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Overview

Goals of this tutorial

— Introduction to the field of music similarity estimation
— Approaches to music retrieval

Parts:
I. About Music Similarity 'b
II. Content-Based Similarity and Retrieval

II1. Music Context-Based Similarity and Indexing
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Who we are

Markus Schedl

Assistant Professor of the Department of Computational Perception, JKU Linz
M.Sc. in Computer Science from Vienna University of Technology

Ph.D. in Computational Perception from Johannes Kepler University Linz

M.Sc. in Int’l Business Administration from Vienna University of Economics and
Business Administration

Research interests.: social media mining, music and multimedia information retrieval,
recommender systems, information visualization, and intelligent/personalized user
interfaces

Peter Knees

Assistant Professor of the Department of Computational Perception, JKU Linz
M.Sc. in Computer Science from Vienna University of Technology
Ph.D. in Computer Science from Johannes Kepler University Linz

Research interests: music and web information retrieval, multimedia, user interfaces,
recommender systems, digital media arts
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What is MIR? An Information Retrieval view
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Applications: Automatic Playlist Generation

“Personalized Radio Stations”
e.g.

e Pandora

e Last.fm

* Spotify Radio

* 1Tunes Radio

Continuously plays similar music

Based on content or collaborative
filtering data

Optionally, songs can be rated for
improved personalization

PANDORA Trentemoller Radio

A Mow Playing B Music Feed A My Profile
3¢ Shufile

Trentemoller Radio

Shades Of Marble (Original Mix) | spare
by Trentemoller
on Shades Of Marble Remixes EP = Buy -

Pandora.com
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Applications: Browsing Music Collections

Intelligent organization for “one- / /
touch access”

* music collections become larger
and larger (on PCs as well as on
mobile players)

* most Uls of music players still
only allow organization and
searching by textual properties
accoding to scheme
(genre-)artist-album-track

— novel and innovative strategies

to access music are sought in MIR Lintelligent iPod* by CP@JKU
[Schnitzer et al., MUM 2007]
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Applications: Audio Identification

Query-by-example/audio fingerprinting:
excerpt of a song (potentially recorded in low quality) used to
identify the piece

Query-by-humming:
input 1s not excerpt of a song, but melody hummed by the user
Examples:

www.shazam.com
www.soundhound.com
www.musicline.de/de/melodiesuche

" Melodiesuche
4 Query by Humming
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Applications: Music Tweet Map
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Part |
ABOUT MUSIC SIMILARITY
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Music Retrieval and Similarity

To retrieve music (query-by-example), we need to
calculate how similar two music pieces are

What does similar mean?
— Sounding similar

— What does sounding similar mean?
Genre (what 1s genre?), instruments, mood, melody, tempo,
rhythm, singer/voice, ... all of them? a combination?

— Any of that can contribute to two songs being perceived as
similar, but describing sound alone falls short of grasping
that phenomenon

Music similarity 1s a multi-faceted task
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Music Similarity Examples

Which are similar?
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The term “music similarity” is ill-defined

Experiments show that humans only agree to about 80%
when asked to assign music pieces to genres (Lippens et al.; 2004)

. . . . . . . . (Seyerlehner et al.; 2010)
Music similarity 1s highly subjective

Contextual factors are also important (but not in the signal!)

— artist/band context, band members, city/country, time/era, [yrics,
language, genre, ...

— political views of artists, marketing strategies, ...

— also listening context, mood, peers (= user context)
Optimally, similarity is calculated taking into account all
influencing factors:

audio content, music context, user context (difficult!), user
properties (also difficult!)
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Computational Factors
Influencing Music

Perception and
Similarity
Examples:

- mood

- activities

- social context

- spatio-temporal context
- physiological aspects

user
context

Examples:
- music preferences
- musical training
- musical experience
- demographics

P. Knees and M. Schedl, Music Similarity and Retriev

Examples:
- rhythm
- timbre
- melody
- harmony
- loudness

(Schedl et al.; JIIS 2013)

Examples:
- semantic labels
- song lyrics
- album cover artwork
- artist's background
- music video clips

music
perception
and similarity

indugtrial I %{f?‘* .
rock SEGITONIC
SYTOAROD e 805POP
Bk

user properties
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Implications for Evaluation

If similarity 1s such a subjective concept, how can we
evaluate algorithms that claim to find similar pieces?

What is the Ground Truth?

* (lass labels (genres)? Often used, often criticized
* Multi-class labels (tags)?

How to obtain (ranked) relevance?
Best strategies so far:

» Use listening data as retrieval ground truth (playlists)

* Ask users directly about similarity (listening tests)
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Evaluation Campaign: MIREX

Music Information Retrieval Evaluation eXchange
— Annual MIR benchmarking effort
— Organized by UIUC since 2005 (Prof. J.S. Downie + team)

~ 20 tasks in 2013

— Melody extraction, onset/key/tempo detection
— Score following

— Cover song detection

— Query-by-singing/humming/tapping

— eftc.

Audio/signal-based tasks only so far
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MIREX Audio Music Similarity and Retrieval Task

Evaluates query-by-example algorithms

Results evaluated by humans

“Evaluator question: Given a search based on track A, the following set
of results was returned by all systems. Please place each returned track
into one of three classes (not similar, somewhat similar, very similar)
and provide an indication on a continuous scale of 0 - 100 of how similar
the track is to the query.”

Each year: ~100 randomly selected queries, 5 results per
query per algorithm (joined), “1 set of ears” per query

Friedman’s test to compare algorithms
No “winners,” but algorithm ranking
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Other Evaluation Campaigns

MusiClef (e.g. @ MediaEval 2012)

Task: multi-modal tagging of songs
Data: audio, web, tag features, expert labels; 1355 songs

Evaluation measures: precision, recall, F1-measure

Million Song Dataset Challenge (McFee et al.; 2012)
Task: predicting songs a user will listen to
Data: user listening history playcounts (48M)

Evaluation: recall on ranking, MAP

KDD Cllp 2011 (Dror et al.; 2012)
Task: predicting song ratings
Data: Yahoo! Music data set (260M ratings)
Evaluation: RMSE
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Part I
CONTENT-BASED SIMILARITY
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Categorization of Content-Based Features

Domain:

— Time domain
consider signal in time/amplitude representation
(“waveform™)

— Frequency domain

consider signal in frequency/magnitude representation

Transformation from time to frequency domain using,

¢.g., Fast Fourier Transform (FFT)

P. Knees and M. Schedl, Music Similarity and Retrieval, Tutorial, SIGIR 2013, July 28, Dublin, Ireland
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Categorization of Content-Based Features

Level of abstraction:

— Low-level

properties of audio signal (e.g., energy, zero-crossing-rate)

— Mid-level
aggregation of low-level descriptors,
applies psycho-acoustic models (cf. MFCC, FP);

typically the level used when estimating similarity

— High-level

musically meaningful to listener, e.g., melody, themes, motifs;
“semantic” categories, e.g., genre, time period, mood, ...

(cf. semantic tags learned from audio features)

P. Knees and M. Schedl, Music Similarity and Retrieval, Tutorial, SIGIR 2013, July 28, Dublin, Ireland

C

Department of
Computational
Perception



How to Describe Audio Content?

Possible 1dea: get features that describe music the way humans do
and compute similar songs based on this information

Unfortunately we are are not able to extract most of these features
reliably (or at all...)
— even “simple” human concepts are difficult to model (“semantic
gap”)
— even tempo estimation is very hard...
— NB: a human annotation approach is done in the Music Genome
Project (cf. Pandora’s automatic radio station service)
Furthermore some of these features are quite subjective (e.g.,
mood)

Need to find computable descriptors that capture these
dimensions somehow (...and work acceptably)
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Descriptors of Content

Acoustic property to describe: ﬁ
— Loudness: perceived strength of sound; e.g., energy

— Pitch: frequency, psychoacoustic ordering of tones (on scale;
from low to high); e.g., chroma-features

— Timbre: “tone color”, what distinguishes two sounds with
same pitch and loudness; e.g., MFCCs

— Chords and harmony: simultaneous pitches
— Rhythm: pattern in time; e.g., FPs

— Melody: sequence of tones; combination of pitch and rhythm

cf. (Casey et al.; 2008)
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Scheme of Content-Based Feature Extraction

sampling f{ H\‘q

— LN quantization >
= =
analog signal Pulse Code Modulation ( PCM) 2
«Q
frame 1: e.g. sample 1...256 °
frame 2: e.g. sample 129...384 windowing R
frame 3: e.g. sample 257...512 > ]
frame n lﬂ
¢ —
time domain feature calculation frequenpy SOTEN VZEWITE
¢ calculation
aggregation, model building (mean,
median, sum, GMM, HMM) ¥ feature value, vector, or matrix
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Low-Level Feature: RMS Energy

Root-Mean-Square Energy (aka RMS power, RMS level, RMS amplitude)
Scope: time domain

Calculation:
(t+1)-K-1
RMS, = |—- > s(k)’
k=t-K
s(k)...amplitude of k" sample in time domain
Remarks: K...frame size (number of samples in each frame)

+ beat-related feature, can be used for beat detection
+ related to perceived intensity
+ good loudness estimation

— discriminative power not clear
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Fourier Transform

Transformation of the signal
from time domain (time vs. amplitude)
to frequency domain (frequency vs. magnitude)

» Theorem: any continuous periodic function with a
period of 2w can be represented as the sum of sine
and/or cosine waves (of different frequencies)

 Implication: any audio signal can be decomposed into
an infinite number of overlapping waves when periodic

Joseph Fourier

* Periodicity is achieved by multiplying the PCM magnitude values of each
frame with a suited function, e.g., a Hanning window (windowing)

* In our case: Discrete Fourier Transform (DFT)

* In practice efficiently calculated via Fast Fourier Transform (FFT)
(Cooley, Tukey; 1965)
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Representation as STFT

STFT
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Low-Level Feature: Spectral Centroid

Scope: frequency domain
Calculation: ZN: M (n)-n
C _ n=lI

t

My(n)...magnitude in frequency domain at

- N
Z Mt (n) frame t and freq.uency bin n
1 N...number of highest frequency band

Description: center of gravity of the magnitude
spectrum of the DFT, 1.e. the frequency (band) region
where most of the energy 1s concentrated

Remarks: used as measure of sound sharpness (strength
of high frequency energy)
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Advanced Content-Based Methods

In the following, we will look 1nto...

