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Abstract—Gesture recognition pertains to recognizing meaning-
ful expressions of motion by a human, involving the hands, arms,
face, head, and/or body. It is of utmost importance in designing
an intelligent and efficient human–computer interface. The ap-
plications of gesture recognition are manifold, ranging from sign
language through medical rehabilitation to virtual reality. In this
paper, we provide a survey on gesture recognition with particu-
lar emphasis on hand gestures and facial expressions. Applications
involving hidden Markov models, particle filtering and condensa-
tion, finite-state machines, optical flow, skin color, and connection-
ist models are discussed in detail. Existing challenges and future
research possibilities are also highlighted.

Index Terms—Face recognition, facial expressions, hand ges-
tures, hidden Markov models (HMMs), soft computing, optical
flow.

I. INTRODUCTION

IN THE PRESENT day framework of interactive, intelli-
gent computing, an efficient human–computer interaction is

assuming utmost importance in our daily lives. Gesture recog-
nition can be termed as an approach in this direction. It is the
process by which the gestures made by the user are recognized
by the receiver.

Gestures are expressive, meaningful body motions involving
physical movements of the fingers, hands, arms, head, face, or
body with the intent of: 1) conveying meaningful information
or 2) interacting with the environment. They constitute one in-
teresting small subspace of possible human motion. A gesture
may also be perceived by the environment as a compression
technique for the information to be transmitted elsewhere and
subsequently reconstructed by the receiver. Gesture recognition
has wide-ranging applications [1] such as the following:

� developing aids for the hearing impaired;
� enabling very young children to interact with computers;
� designing techniques for forensic identification;
� recognizing sign language;
� medically monitoring patients’ emotional states or stress

levels;
� lie detection;
� navigating and/or manipulating in virtual environments;
� communicating in video conferencing;
� distance learning/tele-teaching assistance;
� monitoring automobile drivers’ alertness/drowsiness

levels, etc.
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Generally, there exist many-to-one mappings from concepts
to gestures and vice versa. Hence, gestures are ambiguous and
incompletely specified. For example, to indicate the concept
“stop,” one can use gestures such as a raised hand with palm
facing forward, or, an exaggerated waving of both hands over the
head. Similar to speech and handwriting, gestures vary between
individuals, and even for the same individual between different
instances.

There have been varied approaches to handle gesture recog-
nition [2], ranging from mathematical models based on hid-
den Markov chains [3] to tools or approaches based on soft
computing [4]. In addition to the theoretical aspects, any prac-
tical implementation of gesture recognition typically requires
the use of different imaging and tracking devices or gadgets.
These include instrumented gloves, body suits, and marker-
based optical tracking. Traditional 2-D keyboard-, pen-, and
mouse-oriented graphical user interfaces are often not suit-
able for working in virtual environments. Rather, devices that
sense body (e.g., hand, head) position and orientation, direc-
tion of gaze, speech and sound, facial expression, galvanic skin
response, and other aspects of human behavior or state can
be used to model communication between a human and the
environment.

Gestures can be static (the user assumes a certain pose or con-
figuration) or dynamic (with prestroke, stroke, and poststroke
phases). Some gestures also have both static and dynamic ele-
ments, as in sign languages. Again, the automatic recognition
of natural continuous gestures requires their temporal segmen-
tation. Often one needs to specify the start and end points of a
gesture in terms of the frames of movement, both in time and
in space. Sometimes a gesture is also affected by the context of
preceding as well as following gestures. Moreover, gestures are
often language- and culture-specific. They can broadly be of the
following types:

1) hand and arm gestures: recognition of hand poses, sign
languages, and entertainment applications (allowing chil-
dren to play and interact in virtual environments);

2) head and face gestures: some examples are: a) nodding
or shaking of head; b) direction of eye gaze; c) raising
the eyebrows; d) opening the mouth to speak; e) winking,
f) flaring the nostrils; and g) looks of surprise, happiness,
disgust, fear, anger, sadness, contempt, etc.;

3) body gestures: involvement of full body motion, as in:
a) tracking movements of two people interacting outdoors;
b) analyzing movements of a dancer for generating match-
ing music and graphics; and c) recognizing human gaits
for medical rehabilitation and athletic training.

Typically, the meaning of a gesture can be dependent on the
following:

� spatial information: where it occurs;
� pathic information: the path it takes;
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� symbolic information: the sign it makes;
� affective information: its emotional quality.
Facial expressions involve extracting sensitive features (re-

lated to emotional state) from facial landmarks such as regions
surrounding the mouth, nose, and eyes of a normalized image.
Often dynamic image frames of these regions are tracked to
generate suitable features. The location, intensity, and dynam-
ics of the facial actions are important for recognizing an ex-
pression. Moreover, the intensity measurement of spontaneous
facial expressions is often more difficult than that of posed fa-
cial expressions. More subtle cues such as hand tension, overall
muscle tension, locations of self-contact, and pupil dilation are
sometimes used.

In order to determine all these aspects, the human body po-
sition, configuration (angles and rotations), and movement (ve-
locities) need to be sensed. This can be done either by using
sensing devices attached to the user. Those may be magnetic
field trackers, instrumented (data) gloves, and body suits, or by
using cameras and computer vision techniques.

Each sensing technology varies along several dimensions,
including accuracy, resolution, latency, range of motion, user
comfort, and cost. Glove-based gestural interfaces typically re-
quire the user to wear a cumbersome device and carry a load
of cables connecting the device to a computer. This hinders the
ease and naturalness of the user’s interaction with the computer.
Vision-based techniques, while overcoming this, need to con-
tend with other problems related to occlusion of parts of the
user’s body. While tracking devices can detect fast and sub-
tle movements of the fingers when the user’s hand is moving,
a vision-based system will at best get a general sense of the
type of finger motion. Again, vision-based devices can han-
dle properties such as texture and color for analyzing a gesture,
while tracking devices cannot. Vision-based techniques can also
vary among themselves in: 1) the number of cameras used;
2) their speed and latency; 3) the structure of environment (re-
strictions such as lighting or speed of movement); 4) any user
requirements (whether user must wear anything special); 5) the
low-level features used (edges, regions, silhouettes, moments,
histograms); 6) whether 2-D or 3-D representation is used; and
7) whether time is represented. There is, however, an inherent
loss in information whenever a 3-D image is projected to a 2-D
plane. Again, elaborate 3-D models involve prohibitive high-
dimensional parameter spaces. A tracker also needs to handle
changing shapes and sizes of the gesture-generating object (that
varies between individuals), other moving objects in the back-
ground, and noise. Good review on human motion analysis is
available in literature [5], [6].

In this paper, we provide a survey on different aspects of
gesture recognition. Section II outlines various tools often used
for gesture recognition. Section III is devoted to hand and arm
gestures, with particular emphasis on hidden Markov models
(HMMs), particle filtering and condensation, finite-state ma-
chine (FSM), and neural network. This is followed by facial
gesture recognition in Section IV including a coverage on
approaches employing HMMs, principal component analysis
(PCA), contour models, feature extraction, Gabor filtering, opti-
cal flow, skin color, and connectionist models. Finally, Section V

indicates a few of the existing challenges and future research
possibilities.

