artist and track features) used for playlist generation
- learning and adapting a user model via relations {user context – music preference}
 on the level of genre, mood, artist, and song
- playlist is adapted when change in similarity between current user context and earlier user context is above threshold

Mobile Music Genius

Music player in adaptive playlist generation mode

Mobile Music Genius

Album browser in cover view

Mobile Music Genius

Automatic playlist generation based on music context (features and similarity computed based on Last.fm tags)

14.58

User context

Network

NetworkContext ImobileAvailable=true. mobileConnected=true. wifiEnabled=false. wifiAvailable=false, wifiConnected=false, activeNetworkType=0, activeNetworkSubtype=8. activeNetworkRoaming=false, wifiBssid=null, wifiSsid=null, wifilpAddress=0, wifiLinkSpeed=-1, wifiRssi=-9999, bluetoothAvailable=true, bluetoothEnabled=false]

Ambient

LightContext [light=426.0, lightStdDev=3.7] ProximityContext [proximity=5.0, proximityStdDev=0.0] No temperature context PressureContext [pressure=979.0, pressureStdDev=0.1] NoiseContext [noise=75.0, noiseStdDev=3.4]

Motion

AccelerationContext [acceleration=0.3, accelerationStdDev=0.4] OrientationContext [orientationUser=3, orientationDevice=3] RotationContext [rotation=0.2, rotationStdDev=0.14]

Player

PlayerContext [repeatMode=0, shuffleMode=0, apmMode=1] SoundEffectContext [equalizerEnabled=true, equalizerPreset=0, bassBoostEnabled=true,

bassBoostStrength=443, virtualizerEnabled=false,

Mobile Music Genius

Some user context features gathered while playing

User Context Features from Android Phones

Time: timestamp, time zone

Personal: userID/eMail, gender, birthdate

- *Device:* devideID (IMEI), sw version, manufacturer, model, phone state, connectivity, storage, battery, various volume settings (media, music, ringer, system, voice)
- Location: longitude/latitude, accuracy, speed, altitude
- *Place:* nearby place name (populated), most relevant city
- Weather: wind direction, speed, clouds, temperature, dew point, humidity, air pressure
- *Ambient:* light, proximity, temperature, pressure, noise, digital environment (WiFi and BT network information)
- Activity: acceleration, user and device orientation, screen on/off, running apps
- *Player:* artist, album, track name, track id, track length, genre, plackback position, playlist name, playlist type, player state (repeat, shuffle mode), audio output (headset plugged)

mood and activity (direct user feedback)

Preliminary Evaluation

- collected user context data from 12 participants over a period of 4 weeks
- age: 20-40 years, gender: male
- user context vectors recoded whenever a "sensor" records a change
- 166k data points
- assess different classifiers (Weka) for the task of predicting artist/track/genre/mood given a user context vector: k-nearest neighbor (kNN), decision tree (C4.5), Support Vector Machine (SVM), Bayes Network (BN)
- cross-fold validation (10-CV)

To be analyzed:

- (i) Which granularity/abstraction level to choose for representation/learning?
- (ii) Which user context features are the most important to predict music preference?

Department of Computational Perception

	Dataset	0-R	KNN	C4.5	SVM	BN	Max.rel.	Avg.rel.
	Time	1.13	1.26	0.90	1.30	1.31	116.04%	105.84%
	Location	1.13	1.40	1.57	1.42	1.58	139.76%	132.06%
Predicting class	Location - state	1.13	1.36	1.69	0.96	0.82	150.26%	107.28%
track	Location - place	1.13	1.31	1.47	1.46	2.23	197.49%	143.46%
	Weather	1.13	1.17	0.91	1.19	1.07	105.25%	96.21%
	Ambient	1.13	0.79	0.63	1.08	1.12	98.97%	79.99%
	Ambient - no n.	1.13	0.64	0.63	0.97	1.10	97.49%	73.97%
	Ambient - noise	1.13	0.45	0.67	1.28	1.11	113.38%	77.77%
Results barely above	Motion	1.13	0.54	0.97	1.06	1.32	117.15%	86.25%
haseline	Motion - acc.	1.13	0.58	0.58	1.39	1.10	123.50%	80.75%
baseline.	Motion - orient.	1.13	1.09	1.33	0.94	1.41	124.76%	105.78%
	Task	1.13	1.43	1.96	1.57	1.73	173.61%	148.36%
Predicting particular	Task - display	1.13	1.75	1.68	1.76	1.76	156.47%	154.21%
tracks is hardly	Task - tasks	1.13	1.16	1.60	1.13	1.53	141.76%	120.03%
feasible with the	Phone	1.13	1.12	0.97	0.70	0.99	99.41%	83.85%
amount of data	Network	1.13	1.43	1.34	1.26	1.82	161.79%	129.88%
available	Network - state	1.13	1.31	1.75	1.58	1.82	161.79%	143.27%
	Network - env.	1.05	1.79	1.45	1.44	1.08	170.20%	137.07%
	Device	1.13	1.07	1.56	1.12	1.24	138.14%	110.74%
	Device - battery	1.13	0.71	1.12	1.23	1.12	109.39%	92.78%
	Device - storage	1.13	0.95	1.07	1.44	1.42	127.49%	108.09%
	Device - memory	1.13	0.92	0.79	1.24	1.30	115.59%	94.46%
	Device - audio	1.13	0.46	0.63	0.96	1.30	114.93%	74.26%
	Player	1.13	1.29	1.36	1.35	1.35	120.77%	118.46%
	All	1.13	0.90	1.78	1.14	1.14	158.02%	110.05%

