
Titelmasterformat durch Klicken bearbeiten 

RuSSIR 2013: Content- and Context-based Music Similarity and Retrieval 

Advanced Music Content Analysis 

Markus Schedl 
Peter Knees 

{markus.schedl,	  peter.knees}@jku.at	  

Department of Computational Perception 
Johannes Kepler University (JKU) 

Linz, Austria 



Mid-level feature extraction and similarity calculation 

Pitch Class Profiles: related to Western music tone 
scale, melodic retrieval 

MFCCs: related to timbral properties 
Block-Level Features 
- Fluctuation Patterns: related to rhythmic/periodic properties 

- Correlation Patterns: temporal relation of frequencies 

- Spectral Contrast Patterns: related to “tone-ness” 

Throughout: Examples and Applications 

Outline 



Convert signal to frequency domain, e.g., 
using an FFT 
(Psycho)acoustic transformation 
(Mel-scale, Bark-scale, Cent-scale, ...): 
mimics human listening process 
(not linear, but logarithmic!), 
removes aspects not perceived by humans, 
emphasizes low frequencies 
Extract features 

–  Block-level 
(large time windows, e.g., 6 sec) 

–  Frame-level 
(short time windows, e.g., 25 ms) 
needs feature distribution model 

Mid-level Feature Processing Overview 
“Block” “Frames” 
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Figure 2.2: Comparison of auditory scales.

on the y-axis (the frequency in Mel) have equal bandwidth, while on the x-axis

(linear frequency resolution) the size of intervals is logarithmically increasing. The

weighting of the bins for both hard and soft mapping are illustrated in the upper

and the lower plot. For the soft mapping triangular filters are used, while for the

hard mapping all bins are equally weighted as illustrated in figure 2.3. It is worth

mentioning that this mapping of linear to logarithmic frequency scale could also be

realized directly via designing a specific filter bank of FIR or IIR filters. However,

it is common practice in MIR to first compute the linear FFT and then perform

this mapping onto a logarithmic auditory scale for performance reasons.

Up to this point the spectrum of audio signal as a whole has been discussed. In the

following Time-Frequency Representations (TFR) are introduced, which represent

the time-localized, short-time frequency content of an audio signal.

Acoustic Scales 



(aka chroma vectors) 
•  Transforming the frequency activations into well known musical 

system/representation/notation 
•  Mapping to the equal-tempered scale (each semitone equal to one 

twelfth of an octave) 
•  For each frame, get intensity of each of the 12 semitone (pitch) 

classes 

Pitch Class Profiles 
(Fujishima; 1999) 



Mapping Frequencies to Semitones  



Map data to semitone scale to  
represent (western) music 
Frequency doubles for each octave 

–  e.g. pitch of A3 is 220 Hz,  
compared to 440 Hz of A4 

Mapping, e.g., using filter bank  
with triangular filters 

–  centered on pitches 
–  width given by neighboring pitches 
–  normalized by area under filter 

Semitone Scale 
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The note C in different octaves 
vs. frequency 



Sum up activations that belong to the same class of pitch 
(e.g., all A, all C, all F#) 

Results in a 12-dimensional feature vector for each frame 

PCP feature vectors describe tonality 
–  Robust to noise (including percussive sounds) 
–  Independent of timbre (~ played instruments) 
–  Independent of loudness 

Pitch Class Features 

+ 



Pitch Class Profiles in Action 

Sonic Visualizer by QMUL, C4DM; http://www.sonicvisualiser.org 



Real-Time Score Following 

Tracks the position of a piano 
player in the score while playing 
• Uses a combination of spectral flux 

and PCPs as features 
• Dynamic Time Warping (DTW) to 

match recorded live performance 
with dead-pan synthesized version  

(Arzt, Widmer; 2010) 



Application: Automatic Page Turner 
(Arzt, Widmer; 2010) 



