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Overview

Goals of this class

— Introduction to the field of music similarity estimation
— Approaches to music retrieval

Parts:
I. About Music Similarity ‘b
II. Music Content Analysis and Similarity
II1. Music Context-Based Similarity and Indexing
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Schedule
Monday (today!)

Introduction to MIR, About music similarity, Evaluation of
MIR systems, Basics in audio signal processing

Tuesday

Music content based methods, MFCCs, FPs, PCPs,
Similarity calculation

Wednesday

Music context based methods, Text based methods, Co-
occurrences, Collaborative filtering

Thursday
User context, Personalization, Hybrid Methods
Friday
Practical Exercise: Hybrid Music Recommender G Soparment o
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Who we are

Markus Schedl

Assistant Professor of the Department of Computational Perception, JKU Linz
M.Sc. in Computer Science from Vienna University of Technology

Ph.D. in Computational Perception from Johannes Kepler University Linz

M.Sc. in Int’l Business Administration from Vienna University of Economics and
Business Administration

Research interests. social media mining, music and multimedia information retrieval,

recommender systems, information visualization, and intelligent/personalized user
interfaces
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What is MIR? An Information Retrieval view
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Some Definitions of Music IR

“MIR 1s a multidisciplinary research endeavor that strives to develop
innovative content-based searching schemes, novel interfaces, and evolving
networked delivery mechanisms in an effort to make the world’s vast store of
music accessible to all.”

[Downie, 2004]

“...actions, methods and procedures for recovering stored data to provide
information on music.”
[Fingerhut, 2004]

“MIR 1s concerned with the extraction, analysis, and usage of information
about any kind of music entity (for example, a song or a music artist) on any
representation level (for example, audio signal, symbolic MIDI
representation of a piece of music, or name of a music artist).”

[Schedl, 2008]
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Typical MIR Tasks

 Feature extraction (audio-based vs. context-based approaches)

* Similarity measurement, recommendation, automated playlist generation (last.fm,
Pandora, Echo Nest, ...)

e User interfaces, visualization, and interaction

* Audio fingerprinting (copyright infringement detection, music identification
services like shazam.com or musicbrainz.org)

* Voice and instrument recognition, speech/music discrimination

* Structural analysis, alignment, and transcription (segmentation, self-similarities,
music summarization, audio synthesis, audio and lyrics alignment, audio to score
alignment (aka score following), and audio to score transcription)

* Classification and evaluation (ground truth definitions, quality measurement, e.g.
for feature extraction algorithms, genre classification)

* Optical music recognition (OMR)
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Applications: Automatic Playlist Generation

“Personalized Radio Stations”
e.g.

* Pandora

e Last.fm

* Spotify Radio

* 1Tunes Radio

* Google Play Access All Areas
* Xbox Music

Continuously plays similar music

Based on content or collaborative
filtering data

Optionally, songs can be rated for
improved personalization

Trentemoller Radio

PANDORA

A Now Playing B2 Music Feed A My Profile
2¢ Shuffle

Trentemoller Radio

options

Shades Of Marble (Original Mix)  share
by Trentemoller
on Shades Of Marble Remixes EP | Buy -

Pandora.com
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Applications: Browsing Music Collections

Intelligent organization for “one- / /
touch access”

* music collections become larger
and larger (on PCs as well as on
mobile players)

= most Uls of music players still
only allow organization and
searching by textual properties
accoding to scheme

(genre-)artist-album-track

— novel and innovative strategies

to access music are sought in MIR Lintelligent iPod“ by CP@JKU
[Schnitzer et al., MUM 2007]
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Applications: Audio lIdentification

Query-by-example/audio fingerprinting:
excerpt of a song (potentially recorded 1n low quality) used to
identify the piece

Query-by-humming:
input 1s not excerpt of a song, but melody hummed by the user
Examples:

www.shazam.com
www.soundhound.com
www.musicline.de/de/melodiesuche

Melodiesuche
. ~  Query by Humming
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Applications: Music Tweet Map
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Applications: Music Tweet Map
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(Raphael; 2003)

Applications: Automatic Accompaniment
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ABOUT MUSIC SIMILARITY
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Music Retrieval and Similarity

To retrieve music (query-by-example), we need to
calculate how similar two music pieces are

What does similar mean?
— Sounding similar

— What does sounding similar mean?

Genre (what 1s genre?), instruments, mood, melody, tempo,
rhythm, singer/voice, ... all of them? a combination?

— Any of that can contribute to two songs being perceived as
similar, but describing sound alone falls short of grasping
that phenomenon

Music similarity 1s a multi-faceted task
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Music Similarity Examples

Which are similar?