Feature extraction
— MFCCs: to model timbral properties

— Fluctuation Patterns: to model rhythmic/periodic properties

Similarity calculation
— Statistical modeling (“Bag-of-frames”)
— Vector Space Model

By means of two standard similarity approaches:
— Bag-of-frames modeling using MFCCs
— Comparing Fluctuation Patterns

P. Knees and M. Schedl, Music Similarity and Retrieval, Tutorial, SIGIR 2013, July 28, Dublin, Ireland
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Processing Overview

“Block” “Frames”
Convert signal to frequency domain, e.g., |I|“ l'” l." || '|" HH ‘I ‘* '|.
using an FFT l 4
Psychoacoustic transformation ik SRR S
(Mel-scale, Bark-scale, Cent-scale, ...): ikl 4 T ' | b H_”:H ‘ ‘H H
mimics human listening process
(not linear, but logarithmic!), l 4

removes aspects not perceived by humans,
emphasizes low frequencies

N i) W W P M U B T

Extract features l l
— Block-level

(short time windows, e.g., 25 ms)
needs feature distribution model

(large time windows, e.g., 6 sec) : A
— Frame-level " : . ’.

weparunent ol
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Acoustic Scales

Empanecn of acosshc scale

i
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n el s wc g les

L=
T

0 2.0 | 1.8 >
Fraquancy (k]
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The Mel Scale

Perceptual scale of pitches

31763 judged by listeners to be
28588 equal 1n distance from one
seana another
5 22237 . .
=, 1006.2 | e || Given Frequency f1n Hertz,
£ 15887 the corresponding pitch in
E ‘21’;; "l. Mel can be computed by
B35, 1
318.5 |III m = 2595log,, (1 + %)
Vsar otes ans sere sias Normally around 40 bins

Freguancy [HE]

equally spaced on the Mel
scale are used

Computational
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MFCCs

Mel Frequency Cepstral Coefficients (MFCCs) have their roots
in speech recognition and are a way to represent the envelope
of the power spectrum of an audio frame

— the spectral envelope captures perceptually important information
about the corresponding sound excerpt (timbral aspects)

— most important for music similarity: sounds with similar spectral
envelopes are generally perceived as similar.
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Waveiormn

Conwart to Framas

Taka discrata
Fouwriar transfarm

Take Log o
amplituda speeciram

Mal-sealing and
sm=nihing

T

Dizcrete cosine Eransform

T
MFCC Faanaras

MFCCs

MFCCs are computed per frame
1. STFT: short-time Fourier transform

2. the logarithm of the amplitude
spectrum is taken (motivated by the
way we humans perceive loudness)

3. mapping of the amplitude spectrum
to the Mel scale

4. quantize (e.g., 40 bins) and
make linear (DCT doesn’t operate on
log scale)

Computational
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Waveiormn

Conwart to Framas

Taka discrata
Fouwriar transfarm

Take Log o
amplituda speeciram

Meal-scaling and
smeoihing

T

Dizcrete cosine Eransform

T
MFCC Faanaras

NB: performing (inverse) FT or similar on log
P. Knees and M. Schedl, Mv representation of spectrum => “cepstrum” (anagram!)

5. perform Discrete Cosine Transform to

de-correlate the Mel-spectral vectors
— similar to FFT; only real-valued
components
— describes a sequence of finitely many data
points as sum of cosine functions
oscillating at different frequencies
— results in n coefficients (e.g., n = 20)

N-1 T 1
Xk=2xn-c0s —-(n+—j-k k=0,.,N-1
pry N 2

DT

|
2 4 5] g 10 12 14 16 18 20

MFC-Coeff
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MFCC Examples

Mfces
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“Bag-of-frames” Modeling

Full music piece 1s now a set of MFCC vectors; number of frames
depends on length of piece

Need summary/aggregation/modeling of this set
— Average over all frames? Sum?

Most common approach: Statistically model the distribution of all
these local features
— memory requirements, runtime and also the recommendation quality
depend on this step
Learn model that explains the data best
— State-of-the-art until 2005: learn a Gaussian Mixture Model (GMM)

— a GMM estimates a probability density as the weighted sum of M simpler
Gaussian densities, called components of the mixture

— each song is modeled with a GMM
— the parameters of the GMM are learned with the classic Expectation-
Maximization (EM) algorithm

* this can be considered a shortcoming of this approach as this step is very time
consuming

Department of
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“Bag-of-frames” Modeling

Comparing two GMMs 1s non-trivial and expensive

— The Kullback-Leibler divergence can be used (approximated)

R TP E __|'II HI- Il 'ul::: il
— Basically, this requires to (Monte-Carlo) sample one GMM
and calculate the likelihood of these observations under the

other model and vice versa (non-deterministic, slow)

State-of-the-Art since 2005: Single Gaussian Model
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Single Gaussian “Bag-of-frames” model

Describe the frames using the mean vector and a full
covariance matrix

For single Gaussian distributions, a closed form of the KL-
divergence exists (not a metric!)

1 det ¥
Dicr, (No| V1) = 5 (t-r (Z780) + (1 — pto) " Bt (i1 — o) — In (det- E?) - ff)

— 1 ... mean, X ... cov. mat., fr ... trace, k ... dimensionality

— asymmetric, symmetrize by averaging
Alternatively, calculate Jenson-Shannon Divergence
1 1 1
JSD(P || Q) = sD(P || M)+ 5D(Q| M) M =5(P+Q) (D=Dg)
— symmetric, square root 1s a metric!

Efficient (1nstantaneous retrieval of 10Ks of pieces)
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Query-by-Example in the Real World

* Single Gaussian MFCC
music similarity measure

used in
FM4 Soundpark Player

* For each played song, 5
similar sounding songs are

recommended
1 . * = Piwtar Ganried | v
 Retrieval in real-time A
~ full database ~20K songs (?)  [EEEREE .

— played song model compared
to all whenever played

— no caching necessary

| oy D E, lt-:-:-h-r

http://fm4.orf.at/soundpark/

P. Knees and M. Schedl, Music Similarity and Retrieval, Tutorial, SIGIR 2013, July 28, Dublin, Ireland
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Limitations of Bag-of-Frames Approaches

Loss of Temporal Information:

— temporal ordering of the MFCC vectors 1s completely lost
because of the distribution model (bag-of-frames)

— possible approach: calculate delta-MFCCs to preserve
difference between subsequent frames

Hub Problem (“Always Similar Problem™)

— depending on the used features and similarity measure, some
songs will yield high similarities with many other songs
without actually sounding similar (requires post-processing to
prevent, e.g., recommendation for too many songs)

— general problem in high-dimensional feature spaces
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Wrapping up MFCCs and BoF

Similarity model applicable to real-world tasks

Satisfactory results (“world’s best similarity measure” for
several years)

Extensions make 1t applicable to search within millions of
songs 1n real-time

— approximate searching in lower-dimensional projection

Possible Alternatives to BoF:
— Hidden Markov Models
— Vector Quantization Models (“Codebook™)

Department of
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Block-Level Features

Instead of processing single frames, compute features
on larger blocks of frames

— blocks are defined as consecutive sequences of audio
frames

— thus features are (to some extent) able to capture local
temporal information

Afterwards the blocks are summarized to form a
generalized description of the piece of music

Two systems:
— Fluctuation Patterns (Pampalk; 2001)
— Block Level Framework (Seyerlehner; 2010)
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Block Processing

The whole spectrum 1is

processed in terms of
blocks

Each block consists of a
fixed number of frames

(block size W)

Number of rows H 1s
defined by the frequency
resolution

Blocks may overlap (hop
S1Z€)

Main advantage of
processing in blocks:

— blocks allow to perform
some (local) temporal
processing
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Generalization

To come up with a global feature vector per song, the local feature vectors must be
combined into a single representation

This is done by a summarization function (e.g., mean, median, certain percentiles,
variance, ...)

The features in the upcoming slides will be matrices, however in these cases the
summarization function simply is applied component by component

Global Result:
eee eeo e e -
i fmv median(f, ,, f,,, ... f, )
f f median(f, ,f _, ..., f )
21 22 217 22 2N
[ ]
®
Y Y Y °
fK]1 fK,2 fK‘N —_— median(fm, fm, fK,N)
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Fluctuation Patterns

Idea: measure how strong and fast beats are played within
certain perceptually adjusted frequency bands

Aims at capturing periodicities in the signal (“rhythmic
properties®)
Incorporates several psychoacoustic transformations
— Logarithmic perception of frequencies (Bark scale)
— Loudness
— Periodicities
Results in a vector description for each music piece

— Vector Space Model

— Favorable for subsequent processing steps and applications:
classification, clustering, etc.
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Fluctuation Patterns

lece of music Extract 6 sec blocks
v | — discard beginning and end
Ei—secongggquences In eaCh blOCk:
Y ] y ~ FFT on Hanning-windowed frames (256
Powerspectrum { Modulation amplitude Samples)
Y ,I Y ~ Convert spectrum to 20 critical bands
Critcal-band rate scale || ||| Fucuation strength according to Bark scale
Y | Y Calculate Spectral Masking effects
Spectral masking .| | | Rythm pattem — (1.e. occlusion of a quiet sound when
v ! a loud sound is played
Decibel | Typical rhythm pattern Simultaneously)
dB-SPL 4 10 X
i Several loudness transformations:
Equal—logﬁness levels 5' 1. to dB (SOund intenSitY)
on .
{ 2. to phon (human sensation: log)
| Speciﬂc |Duggﬁ§5 Sensatiggl 3 . tO Sone (baCk tO linear) Departmepl of
' | Tutorial, SIGIR 2013, July 28t, Dublin, Ireland ‘ 2 oo




Piece of music
e.g. MP3 file

v

PCM
G-second sequences

'

Fluctuation Patterns

Y

Fowerspectrum 1

'

Modulation amplitude

7

'

Critical-band rate scale
Bark 2

Y

Fluctuation strength

8

'

Spectral masking 3

'

Rythm pattern

9

!