II. TOOLS FOR GESTURE RECOGNITION

Gesture recognition is an ideal example of multidisciplinary
research. There are different tools for gesture recognition, based
on the approaches ranging from statistical modeling, computer
vision and pattern recognition, image processing, connection-
ist systems, etc. Most of the problems have been addressed
based on statistical modeling, such as PCA, HMMs [3], [7], [8],
Kalman filtering [9], more advanced particle filtering [10], [11]
and condensation algorithms [12]–[14]. FSM has been effec-
tively employed in modeling human gestures [15]–[18].

Computer vision and pattern recognition techniques [19],
involving feature extraction, object detection, clustering, and
classification, have been successfully used for many gesture
recognition systems. Image-processing techniques [20] such as
analysis and detection of shape, texture, color, motion, optical
flow, image enhancement, segmentation, and contour model-
ing [21], have also been found to be effective. Connectionist
approaches [22], involving multilayer perceptron (MLP), time-
delay neural network (TDNN), and radial basis function network
(RBFN), have been utilized in gesture recognition as well.

While static gesture (pose) recognition can typically be ac-
complished by template matching, standard pattern recognition,
and neural networks, the dynamic gesture recognition problem
involves the use of techniques such as time-compressing tem-
plates, dynamic time warping, HMMs, and TDNN. In the rest of
this section, we discuss the principles and background of some
of these popular tools used in gesture recognition.

A. HMM

A time-domain process demonstrates a Markov property if
the conditional probability density of the current event, given
all present and past events, depends only on the jth most recent
event. If the current event depends solely on the most recent
past event, then the process is termed a first order Markov pro-
cess. This is a useful assumption to make, when considering
the positions and orientations of the hands of a gesturer through
time.

The HMM [3], [7] is a double stochastic process governed
by: 1) an underlying Markov chain with a finite number of
states and 2) a set of random functions, each associated with
one state. In discrete time instants, the process is in one of
the states and generates an observation symbol according to
the random function corresponding to the current state. Each
transition between the states has a pair of probabilities, defined
as follows:

1) transition probability, which provides the probability for
undergoing the transition;

2) output probability, which defines the conditional proba-
bility of emitting an output symbol from a finite alphabet
when given a state.

The HMM is rich in mathematical structures and has been
found to efficiently model spatio–temporal information in a nat-
ural way. The model is termed “hidden” because all that can be
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Fig. 1. Five-state left-to-right HMM for gesture recognition.

seen is only a sequence of observations. It also involves elegant
and efficient algorithms, such as Baum–Welch and Viterbi [23],
for evaluation, learning, and decoding. An HMM is expressed
as λ = (A,B,Π) and is described as follows:

� a set of observation strings O = {O1, . . . , OT }, where t =
1, . . . , T ;

� a set of N states {s1, . . . , sN};
� a set of k discrete observation symbols {v1, . . . , vk};
� a state-transition matrix A = {aij}, where aij is the tran-

sition probability from state si at time t to state sj at time
t + 1

A={aij}=Prob(sj at t + 1|si at t), for 1 ≤ i, j ≤ N.

(1)

� an observation symbol probability matrix B = {bjk},
where bjk is the probability of generating symbol vk from
state sj ;

� an initial probability distribution for the states

Π={πj}, j=1, 2, . . . , N, where πj = Prob(sj at t = 1).

The generalized topology of an HMM is a fully connected
structure, known as an ergodic model, where any state can be
reached from any other state. When employed in dynamic ges-
ture recognition, the state index transits only from left to right
with time, as depicted in Fig. 1. The start state s1 and final
state sN , for N = 5, are indicated on the figure. Here, the state-
transition coefficients aij = 0 if j < i, and

∑N
j=1 aij = 1. The

Viterbi algorithm is used for evaluating a set of HMMs and de-
coding by considering only the maximum path at each time step
instead of all paths.

The global structure of the HMM is constructed by parallel
connections of each HMM (λ1, λ2, . . . , λM ), whereby insertion
(or deletion) of a new (or existing) HMM is easily accomplished.
Here, λ corresponds to a constructed HMM model for each ges-
ture, where M is the total number of gestures being recognized.

HMMs have been applied to hand and face recognition. Usu-
ally, a 2-D projection is taken from the 3-D model of the hand
or face, and a set of input features are extracted experimentally.
The spatial component of the dynamic gesture is typically ne-
glected, while the temporal component (having a start state, end
state, and a set of observation sequences) is mapped through an
HMM classifier with appropriate boundary conditions. A set of
data are employed to train the classifier, and the test data are
used for prediction verification.

Given an observation sequence, the following are the key
issues in HMM use:

1) evaluation: determining the probability that the ob-
served sequence was generated by the model (Forward–
Backward algorithm);

2) training or estimation: adjusting the model to maximize
the probabilities (Baum–Welch algorithm);

3) decoding: recovering the state sequence (Viterbi
algorithm).

B. Particle Filtering and Condensation Algorithm

Particle-filtering-based tracking and its applications in
gesture recognition systems became popular very recently
[10]–[14]. Particle filters have been very effective in estimat-
ing the state of dynamic systems from sensor information. The
key idea is to represent probability densities by set of sam-
ples. As a result, it has the ability to represent a wide range of
probability densities, allowing real-time estimation of nonlinear,
non-Gaussian dynamic systems. This technique was originally
developed to effectively track objects in clutter [12], [13]. The
state of a tracked object at time t is described by a vector Xt,
where the vector Yt represents all the samples of observations
{y1, y2, · · · , yt}. The posterior density P (Xt|Yt) and the obser-
vation density P (Yt|Xt) are often non-Gaussian.

Basically, the particle filters are a sample-based variant
of Bayes filters. The key idea is to approximate the prob-
ability density distribution by a weighted sample set St =
{〈x(i)

t , w
(i)
t 〉| i = 1, · · · , Np}. Here, each sample x

(i)
t represents

a hypothetical state of the object, and w
(i)
t represents the corre-

sponding discrete sampling probability of the sample x
(i)
t such

that
Np∑
i=1

w
(i)
t = 1. (2)

The particle filtering in its basic form actually realizes the recur-
sive Bayes filter according to a sampling procedure, often called
sequential importance sampling with resampling (SISR) [14].
The iterative evolution of the sample set is described by propa-
gating each sample according to a system model. Each sample
element in the set is weighted in terms of the observations, and
Np samples are drawn with replacement by choosing a particu-

lar sample with posterior probability w
(i)
t = P (yt|Xt = x

(i)
t ).

In each step of iteration, the mean state (sample) of an object is
estimated as

E(St) =
Np∑
i=1

w
(i)
t x

(i)
t .

