Content- and Context-based Music Similarity and Retrieval

Markus Schedl
Peter Knees

\{markus.schedl, peter.knees\}@jku.at

Department of Computational Perception Johannes Kepler University (JKU)

Linz, Austria

Overview

Goals of this class

- Introduction to the field of music similarity estimation
- Approaches to music retrieval

Parts:
I. About Music Similarity
II. Music Content Analysis and Similarity

III. Music Context-Based Similarity and Indexing
IV. Personalization and User Adaptation

Schedule

Monday (today!)
Introduction to MIR, About music similarity, Evaluation of MIR systems, Basics in audio signal processing

Tuesday

Music content based methods, MFCCs, FPs, PCPs, Similarity calculation

Wednesday

Music context based methods, Text based methods, Cooccurrences, Collaborative filtering

Thursday

User context, Personalization, Hybrid Methods
Friday
Practical Exercise: Hybrid Music Recommender

Who we are

Markus Schedl

Assistant Professor of the Department of Computational Perception, JKU Linz M.Sc. in Computer Science from Vienna University of Technology Ph.D. in Computational Perception from Johannes Kepler University Linz M.Sc. in Int'l Business Administration from Vienna University of Economics and Business Administration
Research interests: social media mining, music and multimedia information retrieval, recommender systems, information visualization, and intelligent/personalized user interfaces

Peter Knees

Assistant Professor of the Department of Computational Perception, JKU Linz M.Sc. in Computer Science from Vienna University of Technology Ph.D. in Computer Science from Johannes Kepler University Linz
Research interests: music and web information retrieval, multimedia, user interfaces, recommender systems, digital media arts

What is MIR? An Information Retrieval view

Some Definitions of Music IR

"MIR is a multidisciplinary research endeavor that strives to develop innovative content-based searching schemes, novel interfaces, and evolving networked delivery mechanisms in an effort to make the world's vast store of music accessible to all."
[Downie, 2004]
"...actions, methods and procedures for recovering stored data to provide information on music."
[Fingerhut, 2004]
"MIR is concerned with the extraction, analysis, and usage of information about any kind of music entity (for example, a song or a music artist) on any representation level (for example, audio signal, symbolic MIDI representation of a piece of music, or name of a music artist)."

Typical MIR Tasks

- Feature extraction (audio-based vs. context-based approaches)
- Similarity measurement, recommendation, automated playlist generation (last.fm, Pandora, Echo Nest, ...)
- User interfaces, visualization, and interaction
- Audio fingerprinting (copyright infringement detection, music identification services like shazam.com or musicbrainz.org)
- Voice and instrument recognition, speech/music discrimination
- Structural analysis, alignment, and transcription (segmentation, self-similarities, music summarization, audio synthesis, audio and lyrics alignment, audio to score alignment (aka score following), and audio to score transcription)
- Classification and evaluation (ground truth definitions, quality measurement, e.g. for feature extraction algorithms, genre classification)
- Optical music recognition (OMR)

Applications: Automatic Playlist Generation

"Personalized Radio Stations"
e.g.

- Pandora
- Last.fm
- Spotify Radio
- iTunes Radio
- Google Play Access All Areas
- Xbox Music

Continuously plays similar music
Based on content or collaborative filtering data

Shades Of Marble (Original Mix)
on Shades Of Marble Remixes EP

Lyrics not available
Pandora.com

Optionally, songs can be rated for improved personalization

Department of Computational
Perception

Applications: Browsing Music Collections

Intelligent organization for "one-

 touch access"- music collections become larger and larger (on PCs as well as on mobile players)
- most UIs of music players still only allow organization and searching by textual properties accoding to scheme (genre-) artist-album-track
\rightarrow novel and innovative strategies to access music are sought in MIR

„intelligent iPod" by CP@JKU [Schnitzer et al., MUM 2007]

Applications: Audio Identification

Query-by-example/audio fingerprinting:

excerpt of a song (potentially recorded in low quality) used to identify the piece

Query-by-humming:

input is not excerpt of a song, but melody hummed by the user

Examples:

www.shazam.com
www.soundhound.com
www.musicline.de/de/melodiesuche

Melodiesuche
Query by Humming

Applications: Music Tweet Map

Applications: Music Tweet Map

Applications: Automatic Accompaniment

Part I ABOUT MUSIC SIMILARITY

Music Retrieval and Similarity

To retrieve music (query-by-example), we need to calculate how similar two music pieces are What does similar mean?