Decibel
dB-SPL 4

Typical rhythm pattern

10

!

Equal-loudness levels
Fhon 5

v

Specific loudness sensation
H Sone G

* Second FFT reveals information about
amplitude modulation, called
fluctuations.

— Fluctuations show how often

frequencies reoccur at certain intervals
within the 6-sec-segment

— “frequencies of the frequencies”

* Psychoacoustic model of fluctuation
strength

— perception of fluctuations depends on
their periodicities

— reoccurring beats at 4Hz perceived
most intensely

— 60 levels of modulation (per band)
(ranging from 0 to 600bpm)

* Emphasize distinctive beats



Piece of music

Fluctuation Patterns

e.g. MP3 file
PCM
G-second sequences
Powerspectrum 1 Modulation amplitude 7
CFItICﬁFb%I’;CikFatE scale 2 Fluctuation strength a
Spectral masking 3 Rythm pattern o
Decibel Typical rhythm pattern
dB-SPL 4 10
Equal-loudness levels
Fhon 5
Specific loudness sensation
H Sone G

, Tutorial, SIGIR 2013, July 28", Dublin, Ireland

Each block is now respresented as a
matrix of fluctuation strengths with 1,200
entries (20 critical bands x 60 levels of
modulation)

Aggregation of all blocks by taking
median of each component

This results in a 1,200 dimensional
feature vector for each music piece

Comparison of two music pieces is done
by calculating the Euclidean distance
between their feature vectors
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Examples

Fiocritiia, Anthem W
20 o132
0.1
13
¢.0a
10 &.0n
OOl
3
AL | &

123 45678810
madulation fhaquency (Hz)

lannad, Calsivan Ofr

i o
: o -

1 45872881
madulation Trequsncy (Hz)

critical-band (bark)

13

10

Nightwish, Come Covar Me

20
' o.0a
0.025
.02
) |
&M
i | 2 C.008

123 435 6T7TB8 310
madulatian fhaquency [Hz)

Mozart, Planc Sonata ln C Major, K330
20

criticai-band (bark)

c.Hs

o

123 435 8T8 910
mdulaiian fhaquency ([Hz) —
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Wrapping up FPs and VSM

(Some) temporal dependencies are modeled within segments of 6 second
length
Properties:

+ Vector Space Model: The whole mathematical toolbox of vector spaces is
available.

+ easy to use in classification
+ song models can be visualized

— high dimensional feature space (often a PCA is applied to reduce dim.)
More comprehensive block-level features by (Seyerlehner; 2010)
currently best performing similarity measure according to MIREX:

—  Spectral Pattern (SP): frequency content

—  Delta-Spectral Pattern (DSP): SP on delta frames

—  Variance Delta-Spectral Pattern (VDSP): variance used to aggregate DSP
—  Logarithmic Fluctuation Pattern (LFP): more tempo invariant

—  Correlation Pattern (CP): temporal relation of frequency bands

—  Spectral Contrast Pattern (SCP): estimate “tone-ness”

—  Block aggregation via percentiles; similarity via Manhattan distance
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Demo: Content-Based Music Browsing

Da ft Punk
E.Karl'Bartos

H.rﬂft'W'EI'H_E] Irﬁllta I 0 E_

Die Roboter i walilerd

———

Daft Punk
Around the World

Computational

r Department of
P. Knees and M. Schedl, Music Similarity and Retrieval, Tutorial, SIGIR 2013, July 28, Dublin, Ireland .- -

Perception




nep Tune — Structuring the Music Space

(Knees et al.; MM 2006)

Clustering of music pieces

Each song corresponds to point in feature
(similarity) space

Self-organizing Map

High-dimensional data (content-based
features) is projected to 2-dim. plane

Number of pieces per cluster
— landscape height profile
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nepTune — Web-based Augmentation

(Knees et al.; MM 2006)

Automatic description of landscape via Web term extraction

artist names (ID3)

L

Web Images Video"* News Maps more »
Sesrch

Google: resom . s

Sign in

Web Results 1 - 10 of about 1,100,000 for "daft punk™ music style. (0.18 seconds)

Daft Punk MP3 Downloads - Daft Punk Music Downloads - Daft Punk ...

Daft Punk MP3 Downloads - MP3.com offers legal Daft Punk music downloads as ... and

original music in the background, they keep a style like no other band ...

www.mp3.com/daft-punk/artists/140991/summary.html - 58k - 7 Oct 2006 -

Cached - Similar pages
Daft Punk MP3 Downloads - Daft Punk Music Downloads - Daft Punk ...
Daft Punk’s full-length debut is a funk-house hailstorm, giving real form to a style of
straight-ahead dance music not attempted since the early fusion days ...
www.mp3.com/albums/196087/summary_html - 42k - Cached - Similar pages

[ More results from www.mp3.com ]

Amazon.com: Discovery: Music: Daft Punk
Amazon.com: Discovery: Music: Daft Punk by Daft Punk. ... This album features a dumbly
simple and cheesy style, but executed in a way that's intelligent. ...

Music dictionary Term goodness
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Part Il

MUSIC CONTEXT BASED
SIMILARITY
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Music Content vs. Music Context

Advantages of Content Analysis
* Features can be extracted from any audio file
* No other data or community necessary
* No cultural biases (i.e., no popularity bias, no subjective ratings etc.)

Ibe mabive i
m 2

Advantages of Context Analysis :
Iecbronlc

* Captures aspects beyond pure audio signal !ﬁ?ﬁ ~%wesbip o

indugbrial

* No audio file necessary
» Usually, user-based features are closer to what users want
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P. Knees and M. Schedl, Music Similarity and Retrieval, Tutorial, SIGIR 2013, July 28, Dublin, Ireland ‘ o | Sompuational

Perception




Music Content vs. Music Context

Challenges for Context-Based Feature Extractors
* Dependence on availability of sources (Web pages, tags, playlists, ...)
 Popularity of artists may distort results

* Cold start problem of community-based systems (newly added entities
do not have any information associated, e.g. user tags, users’ playing
behavior)

» Hacking and vandalism (cf. last.fm tag “brutal death metal™)

* Bias towards specific user/listener groups (e.g., young, Internet-prone,
metal listeners in last.fm)

* (Reliable) data often only available on artist level
Challenge for both Content and Context Analysis
 Extraction of relevant features from noisy signal
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Context- and Web-Based Methods

In the following, contextual data refers to extended
meta-data, usually
— Generated by users

— Unstructured data-sources
— Accessible via the Web

Two main classes of approaches covered in the
following
— Text processing

— Co-occurrence analysis

As for content-based methods, similarity 1s the central
concept for retrieval
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Text-Based Approaches

Data sources:

- Web pages retrieved via Web search engines

- microblogs on Twitter *

- product reviews Epinions @&

- semantic tags |C\Stfm

the social music revolution
- lyrics _
Lyrics.

P. Knees and M. Schedl, Music Similarity and Retrieval, Tutorial, SIGIR 2013, July 28, Dublin, Ireland
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Text-Based Similarity and Genre Classification

Use Web data to transform the music similarity task into a
text similarity task

Allows to use the full armory of IR methods, typically...
— Bag-of-words, Vector Space Model
— Stopword removal, dictionaries, term selection
— TF-IDF
— Latent Semantic Indexing
— Part-of-Speech tagging
— Named Entity Detection

— Sentiment analysis

Large range of possible similarity measures

— Opverlap, Manhattan, Euclidean, Cosine, etc.

Computational
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Related Web Pages as Text Source

images Videos blaps hews: Greal Mo -

(_-'.Ul lL"!.IL jemtics aulis wides disss

- Ao, Wideo, Discs
C RTINS

juntza suds vdes dnea

Juntice - AUDID, VIDEQ, DHSCD -

Juntice A w ‘Audio Wideo Disco' T
LT o= s Vighon Dimme s o Teer Gongie+ sen Sefors D

o

e T} R L il
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Related Web Pages as Text Source

GOL)S[E’T" Web pages features
& —u
or— B
— @ -
— @ —L

»
»

\ 4

v
v

) @ 0e

similar to... ?
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Related Web Pages as Text Source

 Using search engines and queries such as
“artist” +music

“artist” +music +review
(Whitman, Lawrence; 2002) (Baumann, Hummel; 2003) (Knees et al.; 2004)

* Analyze
— result page directly or
— download up to top 100 Web pages (combine into one
“virtual document” or analyze separately)
* Apply “IR magic”
* Applicable for similarity estimation, classification,
retrieval, annotation

(NB: Most discriminating terms between genres are artist names
and album/track titles)
Computational
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Large-Scale Study

Investigating different aspects in modeling artist term profiles from Web pages

(9,200 experiments):
- term frequency

(Schedl et al.; 2011)

| Abbr. | Description

| Formulation

. . 1 ift €7,
TF_A Formulation used for hinary match Td,t = - _1 B
_ 0 otherwise
SB=>
TF_B Standard formulation ra,t = fa,z
SB=t
TF_C Logarithmic formmlation ra: = 1+ log, fa:

TF_C2 | Alternative logarithmie formulation suited for fa. < 1

ra:=log (1 + fa:)

TF_C3 | Alternative logarithmic formulation as used in lte vari-

rae = 1+ logs fa+

the vector space formulation, i.e., the Euclidean length.

ant
: : Taz
TF_D Normalized formulation P = o
el
TF_E Alternative normalized formulation. Similar to [55] we | rg: = K+ (1 - K) - J:,d—w
ik 5 d
use K = 0.5.
SB=mn
il £ S T FEr = U TAT N s Ffd.t

TF_F Okapi formulation, according to [55, 36]. For W we use | ry, = A ey

TF_G Okapi BM25 formulation, according to [35].

