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How to Describe Audio Content?

Idea: get features that describe music the way humans do and
compute stmilar songs based on this information

Unfortunately we are are not able to extract most of these features
reliably (or at all...)
— even “simple” human concepts are difficult to model (“semantic
gap”)
— even tempo estimation is very hard...
— NB: a human annotation approach is done in the Music Genome
Project (cf. Pandora’s automatic radio station service)
Furthermore some of these features are quite subjective (e.g.,
mood)

Need to find computable descriptors that capture these
dimensions somehow (...and work acceptably)
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Descriptors of Content

Acoustic property to describe: ﬁ
— Loudness: perceived strength of sound; e.g., energy

— Pitch: frequency, psychoacoustic ordering of tones (on scale;
from low to high); e.g., chroma-features

— Timbre: “tone color”, what distinguishes two sounds with
same pitch and loudness; e.g., MFCCs

— Chords and harmony: simultaneous pitches
— Rhythm: pattern in time; e.g., FPs

— Melody: sequence of tones; combination of pitch and rhythm

cf. (Casey et al.; 2008)
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Categorization of Content-Based Features

Domain: ﬁ

— Time domain
consider signal in time/amplitude representation (“waveform™)

e ™ — e oS

— Frequency domain
consider signal in frequency/magnitude representation

Transformation from time to frequency domain using, €.g.,
Fast Fourier Transform (FFT) Oepartment of
C

Computational
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Categorization of Content-Based Features

Temporal scope: ﬁ

— Instantaneous

feature 1s valid for a “point in time” (NB: time resolution of
ear is several msec!)

— Segment
feature 1s valid for a segment, e.g., phrase, chorus (on a
high level), or a chunk of #» consecutive seconds in the
audio signal

— Global
feature 1s valid for whole audio excerpt or piece of music
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Categorization of Content-Based Features

Level of abstraction:

o

N

High-level

Examples: instrumentation, key, chords, melody, rhythm,
tempo, lyrics, genre, mood

Mid-level

Examples: pitch- and beat-related descriptors, such as note
onsets, rhythm patterns, MFCCs

=——
=
r— c Low-level
10 Examples: amplitude envelope, energy, spectral centroid,
011010 spectral flux, zero-crossing rate
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Scheme of Content-Based Feature Extraction
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Analog-Digital-Conversion (ADC)
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Pulse Code Modulation (PCM):
analog signal is sampled at
equidistant intervals (e.g., at a
frequency of 44,100 Hz) and
quantized in order to store it in
digital form (here with 4 bits,
typically ~16 bits)
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Framing
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In short-time signal processing, pieces of music are cut

Into

segments of fixed length, called frames, which are processed one

at a time; typically, a frame comprises 256 - 4096 samples.
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Scheme of Content-Based Feature Extraction
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Low-Level Feature: Zero Crossing Rate

Scope: time domain
s(k)...amplitude of k" sample in time domain

K...frame size (hnumber of samples in each frame)
Calculation:
(t+1)-K-1

ZCR, =—- Y |sgn(s(k))—sgn(s(k +1)
k=t-K
Description:

number of times the amplitude value changes its sign within frame #

Remarks:

commonly used as part of a low-level descriptor set

+ might be used as an indicator of pitch

+ sometimes stated to be an approximate measure of the signal’s noisiness
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Zero Crossing Rate: lllustration
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Zero Crossing Rate: Examples

Zero Crossing Rate
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Low-Level Feature: RMS Energy

Root-Mean-Square Energy (aka RMS power, RMS level, RMS amplitude)
Scope: time domain

Calculation:
(t+1)-K-1
RMS, = |—- > s(k)’
k=t-K
s(k)...amplitude of k" sample in time domain
Remarks: K...frame size (number of samples in each frame)

+ beat-related feature, can be used for beat detection
+ related to perceived intensity
+ good loudness estimation

— discriminative power not clear
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RMS Energy: lllustration

K=20
hop size = 10
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RMS Energy: Examples

Root Mean Square
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Scheme of Content-Based Feature Extraction
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Fourier Transform

Transformation of the signal
from time domain (time vs. amplitude)
to frequency domain (frequency vs. magnitude)

Jean Baptiste
Joseph Fourier

* Any (periodic) audio signal can be decomposed into
an infinite number of overlapping waves

* Periodicity is achieved by multiplying the PCM magnitude values of each
frame with a suited function, e.g., a Hanning window (windowing)

* In our case: Discrete Fourier Transform (DFT)
* In practice efficiently calculated via Fast Fourier Transform (FFT)
(Cooley, Tukey; 1965)
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Spectrogram