	Dataset	0-R	KNN	C4.5	SVM	BN	Max.rel.	Avg.rel.
	Time	28.54	60.83	57.10	59.68	58.70	213.15%	207.01%
	Location	28.54	42.69	41.42	37.80	40.04	149.58%	141.86%
Predicting class	Location - state	28.54	41.71	41.83	33.11	37.05	146.55%	134.64%
artist	Location - place	28.54	35.74	36.99	36.07	36.28	129.62%	127.09%
	Weather	28.54	63.46	63.25	56.06	61.34	222.35%	213.84%
	Ambient	28.54	34.70	36.83	31.17	35.18	129.03%	120.77%
	Ambient - no n.	28.54	33.54	34.87	31.43	34.46	122.19%	117.65%
	Ambient - noise	28.54	26.12	30.55	28.75	29.81	107.04%	100.94%
Best results	Motion	28.54	35.08	36.10	37.14	35.11	130.15%	125.65%
achieved	Motion - acc.	28.54	26.54	27.87	28.93	28.62	101.36%	98.07%
significantly	Motion - orient.	28.54	36.22	35.63	36.54	35.17	128.02%	125.75%
significantly	Task	28.54	60.75	60.65	59.63	56.20	212.86%	207.81%
outperforming	Task - display	28.54	28.12	28.31	28.62	28.34	100.29%	99.33%
baseline.	Task - tasks	28.54	61.35	61.28	60.28	55.23	214.97%	208.60%
	Phone	28.54	37.30	38.74	31.33	33.74	135.74%	123.61%
Relation	Network	28.54	36.38	36.44	37.93	34.87	132.90%	127.56%
$context \rightarrow artist$	Network - state	28.54	34.95	33.14	34.58	34.17	122.45%	119.86%
seems to be	Network - env.	21.90	25.01	26.42	27.43	22.69	125.26%	115.92%
prodictable	Device	28.54	70.42	68.68	54.95	65.31	246.76%	227.20%
predictable.	Device - battery	28.54	39.10	47.15	36.41	46.02	165.23%	147.76%
	Device - storage	28.54	61.17	60.37	40.96	57.92	214.33%	193.08%
	Device - memory	28.54	39.22	40.56	32.11	36.53	142.10%	130.01%
	Device - audio	28.54	47.92	47.71	41.42	42.76	167.90%	157.50%
	Player	28.54	38.18	38.36	38.30	38.25	134.41%	134.10%
	All	28.54	69.56	69.01	69.87	67.66	244.83%	241.86%