(R1+1)Ta,c

w
—b) b—d'ﬂ"_
ARy d]J

(1
T

Td,t —
f.i,;+5-'1-l
0

ki =12,6=0.75
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Large-Scale Study

Investigating different aspects in modeling artist term profiles from Web pages
(Schedl et al.; 2011)

(9,200 experiments):
- term frequency

- inverse document frequency

| Abbr. | Description | Formulation
IDF_A Formulation used for hinary match we=1
SB==x
IDF_E Logarithmic formulation w = log, (1 + fl)
SB=7Ff
IDF_EB2 | Logarithmic formulation used in lfe variant we = log, (%)
IDF_C Hyperbolic formulation Wy = %
IDF_D Normalized formulation we = log, (1 + J}‘f*)
IDF_E | Another normalized formulation we = log, N;{
SB=p
: . ) . Fis i
The following definitions are based on the term’s noise | n; = —=2£ log, %)
ne and signal s, de Dt
s = logs(Fy — e )
IDF_F Signal W = 8¢
IDF_G Signal-to-Noise ratio Wy — :—
IDF_H Wy = (mmc i ) — Ny¢
teT
IDF_1I Entropy measure wy=1— 1—“7
o oga
‘ IDF_J | Okapi BM25 IDF formulation, according to [35, 31] | wy = log %
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Large-Scale Study

Investigating different aspects in modeling artist term profiles from Web pages

(9,200 experiments): (Schedl et al.; 2011)

- term frequency

- inverse document frequency

- virtual document modeling: concatenate all Web pages/posts of the artist or
perform aggregation via mean, max, etc.
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Large-Scale Study

Investigating different aspects in modeling artist term profiles from Web pages

(9,200 experiments):

- term frequency

- inverse document frequency
- virtual document modeling: concatenate all Web pages/posts of the artist or
perform aggregation via mean, max, etc.

- normalization with respect to document length

(Schedl et al.; 2011)

Abbr. Description Formulation

NORM_NO No normalization.

NORM_SUM | Normalize sum of each virtual document’s term feature vector to 1. 3 Fanel
teTy

NORM_MAX | Normalize maximum of each virtual document’s term feature vector to 1. Im}_x e |
ted g
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Large-Scale Study

Investigating different aspects in modeling artist term profiles from Web pages

(9,200 experiments):
- term frequency

- inverse document frequency
- virtual document modeling: concatenate all Web pages/posts of the artist or
perform aggregation via mean, max, etc.

- normalization with respect to document length

(Schedl et al.; 2011)

- similarity measure |

P. Knees and M. Schedl, Music Simil:

Abbr. | Description | Formulation
SIM_INN | Inner Product S = Y. Dogperwsi)
C_T-ii da
YieT | wq Wan .t |
e o s, ) — - o !
SIM_C05 | Cosine Measure S s = W W
EZ‘.'—T | e L e
CR A ks . . FEldy ,dy 1
SIM_DIC | Dice Formulation St == “;31 W
X . , LteTy, 4, \Wdi,t"Wdg,t)
SIM_JAC | Jaccard Formulation ST — T ; ~ =
"11 dn ~ s "ETGIJ_.J".\ I. l.i]_ e _JI
o™ fini )
- - : leteTy, g, Wy ¢t Wdg,t)
SIM_OVL | Owerlap Formulation By 2= Lo —
’ min( W d, W dQ_.I
; I T )
SIM_EUC | Euclidean Similarity Do ae= ] 3 [wai— wai)
11'." t€Tq, g
Sai g = (mzmdi dl [Ddi b ;) —e g s
SIM_JEF | Jeffrey Divergence-based Similarity | Sg; 4, = (mzuca-:l ar ['DG-:1 d j) —: D e

D(F,.G)=3" (f: log % + g: log %)



Large-Scale Study

Investigating different aspects in modeling artist term profiles from Web pages

(9,200 experiments):
- term frequency

- inverse document frequency
- virtual document modeling: concatenate all Web pages/posts of the artist or
perform aggregation via mean, max, etc.
- normalization with respect to document length
- similarity measure
- index term set

(Schedl et al.; 2011)

Abbr. / Term Set

Cardinality

Description

TS_A - all_terms

C224a, QS_A: 38,133
C224a, QS_M: 19,133
C3ka, QS_A: 1,489,459
C3ka, QS_M: 437,014

All terms (stemmed) that occur in the corpus of the
retrieved Twitter posts.

TS_5 - scowl_dict

698,812

All terms that occur in the entire SCOWL dictionary.

Names of the artists for which data was retrieved.

P. Knees and M. Schec

TS_N - artist_names 224 / 3,000

TS_D - dictionary 1.398 Manually created dictionary of musically relevant terms.

TS_L - last.fm_toptags or | Overall top-ranked tags returned by last.fm’s Tags.getTopTuags
B - function.

TS F - freebase 9 gog | Music-related terms extracted from Freebase (genres, instru-

ments, emotions).




Large-Scale Study

Investigating different aspects in modeling artist term profiles from Web pages

(9,200 experiments): (Schedl et al.; 2011)

- term frequency

- inverse document frequency

- virtual document modeling: concatenate all Web pages/posts of the artist or
perform aggregation via mean, max, etc.

- normalization with respect to document length

- similarity measure

- index term set

- query scheme

Abbr. | Query Scheme

QS_A “artist name”

QS_M “artist name”4+music
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Large-Scale Study

Investigating different aspects in modeling artist term profiles from Web pages

(9,200 experiments): (Schedl et al.; 2011)

- term frequency

- inverse document frequency

- virtual document modeling: concatenate all Web pages/posts of the artist or
perform aggregation via mean, max, etc.

- normalization with respect to document length

- similarity measure

- index term set

- query scheme

implemented in our CoMIRVA framework available from http://www.cp.jku.at/comirva
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Interesting Findings

- modeling artists as virtual documents is preferable (Schedl et al.; 2011)

- using query scheme “artist” +music outperforms “artist”

- normalization does not yield a statistically significant difference

- standard cosine similarity measure does not yield the very best results,

but the most stable ones (varying other parameters)

- consistent results among the (top-ranked) variants for two collections

- minor change in one parameter can have a huge impact on performance

- overall winners in terms of term weighting functions:
TF _C3.IDF I

TF C3.IDF H — logarithmic formulations for TF and IDF
TF_C2.IDF I
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Web-Based Descriptions for Browsing

“MusicSun”
(Pampalk, Goto; 2007)

Q©.

* Interactive “Artist
Recommender”

new york

bad

* Recommendation

is influenced/directed
by selecting relevant
similarity dimensions

singing ~ :

gangsta

Query artists
* Combines different

similarity measures

/

3 types of similarity: audio, web-based, word
overall similarity = weighted average of ranks

P. Knees and M. Schedl, Music Similarity and Retrieval, Tutorial, SIGIR 2013, July 28, Dublin, Ireland

pop

urban

01 Method Man @o

male, east coast, gangsta, dirty
rap, beats, jam, solo
02 Will Smith ce
rap, male, gangsta, pop, youn
party, positive, bad, fun
03 Jay-1 ve
rap, notorious, new york, harg
gangsta, east coast, hard, cc
04 DelaSoul 2o
soul, jungle, art, old school, 1
rap, gangsta, trio, ghelto
05 Wu-Tang Clan @0
rap, solo, male, beats, ghetl
ditty, cuban, chambetr, east
0é Goodie Mob an
rap. dirty, party, gangsta, g
southern, soul, ghetto, beats
07 Gravediggaz oo
horrorcore, rap, chamber, b4
poelic, gangsta, east coast,
08 WycleflJean oo
rap, pop, pary, singing, hot
caribbean, reggae, solo, chot
09 R Kelly & Jay-I co
notorious, gangsta, chicago, m|
rap, singing, sexval, concert
10 Dr. Dre @@
rap, complex, g-funk, mb, young

gangsia, m@usi beats, hot
Paae: 1

Relevant word dimension

C

dle

Jack Johnson

Ben Ha er
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Web-Based Texts for Indexing and Retrieval

* Use Web data to transform music retrieval into a text retrieval task
* Find associated (or associable) texts and use them instead of music

* Allows for diverse and semantic queries

29  ¢¢

(e.g, “chilled music”, “great riffs™)

Search Sounds (Celma et al.; 2006)
Crawl lists of RSS feeds and use Weblog entries to index pieces

Squiggle (Celino et al.; 2006):
Combine meta-data databases (like MusicBrainz) for rich indexing

Gedoodle (Knees et al.; SIGIR 2007):
Query Google and combine Web pages to index pieces

Department of
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Audio features