HERBIE HANCOCK

 —
—

- _-f“'
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The term "music similarity” is ill-defined

Experiments show that humans only agree to about 80%

when asked to assign music pieces to genres (Lippens et al.; 2004)
(Seyerlehner et al.; 2010)

Music similarity 1s highly subjective
Contextual factors are also important (but not in the signal!)

— artist/band context, band members, city/country, time/era, [yrics,
language, genre, ...

— political views of artists, marketing strategies, ...

— also listening context, mood, peers (= user context)
Optimally, similarity 1s calculated taking into account all
influencing factors:

audio content, music context, user context (difficult!), user
properties (also difficult!)
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Computational Factors Examples: (Sched etal.; JIIS 2013)

- rhythm
" I - timbre
Influencing Music e
Perception and - harmony
L. . - loudness
Similarity
Examples: Examples:
- mood - semantic labels
- activities - song lyrics
- social context - album cover artwork
- spatio-temporal context . - artist's background
- physiological aspects m US | C - music video clips

7 albernative

indugtrial I }

2
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SUNEMROP . e 805POP
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user perception
context and similarity

Examples: :
- music preferences user propert:l.es
- musical training
- musical experience
- demographics
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Implications for Evaluation

If similarity 1s such a subjective concept, how can we
evaluate algorithms that claim to find similar pieces?

What 1s the Ground Truth?

* Class labels (genres)? Often used, often criticized
* Multi-class labels (tags)?

How to obtain (ranked) relevance?
Best strategies so far:

* Use listening data as retrieval ground truth (playlists)

* Ask users directly about similarity (listening tests)
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Evaluation Campaign: MIREX

Music Information Retrieval Evaluation eXchange

— Annual MIR benchmarking effort
— Organized by UIUC since 2005 (Prof. J.S. Downie + team)

~ 20 tasks 1n 2013

— Melody extraction, onset/key/tempo detection
— Score following

— Cover song detection

— Query-by-singing/humming/tapping

— efc.

Audio/signal-based tasks only so far
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MIREX Audio Music Similarity and Retrieval Task

Evaluates query-by-example algorithms

Results evaluated by humans

“Evaluator question: Given a search based on track A, the following set
of results was returned by all systems. Please place each returned track
into one of three classes (not similar, somewhat similar, very similar)
and provide an indication on a continuous scale of 0 - 100 of how similar
the track is to the query.”

Each year: ~100 randomly selected queries, 5 results per
query per algorithm (joined), “1 set of ears” per query

Friedman’s test to compare algorithms
No “winners,” but algorithm ranking
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Other Evaluation Campaigns

Million Song Dataset Challenge (McFee et al.; 2012)
Task: predicting songs a user will listen to
Data: user listening history playcounts (48M)

Evaluation: recall on ranking, MAP

KDD Cllp 2011 (Dror et al.; 2012)
Task: predicting song ratings
Data: Yahoo! Music data set (260M ratings)
Evaluation: RMSE

MusiClef (e.g. (@ MediaEval 2012)

Task: multi-modal tagging of songs
Data: audio, web, tag features, expert labels; 1355 songs

Evaluation measures: precision, recall, F1-measure
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The MusiClef 2012 Data Set

RAW CORPUS
Track Editorial Ariist, Tifle
Metadata MusicBrainzID
[ 1355 Tracks ] o
| o Features |—— e
[ MFCCs |
ANNOTATIONS
Track
Manual Annotation 167 genres, ]
g by Experts I . [ 288 moods
Track — e
—r[MusncBramle | Asack gocTopTace] ’—b- I
MSD
Artist/Album ' '
218 Artists ] Web search
[mﬁg Swne 500 Greatee | » l,[mwm]d] [ Web pages
__m-‘l : TEIDF artment of
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Categorization of Content-Based Features

Domain: ﬁ

— Time domain
consider signal in time/amplitude representation (“waveform”)

o e e e
— Frequency domain
consider signal in frequency/magnitude representation

Transformation from time to frequency domain using, e¢.g.,
Fast Fourier Transform (FFT) (s
»
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Categorization of Content-Based Features

Temporal scope: ﬁ

— Instantaneous
feature 1s valid for a “point 1n time” (NB: time resolution of
ear 1s several msec!)