Since it models uncertainty (as posterior probability density),
particle filtering provides a robust tracking framework suitable
for gesture recognition systems. Based on the above princi-
ple, the condensation algorithm (conditional density propaga-
tion over time) was originally proposed to deal with the problem
of tracking rapid motion in clutter [13]. Rather than attempting
to fit a specific equation to the observed sensory data, it uses
the Np weighted samples to approximate the curve described
by the observed data. When applied to tracking, each sample
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represents the state of the object being tracked, e.g., its velocity
and location. Given such a randomly sampled state St at time t,
a prediction of a new state St+1 at time t + 1 is made using a
predictive model.

An extension of the condensation algorithm has been pro-
posed [24] to automatically switch between various prediction
motion models. Because of the usage of multiple such models
to predict different types of motion of the objects, this signifi-
cantly improves the performance of the tracker. It also enables
the extraction of the most likely particular model that correctly
represents the motion observed at a given time t. This is very
relevant and useful for gesture recognition. If each competing
model represents a single gesture, then the most likely model
predicts which gesture is being observed.

C. FSM Approach

In the FSM approach, a gesture can be modeled as an or-
dered sequence of states in a spatio–temporal configuration
space [15]–[18]. The number of states in the FSM may vary
between applications. The gesture is recognized as a prototype
trajectory from an unsegmented, continuous stream of sensor
data constituting an ensemble of trajectories. The trajectories
of the gestures are represented as a set of points (e.g., sampled
positions of the head, hand, and eyes) in a 2-D space.

Usually, the training of the model is done off-line, using
many possible examples of each gesture as training data, and
the parameters (criteria or characteristics) of each state in the
FSM are derived. The recognition of gestures can be performed
online using the trained FSM. When input data (feature vectors
such as trajectories) are supplied to the gesture recognizer, the
latter decides whether to stay at the current state of the FSM or
jump to the next state based on the parameters of the input data. If
it reaches a final state, we say that a gesture has been recognized.

The state-based representation can be extended to accommo-
date multiple models for the representation of different gestures,
or even different phases of the same gesture. Membership in a
state is determined by how well the state models can represent
the current observation. If more than one model (gesture recog-
nizer) reach their final states at the same time, we can apply a
winning criteria to choose the most probable gesture.

The concept of motion energy has been used [17] to extract
the temporal signature of hand motion from a limited set of dy-
namic hand gestures. This is subsequently analyzed and inter-
preted by a deterministic FSM. The relative change of direction
of motion, rather than the relative motion such as quickly or
slowly, is considered to be more important for determining the
temporal signature. Adaptation with cross-cultural gestures can
be achieved by redefining the FSM according to the relevant
rules of the society. Inclusion of new gestures is achieved by the
construction of additional FSMs portraying the corresponding
motion profile.

D. Soft Computing and Conectionist Approach

Soft computing is a consortium of methodologies that works
synergistically and provides flexible information processing ca-
pability for handling real-life ambiguous situations [25]. Its aim

is to exploit the tolerance for imprecision, uncertainty, approxi-
mate reasoning, and partial truth in order to achieve tractability,
robustness, and low-cost solutions.

Sensor outputs are often associated with an inherent uncer-
tainty. Relevant, sensor-independent, invariant features are ex-
tracted from these outputs, followed by gesture classification.
The recognition system may be designed to be fully trained
when in use, or may adapt dynamically to the current user. Soft
computing tools [26], such as fuzzy sets, artificial neural net-
works (ANNs), genetic algorithms (GAs), and rough sets, hold
promise in effectively handling these issues. Management of
uncertainty at different levels can be made by fuzzy sets and
rough sets, while dimensionality reduction is taken care of by
self-organizing maps. Fuzzy sets can also be used to model
simultaneous partial membership to multiple gesture classes.

The adaptive nature of ANNs enable connectionist ap-
proaches to incorporate learning in data-rich environment. This
characteristic, coupled with robustness, is useful in developing
recognition systems. The various connectionist models in liter-
ature [27]–[30], for hand gesture and facial expression recogni-
tion, include MLP, TDNN, and RBFN.

III. HAND AND ARM GESTURES

Human gestures typically constitute a space of motion ex-
pressed by the body, face, and/or hands. Of these, hand gestures
are often the most expressive and the most frequently used. This
involves: 1) a posture: static finger configuration without hand
movement and 2) a gesture: dynamic hand movement, with or
without finger motion. Gestures may be categorized as given
in the following list, such that as we proceed downward this
list, their association with speech declines, language properties
increase, spontaneity decreases, and social regulation increases:

� gesticulation: spontaneous movement of hands and arms,
accompanying speech. These spontaneous movements
constitute around 90% of human gestures. People gestic-
ulate when they are on telephone, and even blind people
regularly gesture when speaking to one another;

� languagelike gestures: gesticulation integrated into a spo-
ken utterance, replacing a particular spoken word or phrase;

� pantomimes: gestures depicting objects or actions, with or
without accompanying speech;

� emblems: familiar signs such as “V for victory,” or other
culture-specific “rude” gestures;

� ign languages: well-defined linguistic systems. These carry
the most semantic meaning and are more systematic,
thereby being easier to model in a virtual environment.

Hand gesture recognition consists of gesture spotting that
implies determining the start and end points of a meaningful
gesture pattern from a continuous stream of input signals and,
subsequently, segmenting the relevant gesture. This task is very
difficult due to: 1) the segmentation ambiguity and 2) the spatio–
temporal variability involved. As the hand motion switches from
one gesture to another, there occur intermediate movements as
well. These transition motions are also likely to be segmented
and matched with reference patterns, and need to be eliminated
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by the model. Moreover, the same gesture may dynamically
vary in shape and duration even for the same gesturer.

Orientation histograms have also been used as a feature vec-
tor for fast, simple hand gesture classification and interpola-
tion [31]. It is based on computing the Euclidean distance from
the prototypes in terms of these features. The histogram of orien-
tations, representing an orientation in terms of its angle, provides
for translational invariance.

A. HMMs for Hand Gesture Recognition

HMM is a rich tool used for hand gesture recognition in
diverse application domains. Probably, the first publication ad-
dressing the problem of hand gesture recognition is the cele-
brated paper by Yamato et al. [7]. In this approach, a discrete
HMM and a sequence of vector-quantized (VQ)-labels have
been used to recognize six classes of tennis strokes. Before ap-
plying the HMM, the image sequence goes through several pre-
processing steps such as low-pass filtering to reduce the noise,
background subtraction to extract the moving objects, and bina-
rization of the moving objects in order to generate blobs. The
blobs roughly represent the poses of the human. The features are
the amounts of object (black) pixels. These features are vector
quantized, such that the image sequence becomes a sequence of
VQ-labels, which are then processed by a discrete HMM.

Subsequently, several other applications of hand gesture
recognition have been developed based on HMMs. In the fol-
lowing sections, we elaborate some of these, as available in the
literature.