Department of
Computational
Perception




Representation as STFT Spectrogram

STFT
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Low-Level Feature: Spectral Centroid

Scope: irequency domain M;(n)...magnitude in frequency domain at

frame t and frequency bin n

Calculation: N
Z Mt (n) w7 N...number of highest frequency band
n=I

C, = ~
> M, (n)

Description: center of gravity of the magnitude spectrum of the DFT, i.e.
the frequency (band) region where most of the energy is concentrated

Remarks:

used as measure of sound sharpness (strength of high frequency energy)
— sensitive to low pass filtering (downsampling) as the high frequency
bands are given more weight
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Mid-level feature extraction and
similarity calculation

Pitch Class Profiles: related to Western music tone
scale, melodic retrieval

MFCC:s: related to timbral properties, frame-level

Block-Level Features

— Fluctuation Patterns: related to rhythmic/periodic properties
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Mid-level Feature Processing Overview

“Block” “Frames”
Convert signal to frequency domain, e.g., ||| 'l “| | .| I |||| I‘h“"‘ h ‘il | .
using an FFT l v
(Psycho)acoustic transformation S B paidi ek
(Mel-scale, Bark-scale, Cent-scale, ...): . P
mimics human listening process

(not linear, but logarithmic!),
removes aspects not perceived by humans,
emphasizes low frequencies

Extract features

— Frame-level
(short time windows, e.g., 25 ms)
needs feature distribution model

— Block-level
(large time windows, e.g., 6 sec)
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normalized scales

Comparison of acoustic scales
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Mid-level feature extraction and
similarity calculation

Pitch Class Profiles: related to Western music tone
scale, melodic retrieval

MFCC:s: related to timbral properties, frame-level

Block-Level Features

— Fluctuation Patterns: related to rhythmic/periodic properties
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Pitch Class Profiles

(Fujishima; 1999)

(aka chroma vectors)
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Mapping Frequencies to Semitones
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Semitone Scale

Map data to semitone scale to
represent (western) music

Frequency doubles for each octave

— e.g. pitch of A3 1s 220 Hz,
compared to 440 Hz of A4

Mapping, e.g., using filter bank
with triangular filters

— centered on pitches

8

7

6

5

tave

[$]
04_

— width given by neighboring pitches
3

— normalized by area under filter

l - feg

I
(o] o o Ju Sremvin

The note C in different octaves

vs. frequency
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Pitch Class Features

Sum up activations that belong to the same class of pitch
(e.g.,all A, all C, all F#)

Keyboard
J. Wolfe, UNSW

Results in a 12-dimensional feature vector for each frame

PCP feature vectors describe tonality
— Robust to noise (including percussive sounds)
— Independent of timbre (~ played instruments)

— Independent of loudness (b Department of
® | Computational
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Pitch Class Profiles in Action

Sonic Visualizer by QMUL, C4DM:; http://www.sonicvisualiser.org (.' Computational
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(Arzt, Widmer; 2010)

Application: Automatic Page Turner
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Music Retrieval Scenarios

PCPs used in classification, key/chord estimation,
melody extraction and retrieval (e.g., for cover song
retrieval, 1.e., finding songs that are based on the same
melody/tune, independent of instrumentation)

Another scenario 1s to find different songs that
nevertheless “sound similar” (frequently related to
timbre), but MFCCs have shown to be better descriptors
for this task
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Mid-level feature extraction and
similarity calculation

Pitch Class Profiles: related to Western music tone
scale, melodic retrieval

MFCC:s: related to timbral properties, frame-level

Block-Level Features
— Fluctuation Patterns: related to rhythmic/periodic properties

— Correlation Patterns: temporal relation of frequencies
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MFCCs

Mel Frequency Cepstral Coefficients (MFCCs) have their roots
in speech recognition and are a way to represent the envelope
of the power spectrum of an audio frame

— the spectral envelope captures perceptually important information

about the corresponding sound excerpt (timbral aspects)

— most important for music similarity: sounds with similar spectral
envelopes are generally perceived as similar.

Amplitude [dB]
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Frequency [Mel]

The Mel Scale

3176&3 ;?? ;
2858.81 ¢

2541.3';%;'€'”"'L"'i R i._..._,..”.. e o

0003 7|,

1588.7t
12711 , __________________________________________

953.6 {{illf
636.1| ff\

3185 I\ A

1.0
531 2166 4335 5974 8146

Frequency [Hz]

Perceptual scale of pitches
judged by listeners to be
equal 1n distance from one
another

Given Frequency f1n Hertz,
the corresponding pitch in
Mel can be computed by

I
m = 25951 1+ —
Dglﬂ ( - ?DD)
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Waveform

1

Convert to Frames

'

Take discrete
Fourier transform

Y

Take Log of
amplitude spectrum

'

Mel-scaling and
smoothing

Y

Discrete cosine transform

'

MFCC Features

MFCCs

MFCCs are computed per frame

1.
2.