— Segment
feature 1s valid for a segment, e.g., phrase, chorus (on a
high level), or a chunk of #» consecutive seconds 1n the
audio signal

— Global
feature 1s valid for whole audio excerpt or piece of music
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Categorization of Content-Based Features

Level of abstraction: ﬁ

— Low-level
properties of audio signal (e.g., energy, zero-crossing-rate)

— Mid-level
aggregation of low-level descriptors,
applies psycho-acoustic models (cf. MFCC, FP);
typically the level used when estimating similarity
— High-level
musically meaningful to listener, e.g., melody, themes, motifs;
“semantic’ categories, €.g., genre, time period, mood, ...
(cf. semantic tags learned from audio features)
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How to Describe Audio Content?

Possible 1dea: get features that describe music the way humans do
and compute similar songs based on this information

Unfortunately we are are not able to extract most of these features
reliably (or at all...)
— even “simple” human concepts are difficult to model (“semantic gap”)
— even tempo estimation 1s very hard...
— NB: a human annotation approach is done in the Music Genome
Project (cf. Pandora’s automatic radio station service)
Furthermore some of these features are quite subjective (e.g.,
mood)

Need to find computable descriptors that capture these
dimensions somehow (...and work acceptably)
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Descriptors of Content

Acoustic property to describe: ﬁ
— Loudness: perceived strength of sound; e.g., energy

— Pitch: frequency, psychoacoustic ordering of tones (on scale;
from low to high); e.g., chroma-features

— Timbre: “tone color”, what distinguishes two sounds with
same pitch and loudness; e.g., MFCCs

— Chords and harmony: simultaneous pitches
— Rhythm: pattern in time; e.g., FPs

— Melody: sequence of tones; combination of pitch and rhythm

cf. (Casey et al.; 2008)
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Scheme of Content-Based Feature Extraction

£ __sampling

RS S— ing___,, £
, __1 “ _.) ¥ quantization 3 HLH /Hf .
| I‘“ 8
analog signal Pulse Code Modulation (PCM) | =
@
frame 1: e.g. sample 1...256 //
frame 2: e.g. sample 129...384 windowing | o s
frame 3: e.g. sample 257...512 > ]
frame n -
¢ _|
time domain feature calculation TDEUEEY ERTTEI IEETTE

calculation

aggregation, model building (mean,
median, sum, GMM, HMM) » feature value, vector, or matrix
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Analog-Digital-Conversion (ADC)

15 Z Problems that may occur in ADC:

14 ; S
13 N\ * Quantization error: difference

12 \

between the actual analog value and
11 A\ : ..
\ quantized digital value

10 /
9

\ » Solution: finer resolution (use more
_ / bits for encoding), common choice in
6 \ music encoding: 16 bits per channel

0
~
=

\ / * Due to Nyquist—-Shannon Sampling
) / Theorem, frequencies above 2 of

\ 7 sampling frequency (Nyquist
TR S A frequency) are discarded or heavily

' distorted

— 1) W =

PCM: analog signal is sampled at equidistant
intervals and quantized in order to store it in » Solution: choose a sampling

digital form (here with 4 bits) frequency that is high enough (e.g.
44,100 Hz for Audio CDs)



Framing

sgnal e s

Frame 1 {::{::
S b,
e

Frame 2

Frame 3

S
Hop size Frame width

In short-time signal processing, pieces of music are cut into
segments of fixed length, called frames, which are processed one
at a time; typically, a frame comprises 256 - 4096 samples.
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Scheme of Content-Based Feature Extraction

sampling > ﬁ
quantization 3 HIH /Hﬁ

analog signal Pulse Code Modulation (PCM)

Buiwe.y

o5

v § N
T
S
® 0
005

frame 1: e.g. sample 1...256
frame 2: e.g. sample 129...384 windowing o e
frame 3: e.g. sample 257...512 <&

frame n -
_|

v

time domain feature calculation

frequency domain feature
calculation

aggregation, model building (mean,
median, sum, GMM, HMM) » feature value, vector, or matrix
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Low-Level Feature: Zero Crossing Rate

Scope: time domain
s(k)...amplitude of k" sample in time domain
K...frame size (number of samples in each frame)

Calculation:
| (DK
ZCR = > ) [sen(s(k))—sgn(s(k +1))|
k=t-K
Description:

number of times the amplitude value changes its sign within frame ¢

Remarks:

commonly used as part of a low-level descriptor set
+ might be used as an indicator of pitch

+ sometimes stated to be an approximate measure of the signal’s noisiness
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Zero Crossing Rate: lllustration

\

K=20
hop size = 10
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Zero Crossing Rate: Examples

Zero Crossing Rate
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Low-Level Feature: Amplitude Envelope

Scope: time domain
s(k)...amplitude of k" sample in time domain

K...frame size (number of samples in each frame)