1) Sign Language Recognition: Sign language is a visual
language. Usually, sign language consists of three major com-
ponents: 1) finger-spelling; 2) word-level sign vocabulary; and
3) nonmanual features [32]. The finger-spelling is used to spell
words letter by letter. The word-level sign vocabulary is used for
majority of communication, while the nonmanual features con-
sist of facial expression, position of tongue, mouth, and body.

A real-time HMM-based system has been designed [33], [34]
for recognizing sentence-level American Sign Language, with-
out explicitly modeling the fingers. Since each gesture in a
sign language has an already assigned meaning, strong rules of
context and grammar may be applied to make the recognition
tractable. Typically, the gestures represent whole words. A five-
state HMM is used to recognize data strings, and is combined
with statistical grammar to incorporate context during training
and recognition. The Viterbi algorithm is used both with and
without a strong grammar, based on the known forms of the
sentences. However, once the recognizer starts, the subject must
conduct only sign languages. This is because the model can-
not distinguish undefined hand motions. The subject wears dis-
tinctly colored gloves on both hands, and sits in a chair in front
of the camera to aid hand tracking. An eight-component feature
vector consists of the hand’s 2-D coordinates, axis angle of least
inertia, and the eccentricity of the bounding ellipse. Consider-
ing that all human hands have approximately the same hue and
saturation but vary in their brightness, in another approach, the
hands are tracked based on skin tone. The leftmost and rightmost
hands are assigned to be “left” and “right,” respectively.

The HMM-based approach, described above, requires exten-
sive training sets for modeling. It was found to be effective
for practically just around 50 words and required heavily con-
strained artificial grammar on the structure of the sentences [33],
[35]. Bowden et al. [32], [35] made significant progress in sign
language interpretation by structuring the classification model
around a linguistic definition of signed words, rather than an
HMM. In this vision-based approach, the “visemes” of sign
(aka phase representation of constituent motions) are defined in
a manner similar to that in the sign linguistic dictionary.

Viseme is a visual equivalent of a phoneme. This enables signs
to be learnt reliably from just a handful of training examples. The
system is designed based on a novel two-stage classification. In
the first stage, the raw image sequences are segmented in order
to extract shapes and trajectories of the hands in the binary
image sequence. These features are then converted into a viseme
representation: 1) position of the hands relative to each other
(HA); 2) position of hands relative to key body locations (TAB);
3) relative movement of the hands (SIG); and 4) the shape of
the hands (DEZ). In the second stage of classification, each
sign is modeled as a first order Markov chain in which each
state in the chain represents a particular set of feature vectors
generated from the classification in stage one. The Markov chain
encodes temporal transitions of the hands. In order to allow
minor variations over the sign instances and optimal feature-
to-symbol mapping, independent component analysis (ICA) is
employed to separate the correlated features from uncorrelated
noise. Once the ICA transformation matrix has been learnt, a
lookup table (LUT) is generated from the training data to map
the ICA transformed features to symbols for use in Markov
chain.

The salient feature of the above work [32], [35] is that the
Markov chains can be built from as little as a single training
example, or alternatively, a hand-coded description of the sign,
due to generalization of the features. It still yields results com-
parable to the state-of-the-art.

2) Graphic Editor Control: Another HMM-based model
[36] uses hand localization, hand tracking, and gesture spot-
ting at preprocessing for hand gesture recognition. Hand can-
didate regions are located on the basis of skin color and mo-
tion. The centroids of the moving hand regions are connected
to produce a hand trajectory, which is then divided into real
and meaningless segments (categories). Input feature codes are
extracted in terms of combined weighted location, angle, and
velocity. This is followed by c-means clustering [37] to gen-
erate the HMM codebook. Left-to-right HMM with ten states
is used for recognizing hand gestures to control a graphic ed-
itor. The gestures modeled include 12 graphic elements (cir-
cle, triangle, rectangle, arc, horizontal line, and vertical line)
and 36 alphanumeric characters (ten Arabic numerals and 26
alphabets).

A charge-coupled device (CCD) camera placed in front of
a monitor gives a sequence of gesture images from an image-
capture board. The I and Q components of the YIQ color system
are used here to extract hand areas from input images. A priori
knowledge about the hand location of a previous video image,
the usual face location, and the size of the hand region are used
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to distinguish the hand region from multiple candidate regions.
The basic hand location algorithm is outlined as follows:

1) color system conversion from RGB to YIQ;
2) estimation of similarity measures between model and in-

put regions;
3) thresholding similarity measures;
4) noise removal and dilation;
5) detection of hand candidate regions;
6) selection of hand region.
Garbage movements that come before and after a pure ges-

ture are removed by using a spotting rule, whereby the user
intentionally stops for a while (2–3 s) at the start and end of
the gesture. An eight-connectivity counterclockwise directional
chain code is used to convert the orientation angles into feature
codes. The velocity component takes care of the fact that while
a simple “circle" gesture may have an almost nonvarying speed,
a complex “q” or “w” gesture generation can involve varying
speeds of movement.

3) Robot Control: A combination of static shape recogni-
tion, Kalman-filter-based hand tracking, and an HMM-based
temporal characterization scheme is developed [38] for reli-
able recognition of single-handed dynamic hand gestures. Here,
the start and end of gesture sequences are automatically de-
tected. Hand poses can undergo motion and discrete changes
in between the gesture, thereby enabling one to deal with a
larger set of gestures. However, any continuous deformation
of hand shapes is not allowed. The system is robust to back-
ground clutter, and uses skin color for static shape recognition
and tracking. A real-time implementation is developed for robot
control.

The user is expected to bring the hand to a designated region
for initiating a gestural action to be grabbed by a camera. The
hand should be properly illuminated, and the user should avoid
sudden jerky movements. When the user moves the hand away
from the designated region, it signals the end of the gesture
and the beginning of the recognition process. The grabber and
tracker are operated as synchronized threads. The five hand
gestures and the corresponding instructions modeled for the
robot are: 1) closed to open forward: move forward; 2) closed
to open right: move forward then right; 3) closed to open left:
move forward then left; 4) open to closed right: move backward
then right; and 5) open to closed left: move backward then
left.

Static hand shapes are described by their contours, specified
through mouse clicks on the boundary of the image, and subse-
quently fitting a B-spline curve. Translated, scaled, and rotated
versions of these shapes are also added to the prior. For a test
shape, a matching is made with these stored priors. The closest
contour match is chosen for tracker initialization.

A gesture is considered as a sequence of epochs, where each
epoch is characterized by a motion of distinct hand shapes.
Kalman filter is used for hand tracking, to obtain motion de-
scriptors for the HMM. The moving hand is approximated as a
planar rigid shape, under the assumption that the fingers are not
being flexed, and the perspective effects are not significant. The
left-to-right HMM, with four states and an out degree of three,
proceeds by doing the following:

� extracting symbolic descriptors of the gesture at regular
intervals from the tracker and hand shape classifier;

� training HMMs by the sequence of symbolic descriptors
corresponding to each gesture;

� finding the model, which gives maximum probability of
occurrence of the observation sequence generated by the
test gesture.

