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Idea: get features that describe music the way humans do and 
compute similar songs based on this information

Unfortunately we are are not able to extract most of these features 
reliably (or at all…)

– even “simple” human concepts are difficult to model (“semantic 
gap”)

– even tempo estimation is very hard…

– NB: a human annotation approach is done in the Music Genome 
Project (cf. Pandora’s automatic radio station service)

Furthermore some of these features are quite subjective (e.g., 
mood)

Need to find computable descriptors that capture these 
dimensions somehow (…and work acceptably)

How to Describe Audio Content?



Acoustic property to describe:

– Loudness: perceived strength of sound; e.g., energy

– Pitch: frequency, psychoacoustic ordering of tones (on scale; 

from low to high); e.g., chroma-features

– Timbre: “tone color”, what distinguishes two sounds with 

same pitch and loudness; e.g., MFCCs

– Chords and harmony: simultaneous pitches

– Rhythm: pattern in time; e.g., FPs

– Melody: sequence of tones; combination of pitch and rhythm

cf. (Casey et al.; 2008)

Descriptors of Content



Domain:

– Time domain

consider signal in time/amplitude representation (“waveform”)

– Frequency domain

consider signal in frequency/magnitude representation

Transformation from time to frequency domain using, e.g., 

Fast Fourier Transform (FFT)

Categorization of Content-Based Features



Temporal scope:

– Instantaneous

feature is valid for a “point in time” (NB: time resolution of 

ear is several msec!)

– Segment

feature is valid for a segment, e.g., phrase, chorus (on a 

high level), or a chunk of n consecutive seconds in the 

audio signal

– Global

feature is valid for whole audio excerpt or piece of music

Categorization of Content-Based Features



Level of abstraction:

– Low-level

properties of audio signal (e.g., energy, zero-crossing-rate)

– Mid-level

aggregation of low-level descriptors, 

applies psycho-acoustic models (cf. MFCC, FP);

typically the level used when estimating similarity

– High-level

musically meaningful to listener, e.g., melody, themes, motifs; 

“semantic” categories, e.g., genre, time period, mood, …

(cf. semantic tags learned from audio features)

Categorization of Content-Based Features



Scheme of Content-Based Feature Extraction
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Pulse Code Modulation (PCM):

analog signal is sampled at 

equidistant intervals (e.g., at a 

frequency of 44,100 Hz) and 

quantized in order to store it in 

digital form (here with 4 bits, 

typically ~16 bits)

Analog-Digital-Conversion (ADC)



Framing

In short-time signal processing, pieces of music are cut into

segments of fixed length, called frames, which are processed one

at a time; typically, a frame comprises 256 - 4096 samples.

Signal

Frame 1

Frame 2

Frame 3
Hop size

Frame width

...
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s(k)...amplitude of kth sample in time domain

K...frame size (number of samples in each frame)

Low-Level Feature: Zero Crossing Rate

Scope: time domain

Calculation:

Description:

number of times the amplitude value changes its sign within frame t

Remarks:

commonly used as part of a low-level descriptor set

+ might be used as an indicator of pitch

+ sometimes stated to be an approximate measure of the signal’s noisiness

– in general, low discriminative power
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Zero Crossing Rate: Illustration
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hop size = 10
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Zero Crossing Rate: Examples



s(k)...amplitude of kth sample in time domain

K...frame size (number of samples in each frame)
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Low-Level Feature: RMS Energy

Root-Mean-Square Energy (aka RMS power, RMS level, RMS amplitude)

Scope: time domain

Calculation:

Remarks: 

+ beat-related feature, can be used for beat detection

+ related to perceived intensity

+ good loudness estimation

– discriminative power not clear



RMS Energy: Illustration
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RMS Energy: Examples
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Fourier Transform

Transformation of the signal

from time domain (time vs. amplitude)

to frequency domain (frequency vs. magnitude)

• Any (periodic) audio signal can be decomposed into 

an infinite number of overlapping waves

Jean Baptiste

Joseph Fourier

• Periodicity is achieved by multiplying the PCM magnitude values of each

frame with a suited function, e.g., a Hanning window (windowing)

• In our case: Discrete Fourier Transform (DFT)

• In practice efficiently calculated via Fast Fourier Transform (FFT) 

(Cooley, Tukey; 1965)



Concepts and Terminology (4)



Spectrogram

FTFT



Representation as STFT Spectrogram



Mt(n)...magnitude in frequency domain at 

frame t and frequency bin n

N...number of highest frequency band
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Low-Level Feature: Spectral Centroid

Scope: frequency domain

Calculation:

Description: center of gravity of the magnitude spectrum of the DFT, i.e. 

the frequency (band) region where most of the energy is concentrated

Remarks:

used as measure of sound sharpness (strength of high frequency energy)