·				-				
	Dataset	0-R	KNN	C4.5	SVM	BN	Max.rel.	Avg.rel.
Predicting class <i>genre</i>	Time	29.80	46.75	44.99	46.46	46.27	156.88%	154.76%
	Location	29.80	32.92	34.17	34.45	32.05	115.61%	112.08%
	Location - state	29.80	32.25	33.41	32.48	30.44	112.12%	107.87%
	Location - place	29.80	29.75	32.54	32.38	32.45	109.19%	106.65%
	Weather	29.80	49.68	50.61	43.77	46.70	169.83%	160.03%
	Ambient	29.80	28.30	34.12	31.38	33.27	114.50%	106.61%
	Ambient - no n.	29.80	31.52	33.39	31.42	33.34	112.04%	108.79%
	Ambient - noise	29.80	23.38	29.92	29.67	29.77	100.40%	94.57%
Prediction on more	Motion	29.80	32.23	34.34	34.56	34.39	115.98%	113.69%
general level than for	Motion - acc.	29.80	25.67	28.55	30.50	30.41	102.35%	96.59%
	Motion - orient.	29.80	34.49	35.22	34.28	34.39	118.21%	116.10%
arust.	Task	29.80	43.89	46.47	44.55	41.85	155.95%	148.29%
	Task - display	29.80	28.57	29.04	28.78	28.78	97.44%	96.61%
Still genre is an ill-	Task - tasks	29.80	44.71	47.62	44.94	42.31	159.81%	150.66%
defined concept,	Phone	29.80	31.17	33.43	31.33	30.13	112.20%	105.77%
hence results inferior	Network	29.80	32.31	31.96	33.93	31.73	113.85%	109.00%
to artist prediction	Network - state	29.80	31.70	31.14	32.07	31.26	107.63%	105.85%
	Network - env.	26.10	26.17	27.02	29.78	27.28	114.08%	105.58%
	Device	29.80	49.65	50.03	43.16	48.00	167.88%	160.11%
	Device - battery	29.80	31.58	38.03	33.42	35.85	127.61%	116.51%
	Device - storage	29.80	47.76	47.55	37.25	46.56	160.29%	150.28%
	Device - memory	29.80	30.79	36.87	31.76	36.60	123.73%	114.11%
	Device - audio	29.80	40.19	41.12	38.16	37.02	137.99%	131.29%
	Player	29.80	35.79	36.34	36.08	35.59	121.96%	120.65%
	All	29.80	46.75	49.22	50.41	48.51	169.15%	163.50%

	Dataset	0-R	KNN	C4.5	SVM	BN	Max.rel.	Avg.rel.
Predicting class	Time	24.00	24.79	27.73	24.56	24.29	115.53%	105.59%
	Location	24.00	23.27	23.89	25.05	24.62	104.38%	100.86%
	Location - state	24.00	23.44	23.97	25.25	24.79	105.20%	101.51%
	Location - place	24.00	21.99	23.99	23.80	23.67	99.94%	97.33%
	Weather	24.00	25.13	27.05	27.86	25.39	116.07%	109.82%
	Ambient	24.00	17.04	19.41	23.59	24.04	100.17%	87.58%
	Ambient - no n.	24.00	21.14	23.18	23.87	24.00	100.00%	96.03%
	Ambient - noise	24.00	16.70	21.38	23.79	23.96	99.83%	89.40%
Poor results as	Motion	24.00	19.88	26.54	24.78	24.65	110.56%	99.84%
mood in music is	Motion - acc.	24.00	20.86	22.75	24.32	23.96	101.34%	95.72%
mood in music is	Motion - orient.	24.00	23.99	27.82	24.99	24.65	115.91%	105.68%
quite subjective and	Task	24.00	22.94	24.32	24.58	25.00	104.18%	100.87%
hence hard to	Task - display	24.00	24.45	24.58	24.97	24.88	104.06%	103.00%
predict.	Task - tasks	24.00	23.56	25.20	24.99	24.13	105.00%	101.95%
	Phone	24.00	19.34	24.64	26.75	26.74	111.45%	101.52%
Which mood anyway: composers intention? mood expressed by performers? mood evoked in listeners?	Network	24.00	22.81	24.20	23.92	24.28	101.17%	99.17%
	Network - state	24.00	23.48	24.39	24.01	24.28	101.64%	100.17%
	Network - env.	27.78	27.68	28.36	29.24	27.78	105.26%	101.74%
	Device	24.00	21.45	24.72	25.79	24.86	107.46%	100.86%
	Device - battery	24.00	16.09	26.31	23.94	24.06	109.64%	94.17%
	Device - storage	24.00	25.57	26.69	25.36	24.48	111.19%	106.36%
	Device - memory	24.00	13.92	21.39	23.59	23.81	99.22%	86.16%
	Device - audio	24.00	26.33	26.50	25.48	24.43	110.43%	107.03%
	Player	24.00	24.81	25.57	25.37	25.45	106.54%	105.41%
	All	24.00	22.43	26.16	24.81	26.11	109.00%	103.66%

(ii) Which user context features are the most important to predict music preference?

Making use of all features yields best results.