The gesture recognition algorithm is outlined as follows.
1) Detect hand for boot-strapping the tracker.
2) Recognize the starting hand shape, and initialize tracker

with its template.
3) While hand is in view repeat

a) Track the hand and output encoded motion informa-
tion until shape change is detected.

b) Recognize the new shape and initialize the tracker
with template of the recognized shape.

4) Using HMM, find the gesture, which gives the maximum
probability of occurrence of observation sequence com-
posed of shape templates and motion information.

B. Condensation Algorithm

The condensation algorithm was developed based on the prin-
ciple of particle filtering. It was originally applied effectively in
tracking rapid motion of objects in clutter [13]. A mixed-state
condensation algorithm has been extended to recognize a greater
number of gestures based on their temporal trajectories [39].
Here, one of the gesture models involves an augmented office
white-board with which a user can make simple hand gestures
to grab regions of the board, print them, save them, etc. In this
approach, the authors allow compound models that are very like
HMMs, with each state in the HMM being one of the defined
trajectory models.

The other part deals with human facial expressions, using the
estimated parameters of a learned model of mouth motion [39].

C. FSMs for Hand Gesture Recognition

As discussed in Section II-C, a gesture can be modeled as an
ordered sequence of states in a spatio–temporal configuration
space in the FSM approach. This has been used to recognize
hand gestures [15], [17], [18].

A method to recognize human-hand gestures using a FSM-
model-based approach has been used in [15]. The state machine
is used to model four qualitatively distinct phases of a generic
gesture—static start position (static at least for three frames),
smooth motion of the hand and fingers until the end of the
gesture, static end position for at least three frames, and smooth
motion of the hand back to the start position. The hand gestures
are represented as a list of gesture vectors and are matched with
the stored gesture vector models based on vector displacements.

Another state-based approach to gesture learning and recog-
nition has been presented in [18]. Here, each gesture is defined
to be an ordered sequence of states, using spatial clustering and
temporal alignment. The spatial information is first learned from
a number of training images of the gestures. This information is
used to build FSMs corresponding to each gesture. The FSM is
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then used to recognize gestures from an unknown input image
sequence.

In [17], a human performs a gesture in the field of view
of a strategically placed camera, attached to a standard frame
grabbing and digitizing hardware, against a simple stationary
background. The gesture is started from any arbitrary spatio–
temporal position and is a continuous stream of captured motion.
The grabbing system captures the data with a spatial resolution
of 256× 256 pixels, at a rate of 15 frames/s. The gesture data
are temporally segmented into subsequences involving uniform
dynamics along a single direction (such as left, right, etc.).
The system is highly reconfigurable, and no training concept is
involved. The FSM has five states, viz., start (S), up (U), down
(D), left (L), and right (R). The length of the signature pattern is
independent of the duration over which the gesture is performed,
but depends on the number of changes in the dominant direction
of motion. Self-loops are essential to accommodate the idleness
of hand movement while changing the direction of hand waving.
Symbolic commands such as come closer, go far, move left,
move right, and emergency stop are recognized. For example,
come closer is modeled by repeatedly sweeping one hand toward
the body and then slowly away (say, by S-D-U-U-D-U-D-D-U-
D). Again, move right may be represented by moving the hand
continuously toward the right direction and then the left (say, by
S-L-R-R-L-L-R-L-R-L).

A lexicon is constructed to model the motion profile of the
hand for each gesture. This knowledge is utilized for signature
representation in the form of simple production rules, followed
by their interpretation. These can be used as input to a robot pro-
gramming language for generating machine-level instructions,
in order to mimic the intended operation of the corresponding
gesture.

D. Connectionist Approach to Hand Gesture Recognition

TDNN has been applied in [27] to recognize gestures related
to American Sign Language (ASL). The gesture recognition
system in this approach has been divided into two distinct steps.
In the first step, multiscale motion segmentation is applied to
track movements of objects between the frames. Regions be-
tween two consecutive frames are matched to obtain two-view
correspondences. Then, affine transformations are computed to
define pixel matches and recognize the motion regions or trajec-
tories. In the second step, a TDNN is used to match the trajectory
of movements to a given gesture model.

To recognize the sign language, only those object areas of
motion where skin color is detected are determined first. Then,
the detected regions of motion are merged until the shape of
the merged region is either an ellipse or a rectangle. This is
because sign languages are typically described by the relation
between head (a large elliptical shape), palm (small elliptical
shape), and (or) closed hand (a rectangular shape). The TDNN
with two hidden layers is employed to classify the motion of
various regions over time as a particular gesture (sign) in the
sign language (ASL).

The experiment was done with a database of 40 complex
hand gestures of ASL and each sign with around 38 instances

on the average. Each video consists of an ASL sign which
lasts for about 3 to 5 s at 30 frames/s with 160× 120 pixels
image resolution of each frame. The recognition rate achieved
on the training and testing sets for gesture recognition are a high
99.02% and 96.21%, respectively.

IV. FACE AND HEAD GESTURES

Face is a unique feature of a human being. Humans can detect
and identify faces in a scene with little or no effort. Their robust-
ness is tremendous, considering the large changes inherent in
the visual stimulus due to: 1) viewing conditions (such as varia-
tion in luminance); 2) facial expression; 3) aging; 4) gender; 5)
occlusion; or 6) distractions such as glasses, hair style or other
disguise.

Human faces are nonrigid objects with a high degree of
variability in size, shape, color, and texture. The goal of face
detection is to efficiently identify and locate human faces regard-
less of their positions, scales, orientations, poses, and illumina-
tion. Any automated system for face and facial gesture recog-
nition will have immense potential in criminal identification,
surveillance, missing children retrieval, office security, credit
card verification, video document retrieval, telecommunication,
high-definition television (HDTV), medicine, human–computer
interfaces, multimedia facial queries, and low-bandwidth trans-
mission of facial data [40]–[42]. While frontal recognition is
the classical approach, profile recognition schemes are practical
for a fast, coarse presearch of large databases in order to re-
duce computational complexity for a subsequent sophisticated
algorithm.

One needs to concentrate on the extraction of appropriate im-
age attributes with useful query functionality, retrieval methods
on similarity-based (instead of exact) match, query-by-image
example (content-based image retrieval (CBIR)), query refine-
ment, and high-dimensional database indexing. There are two
major approaches to automated face recognition [43].

� Analytic: here flexible mathematical models are developed
to incorporate face deformation and illumination changes.
Discrete local (geometrical) features, such as irises and
nostrils, are extracted for retrieving and identifying faces.
The position of these features, with respect to one another,
determine the overall location of the face. Standard statisti-
cal pattern recognition techniques such as HMMs [8], may
be applied on these measurements. Other approaches in-
clude active contour models (Snakes) [21], wavelets [44],
and knowledge- or rule-based techniques such as facial
action coding system (FACS) [28], [45].

� Holistic: this involves gray-level template matching us-
ing global recognition. Here a feature vector is used to
represent the entire face template. This approach includes
ANNs [28]–[30], [46], [49], linear discriminants, PCA, sin-
gular value decomposition (SVD) using eigenfaces [48],
[49], and optical flow [30], [50]–[52].