Google

°0

P. Knees and M. Schedl, Music Similarity

and Retrieval, Tutorial, SIGIR 2013, July 28, Dublin, Ireland »

Gedoodle

Gocgle == SR
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Gedoodle

(Knees et al.; SIGIR 2007)
* For each track: join 100 Google results of
— “artist” music
— “artist” “album” music review

— “artist” “title” music review -lyrics

* Combine all pages into one virtual document

e Create normalized TFIDF vector for each track

* Include audio similarity for vector modification and
dimensionality reduction
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Gedoodle (Example queries)

Ge ej\ ¥ Q_j” @ [damon aibam

: Search for Music

Results 18 - 27 of 1691 for damon albarn. (0.02 seconds)

Music Is My Radar

by blur

from the album: blur: the best of

Genre: Alternative - 192 kBit/s - length: 5:29 min. Listen

On Your Own

by blur

from the album: biur- the best of

Genre: Alternative - 192 kBit/s - length: 4:27 min. Listen

Girls & Boys

by blur

from the album: blur: the best of

Genre: Alternative - 192 kBit/s - length: 4:19 min. Listen

There's No Other Way

by blur

from the album: biur: the best of

Genre: Alternative - 192 kBit/s - length: 3:14 min. Listen

Feel Good Inc.

by Gorillaz

from the album: FM4 Soundselection 12

Genre: Alternative - 192 kBit/s - length: 4:20 min. Listen

Say So What

by Graham Coxon

from the album: Uncut - 2006.05

Genre: Rock - 192 kBit/s - length: 3:05 min. Listen

Slash Dot Dash

by Fatboy Slim

from the album: The Greatest Hits: Why Try Harder
Genre: Electronic - 192 kBit/s - length: 2:55 min. Listen

5_ e J\ ) Q ﬁ _|_ e |smooth and relaxing

| Search for Music

Results 1 - 10 of 1774 for smooth and relaxing. (0.02 seconds)

Joy And Pain

by Count Basic

from the album: Moving In The Right Direction
Genre: Acid Jazz - 168 kBit/s - length: 6:25 min. Listen

Higher

by Count Basic

from the album: Bigger & Brighter

Genre: Acid Jazz - 192 kBit/s - length: 4:00 min. Listen

Sweet Luis

by Count Basic

from the album: Moving In The Right Direction
Genre: Acid Jazz - 158 kBit/s - length: 5:11 min. Listen

Got To Do

by Count Basic

from the album: Moving In The Right Direction
Genre: Acid Jazz - 167 kBit/s - length: 4:58 min. Listen

John Lee Huber

by Tosca

from the album: JA.C.

Genre: Electronica/Dance - 192 kBit/s - length: 4:33 min.

No More Olives

by Tosca

from the album: JA.C.

Genre: Electronica/Dance - 192 kBit/s - length: 6:02 min

Naschkatze
by Tosca
from the album: JA.C.

Genre: Electronica/Dance - 192 kBit/s - length: 4:34 min. Listen

P. Knees and M. Schedl, Music Similarity and Retrieval, Tutorial, SIGIR 2013, July 28, Dublin, Ireland '.-.
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Eftects of TF

Gedoodle Results

F feature space pruning using

content-similarity-based y*-test (Knees et al.; SIGIR 2007)

P. Knees and M. ¢

—&— chisquare 50
=8 chisguan: 100
—#— chizsguare 150

—&— no chisguare

= = = Daseling
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Gedoodle Results

Alternative: Document-centered ranking (Knees et al.; ECIR 2008)
* Indexing of all web documents in standard index
* Music query addresses this index

* Music ranking calculated from web doc ranking according to

RRS(TT?@ (j) = Z 1+ |Dq| - T’CL'TZ]{?(]L Dq)

INEI)nﬁﬁl)q
. . 0.8 T T T T T T T r T
Comparison with o7 3 Vot approacn |
Baseling

vector space model  °

04r

Pracissan

03r

0.2 \ ;
o1 XWT
l:l 'l L k A L A L 'l 1

ety oo 01 02 03 04 ©O5 06 07 08 08 10
P. Knees and M. Schedl, Music Similarity & Aecall




Semantic Querying via Auto-Tagging

» Use machine learning techniques to predict tags (labels) based on
song features (content, context, or combination)

* Automatic description of music (browsing) and automatic
generation of indexing terms for retrieval

» Mitigates “cold-start problem” in social tagging

Automatic Record Reviews (Whitman, Ellis; 2004)

Regularized least squares learning on TFIDF-Web and cepstral features

Autotagger (Bertin-Mahieux et al.; 2008)
Ensemble classifier to map MFCCs, autocorrelation, Const-Q. to Web tags

Semantic Music Discovery (Turnbull et al.; SIGIR 2007, 2009):

Combines timbre, harmony, Web texts, and Web tags to predict user labels

Semantic Annotation of Music Collections (Sordo; 2012)
Propagation of tags through audio similarity



Auto-Tagging/Retrieval by Tag

Learning indexing labels from content features

classicrock:

l:lCIZIITI melal

EE:
:hn-e;'

b

|||||||||||
hea w met aln

1 'I1b|l'!|'l|

di alh T =
seandirewian F
Gits b a_"" x
kani —
Tl _'-c pﬂpr 1
allarnative rock =

o]
alternative ks w= 0 L";rﬂg;gl:
neie 1ot FQC K Samady

german

ek reg

folk metal:

E

(Sordo; 2012)

acappella S <= g:capella . | ;
ter@® m Audio Machine > ag
singer-songwrite Windie i Moo,
wise quys 0 Features Learning odels
_Eﬂl,‘h}ul‘sjchr-::ch
rari2h® O _'D Oz aminauie _ _ — _
eI SR I
T O o» DOLE
c E - = E_u .J”‘\v 1
s Tt T @ | TRAINING
oI5 'E m T m Digital Feature imensiony— — — — — — — — — — — = = = = — — — — — [ — — = — = = & - - — — — — —
|oagha GiE Audio Extraction/” \Reduction - - = = e
i L =
§i318E D P TESTING
E o rapfiEh purk, v
=g —?:
- — [— —_— [— [— [— [—
»|Classification| ;| Evaluation
(Inference,
Discrimination,
Audio Similarity)

Features

— e e
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Music Information Extraction from Web Pages

Web data is a rich source for all types of meta-data and semantic
relations

Methods from NLP, IE, Named Entity Detection for data extraction

* Genres, Moods, Similarities using Rule Patterns
(Geleijnse, Korst; 2006)

* Band Members and Line-Up using Rule Patterns
(Schedl, Widmer; 2007)

* Band Members, Discography, Artist Detection (rule based)
(Krenmair; 2010)

* Band Members, Discography using Supervised Learning
(Knees, Schedl; 2011)

* Album cover detection and extraction
(Schedl et al., ECIR 2006)
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Microblogs as Text Sources

Radio Yoome fioy
Nu op @RadioVoorne: Justice vs, Simian - We Are Your Friends
radiovioorme #nowplaying

Jai Jones |
ﬁ Love this track. #MowPlaying Justice = Audio, Video, Disco. on
Spotify open.spotify. comftrack/BigBiGFv...

. g Sophie Stratford i
'i |l “nowplaying Helix - Justice

o/

radio2XS .
JUSTICE - On 'n' Onis #nowplaying @radio2Xs, Listen at

tiny.co/2xs

! Bawse K
nowplaying daft punk - something about us (remix)

Marcos Martin
Escuchando The Grid por Daft Punk #nowplaying #tunesday
tinyseng.com/Yava

encer y
nowplaying Tron Legacy (End Titles) - Daft Punk

[ ) dawvid.
u newplaying LCD soundsystam - daft punk is playing at my house.
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Extracting and Indexing Tweets on Music Listening

(a) Filter Twitter stream (#nowplaying, #itunes, #np, ...)
(b) Multi-level, rule-based analysis (artists/songs) to find relevant tweets (MusicBrainz)
(c) Last.fm, Freebase, Allmusic, Yahoo! PlaceFinder to annotate tweets

1
i

MusicBrainz

,#Alice Cooper*
,BB King*
,Prince*
,Metallica“

(Schedl, ECIR 2013)

{"id_str":"142338125895696385","place":null,"text":"#NowPlaying Christmas Tree-
Lady Gaga","in_reply_to_user_id":null,"favorited":false,"geo":null,"retweet_coun
t":0,"in_reply_to_screen_name":null,"in_reply_to_status_id_str":null,"source":"w
eb","retweeted":false,"in_reply_to_user_id_str":null,"coordinates":null,"created
_at":"Thu Dec 01 20:23:48 +0000 2011","in_reply_to_status_id":null,"contributors
":null,"user":{"id_str":"20209983","profile_link_color":"2caba5","screen_name":"
tamse77","follow_request_sent":null,"geo_enabled":false,"favourites_count":26,"|
ocation":"Maryland ","following":null,"verified":false,"profile_background_color
":"e80e0e","show_all_inline_media":true,"profile_background_tile":true,"follower
s_count":309,"profile_image_url":"http:VVa1.twimg.comVprofile_imagesV1647613
274V392960_10150559294659517_793614516_11700077_1689597400_n_normal.jpg",
"description™:"being awesome since 1990. ","is_translator":false,"profile_background_i
mage_url_https":"https:VVsi0.twimg.comVprofile_background_imagesV359728130V
frames.gif","friends_count":148,"profile_sidebar_fill_color":"ffffff","default_p
rofile":false,"listed_count":3,"time_zone":"Central Time (US & Canada)","contrib
utors_enabled":false,"created_at":"Fri Feb 06 01:51:10 +0000 2009","profile_side
bar_border_color":"f5f8ff","protected":false,"notifications":null,"profile_use_b
ackground_image":true,"name":"Katie","default_profile_image":false,"statuses_cou
nt":22172,"profile_text_color":"615d61","url":null,"profile_image_url_https":"ht
tps:VVsi0.twimg.comVprofile_imagesV1647613274V392960_10150559294659517_7936
14516_11700077_1689597400_n_normal.jpg","id":20209983,"lang":"en","profile_backg
round_image_url":"http:VVa2.twimg.comVprofile_background_imagesV359728130Vf
rames.gif","utc_offset":-21600},"truncated":false,"id":142338125895696 385, "entit
ies":{"hashtags":[{"text":"NowPlaying","indices":[0,111}],"urls":[],"user_mentions":[]}}
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Extracting and Indexing Tweets on Music Listening