– sensitive to low pass filtering (downsampling) as the high frequency 

bands are given more weight



Spectral Centroid: Illustration



Pitch Class Profiles: related to Western music tone 

scale, melodic retrieval

MFCCs: related to timbral properties, frame-level

Block-Level Features

− Fluctuation Patterns: related to rhythmic/periodic properties

Mid-level feature extraction and 

similarity calculation



Convert signal to frequency domain, e.g., 

using an FFT

(Psycho)acoustic transformation
(Mel-scale, Bark-scale, Cent-scale, ...): 

mimics human listening process

(not linear, but logarithmic!),

removes aspects not perceived by humans, 

emphasizes low frequencies

Extract features

– Frame-level

(short time windows, e.g., 25 ms) 

needs feature distribution model

– Block-level

(large time windows, e.g., 6 sec)

Mid-level Feature Processing Overview

“Block” “Frames”





Pitch Class Profiles: related to Western music tone 

scale, melodic retrieval

MFCCs: related to timbral properties, frame-level

Block-Level Features

− Fluctuation Patterns: related to rhythmic/periodic properties

Mid-level feature extraction and 

similarity calculation



(aka chroma vectors)

• Transforming the frequency activations into well known musical 

system/representation/notation

• Mapping to the equal-tempered scale (each semitone equal to one 

twelfth of an octave)

• For each frame, get intensity of each of the 12 semitone (pitch) 

classes

Pitch Class Profiles
(Fujishima; 1999)



Mapping Frequencies to Semitones 



Map data to semitone scale to 

represent (western) music

Frequency doubles for each octave

– e.g. pitch of A3 is 220 Hz, 

compared to 440 Hz of A4

Mapping, e.g., using filter bank 

with triangular filters

– centered on pitches

– width given by neighboring pitches

– normalized by area under filter
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Sum up activations that belong to the same class of pitch

(e.g., all A, all C, all F#)

Results in a 12-dimensional feature vector for each frame

PCP feature vectors describe tonality

– Robust to noise (including percussive sounds)

– Independent of timbre (~ played instruments)

– Independent of loudness

Pitch Class Features

+



Pitch Class Profiles in Action

Sonic Visualizer by QMUL, C4DM; http://www.sonicvisualiser.org



Application: Automatic Page Turner

(Arzt, Widmer; 2010)



PCPs used in classification, key/chord estimation, 

melody extraction and retrieval (e.g., for cover song 

retrieval, i.e., finding songs that are based on the same 

melody/tune, independent of instrumentation)

Another scenario is to find different songs that 

nevertheless “sound similar” (frequently related to 

timbre), but MFCCs have shown to be better descriptors 

for this task

Music Retrieval Scenarios



Pitch Class Profiles: related to Western music tone 

scale, melodic retrieval

MFCCs: related to timbral properties, frame-level

Block-Level Features

− Fluctuation Patterns: related to rhythmic/periodic properties

− Correlation Patterns: temporal relation of frequencies

Mid-level feature extraction and 

similarity calculation



Mel Frequency Cepstral Coefficients (MFCCs) have their roots 

in speech recognition and are a way to represent the envelope 

of the power spectrum of an audio frame

– the spectral envelope captures perceptually important information 

about the corresponding sound excerpt (timbral aspects)

– most important for music similarity: sounds with similar spectral 

envelopes are generally perceived as similar.

MFCCs



Perceptual scale of pitches 

judged by listeners to be 

equal in distance from one 

another

Given Frequency f in Hertz, 

the corresponding pitch in 

Mel can be computed by

The Mel Scale



MFCCs are computed per frame

1. STFT: short-time Fourier transform

2. the logarithm of the amplitude 

spectrum is taken (motivated by the 

way we humans perceive loudness)

3. mapping of the amplitude spectrum 

to the Mel scale

4. quantize (e.g., 40 bins) and

make linear (DCT doesn’t operate on 

log scale)

MFCCs



5. perform Discrete Cosine Transform to 

de-correlate the Mel-spectral vectors
– similar to FFT; only real-valued 

components
– describes a sequence of finitely many data 

points as sum of cosine functions 
oscillating at different frequencies

– results in N coefficients (e.g., N = 20)
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MFCC Examples



Full music piece is now a set of MFCC vectors; number of 

frames depends on length of piece

Need summary/aggregation/modeling of this set

– Arithmetic mean over all frames? Sum? 

Statistically model the distribution of all these local features:

– State-of-the-art until 2005: learn a Gaussian Mixture Model (GMM)

– a GMM estimates a probability density as the weighted sum of M 

simpler Gaussian densities, called components of the mixture

– each song is modeled with a GMM

– the parameters of the GMM are learned with the classic 

Expectation-Maximization (EM) algorithm

• this can be considered a shortcoming of this approach as this step is very 

time consuming

“Bag-of-frames” Modeling



Comparing two GMMs is non-trivial and expensive

– The Kullback-Leibler divergence can be used (approximated)

– Basically, this requires to (Monte-Carlo) sample one GMM 

and calculate the likelihood of these observations under the 

other model and vice versa (non-deterministic, slow)