Perception

(ii) Which user context features are the most important to predict music preference?

Weka-feature selection confirms most important attributes:

time: weekday, hour of day

location: nearest populated place (better than longitude, and latitude) *weather:* temperature, humidity, air pressure, wind speed/direction, and dew point *device*: music and ringer volume, battery level, available storage and memory *task*: running tasks/apps

Problems:

- too little data to make significant predictions on the quality of the approach
 - \rightarrow need more data from more participants over a longer period of time
 - \rightarrow large-scale study
- dataset does not incorporate features potentially highly relevant to music listening inclination (user activity and mood)

Large-scale Evaluation

- collected user context data from JKU students over a period of 2 months
- about 8,000 listening data items and corresponding user context gathered

To be analyzed:

(i) How well does our approach perform to predict the preferred artist based on a given user context vector?

Results for predicting class "artist":

ZeroR (baseline) classifier	15% accuracy
k-nearest neighbors	42% accuracy
JRip rule learner	51% accuracy
J48 decision tree	55% accuracy

(Kaminskas et al.; RecSys 2013)

recommend music that is suited to a place of interest (POI) of the user (context-aware)

(Kaminskas et al.; RecSys 2013)

Approaches:

• *genre-based*: only play music belonging to the user's preferred genres (baseline)

(Kaminskas et al.; RecSys 2013)

Approaches:

knowledge-based: use the DBpedia knowledge base (relations between POIs and musicians)

(Kaminskas et al.; RecSys 2013)

Approaches:

tag-based: user-assigned emotion tags describing images of POIs and music, • Jaccard similarity between music-tag-vectors and POI-tag-vectors

Tag:		Fritz Kreisler - Liebesfreud	Skip this item
Melancholic	Bright	http://en.wikipedia.org/wiki/Fritz Kreisler	
Heavy	Animated	00:08 00:31 0	
✓ Tender	Energetic	FMP3	
Cold	Spiritual	"Friedrich 'Fritz' Kreisler (February 2, 1875 – January Austrian-born violinist and composer. One of the most fa	29, 1962) was an amous violin masters
✓ Modern	✓ Serene	of his or any other day, he was known for his sweet t phrasing. Like many great violinists of his generation	one and expressive on, he produced a
Ancient	Calm	characteristic sound which was immediately recognizable	as his own. Although
Affectionate	Sad	nonetheless reminiscent of the gemütlich (cozy) lifestyle o	fpre-war Vienna."
✓ Dark	Strong		
✓ Lightweight	Colorful		
✓ Open	Thrilling		
Warm	Agitated		
Sentimental	Bouncy		
Sub	omit		

(Kaminskas et al.; RecSys 2013)

Approaches:

• *auto-tag-based*: use state-of-the-art music auto-tagger based on the Block-level Feature framework to automatically label music pieces; then again compute Jaccard similarity between music-tag-vectors and POI-tag-vectors

(Kaminskas et al.; RecSys 2013)

Approaches:

• *combined*: aggregate music recommendations w.r.t. ranks given by knowledge-based and auto-tag-based approaches

(Kaminskas et al.; RecSys 2013)

Approaches:

- *genre-based*: only play music belonging to the user's preferred genres (baseline)
- *knowledge-based*: using the DBpedia knowledge base (relations between POIs and musicians)
- *tag-based*: user-assigned emotion tags describing images of POIs and music, Jaccard similarity between music-tag-vectors and POI-tag-vectors
- *auto-tag-based*: using state-of-the-art music auto-tagger based on the Block-level Feature Framework to automatically label music pieces; then again use Jaccard similarity between music-tag-vectors and POI-tag-vectors
- *combined*: aggregate music recommendations w.r.t. ranks given by knowledgebased and auto-tag-based approaches

(Kaminskas et al.; RecSys 2013)

Evaluation:

• user study via web interface (58 users, 564 sessions)

(Kaminskas et al.; RecSys 2013)

Evaluation:

• Performance measure: number of times a track produced by each approach was considered as well-suited in relation to total number of evaluation sessions, i.e. probability that a track marked as well-suited by a user was recommended by each approach

SUMMARY

Music Information Retrieval is a great field

Various approaches to extract information from the audio signal

Various sources and approaches to extract contextual data and similarity information from the Web

Multi-modal modeling and retrieval is important and allows for exciting applications

Next big challenges:

- modeling user properties and context
- improve personalization and context-awareness
- situation-based retrieval
- new and better suited evaluation strategies