PlaceFinder"

B

134243700380401664
134243869201154048

twitter-id user-id
track-id <tag-ids>

month

127821914
174194590

r~ Freebase

11
11

2
2

106.83
-0.142

weekday longitude

(Schedl, ECIR 2013)

{"id_str":"142338125895696385","place":null,"text":"#NowPlaying Christmas Tree-
Lady Gaga","in_reply_to_user_id":null,"favorited":false,"geo":null,"retweet_coun
t":0,"in_reply_to_screen_name":null,"in_reply_to_status_id_str":null,"source":"w
eb","retweeted":false,"in_reply_to_user_id_str":null,"coordinates":null,"created
_at":"Thu Dec 01 20:23:48 +0000 2011","in_reply_to_status_id":null,"contributors
":null,"user":{"id_str":"20209983","profile_link_color":"2caba5","screen_name":"
tamse77","follow_request_sent":null,"geo_enabled":false,"favourites_count":26,"|
ocation":"Maryland ","following":null,"verified":false,"profile_background_color
":"e80e0e","show_all_inline_media":true,"profile_background_tile":true,"follower
s_count":309,"profile_image_url":"http:\/Va1.twimg.com\Vprofile_images\/1647613
274\/392960_10150559294659517_793614516_11700077_1689597400_n_normal.jpg",
"description":"being awesome since 1990. ""is_translator":false,"profile_background_i
mage_url_https":"https:V/Vsi0.twimg.comVprofile_background_images\V/359728130V
frames.gif","friends_count":148,"profile_sidebar_fill_color":"ffffff","default_p
rofile":false,"listed_count":3,"time_zone":"Central Time (US & Canada)","contrib
utors_enabled":false,"created_at":"Fri Feb 06 01:51:10 +0000 2009","profile_side
bar_border_color":"f5f8ff","protected":false,"notifications":null,"profile_use_b
ackground_image":true,"name":"Katie","default_profile_image":false,"statuses_cou
nt":22172,"profile_text_color":"615d61","url":null,"profile_image_url_https":"ht
tps:VVsi0.twimg.comVprofile_imagesV1647613274\/392960_10150559294659517_7936
14516_11700077_1689597400_n_normal.jpg","id":20209983,"lang":"en","profile_backg
round_image_url":"http:VVa2.twimg.comVprofile_background_imagesV359728130Vf
rames.gif","utc_offset":-21600},"truncated":false,"id":142338125895696 385, "entit
ies":{"hashtags":[{"text":"NowPlaying","indices":[0,111}],"urls":[],"user_mentions":[]}}

-6.23 1 1 202085 3529910 O 1
51.52 2 2 330061 5762915 1 O ...

latitude country-id city-id artist-id
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(Schedl, ECIR 2013)

#nowplaying #itunes
country tweets country tweets
Brazil 725,389 USA 78,460
USA 673,839 Japan 30,932
Japan 458,558 Mexico 23,047
Mexico 419,584 Brazil 16,390
Indonesia 284,082 UK 15,134
South Korea | 251.132 Canada 11,266
China 183,178 South Korea 8,652
UK 128,744 Australia 5,119
Netherlands 121,134 China 4,492
Venezuela 110,336 Germany 3.157

P. Knees and M. Schedl,

most active countries

Music Similarity and Retrieval, Tutorial, SIGIR 2013, July 28", Dublin, Ireland

Extracting and Indexing Tweets on Music Listening
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Geospatial Music Taste Analysis:
Most Mainstreamy

\ (Schedl, Hauger; 2012)

R T B United Kingdom (sigma=0.007)]|
N Canada (sigma=0.0071)
[ |Greece (sigma=0.0071)
25 [ Russia (sigma=0.0073)
B France (sigma=0.0075)

1.51- Aggregating at country level (tweets)

and genre level (songs, artists

BT T R T B

av bl ce co ea el fo go ja la ne ra re m ro VO WO




164

144

12

10

Geospatial Music Taste Analysis:

\ (Schedl, Hauger; 2012)

Least Mainstreamy

Il P=kistan (sigma=0.0261)
B Vietnam (sigma=0.0274)
[ INigeria (sigma=0.0282)
[ Syria (sigma=0.0381)
Bl J=amaica (sigma=0.062)

al

ggregating
d genre |

evel

) at count
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ry lev
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tists)

el (tweets
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Geospatial Music Taste Analysis:
Usage of Specific Products

(Schedl, Hauger; 2012)

Bl ground truth
06l [ #nowplaying ]
[ ]#itunes
0.5 .
0.4 g
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Product Reviews as Text Sources

Bopuariar houte mussic

B i Eh
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Product Reviews as Text Sources

Exploiting sources such as Amazon.com or Epinions.com
(Hu et al.; 2005)

This review [= from: Ray of Light {Audio €D}

This is Madonna's work of art. And this CD is the very best collection of any music she has
ever produced since "Erotica."” Madonna's lyrics are beautiful and strong because even after
9 years it still stands the test of time. It's completely impossible for this CD to be dated;
with the electronica feel to it and fast moving dance numbers, such as the title-track this CD
was way ahead of its time. Even in the double-00's "Ray of Light" is still very important as
both a dance record and a record of reflection and interpersonal renewal.

This review s from: Never Gonna Give You Up (MP3 Download)

This is truly Astley's greatest opus.

The track is flawless. It is instantly accessible, but features many hidden layers and
pleasures that cannot be discovered upon the first listen alone. With this and all of his other
fantastic work, it's no wonder that Radiohead calls Astley their "greatest inspiration.”

Allows for sentiment analysis and associated rating prediction

Very prone to attacks (remedy: consider “helpfulness” ratings)
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Community Tags as Text Sources

00s alternatiwve ambiemt chillout club cool dance dance punk dance-punk death 00s B0s ©0s alernative alternative rock amblent awesome  big beat

blues chillout classic

matal digital dirty electro  disco distortion  ed banger electro electro danoe roek  club  datt punk dance dizes #ub  alactre  elestrs house  electraclash

electropop e I e
?

sloctro house  electrosiash electronic electronic

chokiro clotronic  esperimental favourite  france frenCh french aj

frenchtowch funk funky german glitch hardcore hardcore punk he

indietronica instrumerntal Juf.liﬂl". lowe metal new rave nolse  nurave [ oy oY sl

psychedelic punk rock sexy synthpop techmo thrash metal trance want

P. Knees and M. Schedl, Music Similarity and Retrieval, Tutorial, SIGIR 2013, July 28, Dublin, Ireland

p progressive house psychedelic  psytrance punk

soundtrack synth synthpop technu trance trip-hop

ronlc electronica electropop experimental favorites

i 1rer‘|f_‘;h french ebectro  fremch house fremch touch funk funky great

use ingdie  Industrial instrumental |[apanese jazz lowe metal

robots rock soul
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Tag Sources

° 1960s 605 acoustic american bacharach barogue baroque pop
[ ] t boltonesque  brill building pop  burt bacharach
Communi Yy

chill classic composer disco

driving

easy easy Ilstenlng everything favorite artists favorites
t fIn film music film score fusion genius god greatinnovators guitar hal david inspirerande
c.g., [ast.

instrumental jazz Iounge male male vocalists master melancholy music o

warm the heart and hands my ancients my tag oldies outstanding pop relax

rock score

sexy singer-songwriter smooth Songwriter sophistopop  soul
soundtrack seaceagepop swing symphonicpop us usa virtuo

50 vocal 2005

e.g., Soundcloud (annotations along timeline)

«5 Share W Save to Favorites ¥ Download

-

1 comment at 0.44
| L?' silentshoot 14 days ago

beautiful mashup!ll:D

et H]lJ]HI 0 g s P Mglu'mﬁu!i_

* Games with a purpose (GWAP)
e.g., Tag-a-Tune
(Law, von Ahn; 2009)

* Autotags (see before)

yourparisars dscrphon
plano singing
naG vox male vocal
bono country
english

E— -1

Post reply

S

;23 J'.Tagma‘!“"l'ﬂune

Describe the tune ... Listening to the same tune?
0= RS

T et o
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Community Tags as Text Sources

Treating collections of tags (e.g., from Last.fm) as documents
(Pohle et al.; 2007) (Levy, Sandler; 2008) (Hu et al.; 2009)

* Retrieve tags for artist or track from Last.fm
* Cleaning of noisy and redundant tags:

manually or automatically (Geleijnse et al.; 2007)

» List of collected terms is treated as text document and TF-IDF’d
(Levy, Sandler; 2007)

 Optionally, LSA to reduce dimensionality

« Comparison of vectors via cosine similarity (or overlap score)

e Data often available in standardized fashion, dedicated terms for music

* Lower dimensionality
e.g., 13,500 tags vs. >200,000 Web terms (Levy, Sandler; 2007)

* Depends on community, needs annotators
» Hacking and Attacks!
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Lyrics as Text Source

Before day break there was none Around the world, around the world
And az it broke there was one Around the world, around the world
The Moon, the sun, it goes on 'n' on Around the world, around the world
The winter battle was won

The summer children were born Around the world, around the werld
And so the story goes on 'n' on Around the world, around the world
Come woman if your |ife beats 2> Around the world, arcund the world
Those we buried with the house keys -

Smoke and feather where the fields are green Around the world, around the world
From here to etemnity Around the world, around the world
Come woman on your own time Around the world, arcund the world

P. Knees and M. Schedl, Music Similarity and Retrieval, Tutorial, SIGIR 2013, July 28, Dublin, Ireland
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Lyrics as Text Source

Topic Features (Logan et al.; 2004)
* Typical topics for lyrics are distilled from a large corpus using (P)LSA
(“Hate”, “Love”, “Blue”, “Gangsta”, “Spanish”)
» Lyrics are transformed to topic-based vectors, similarity 1s calculated via L, distance

* Alternative approaches use TF-IDF with optional LSA and Stemming for
Mood Categorization (Laurier et al.;2009) (Hu et al.; 2009)

Rhyme Features (Mayer et al.; 2008) (Hirjee, Brown; 2009)
 Phonetic transcription is searched for patterns of rhyming lines (AA, ABAB, AABB)

* Frequency of patterns + statistics like words per minute, punctuation freq. etc.