- Sounding similar
- What does sounding similar mean? Genre (what is genre?), instruments, mood, melody, tempo, rhythm, singer/voice, ... all of them? a combination?
- Any of that can contribute to two songs being perceived as similar, but describing sound alone falls short of grasping that phenomenon
Music similarity is a multi-faceted task

Music Similarity Examples

Which are similar?

Which go together?

Which are more similar?

The term "music similarity" is ill-defined

Experiments show that humans only agree to about 80% when asked to assign music pieces to genres
Music similarity is highly subjective
(Seyerlehner et al.; 2010)
Contextual factors are also important (but not in the signal!)

- artist/band context, band members, city/country, time/era, lyrics, language, genre, ...
- political views of artists, marketing strategies, ...
- also listening context, mood, peers (= user context)

Optimally, similarity is calculated taking into account all influencing factors:
audio content, music context, user context (difficult!), user properties (also difficult!)

Computational Factors Influencing Music Perception and Similarity

Examples:

- mood
- activities
- social context
- spatio-temporal context
- physiological aspects

- melody
- harmony
- loudness

Examples:

- semantic labels
- song lyrics
- album cover artwork
- artist's background
- music video clips

Examples:

- music preferences
user properties
- musical training
- musical experience
- demographics

Implications for Evaluation

If similarity is such a subjective concept, how can we evaluate algorithms that claim to find similar pieces?
What is the Ground Truth?

- Class labels (genres)? Often used, often criticized
- Multi-class labels (tags)?

How to obtain (ranked) relevance?
Best strategies so far:

- Use listening data as retrieval ground truth (playlists)
- Ask users directly about similarity (listening tests)

Evaluation Campaign: MIREX

Music Information Retrieval Evaluation eXchange

- Annual MIR benchmarking effort
- Organized by UIUC since 2005 (Prof. J.S. Downie + team)
~ 20 tasks in 2013
- Melody extraction, onset/key/tempo detection
- Score following
- Cover song detection
- Query-by-singing/humming/tapping
- etc.

Audio/signal-based tasks only so far

MIREX Audio Music Similarity and Retrieval Task

Evaluates query-by-example algorithms
Results evaluated by humans
"Evaluator question: Given a search based on track A, the following set of results was returned by all systems. Please place each returned track into one of three classes (not similar, somewhat similar, very similar) and provide an indication on a continuous scale of 0-100 of how similar the track is to the query."
Each year: ~ 100 randomly selected queries, 5 results per query per algorithm (joined), " 1 set of ears" per query
Friedman's test to compare algorithms
No "winners," but algorithm ranking

Other Evaluation Campaigns

Million Song Dataset Challenge (McFee et al.; 2012)

Task: predicting songs a user will listen to
Data: user listening history playcounts (48M)
Evaluation: recall on ranking, MAP
KDD Cup 2011 (Dror et al.; 2012)
Task: predicting song ratings
Data: Yahoo! Music data set (260M ratings)
Evaluation: RMSE
MusiClef (e.g. @ MediaEval 2012)
Task: multi-modal tagging of songs
Data: audio, web, tag features, expert labels; 1355 songs
Evaluation measures: precision, recall, F1-measure

The MusiClef 2012 Data Set

Part II

MUSIC CONTENT ANALYSIS AND SIMILARITY

Categorization of Content-Based Features

Domain:

- Time domain
consider signal in time/amplitude representation ("waveform")

- Frequency domain
consider signal in frequency/magnitude representation

Transformation from time to frequency domain using, e.g., Fast Fourier Transform (FFT)

Categorization of Content-Based Features

Temporal scope:

- Instantaneous
feature is valid for a "point in time" (NB: time resolution of ear is several msec!)
- Segment
feature is valid for a segment, e.g., phrase, chorus (on a high level), or a chunk of n consecutive seconds in the audio signal
- Global
feature is valid for whole audio excerpt or piece of music

Categorization of Content-Based Features

Level of abstraction:

- Low-level properties of audio signal (e.g., energy, zero-crossing-rate)
- Mid-level
aggregation of low-level descriptors, applies psycho-acoustic models (cf. MFCC, FP);
typically the level used when estimating similarity
- High-level
musically meaningful to listener, e.g., melody, themes, motifs;
"semantic" categories, e.g., genre, time period, mood, ... (cf. semantic tags learned from audio features)

How to Describe Audio Content?

Possible idea: get features that describe music the way humans do and compute similar songs based on this information
Unfortunately we are are not able to extract most of these features reliably (or at all...)

- even "simple" human concepts are difficult to model ("semantic gap")
- even tempo estimation is very hard...
- NB: a human annotation approach is done in the Music Genome Project (cf. Pandora's automatic radio station service)
Furthermore some of these features are quite subjective (e.g., mood)
Need to find computable descriptors that capture these dimensions somehow (...and work acceptably)

Descriptors of Content

Acoustic property to describe:

- Loudness: perceived strength of sound; e.g., energy
- Pitch: frequency, psychoacoustic ordering of tones (on scale; from low to high); e.g., chroma-features
- Timbre: "tone color", what distinguishes two sounds with same pitch and loudness; e.g., MFCCs
- Chords and harmony: simultaneous pitches
- Rhythm: pattern in time; e.g., FPs
- Melody: sequence of tones; combination of pitch and rhythm
cf. (Casey et al.; 2008)

Scheme of Content-Based Feature Extraction

Analog-Digital-Conversion (ADC)

Problems that may occur in ADC:

- Quantization error: difference between the actual analog value and quantized digital value
- Solution: finer resolution (use more bits for encoding), common choice in music encoding: 16 bits per channel
- Due to Nyquist-Shannon Sampling Theorem, frequencies above $1 / 2$ of sampling frequency (Nyquist frequency) are discarded or heavily distorted
- Solution: choose a sampling frequency that is high enough (e.g. 44,100 Hz for Audio CDs)

Framing

In short-time signal processing, pieces of music are cut into segments of fixed length, called frames, which are processed one at a time; typically, a frame comprises 256-4096 samples.

Scheme of Content-Based Feature Extraction

Low-Level Feature: Zero Crossing Rate

Scope: time domain
$s(k)$...amplitude of $k^{\text {th }}$ sample in time domain
K...frame size (number of samples in each frame)

Calculation:

$$
Z C R_{t}=\frac{1}{2} \cdot \sum_{k=t \cdot K}^{(t+1) \cdot K-1}|\operatorname{sgn}(s(k))-\operatorname{sgn}(s(k+1))|
$$

Description:

number of times the amplitude value changes its sign within frame t

Remarks:

commonly used as part of a low-level descriptor set

+ might be used as an indicator of pitch
+ sometimes stated to be an approximate measure of the signal's noisiness
- in general, low discriminative power

Zero Crossing Rate: Illustration

$K=20$
hop size $=10$

Department of Computational Perception

Zero Crossing Rate: Examples

Low-Level Feature: Amplitude Envelope

Scope: time domain
Calculation:

$$
A E_{t}=\max _{k=t \cdot K}^{(t+1) \cdot K-1} s(k)
$$

Description:

maximum amplitude value within frame t

Remarks:
similar to RMS energy (see next), but less stable

+ important for beat-related feature calculation, e.g. for beat detection
- discriminative power not clear
- sensitive to amplitude outliers

Amplitude Envelope: Illustration

$K=20$
hop size $=10$

Department of
Computational
Perception

Amplitude Envelope: Examples
Amplitude Envelope

 eption

Low-Level Feature: RMS Energy

Root-Mean-Square Energy (aka RMS power, RMS level, RMS amplitude)
Scope: time domain
Calculation:

$$
R M S_{t}=\sqrt{\frac{1}{K} \cdot \sum_{k=t \cdot K}^{(t+1) \cdot K-1} s(k)^{2}}
$$