PCPs used in classification, key/chord estimation, 
melody retrieval, and cover song retrieval, i.e., finding 
songs that are based on the same melody/tune, 
independent of instrumentation (timbre) 
Another scenario is to find different songs that 
nevertheless “sound similar” 
This is most often and predominantly related to timbre 
aspects (although it is more complex than that – see Lecture I) 

MFCCs have shown to be better descriptors for this task 

Music Retrieval Scenarios 



Mel Frequency Cepstral Coefficients (MFCCs) have their roots 
in speech recognition and are a way to represent the envelope 
of the power spectrum of an audio frame 

–  the spectral envelope captures perceptually important information 
about the corresponding sound excerpt (timbral aspects) 

–  most important for music similarity: sounds with similar spectral 
envelopes are generally perceived as similar. 

MFCCs 
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Figure 2.7: Spectral Envelope of a violin (from [Schwarz and Rodet, 1999]).

In contrast to the definition of the Cepstrum in practice for the computation of

MFCC vectors the discrete cosine transform is used instead of the inverse Fourier

transform. In figure 2.8 three Time Frequency Representations are compared.

In the upper plot the magnitude spectrum is visualized, in the middle plot the

Mel-spectrum and in the lower plot the MFCC representation is shown. One

can see that because of the DCT compression the direct relation to the spectral

representation is lost for the MFCC representation.

In the next section the Cent-Spectrum is introduced and it is empirically shown

that the auditory Cent-scale is especially suitable for music signals.

2.4.5 Cent Spectrum

While many signal processing techniques in MIR simply use the Bark- or the Mel-

Scale to account for the logarithmic frequency perception of the human ear, here a

simple experiment is presented that indicates that the Cent-Scale is indeed a good

choice to account for the musical nature of digital audio signals in MIR.

The main idea of this experiment is that the frequency resolution of a Time-



Perceptual scale of pitches 
judged by listeners to be 
equal in distance from one 
another 
Given Frequency f in Hertz, 
the corresponding pitch in 
Mel can be computed by 

Normally around 40 bins 
equally spaced on the Mel 
scale are used 
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Figure 2.3: Visualization of hard versus softmapping according to the logarithmic

Mel-Scale.

2.4 Time-Frequency Representation

One assumption of the Fourier transform is that the analyzed signal x(t) is a

stationary signal, which basically means that the frequency content is constant over

time. Unfortunately, the frequency content of audio signals is typically changing

over time. Therefore, audio signals fall into the category of so-called non-stationary



MFCCs are computed per frame 
1.  STFT: short-time Fourier transform 
2.  the logarithm of the amplitude 

spectrum is taken (motivated by the 
way we humans perceive loudness) 

3.  mapping of the amplitude spectrum 
to the Mel scale 

4.  quantize (e.g., 40 bins) and 
make linear (DCT doesn’t operate on 
log scale) 

MFCCs 
Convert to Frames

Take discrete
Fourier transform

Take Log of 
amplitude spectrum

Mel-scaling and
smoothing

Discrete cosine transform

Waveform

MFCC Features



5.  perform Discrete Cosine Transform to 
de-correlate the Mel-spectral vectors 

–  similar to FFT; only real-valued 
components 

–  describes a sequence of finitely many data 
points as sum of cosine functions 
oscillating at different frequencies 

–  results in n coefficients (e.g., n = 20) 

Convert to Frames

Take discrete
Fourier transform

Take Log of 
amplitude spectrum

Mel-scaling and
smoothing

Discrete cosine transform

Waveform

MFCC Features
NB: performing (inverse) FT or similar on log 
representation of spectrum => “cepstrum” (anagram!) 