Other Features (Mahedero et al.; 2005) (Hirjee, Brown; 2009)
e Language, structure
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Text-based Similarity Approaches: Summary

Web-Terms Microblogs Reviews Tags Lyrics
Source Web pages platform  shops, platform Web service  portal
Community-based depends depends yes yes no
Level artists artists (tracks) albums  artists (tracks) tracks (artists)
Feature Dimensionality very high high possibly high moderate  possibly high
Specific Bias low low personal community none
Potential Noise high high low moderate low

r Department of
P. Knees and M. Schedl, Music Similarity and Retrieval, Tutorial, SIGIR 2013, July 28, Dublin, Ireland | gg | oo ooaona

Perception




Similarity from Co-Occurrences

Idea: expect entities that occur frequently in the same context to
be similar

Data sources considered: |
* Page count estimates from Web search engines GO Ugle

* Shared folders/search queries on the Gnutella file sharing
network

* Collaborative filtering on playcounts from Last.fm

* Occurrences in playlists | QS’(‘ffT]

n:: l: .:'F l,-HE "11 :_: the social music revolution
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Search Engine Page Count Estimates

(Schedl et al.; 2005)

For all pairs of artists: query “artist 1” “artist 2” +music +review
For each artist: query “artist” +music +review .
T Google

Use page counts for sim. (results in quadratic page count matrix)

,-_”‘:(JFLE ) 4_1‘,]' ) 4+ }H'(‘_li ? ‘Flj ) )
pc(Ay) pc(Aj)

1
S_é,”l_p{j_tjp(iqf_pflj) = — - (

2

To avoid quadratic number of queries: download top 100 pages for each
artist and parse for occurrences of other artists (linear complexity)

NB: asymmetry of pc matrix can be used to identify prototypical artists!
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Shared Folders in a P2P Network °/oé0\°
0 Sd

Make use of meta-data transmitted as files names or ID3 tags in P2P
network OpenNap (Whitman, Lawrence; 2002) (Ellis et al.; 2002)

Information gathered from users' shared folders (no file downloads!)
Similarities via artist co-occurrences in collections (cond. prob.)
Sparse co-occurrence matrix
Experiments on Gnutella network (Shavitt, Weinsberg; 2009):

* meta-data highly inconsistent

* can be used as song-based similarity measure and to estimate
localized popularity/trends (matching IP addresses difficult!)
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Last.fm Playcounts

Use explicit or implicit ratings of users or ‘ %t'fm
interpret number of plays of a song as a “rating”

the social music revolution

Results in a user-track rating matrix

Use standard collaborative filtering approaches to predict

similarities (or to recommend unknown music)
e.g., (Resnick et al.; 1994)

Item-based: compare tracks by calculating similarity on vectors
over all users

User-based: find similar users by comparing listening pattern
vectors; use to find relevant/similar tracks yet unknown to user
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Playlist Co-Occurrences

Analysis of co-occurrences of artists and songs on radio station
playlists and compilation CD databases (CDDB)  (Pachet et al.;2001)

1 ('100("_'( A A ) (".'OO(".( Al :13)
cooe(Aiy Aj T Y
H””p! ( ) 2 ('100('1(4.43-‘. ;L) * (".OO(’Z’(Elj , :1;)

Analysis of 29K playlists from “Art of the Mix™ (Cano, Koppenberger;2004):
artists similar if they co-occur in playlist (highly sparse)
Analysis of >1M playlists from “MusicStrands” (Baccigalupo et al.; 2008):
* distance in playlists taken into account B,=15,=0.8 p,=0.64
disty_a(Ai. Aj) Z Bh - [dn(Ai, Aj) + di(A;, A)]

h=
* playlist prediction using case-based reasoning
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Co-occurrence-based Approaches: Summary

Web Co-Ocs Playcounts P2P nets Playlists

Source search engines, listening shared radio, compilations,
Web pages service folders Web services
Community-based no yes yes depends on source
Level artists tracks artists (tracks) artists (tracks)
Specific Bias "wikipedia"-bias  popularity community low
Potential Noise high low high low

P. Knees and M. Schedl, Music Similarity and Retrieval, Tutorial, SIGIR 2013, July 28, Dublin, Ireland
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Part IV

PERSONALIZATION AND
USER ADAPTATION

Perception




Computational Factors Bxamplos:
Influencing Music imbre

- harmony
- loudness

Perception and

Similarity
Examples:

- mood

- activities

- social context

- spatio-temporal context
- physiological aspects

user
context

Examples:
- music preferences
- musical training
- musical experience
- demographics

P. Knees and M. Schedl, Music Similarity and Retriev

music
perception
and similarity

user properties

SIGIR 2013, July 28", Dublin, Ireland

Examples:

- semantic labels

- song lyrics

- album cover artwork
- artist's background

- music video clips

syohpop

(Schedl et al., JIIS 2013)

i"d“ﬁ'i'ja'elé%%*n'c
rock: SiEd =2 !
'&’?POP

=swedi
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Geospatial Music Recommendation

(Schedl, Schnitzer; SIGIR 2013)

= Combining music content + music context features

— audio features: PS09 award-winning feature extractors (rhythm and timbre)

— text/web: TFIDF-weighted artist profiles from artist-related web pages

= Using collection of geo-located music tweets (cf. (Schedl; ECIR 2013))

= Aims:

(1) determining ideal combination of music content and —context

(i1) ameliorate music recommendation by user’s location information

P. Knees and M. Schedl, Music Similarity and Retrieval, Tutorial, SIGIR 2013, July 28, Dublin, Ireland
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ldeal combination of music content and context

(Schedl, Schnitzer; SIGIR 2013)

E|-H=1 K=3 K=b

web only — 0.00 | .5829 .5753 .5774
.05 6421 6280  .6257

.15 6432 .6286 .6261

25 | 6433  .6275  .6258

.35 6430  .6275  .6257

45 6408  .6266  .6252

.59 6394 6259  .6244

.65 6379 6255  .6232

A9 6368  .6234 6221

.89 6330  .6202  .6188

95 6215 6083  .6059

audio only — 1.00 | .5436 .5302 .5247
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Adding user context (different approaches)

(Schedl, Schnitzer; SIGIR 2013)

Abbreviation | Description

BL random baseline
MU hybrid music model
CF collaborative filtering model

CF-GEO-Lin CF model: geospatial user weighting
using linear spatial distances
CF-GEO-Gauss | CF model: geospatial user weighting
weighting using a Gauss kernel
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(Schedl, Schnitzer; SIGIR 2013)

Evaluation Results

\ S "
WP i s
O R AR R N
w G‘ a 63‘\0 ey in (K=3)
e“ MU (=3)
(“@ —— il;EZESC))—Gauss (K=5)

0 & o —e— CF-GEO-Lin (K=3)
ec —e— CF (K=5)
@ —e— MU (K=5)
L | | | | | | | |
50 80 90 100 110 120 130 140 150
T
T: mir. . number of distinct artists a users must have listened to to be included

Computational
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User-Aware Music Recommendation on
Smart Phones

“Mobile Music Genius’: music player for the Android platform

* collecting user context data while playing

* adaptive system that learns user taste/preferences from implicit
feedback (player interaction: play, skip, duration played,
playlists, etc.)

 ultimate aim: dynamically and seamlessly update the user*s
playlist according to his/her current context
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Mobile Music Genius

Music player in adaptive
playlist generation mode
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® Josh Woodward

joshwoodward

Ashes Here Today

Josh Woodward Josh Woodward

Sunny.Side of the...