Research indicates that a fusion of both approaches often
produces better (more stable) results, given an observation
sequence, as compared to either approach alone [53]. Facial fea-
tures can, again, be of two types [54]. They are: 1) permanent
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facial features (such as eyes, eyebrows, lips, cheeks, tissue tex-
ture, facial hair, and permanent furrows) that are always present
in the face, but may be deformed due to facial expressions and 2)
transient facial features (such as wrinkles, furrows, and bulges)
that occur in the forefront and the regions surrounding the mouth
and eyes.

Variation between two face images can be twofold, viz.: 1)
interpersonal—difference in appearance due to different iden-
tity and 2) intrapersonal—change in appearance of the same
person due to different facial expressions or lighting. The first
category corresponds to face recognition, while the second one
pertains to facial expression recognition. Facial expressions can
again be classified in terms of the following: 1) facial actions
that cause an expression; 2) nonprototypic expressions such as
“raised brows”; or 3) prototypic expressions such as in different
emotions. It is interesting to note that the upper face features play
a more important role in expression classification as compared
to the lower face features.

The issue of CBIR has been addressed on the facial recog-
nition technology (FERET)1 facial database [47]. The FERET
database consists of frontal shots as well as right and left profiles
of human faces. A difficulty posed by this database is that the
images were often taken at different times, locations, and under
different imaging conditions. Moreover, the “gallery” subset
(training set) and the “probe” subset (test set) were captured
about a week apart and exhibit differences in clothing, hair, and
lighting.

A. HMMs in Face Recognition

HMMs have been applied for interpersonal face recognition
[8]. A sliding window is applied from the top to bottom of a
2-D image, while extracting the brightness value of the window
as the 1-D feature vectors for the HMM. Successive windows
are overlapped to avoid cutting of significant facial features and
to provide contextual information for the sequence of feature
vectors. The face is modeled as a linear left-to-right HMM,
with five states corresponding to the important regions such as
forehead, eyes, nose, mouth, and chin. The algorithm is outlined
as follows.

� Build a code book from the feature vectors of a set of
images.

� Quantize feature vectors from this code book.
� Train HMM for every person in the database.
� Recognize a test image, preprocessed using the first two

steps.

B. PCA

The eigenfaces method [48] is based on the statistical rep-
resentation of the face space. It finds the principal components
(Karhunen–Loeve expansion) of the facial image distribution,
or, the eigenvectors of the covariance matrix of the set of face
images. These eigenvectors, representing a set of macrofeatures
(that are generated a posteriori on a statistical basis) character-
izing the face, constitute the eigenfaces. Fisher’s linear discrim-

1http://www.itl.nist.gov/iad/humanid/feret/

inant is used to develop a set of feature vectors, constituting
Fisherfaces, where the interpersonal variations are emphasized
as compared to the intrapersonal variations.

Essa and Pentland [49] employed eigenfaces approximated
by PCA, to locate faces in an arbitrary scene. The distance of
an observed image from the face space is calculated using the
projection coefficients and the signal energy. Facial motion is
extracted using holistic dense optical flow, coupled with 3-D
motion and muscle-based face models. Faces are detected from
an image sequence by performing a spatio–temporal filtering,
followed by thresholding, in order to analyze “motion blobs”
that represent human heads. A control-theoretic method is used
to extract the spatio–temporal motion-energy representation of
facial motion for an observed expression. The Euclidean dis-
tance is computed from the “ideal” motion-energy templates
for the six different expressions, involving two facial actions
(viz., smile and raised eyebrows) and four emotional expres-
sions (viz., surprise, disgust, sadness, and anger). A correct
recognition rate of 98% is reported with 52 frontal-view image
sequences of eight people.

C. FACS

FACS [45] was designed to help human observers detect in-
dependent subtle changes in facial appearance caused by con-
tractions of the facial muscles. FACS provides linguistic rules
describing all possible, visually detectable facial changes in
terms of 44 action units (AUs). Thirty AUs are anatomically re-
lated to the contractions of specific facial muscles, viz, 12 for the
upper face and 18 for the lower face. The AUs can occur either
singly or in combination. For example, in FACS, an “inner brow
raiser” corresponds to AU1 while a “jaw drop” refers to AU26.
Using these rules, a trained human FACS coder decomposes a
facial expression into specific AUs describing it. However, here
it is not possible to classify an expression into multiple emotion
categories; for example, raised eyebrows and smiling mouth
being expressed as a blend of surprise and happiness.

D. Contour Models

Facial features such as lips, eyebrows, and nose are often
extracted using active contour models (Snakes) [21]. This is an
energy-minimizing spline guided by external constraint forces
and affected by image forces that pull it toward features such
as lines and edges. The local minima of the energy function
correspond to the set of solutions. Addition of energy terms push
the active model toward the desired solution when placed near
it. Snakes are initialized by placing them on the facial features
that are to be tracked. They lock onto nearby edges by localizing
them accurately. and are able to deform and accurately track the
features.

E. Facial Feature Extraction for Gesture Recognition

A combined approach is used for facial feature extraction
and determination of gaze direction [55], as applied to facial
expression recognition. The features under consideration here
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are the eyebrows, eyes, nostrils, mouth, cheeks, and chin. The
model employs the following:

1) an improved variation of adaptive Hough transform [56]
for geometrical shape parameterization, involving curve
detection based on ellipse containing the main (oval) con-
nected component of the image (related to cheeks and chin
detection);

2) minima analysis of feature candidates corresponding to the
low-intensity regions of the face (extracting eyes, nostrils,
and mouth);

3) template matching for inner facial feature localization,
using an appropriate binary mask on an area restricted by
the eyes (extracting upper eyebrow edges that may not
otherwise be uniformly described by a geometric curve);

4) dynamic deformation of active contours for inner face
contour detection;

5) projective geometry properties for accurate pose determi-
nation, along with analysis of face symmetry properties
for determination of gaze direction.

The skinlike regions in the image are detected from the hue-
saturation-value (HSV) color space representation.

Several classes of perceptual cue to emotional states are dis-
played on the face. These include the following:

� the relative displacement of features [44] such as opening
the mouth;

� quasi-textural changes in the skin surface such as furrowing
the brow [44];

� changes in skin hue such as blushing;
� temporal aspect of these signals, involving motion [30],

[51].
While motion extraction approaches directly focus on facial

changes occurring due to facial expressions, the deformation-
based methods rely on neutral face images (or models) to extract
facial features that are relevant to facial actions and are not
caused by (say) intransient wrinkles due to old age.

1) Unified Parameterized Facial Appearance Model for
Recognition: Lanitis et al. [57] have designed a compact unified
parameterized model of facial appearance that takes into account
different sources of variability such as individual appearance,
3-D pose, facial expression, change in lighting condition, etc.
The unified approach is very suitable for interpretation and cod-
ing of face images. There exist two main phases.