Metal 

Choir 

MFCC Examples 



Full music piece is now a set of MFCC vectors; number of frames 
depends on length of piece 
Need summary/aggregation/modeling of this set 

–  Average over all frames? Sum?  
Most common approach: Statistically model the distribution of all 
these local features 

–  memory requirements, runtime and also the recommendation quality 
depend on this step 

Learn model that explains the data best 
–  State-of-the-art until 2005: learn a Gaussian Mixture Model (GMM) 
–  a GMM estimates a probability density as the weighted sum of M simpler 

Gaussian densities, called components of the mixture 
–  each song is modeled with a GMM 
–  the parameters of the GMM are learned with the classic Expectation-

Maximization (EM) algorithm 
•  this can be considered a shortcoming of this approach as this step is very time 

consuming 

“Bag-of-frames” Modeling 



Comparing two GMMs is non-trivial and expensive 

–  The Kullback-Leibler divergence can be used (approximated) 

–  Basically, this requires to (Monte-Carlo) sample one GMM 
and calculate the likelihood of these observations under the 
other model and vice versa (non-deterministic, slow) 

State-of-the-Art since 2005: Single Gaussian Model 

“Bag-of-frames” Modeling 
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a short audio frame and were and are still one of the most widespread features

in the MIR community. Since the spectral envelope characterizes the timbre of

a short audio frame, the distribution of all local MFCC vectors is related to the

overall timbral characteristic of a song.

One essential part of the BoF approach is the strategy that is used to model the

distribution of the local features, because both memory requirements and runtime

depend on the used distribution model. Furthermore, it seems that the type of

distribution model (e.g. parametric or non-parametric) also has some influence

on the recommendation quality, which will be investigated in section ??. For

this reason many di�erent variants of the BoF approach have been proposed in

the literature. The following four sections, where BoF algorithms are categorized

according to the type of the distribution model, give an overview on these di�erent

variants of the BoF approach and point out their advantages and disadvantages.

4.2.1 Gaussian Mixture Models

Some of the first approaches [Logan and Salomon, 2001] to model timbral simi-

larity were based on Gaussian Mixture Models (GMM), a semi-parametric way of

modeling a distribution. Although GMM based frame-level music similarity algo-

rithms have been intensively studied in the literature [Aucouturier and Pachet, 2004,

Levy and Sandler, 2006], today semi-parametric models like GMMs are rarely used.

One of the major drawbacks is the time consuming training process, which relies

on the Expectation Maximization (EM) algorithm. The second crucial shortcoming

is that comparing two distributions modeled by a GMM is not trivial at all. Often

the similarity of two distribution models is measured by computing the Kullback-

Leibler (KL) divergence [Kullback and Leibler, 1951]. The KL divergence is a

measure of the relative entropy of two probability distributions, P and Q.

DKL(P ||Q) =
� ⇥

�⇥
p(x) log

p(x)

q(x)
dx (4.1)

However for GMMs there exists no closed form formula to compute the KL di-

vergence. The only way to compute the KL divergence is to approximate it via



Single Gaussian “Bag-of-frames” model 

Describe the frames using the mean vector and a full 
covariance matrix 
For single Gaussian distributions, a closed form of the KL-
divergence exists (not a metric!) 

–  µ ... mean, Σ ... cov. mat., tr ... trace, k ... dimensionality 
–  asymmetric, symmetrize by averaging 

Alternatively, calculate Jenson-Shannon Divergence 
 (D = DKL) 

–  symmetric, square root is a metric! 

Efficient (instantaneous retrieval of 10Ks of pieces) 



•  Single Gaussian MFCC music 
similarity measure used in 
FM4 Soundpark Player 

•  For each played song, 5 
similar sounding songs are 
recommended 

•  Retrieval in real-time 
–  full database ~20K songs (?) 
–  played song model compared to 

all whenever played 
–  no caching necessary 

Query-by-Example in the Real World 

http://fm4.orf.at/soundpark/ 



Loss of Temporal Information: 
–  temporal ordering of the MFCC vectors is completely lost 

because of the distribution model (bag-of-frames) 
–  possible approach: calculate delta-MFCCs to preserve 

difference between subsequent frames 
Hub Problem (“Always Similar Problem”) 