Josh Wooedward

Mobile Music Genius

Album browser
In cover view
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v Save as playlist

Name of playlist
Similar to Through The Fire And Flame

Size of playlist 30

_ @8 1+

v Include seed track

Include tracks of seed artist

v Randomize

Cancel

Mobile Music Genius

Automatic playlist
generation based on
music context (features
and similarity computed
based on Last.fm tags)
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] J3 J3 ©: | J3 ' W 14:58

User context

Network

NetworkContext [mobileAvailable=true,
mobileConnected=true, wifiEnabled=false,
wifiAvailable=false, wifiConnected=false,
activeNetworkType=0, activeNetworkSubtype=8,
activeNetworkRoaming=false, wifiBssid=null,
wifiSsid=null, wifilpAddress=0, wifiLinkSpeed=-1,
wifiRssi=-9999, bluetoothAvailable=true,
bluetoothEnabled=false]

Ambient

LightContext [light=426.0, lightStdDev=3.7]
ProximityContext [proximity=5.0, proximityStdDev=0.0]
No temperature context

PressureContext [pressure=979.0,
pressureStdDev=0.1]
NoiseContext [noise=75.0, noiseStdDev=3.4]

Motion

AccelerationContext [acceleration=0.3,
accelerationStdDev=0.4]

OrientationContext [orientationUser=3,
orientationDevice=3]

RotationContext [rotation=0.2, rotationStdDev=0.14]

Player

PlayerContext [repeatMode=0, shuffleMode=0,
apmMode=1]

SoundEffectContext [equalizerEnabled=true,
equalizerPreset=0, bassBoostEnabled=true,
bassBoostStrength=443, virtualizerEnabled=false,

<o O =

Mobile Music Genius

Some user context
features gathered while

playing
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User Context Features from Android Phones

Time:  timestamp, time zone

Personal:userlD/eMail, gender, birthdate

Device: devidelD (IMEI), sw version, manufacturer, model, phone state, connectivity, storage,
battery, various volume settings (media, music, ringer, system, voice)

Location: longitude/latitude, accuracy, speed, altitude

Place:  nearby place name (populated), most relevant city

Weather: wind direction, speed, clouds, temperature, dew point, humidity, air pressure

Ambient: light, proximity, temperature, pressure, noise, digital environment (WiFi and BT
network information)

Activity: acceleration, user and device orientation, screen on/off, running apps

Player: artist, album, track name, track id, track length, genre, plackback position, playlist
name, playlist type, player state (repeat, shuffle mode), audio output (headset

plugged)

mood and activity (direct user feedback)
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Evaluation: ongoing

= collected user context data from JKU students over a period of 2 months

= about 8,000 listening data items and corresponding user context gathered
To be analyzed:
(1)  Which granularity/abstraction level to choose for representation/learning?

(i1)) Which user context features are the most discriminative to predict music preference?

First results for predicting class “artist”:

ZeroR (baseline) classifier 15% accuracy
k-nearest neighbors 42% accuracy
JRip rule learner 51% accuracy
J48 decision tree 55% accuracy
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Matching Places of Interest and Music

(Kaminskas et al.; RecSys 2013)

recommend music that is suited to a place of interest (POI) of the user (context-aware)

Sessiogn loutof 10: @ P P P P P P P P P

La Scala, Milan, Italy
http://en.wikipedia.org/wiki/La_Scala

e e
N

Listen to the tracks and select those that in your opinion are suited
for the described place:

Reincidentes - Ay Dolores
http://en.wikipedia.org/wiki/Reincidentes

- ~
no:00f § 00:00 Q)‘
————od

La Scala iz a world renowned opera house in Milan, Italy. The theatre was inaugurated on 3 August
1778 and was originally known as the Mew Roval-Ducal Theatre at La Scala. The premiers
performance was Antonio Salieri's 'Europa riconosciuta’. Most of Italy's greatest operatic artists, and
many of the finest singers from around the wrold, have appeared at La Scala during the past 200
YEArs.

Vincenzo Pucitta - La Vestale,Opera seria 1st act
http://en.wikipedia.org/wiki/Vincenzo_Pucitta

o:00f § 00:00 @

————)d

The Shower Scene - This Is The Call Out
http:/fen.wikipedia.org/wikifThe_Shower_Scens

(= - 5
po:00f 5 00:00 6)
sl

Duchess Maria Antonia of Bavaria - Pallid" ombra che
d'intorno
http://en.wikipedia.org/wiki/Duchess_Maria_Antonia_of Bavaria

[
.
og:00f © 00:00 @
i ——on

Submit
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Matching Places of Interest and Music

(Kaminskas et al.; RecSys 2013)

Approaches:

» genre-based: only play music belonging to the user’s preferred genres (baseline)

P. Knees and M. Schedl, Music Similarity and Retrieval, Tutorial, SIGIR 2013, July 28, Dublin, Ireland
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Matching Places of Interest and Music

(Kaminskas et al.; RecSys 2013)

Approaches:

* knowledge-based: use the DBpedia knowledge base (relations between POIs and
musicians)

s ot sapmamper 2011 @ D@
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Matching Places of Interest and Music

Approaches:

(Kaminskas et al.; RecSys 2013)

* tag-based: user-assigned emotion tags describing images of POIs and music,

Jaccard similarity between music-tag-vectors and POI-tag-vectors

Tag:

[] Melancholic [] Bright
[] Heavy [] Animated
Tender [] Energetic
[ cold [] spiritual
Modern Serene
[] Andent [] calm

[] affectionate [] sad
Dark [] strong
Lightweight [ ] Colorful
Open [] Thriling
L] warm [] Agitated
[] sentimental [] Bouncy

P. Knees and M. Schedl, Music Similarity | submit |

Fritz Kreisler - Liebesfreud Skip this item
http: {fen. wikipedia, org fwiki/Fritz_Kreisler

00:08 ¥ ¥ 1 00:31 i

» 4 . 7

"Friedrich 'Fritz' Kreisler (February 2, 1875 — January 29, 1962) was an
Austrian-born wiclinist and composer. One of the most famous violin masters
of his or any other day, he was known for his sweet tone and expressive
phrasing. Like many great violinists of his generation, he produced a
characteristic sound which was immediately recognizable as his own. Although
he derived in many respects from the Franco-Belgian school, his style is
nonetheless reminiscent of the gemitlich {cozy) lifestyle of pre-war Vienna.™



Matching Places of Interest and Music

(Kaminskas et al.; RecSys 2013)

Approaches:

* auto-tag-based: use state-of-the-art music auto-tagger based on the Block-level
Feature framework to automatically label music pieces; then again compute
Jaccard similarity between music-tag-vectors and POI-tag-vectors

5P DsP VDEP i sce

alternative rockis @ Of Ik rock La::tlgd
alIPrnahvau— O umﬁc (oga)
rock ock ave ags
“german
ﬂcaPPﬁ‘:'ﬂ B -:a Cape“a Audio Machine Tag
singer-songwriter @
¢ g = Il‘ldle ' Features Learning ] Models
i ;E_é::s o I_ _____ g -
| bl Ll TRAINING
Digital ea “fE ||||| | ************************************
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_______ |
- Classlﬁcatmn »| Evaluation
(inference,
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Matching Places of Interest and Music

(Kaminskas et al.; RecSys 2013)

Approaches:

* combined: aggregate music recommendations w.r.t. ranks given by knowledge-
based and auto-tag-based approaches

Labeled
data
(Tags)

Machine Tag
>
Learning Models

TRAINING

- u i P ety
Digital . ion

i n

I TESTING

T P A J
i

v e M — Classification| Evaluation
Vs N < >
Mg xS <

{ Fall ™
' o A Ry
7 L L] wsm T e
s o - (inference,
‘s r | o a0 N dml /|| piscrimination,
= e S s AN e Audio Similarity)
(&) X —e Features
[ et (Y (roote} (=
oz ) ey (5 )
/ ol [y 1T / st HOD
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Matching Places of Interest and Music

(Kaminskas et al.; RecSys 2013)

Approaches:
» genre-based: only play music belonging to the user’s preferred genres (baseline)

* knowledge-based: using the DBpedia knowledge base (relations between POlIs
and musicians)

* tag-based: user-assigned emotion tags describing images of POIs and music,
Jaccard similarity between music-tag-vectors and POI-tag-vectors

* auto-tag-based: using state-of-the-art music auto-tagger based on the Block-level
Feature Framework to automatically label music pieces; then again use Jaccard
similarity between music-tag-vectors and POI-tag-vectors

* combined.: aggregate music recommendations w.r.t. ranks given by knowledge-
based and auto-tag-based approaches
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Matching Places of Interest and Music

Evaluation:

(Kaminskas et al.; RecSys 2013)

 user study via web interface (58 users, 564 sessions)

La Scala, Milan, Italy
hitp://en.wikipedia.org/wiki/La_Scala

Session 1outof 10: @ <P P P P P P P P P

,I. I.i.l- li{

Listen to the tracks and select those that in vour opinion are suaited
for the de=cribed place:

Reincidentes - Ay Dolores
http://en.wikipedia.org/wiki/Reincidentes

oo:006 F 00:00 @
i e

La Scala iz a world renowned opera house in Milan, Italy. The theatre was inaugurated on 3 August

1778 and was originally known as the New Roval-Ducal Theatre at La Scala. The premiers

performance was Antonio Salieri's 'Europa riconosciuta’

. Most of Italy's greatest operatic artists, and

P Knees and M many of the finest singers from around the wrold, have appeared at La Scala during the past 200

.
YEars.

Vincenzo Pucitta - La Vestale,Opera seria 1st act
ittp i/ fen.wikipedia.org/wiki/Vincenzo_Pucitta

The Shower Scene - This Is The Call Out
http:/fen.wikipedia.org/wiki/The_Shower_Scene

- B,
oo:oob 5 DOos0D G)
—— ] |

Duchess Maria Antonia of Bavaria - Pallid® ombra che
d'intorno
http://en.wikipedia.org/wiki/Duchess_Maria_Antonia_of _Bavaria
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Matching Places of Interest and Music

(Kaminskas et al.; RecSys 2013)

Evaluation:

* Performance measure: number of times a track produced by each approach
was considered as well-suited in relation to total number of evaluation
sessions, 1.€. probability that a track marked as well-suited by a user was

recommended by each approach
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Music Information Retrieval is a great field

Various approaches to extract information from the audio signal

Various sources and approaches to extract contextual data and
similarity information from the Web

Multi-modal modeling and retrieval 1s important and allows for
exciting applications

Next big challenges:
* modeling user properties and context
* personalization
* situation-based retrieval

* new and better suited evaluation strategies
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