“Bag-of-frames” Modeling



State-of-the-Art since 2005: Single Gaussian Model 

– mean and covariance matrix to model a whole piece

– closed-form solution for KL divergence exists

– much more efficient than GMM 

(instantaneous retrieval of 10Ks of pieces)

– applicable to real-world tasks (e.g. query-by-example or 

automated playlist generation)

“Bag-of-frames” Modeling



• Research prototype: “Wolperdinger”

• Retrieval in real-time

– full database ~2.3m songs

– played song model compared to all whenever played

– no caching necessary

• Single Gaussian MFCC as music similarity measure

• FastMap on feature vectors (vectorized cov. matrix of SG 

model) for highly efficient retrieval 

• Similar approaches in commercial applications 

(e.g., http://fm4.orf.at/soundpark)

Large-scale Music Retrieval



Loss of temporal information:

– temporal ordering of the MFCC vectors is completely lost 

because of the distribution model (bag-of-frames)

– possible approach: calculate delta-MFCCs to preserve 

difference between subsequent frames

Hub problem (“always similar problem”)

– depending on the used features and similarity measure, some 

songs will yield high similarities with many other songs 

without actually sounding similar (requires post-processing, 

e.g., rectify the similarity space)

– general problem in high-dimensional feature spaces

Limitations of Bag-of-Frames Approaches



Pitch Class Profiles: related to Western music tone 

scale, melodic retrieval

MFCCs: related to timbral properties, frame-level

Block-Level Features

− Fluctuation Patterns: related to rhythmic/periodic properties

Mid-level feature extraction and 

similarity calculation



Instead of processing single frames, compute features on 

larger blocks of frames

– blocks are defined as consecutive sequences of audio frames

– thus features are (to some extent) able to capture local temporal 

information

Afterwards the blocks are summarized to form a generalized 

description of the piece of music

Several features defined in “Block-Level Framework” 

(Seyerlehner; 2010); Ex.: Fluctuation Patterns 

(Pampalk; 2001)

Block-Level Features



• The whole spectrum 

is processed in terms 

of blocks

• Each block consists 

of a fixed number of 

frames (block size W)

• Number of rows H is 

defined by the 

frequency resolution

• Blocks may overlap 

(hop size)

Block Processing



• To come up with a global feature vector per song, the local 

feature vectors must be combined into a single representation

• This is done by a summarization function (e.g., mean, 

median, certain percentiles, variance, …)

Generalization



• Idea: measure how strong and fast beats are played within 
certain perceptually adjusted frequency bands

• Aims at capturing periodicities in the signal (“rhythmic
properties“)

• Incorporates several psychoacoustic transformations

– Logarithmic perception of frequencies (Bark scale)

– Loudness

– Periodicities

• Results in a vector description for each music piece

– Vector Space Model

– Favorable for subsequent processing steps and applications:
classification, clustering, etc.

Fluctuation Patterns (FPs)



Extract 6 sec blocks

– discard beginning and end

In each block:

FFT on Hanning-windowed frames (256 
samples)

Convert spectrum to 20 critical bands

according to Bark scale

Calculate Spectral Masking effects

– (i.e. occlusion of a quiet sound when 
a loud sound is played 
simultaneously)

Several loudness transformations:

1. to dB (sound intensity)

2. to phon (human sensation: log)

3. to sone (back to linear)

Fluctuation Patterns



• Second FFT reveals information about 
amplitude modulation, called 
fluctuations.

− Fluctuations show how often 
frequencies reoccur at certain intervals 
within the 6-sec-segment

− “frequencies of the frequencies”

• Psychoacoustic model of fluctuation
strength

− perception of fluctuations depends on 
their periodicities

− reoccurring beats at 4Hz perceived
most intensely

− 60 levels of modulation (per band)
(ranging from 0 to 600bpm)

• Emphasize distinctive beats

Fluctuation Patterns



Each block is now respresented as a

matrix of fluctuation strengths with 1,200 

entries (20 critical bands x 60 levels of 

modulation)

Aggregation of all blocks by taking

median of each component

This results in a 1,200 dimensional 

feature vector for each music piece

Comparison of two music pieces is done

by calculating the Euclidean distance

between their feature vectors

Fluctuation Patterns



Examples



(Some) temporal dependencies are modeled within segments of 6 seconds 
length

Properties:
+ Vector Space Model: The whole mathematical toolbox of vector spaces is 

available.

+ easy to use in classification

+ song models can be visualized

− high dimensional feature space (often a PCA is applied to reduce dim.)

More comprehensive block-level features by (Seyerlehner; 2010)
currently best performing similarity measure according to MIREX:

• Spectral Pattern (SP): frequency content

• Delta-Spectral Pattern (DSP): SP on delta frames

• Variance Delta-Spectral Pattern (VDSP): variance used to aggregate DSP

• Logarithmic Fluctuation Pattern (LFP): more tempo invariant

• Correlation Pattern (CP): temporal relation of frequency bands

• Spectral Contrast Pattern (SCP): estimate “tone-ness”

• Block aggregation via percentiles; similarity via Manhattan distance

Wrapping up FPs and VSM