Calculation:
(t+1)-K-1
AE, = max s(k)
k=t-K
Description:

maximum amplitude value within frame ¢

Remarks:

similar to RMS energy (see next), but less stable
+ important for beat-related feature calculation, e.g. for beat detection
— discriminative power not clear
— sensitive to amplitude outliers
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Amplitude Envelope: lllustration

\

K=20
hop size = 10
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Amplitude Envelope: Examples

Amplitude Envelope
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Low-Level Feature: RMS Energy

Root-Mean-Square Energy (aka RMS power, RMS level, RMS amplitude)
Scope: time domain

Calculation.
1 (t+1)-K-1
2
RMS, = |—- ) s(k)
K &k
s(k)...amplitude of kth sample in time domain
Remarks: K...frame size (number of samples in each frame)

+ beat-related feature, can be used for beat detection
+ related to perceived intensity
+ good loudness estimation

— discriminative power not clear
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RMS Energy: lllustration

K=20
hop size = 10

RMS
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RMS Energy: Examples

Root Mean Square
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Scheme of Content-Based Feature Extraction

£ __sampling

RS S— ing___,, £
, __1 “ _.) ¥ quantization 3 HLH /Hf .
| I‘“ 8
analog signal Pulse Code Modulation (PCM) | =
@
frame 1: e.g. sample 1...256 //
frame 2: e.g. sample 129...384 windowing | o s
frame 3: e.g. sample 257...512 > ]
frame n -
¢ _|
time domain feature calculation TDEUEEY ERTTEI IEETTE

calculation

aggregation, model building (mean,
median, sum, GMM, HMM) » feature value, vector, or matrix
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Fourier Transform

Transformation of the signal
from time domain (time vs. amplitude)
to frequency domain (frequency vs. magnitude)

e Theorem: any continuous periodic function with a
period of 2x can be represented as the sum of sine and/
or cosine waves (of different frequencies) e

. . . . Jean Baptiste
* Implication: any audio signal can be decomposed into j,5epn Fourier
an infinite number of overlapping waves when periodic

e Periodicity 1s achieved by multiplying the PCM magnitude values of each
frame with a suited function, e.g., a Hanning window (windowing)

* In our case: Discrete Fourier Transform (DFT)
* In practice efficiently calculated via Fast Fourier Transform (FFT)
(Cooley, Tukey; 1965)
|
4

Perception







Spectrogram

(aka Sonogram)

Fourier Transform actually results in complex values
(representing amplitude and phase)

Transformation for display and better interpretation of
frequency magnitudes:

spectrogram(t,w) = [STFT(t,w)|’
Activation strength i1s coded with color (or grey value)
rather than plotted as a curve

Allows for two-dimensional representation of
activations over whole piece
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Spectrogram
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Low-Level Feature: Spectral Centroid

Scope: frequency domain M,(n)...magnitude in frequency domain at

frame t and frequency bin n

Calculation. N
z M, (n)-n N...number of highest frequency band
n=1

C =

t

ngn)

Description: center of gravity of the magnitude spectrum of the DFT,
1.e. the frequency (band) region where most of the energy 1s
concentrated

Remarks:

used as measure of sound sharpness (strength of high frequency energy)

— sensitive to low pass filtering (downsampling) as the high frequency

bands are given more weight

— sensitive to white noise (for the same reason) (} Department of
»

Computational
Perception
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Spectral Centroid: lllustration

Spectral Centroid
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Low-Level Feature: Bandwidth

Scope: frequency domain M,(n)...magnitude in frequency domain at

Calculation: N frame t and frequency bin n
2 (n—-C, ) M (n)  N..number of highest frequency band
BW2 =l C;...Spectral Centroid

t

ZMt(n)

Description. describes the spectral range of the interesting parts of the
signal

Remarks.:
+ average bandwidth of a piece of music may serve as indicator of
aggressiveness
—no information about perceived rhythmic structure
— not suited to distinguish different parts of a piece of music
(cf. vocal part in metal piece not visible) (:: Computatona

Perception
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Bandwidth: lllustration

Bandwidth
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Low-Level Feature: Spectral Flux

(aka Delta Spectrum Magnitude)
Scope: frequency domain

Calculation.
N....frame-by-frame normalized

N
F; = Z (Nz (n) — Nr—l (n))2 frequency distribution in frame ¢
n=l1

N...number of highest frequency band

Description:
measures the rate of local spectral change, big spectral change from
frame #-/ to t — high F, value

Remarks.:
« commonly used as part of a low-level descriptor set

+ may be used to distinguish between aggressive and calm music

Computational
Perception

+ may serve as speech detector (.» Department of
»




Spectral Flux: lllustration

Spectral Flux
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