–  depending on the used features and similarity measure, some 
songs will yield high similarities with many other songs 
without actually sounding similar (requires post-processing to 
prevent, e.g., recommendation for too many songs) 

–  general problem in high-dimensional feature spaces 

Limitations of Bag-of-Frames Approaches 



Similarity model applicable to real-world tasks 
Satisfactory results (“world’s best similarity measure” for 
several years) 
Extensions make it applicable to search within millions of 
songs in real-time 

–  approximate searching in lower-dimensional projection 

Possible Alternatives to BoF: 
–  Hidden Markov Models 
–  Vector Quantization Models (“Codebook”) 
–  … 

Wrapping up MFCCs and BoF 



Instead of processing single frames, compute features on 
larger blocks of frames 

–  blocks are defined as consecutive sequences of audio frames 
–  thus features are (to some extent) able to capture local temporal 

information 

Afterwards the blocks are summarized to form a generalized 
description of the piece of music 
Features considered in the following: 

–  Fluctuation Patterns (Pampalk; 2001) 
From Block Level Framework (BLF) (Seyerlehner; 2010) 
–  Correlation Pattern 
–  Spectral Contrast Pattern 

Block-Level Features 



The whole spectrum is 
processed in terms of 
blocks 
Each block consists of a 
fixed number of frames 
(block size W) 
Number of rows H is 
defined by the frequency 
resolution 
Blocks may overlap (hop 
size) 
Main advantage of 
processing in blocks: 

–  blocks allow to perform 
some (local) temporal 
processing 

Block Processing 
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Figure 5.1: Block by block processing of the cent spectrum.

or there can even be unprocessed frames in between the blocks. Although the hop

size could also vary within a single file to reduce aliasing e�ects, the features that

are introduced in this section are extracted using a constant hop size. Figure 5.1

illustrates the basic process.

Intuitively, a block can be interpreted as a matrix that has W columns defined by

the block width and H rows defined by the frequency resolution (the number of

frequency bins):

block =

�

⇧⇧⇧⇤

bH,1 · · · bH,W

...
. . .

...

b1,1 · · · b1,W

⇥

⌃⌃⌃⌅ (5.1)

The main advantage of defining features on blocks of frames instead of defining



To come up with a global feature vector per song, the local feature vectors must be 
combined into a single representation 
This is done by a summarization function (e.g., mean, median, certain percentiles, 
variance, …) 
The features in the upcoming slides will be matrices, however in these cases the 
summarization function simply is applied component by component 

Generalization 



Idea: measure how strong and fast beats are played within 
certain perceptually adjusted frequency bands 
Aims at capturing periodicities in the signal (“rhythmic 
properties“) 
Incorporates several psychoacoustic transformations 

–  Logarithmic perception of frequencies (Bark scale) 
–  Loudness 
–  Periodicities 

Results in a vector description for each music piece 
–  Vector Space Model 
–  Favorable for subsequent processing steps and applications: 

classification, clustering, etc. 

Fluctuation Patterns (FPs) 



Extract 6 sec blocks 
–  discard beginning and end 

In each block: 
FFT on Hanning-windowed frames (256 
samples) 
Convert spectrum to 20 critical bands 
according to Bark scale 
Calculate Spectral Masking effects 

–  (i.e. occlusion of a quiet sound when 
a loud sound is played 
simultaneously) 

Several loudness transformations: 
1.  to dB (sound intensity) 
2.  to phon (human sensation: log) 
3.  to sone (back to linear) 

Fluctuation Patterns 



•  Second FFT reveals information about 
amplitude modulation, called 
fluctuations. 
-  Fluctuations show how often 

frequencies reoccur at certain intervals 
within the 6-sec-segment 

-  “frequencies of the frequencies” 
•  Psychoacoustic model of fluctuation 

strength 
-  perception of fluctuations depends on 

their periodicities 
-  reoccurring beats at 4Hz perceived most 

intensely 
-  60 levels of modulation (per band) 