Remarks:

+ beat-related feature, can be used for beat detection
+ related to perceived intensity
+ good loudness estimation
- discriminative power not clear

RMS Energy: Illustration

$K=20$
hop size $=10$

Department of Computational Perception

RMS Energy: Examples
Root Mean Square

0

0

0

artment of putational eption

Scheme of Content-Based Feature Extraction

Fourier Transform

Transformation of the signal
from time domain (time vs. amplitude) to frequency domain (frequency vs. magnitude)

- Theorem: any continuous periodic function with a period of 2π can be represented as the sum of sine and/ or cosine waves (of different frequencies)
- Implication: any audio signal can be decomposed into

Jean Baptiste Joseph Fourier an infinite number of overlapping waves when periodic

- Periodicity is achieved by multiplying the PCM magnitude values of each frame with a suited function, e.g., a Hanning window (windowing)
- In our case: Discrete Fourier Transform (DFT)
- In practice efficiently calculated via Fast Fourier Transform (FFT) (Cooley, Tukey; 1965)

Spectrogram

(aka Sonogram)
Fourier Transform actually results in complex values (representing amplitude and phase)
Transformation for display and better interpretation of frequency magnitudes:

$$
\operatorname{spectrogram}(t, \omega)=|\operatorname{STFT}(t, \omega)|^{2}
$$

Activation strength is coded with color (or grey value) rather than plotted as a curve
Allows for two-dimensional representation of activations over whole piece

Spectrogram

Representation as STFT Spectrogram

Low-Level Feature: Spectral Centroid

Scope: frequency domain
Calculation:

$$
C_{t}=\frac{\sum_{n=1}^{N} M_{t}(n) \cdot n}{\sum_{n=1}^{N} M_{t}(n)}
$$

$M_{t}(n)$...magnitude in frequency domain at frame t and frequency bin n
$N . . . n u m b e r$ of highest frequency band

Description: center of gravity of the magnitude spectrum of the DFT, i.e. the frequency (band) region where most of the energy is concentrated

Remarks:

used as measure of sound sharpness (strength of high frequency energy)

- sensitive to low pass filtering (downsampling) as the high frequency
bands are given more weight
- sensitive to white noise (for the same reason)

Spectral Centroid: Illustration

Spectral Centroid

Choir ${ }_{20}^{40-101}$

0

0
Zen Flute ${ }_{20}^{40}$
tment of
utational ption

Low-Level Feature: Bandwidth

Scope: frequency domain
Calculation:

$$
\begin{aligned}
& \text { on: } \\
& B W_{t}^{2}=\frac{\sum_{n=1}^{N}\left(n-C_{t}\right)^{2} \cdot M_{t}(n)}{\sum_{n=1}^{N} M_{t}(n)}
\end{aligned}
$$

$M_{t}(n)$...magnitude in frequency domain at frame t and frequency bin n
N...number of highest frequency band
$C_{t} \ldots$ Spectral Centroid

Description: describes the spectral range of the interesting parts of the signal

Remarks:

+ average bandwidth of a piece of music may serve as indicator of aggressiveness
- no information about perceived rhythmic structure
- not suited to distinguish different parts of a piece of music (cf. vocal part in metal piece not visible)

Bandwidth: Illustration

0

Low-Level Feature: Spectral Flux

(aka Delta Spectrum Magnitude)
Scope: frequency domain
Calculation:

$$
F_{t}=\sum_{n=1}^{N}\left(N_{t}(n)-N_{t-1}(n)\right)^{2}
$$

$N_{t} \ldots$ frame-by-frame normalized frequency distribution in frame t $N . . . n u m b e r$ of highest frequency band

Description:
measures the rate of local spectral change, big spectral change from frame $t-1$ to $t \rightarrow$ high F_{t} value

Remarks:

- commonly used as part of a low-level descriptor set
+ may be used to distinguish between aggressive and calm music
+ may serve as speech detector
Department of

Spectral Flux: Illustration
 Spectral Flux