� Modeling: In this phase, flexible models of facial appear-
ance are generated. The shapes of facial features and their
spatial relationships are modeled from a set of training im-
ages. The model is generated by statistical analysis of the
positions of landmark points over the training set in order
to describe a mean shape from therein. This training set
is representative of variations due to differences between
individuals as well as changes in their expressions and 3-D
poses. The shape model is augmented with the gray-level
information of the face images. As a result, the shape and
gray-level models represent the overall appearance of each
face image. This is collectively called the appearance pa-
rameter of the face images.

� Interpretation: During this phase, the models are used for
coding and interpretation of the face images. When a new

query image is presented, the facial features are located
automatically based on the flexible appearance model ob-
tained during the training and modeling. These features are
transformed into shape model parameters. The new query
face is then deformed to the mean face shape, and the
gray-level appearance is transformed into the appearance
parameters. Hence, the new face image is coded in terms of
these appearance parameters only. This resulting appear-
ance parameters can then be used for personal identification
including gender recognition, expression recognition, 3-D
pose recovery as well as reconstruction of the face images.

Less than 100 parameters are required to describe each im-
age sufficiently well to generate a good quality reconstruction
of the face, inspite of different types of variability. Experimen-
tal results are presented for a database of 690 face images in-
cluding partially occluded test faces. This unified approach is
very generic in nature and can be easily adopted for different
applications. A similar strategy can also be employed in auto-
matic interpretation of hand gestures, sign reading, lip-reading,
etc. [57].

Active appearance model (AAM) is a generative model of
a certain visual phenomenon. Although linear in both shape
and appearance, yet overall, the AAMs are nonlinear paramet-
ric models in terms of the pixel intensities. Fitting an AAM to
an image consists of minimizing the error between the input
image and the closest model instance; i.e., solving a nonlinear
optimization problem. Baker et al. have developed facial recog-
nition, interpretation, and coding techniques based on the AAM
in [58]–[61].

F. Gabor Filtering

From the standpoint of neurobiology, subtle changes in the
shape and texture of the face (that are essential to facial ex-
pression discrimination) are best represented using the spatially
localized receptive fields typical of primary visual cortex cells.
Gabor wavelet functions [62] are found to approximately model
such behavior [44]. A complex-valued 2-D Gabor function is a
plane wave restricted by a Gaussian envelope and is expressed
as

Ψ(k, x) =
k2

σ2
exp

(
−k2x2

2σ2

) [
exp(ik, x) − exp

(
−σ2

2

)]
.

Here the multiplicative factor k2 ensures that filters tuned to
different spatial frequency bands have approximately equal en-
ergies. The term exp(−σ2/2) is subtracted to render the fil-
ters insensitive to the overall level of illumination. The Gabor
wavelet representation allows description of spatial frequency
structure in the image, while preserving information about spa-
tial relations. The complex amplitude of the transforms is used
as features to test for the presence of spatial structure, restricted
to a band of orientations and spatial frequencies, within the
Gaussian envelope. The amplitude information degrades grace-
fully, with shifts in the image location at which it is sampled
over the spatial scale of the envelope.

Gabor-wavelet-labeled elastic graph matching has been
combined with the eigenface algorithm, for facial image
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classification [44]. Facial images are transformed using a multi-
scale, multiorientation set of Gabor filters. Rectangular as well
as fiducial (with nodes located at easily identifiable landmarks
of the face) grids are registered with the face. This is followed
by extraction of complex-valued Gabor transform coefficients
sampled at the grid points and combined into a labeled graph
vector. PCA is applied to reduce the dimensionality of the fea-
ture space. Finally, linear discriminant analysis is employed for
clustering these Gabor-coded images, based on the different fa-
cial attributes. The facial registration grid parameters include
the 2-D coordinates of the center of mass, and the horizontal
and vertical grid line spacing.

The system [44] was implemented on a set of 193 facial
images of Japanese females from the Japanese Female Facial
Expression (JAFFE) database.2 Fundamental facial expressions
such as being happy, sad, angry, fearful, surprised, and disgusted
were classified, along with a “neutral” face. Each test image was
convolved with a set of Gabor filters, having highly correlated
responses that are redundant at neighboring pixels. A sparse
fiducial grid was positioned by manually clicking on 34 easily
identifiable points of each facial image. The regions of the eyes
and mouth were found to be the most critical areas for deter-
mining facial expressions. The projections of the filter responses
along discriminant vectors, obtained from the training set, were
compared at corresponding spatial frequency, orientation, and
locations with the test image, using the normalized dot product
to measure the similarity of the two Gabor response vectors.

It was observed that the horizontally oriented filters were
more useful as compared to the vertically oriented ones. This
also corroborates with the most noticeable expressive motions of
the face such as: 1) opening and closing of mouth and 2) raising
and lowering of eyebrows. The Gabor representation showed a
significant degree of psychological plausibility, matching with
the semantic rating of images by human observers, and demon-
strating a promise for suitable human–computer interface.

G. Optical Flow

Pixel-based approaches to motion estimation are often re-
ferred to as optical flow methods [63]. Here, a direct relationship
is assumed between object motion and intensity changes within
an image sequence. Motion estimation is formulated as an op-
timization problem where the motion field corresponds to the
operator, which best accounts for the intensity variations, given
certain restrictions. These methods typically generate dense mo-
tion estimates. They perform well when the motion of individual
objects is relatively slow, and the scene consists of only a few
moving objects. Hence, the dynamics of facial expressions is a
good candidate for estimation using optical flow.

Optical flow has been used to estimate facial muscle ac-
tion [50], which are triggered by nerve impulses generated by
emotions. The muscle actions cause the movement and defor-
mation of facial skin and features such as eyes, mouth, and nose.
Since the facial skin at cheek and forehead has a fine-grained
texture, it is suitable for extracting the optical flow. These are

2http://www.mis.atr.co.jp/∼mlyons/jaffe.html

then correlated with different facial expressions. The advantage
of the optical flow algorithm is that there is no need to extract
and trace particular points in the image sequence. The subtle
texture of the facial skin is sufficient to extract skin motion in
terms of optical flow.

In a top–down approach, the optical flow fields of skin move-
ment is evaluated in muscle windows, each of which defines one
primary direction of muscle contraction. However, it is neces-
sary to collaborate with psychologists to construct knowledge-
bases to categorize facial expressions from the muscle move-
ment descriptions. In a bottom–up approach, a 15-dimensional
feature vector is used to represent the most active points in terms
of the first and second moments of velocity pattern through time
at local regions derived from optical flow data. Evenly divided
rectangular regions are used to cover the entire face as muscle
windows, and the most active regions are selected from the sam-
ple data to generate the feature vectors. The k-nearest-neighbors
rule [37] is then employed for facial expression recognition.