(ranging from 0 to 600bpm) 
•  Emphasize distinctive beats 

Fluctuation Patterns 



Each block is now respresented as a 
matrix of fluctuation strengths with 1,200 
entries (20 critical bands x 60 levels of 
modulation) 

Aggregation of all blocks by taking 
median of each component 

This results in a 1,200 dimensional 
feature vector for each music piece 

Comparison of two music pieces is done 
by calculating the Euclidean distance 
between their feature vectors 

Fluctuation Patterns 



Examples 



(Some) temporal dependencies are modeled within segments of 6 second 
length 
Properties: 

+  Vector Space Model: The whole mathematical toolbox of vector spaces is 
available. 

+  easy to use in classification 
+  song models can be visualized 

-  high dimensional feature space (often a PCA is applied to reduce dim.) 
More comprehensive block-level features by (Seyerlehner; 2010) 
currently best performing similarity measure according to MIREX: 

–  Spectral Pattern (SP): frequency content 
–  Delta-Spectral Pattern (DSP): SP on delta frames 
–  Variance Delta-Spectral Pattern (VDSP): variance used to aggregate DSP 
–  Logarithmic Fluctuation Pattern (LFP): more tempo invariant 
–  Correlation Pattern (CP): temporal relation of frequency bands 
–  Spectral Contrast Pattern (SCP): estimate “tone-ness” 
–  Block aggregation via percentiles; similarity via Manhattan distance 

Wrapping up FPs and VSM 



rxy 

CP 

for all pairs 

Correlation Pattern (CP) 

•  Reduce the Cent spectrum to 52 
frequency bands 

•  Captures the temporal relation 
of the frequency bands 

•  Compute the pair-wise linear 
correlation between each 
frequency band. 

•  The 0.5-percentile is used as 
aggregation function. 



Spectral Contrast Pattern (SCP) 

•  Compute the spectral contrast 
per frame to estimate the  
“tone-ness” 

•  This is performed separately for 
20 frequency bands of the Cent 
spectrum. 

•  Sort the spectral contrast values 
of each frequency band along the 
whole block. 

•  The aggregation function is the 
0.1-percentile. 
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Spectral Contrast Pattern (SCP) 
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20 frequency bands of the Cent 
spectrum. 

•  Sort the spectral contrast values 
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DM1 DMN-1 DMN … 

Estimate 

Defining Similarity in the BLF 

Estimate song similarities for 
multiple block-level features 
•  Calculate song similarities 

separately for each pattern (by 
computing Manhattan distance)  

•  Fusion: Combine the similarity 
estimates of the individual patterns 
into a single result 

Naïve approach: linearly weighted 
combination of BLFs 
Problem: similarity estimates of the 
different patterns (block-level 
features) have different scales. 
→ special normalization strategy is 
used: Distance Space Normalization 

Combine 



Distance Space 
Normalization (DSN) 

  Operates on the distance matrix 
  Each distance Dn,m is normalized 

using Gaussian normalization. 
  Mean and standard deviation are 

computed over both column and 
row of the distance matrix. 

  Each distance has its own 
normalization parameters. 

  Observation: The operation itself 
can improve the nearest neighbor 
classification accuracy. 



Demo: Content-Based Music Browsing 



nepTune – Structuring the Music Space 

Clustering of music pieces 

Each song corresponds to point in feature 
(similarity) space 

Self-organizing Map 

High-dimensional data (content-based 
features) is projected to 2-dim. plane 

Number of pieces per cluster 
 → landscape height profile 

(Knees et al.; MM 2006) 



nepTune – Web-based Augmentation 

artist names (ID3) 

Music dictionary Term goodness 

Automatic description of landscape via Web term extraction 

(Knees et al.; MM 2006) 