STFT: short-time Fourier transform

the logarithm of the amplitude
spectrum is taken (motivated by the
way we humans perceive loudness)

mapping of the amplitude spectrum
to the Mel scale

quantize (e.g., 40 bins) and

make linear (DCT doesn’t operate on
log scale)
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Waveform

'

Convert to Frames

J

Take discrete
Fourier transform

Y

Take Log of
amplitude spectrum

{

Mel-scaling and
smoothing

Y

Discrete cosine transform

f

MFCC Features

5. perform Discrete Cosine Transform to

de-correlate the Mel-spectral vectors
— similar to FFT; only real-valued
components
— describes a sequence of finitely many data
points as sum of cosine functions
oscillating at different frequencies
— results in N coefficients (e.g., N = 20)

N-1 T 1
Xk=2xn-cos —-(n+—j-k k=0,.,N-1
pry N 2

DT

2 4 5] g 10 12 14 16 18 20
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“Bag-of-frames” Modeling

Full music piece 1s now a set of MFCC vectors; number of
frames depends on length of piece

Need summary/aggregation/modeling of this set

— Arithmetic mean over all frames? Sum?

Statistically model the distribution of all these local features:
— State-of-the-art until 2005: learn a Gaussian Mixture Model (GMM)

— a GMM estimates a probability density as the weighted sum of M
simpler Gaussian densities, called components of the mixture

— each song 1s modeled with a GMM

— the parameters of the GMM are learned with the classic
Expectation-Maximization (EM) algorithm
* this can be considered a shortcoming of this approach as this step is very
time consuming
r Departme_nl of
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“Bag-of-frames” Modeling

Comparing two GMMs 1s non-trivial and expensive

— The Kullback-Leibler divergence can be used (approximated)

pla)

g(x)

— Basically, this requires to (Monte-Carlo) sample one GMM
and calculate the likelihood of these observations under the
other model and vice versa (non-deterministic, slow)

Dgr(P]Q) = g/_zp(fﬂ) log dx
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“Bag-of-frames” Modeling

State-of-the-Art since 2005: Single Gaussian Model

— mean and covariance matrix to model a whole piece
— closed-form solution for KL divergence exists

— much more efficient than GMM
(instantaneous retrieval of 10Ks of pieces)

— applicable to real-world tasks (e.g. query-by-example or
automated playlist generation)
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Large-scale Music Retrieval

Research prototype: “Wolperdinger”

Retrieval in real-time

— full database ~2.3m songs
— played song model compared to all whenever played
— no caching necessary

Single Gaussian MFCC as music similarity measure

FastMap on feature vectors (vectorized cov. matrix of SG
model) for highly efficient retrieval

Similar approaches in commercial applications
(e.g., http://fm4.orf.at/soundpark)
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Limitations of Bag-of-Frames Approaches

Loss of temporal information:

— temporal ordering of the MFCC vectors 1s completely lost
because of the distribution model (bag-of-frames)

— possible approach: calculate delta-MFCCs to preserve
difference between subsequent frames
Hub problem (“always similar problem”)

— depending on the used features and similarity measure, some
songs will yield high similarities with many other songs
without actually sounding similar (requires post-processing,
e.g., rectify the similarity space)

— general problem in high-dimensional feature spaces

Department of
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Mid-level feature extraction and
similarity calculation

Pitch Class Profiles: related to Western music tone
scale, melodic retrieval

MFCC:s: related to timbral properties, frame-level

Block-Level Features

— Fluctuation Patterns: related to rhythmic/periodic properties

Department of
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Block-Level Features

Instead of processing single frames, compute features on
larger blocks of frames

— blocks are defined as consecutive sequences of audio frames

— thus features are (to some extent) able to capture local temporal
information

Afterwards the blocks are summarized to form a generalized
description of the piece of music

Several features defined in “Block-Level Framework™

(Seyerlehner; 2010); Ex.: Fluctuation Patterns

(Pampalk; 2001) o
»
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Block Processing

* The whole spectrum

1s processed 1n terms
of blocks

 Each block consists

of a fixed number of
frames (block size W)

* Number of rows H 1s
defined by the
frequency resolution

* Blocks may overlap
(hop size)
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Generalization

To come up with a global feature vector per song, the local
feature vectors must be combined into a single representation

This 1s done by a summarization function (e.g., mean,
median, certain percentiles, variance, ...)

i1 Piaeic] 44 4 i Block2 coe i Block'N -7~

Global Result:
XK eo e — —_

i fmv median(f, ,, f,,, ... f, )
4 Iis median(f, . f,,, -, f, )

[ ]

°

Y Y Y *
sz1 fK,2 fK‘N —_— median(fK‘1, fK.Z’ fK,N)
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Fluctuation Patterns (FPs)

Idea: measure how strong and fast beats are played within
certain perceptually adjusted frequency bands

Aims at capturing periodicities in the signal (“rhythmic
properties®)

Incorporates several psychoacoustic transformations

— Logarithmic perception of frequencies (Bark scale)

— Loudness

— Periodicities

Results in a vector description for each music piece

— Vector Space Model

— Favorable for subsequent processing steps and applications:
classification, clustering, etc.
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Fluctuation Patterns

lece of music Extract 6 sec blocks
v | — discard beginning and end
Ei—secongggquences In eaCh blOCk:
Y ] y ~ FFT on Hanning-windowed frames (256
Powerspectrum { Modulation amplitude Samples)
Y ,I Y ~ Convert spectrum to 20 critical bands
Critcal-band rate scale || ||| Fucuation strength according to Bark scale
Y | Y Calculate Spectral Masking effects
Spectral masking .| | | Rythm pattem — (1.e. occlusion of a quiet sound when
v ! a loud sound is played
Decibel | Typical rhythm pattern Simultaneously)
dB-SPL 4 10 .
i Several loudness transformations:
Equal—logﬁness levels 5' l. to dB (SOund intenSitY)
on .
{ 2. to phon (human sensation: log)
Specific loudness sensationl 3 . to sone (baCk to linear) Department of
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Piece of music
e.g. MP3 file

v

PCM
G-second sequences

'

Fluctuation Patterns

Y

Fowerspectrum 1

'

Modulation amplitude

7

'

Critical-band rate scale
Bark 2

Y

Fluctuation strength

8

'

Spectral masking 3

'

Rythm pattern

9

!

Decibel
dB-SPL 4

Typical rhythm pattern

10

!

Equal-loudness levels
Fhon 5

v

Specific loudness sensation
H Sone G

* Second FFT reveals information about
amplitude modulation, called
fluctuations.

— Fluctuations show how often

frequencies reoccur at certain intervals
within the 6-sec-segment

— “frequencies of the frequencies”

* Psychoacoustic model of fluctuation
strength

— perception of fluctuations depends on
their periodicities

— reoccurring beats at 4Hz perceived
most intensely

— 60 levels of modulation (per band)
(ranging from 0 to 600bpm)

* Emphasize distinctive beats



Piece of music

Fluctuation Patterns

e.g. MP3 file
PCM
G-second sequences
Powerspectrum 1 Modulation amplitude 7
CFItICﬁFb%I’;CikFatE scale 2 Fluctuation strength a
Spectral masking 3 Rythm pattern o
Decibel Typical rhythm pattern
dB-SPL 4 10
Equal-loudness levels
Fhon 5
Specific loudness sensation
H Sone G

Each block is now respresented as a
matrix of fluctuation strengths with 1,200
entries (20 critical bands x 60 levels of
modulation)

Aggregation of all blocks by taking
median of each component

This results in a 1,200 dimensional
feature vector for each music piece

Comparison of two music pieces is done
by calculating the Euclidean distance
between their feature vectors

Department of
® | Computational
»

Perception




Examples
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Wrapping up FPs and VSM

(Some) temporal dependencies are modeled within segments of 6 seconds
length
Properties:

+ Vector Space Model: The whole mathematical toolbox of vector spaces is
available.

+ easy to use in classification
+ song models can be visualized

— high dimensional feature space (often a PCA is applied to reduce dim.)
More comprehensive block-level features by (Seyerlehner; 2010)
currently best performing similarity measure according to MIREX:

*  Spectral Pattern (SP): frequency content

*  Delta-Spectral Pattern (DSP): SP on delta frames

*  Variance Delta-Spectral Pattern (VDSP): variance used to aggregate DSP

*  Logarithmic Fluctuation Pattern (LFP): more tempo invariant

*  Correlation Pattern (CP): temporal relation of frequency bands

*  Spectral Contrast Pattern (SCP): estimate “tone-ness”

*  Block aggregation via percentiles; similarity via Manhattan distance
C o
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