Let us consider an M × N image sequence with a period of
T frames for the kth expression sample. The image is evenly
divided into m × n regions, where r = M/m = N/n. The hor-
izontal and vertical optical flow at pixel (x, y) in time frame t
are given as ut(x, y) and vt(x, y), respectively. The means of
optical flow of horizontal and the vertical components at the
(i, j)th divided region R(i, j) are expressed as

µu,i,j =
1
T

1
r2

∑
0<t≤T

∑
(x,y)∈R(i,j)

ut(x, y) (5)

and
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1
T

1
r2
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respectively. The corresponding covariances of the optical flow
are computed as
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This results in a K(= 5mn)-dimensional vector, whose dimen-
sionality is then reduced to K = 15 using feature selection. The
parameter values used in the implementation were M = 256,
N = 240, m = 16, n = 15, and T = 30.

Apart from their vulnerability to image noise and nonuni-
form lighting, the holistic optical flow methods typically have
large computational requirements and are sensitive to motion
discontinuities.
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H. Skin Color Modeling

A multiscale transform is utilized in [64] to segment images
into homogeneous regions, at multiple scales, followed by skin
region extraction based on a skin color model. The CIE LUV
color space is used after discarding the luminance value. These
regions are then merged, from the coarsest to the finest scale, un-
til the shape is approximately elliptic. Postprocessing is done to
include nonskin color facial features such as eyes and mouth. Ex-
perimental results demonstrate that human faces can be detected
in color images, regardless of size, orientation, and viewpoint.

Dai et al. [52] demonstrate monitoring of patients on bed
by analyzing and recognizing facial expressions. Initially, the
facial skin regions are extracted by converting the RGB color
image to its YIQ representation, and using the I component.
The difference between two successive frames in the facial skin
region is used to judge whether any facial action has occurred.
Then, the optical flows for the facial action sequence of an ex-
pression are computed. The flow magnitudes are thresholded to
reduce the effect of small random motions due to noise. Facial
action features are next extracted from the optical flow projec-
tion histogram on the x and y coordinate axes, corresponding
to the mouth and eye regions. The expressions modeled include
happiness, easiness, uneasiness, disgust, suffering, and surprise
for a set of 40 subjects on bed. A set of 40 facial action fea-
tures were extracted. Application is envisaged in computerized
monitoring by medical personnel of the facial expressions of
patients, on bed in hospital, in order to evaluate their levels of
uneasiness and suffering.

I. Connectionist Approach To Facial Gesture Recognition

Soft computing tools broadly encompass ANN, fuzzy sets
and GAs. Connectionist approach to facial gesture recognition,
constituting feedforward ANN models such as MLP [28], [29],
[46], and RBFN [30], [47] has considerable representation in
literature.

1) MLP: MLP-based classifier has been trained to distin-
guish between “face” and “nonface” patterns, for the purpose
of vertical frontal-view face detection in cluttered scenes [46].
ANNs are typically example-based learners, and do not in-
volve domain-specific knowledge. The network parameters and
thresholds are automatically derived from a data-rich environ-
ment of input–output examples. An image is searched exhaus-
tively over multiple scales for square patches of human face,
with the upper boundary lying just above the eyes and the lower
edge falling just below the mouth. At each image location and
scale, the network classifies the local image pattern as being
either a face or a nonface, based on a set of local distance
(Mahalanobis and Euclidean) feature measurements to the face
prototype. Preprocessing such as masking (of irrelevant back-
ground pixels), illumination gradient correction, and histogram
equalization are followed by clustering, using an elliptical c-
means algorithm, for generating the face prototypes.

Rowley et al. [29] use a retinally connected neural network to
examine small (20× 20) windows of an image in order to decide
whether or not they contain a face (providing an output ranging
from 1 to −1). A bootstrap algorithm is employed to collect

negative (nonface) examples during back-propagation training.
Multiple neural-network-based filters examine each location of
the image at several scales, while looking for sites that might
contain a face. The system arbitrator merges the results obtained
by these networks and eliminates overlapping detections. To
detect faces larger than the window size, the input image is
repeatedly subsampled and the filter applied at each size.

Tian et al. [28] automatically analyze facial expressions based
on permanent features (brows, eyes, mouth) and transient fea-
tures (such as deepening of facial furrows). The output is de-
termined in terms of AUs of the FACS [45], consisting of six
upper and ten lower face AUs along with the neutral expression.
Multistate face and facial component models are developed for
tracking and modeling various facial features such as lips, eyes,
brows, cheeks, and furrows. In the upper face, 15 parameters
describe the shape and motion of the brows and cheeks, eye
state, and furrows. In the lower face, nine parameters describe
the shape, motion and state of lips, and furrows. These param-
eters are geometrically normalized to compensate for image
scale and in-plane head motion. Two neural network models
are employed for recognizing 16 frequently used AUs of the
upper and lower face, respectively. Average recognition rates
of 96.4% and 96.7% are reported for the upper and lower face
AUs, respectively.

2) RBFN: A hybrid ensemble of radial basis function neu-
ral networks and inductive decision trees (C4.5) has been em-
ployed [47] on the FERET database for face (and hand) gesture
recognition. Queries such as the following are addressed: 1)
find all subjects wearing glasses and 2) find individual ID probe
with/without glasses.

A hierarchical system of RBFN has been used for facial ex-
pression (gesture) recognition [30]. Here, the: 1) highest level
identifies the different emotions; 2) mid level determines motion
of the facial features; and 3) lowest level recovers the motion
directions. The input is the pixel-level image of the face. The
emotions modeled at the output layer include happiness, sad-
ness, surprise, fear, anger, and disgust, along with eye blinking.

Trained subnetworks are dedicated for each of the modeled
emotions. These subnetworks are further partitioned to special-
ize in a particular facial component (or feature). Motion in the
image of a face allows emotions to be identified with minimal
information about the the spatial arrangement of the facial fea-
tures. A Gaussian weighted output vector, positioning its peak
on the current stage of an emotion, is employed at the outer
layer of the network to model the network’s confidence in the
classified emotion. Prominent facial features, such as mouth,
nose, eyes, and eyebrows, are located and tracked.

Optical flow is used to identify the direction of rigid and
nonrigid motions caused by these features, corresponding to the
different human facial expressions. A sequence of facial images
are used for the purpose of generating the flow and training the
networks. Computational methods are developed to interpret
face region motion, i.e., changes in images of facial features
caused by facial actions corresponding to feature deformations
on the 3-D surface of the face. Motion associated with the edges
of the mouth, nose, eyes, and eyebrows is used as cue for action
recovery.
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A mid-level symbolic representation is modeled, based on lin-
guistic and psychological considerations, to describe the spatio–
temporal actions. For example, the action of “raising” a corner
of the component “mouth” can also be a combination of raising
the “upper” or “lower lip.” Hence, interpretation precedence
is incorporated to rank these actions. Classification rules are
applied to group the actions into one of the facial expression
classes. Whole mouth actions, lip actions, and mouth corner
actions are ranked in this decreasing sequence.

The face is always considered from a near-frontal view. It
is assumed that the overall rigid motion of the head is small,
and the nonrigid motions are the result of spatially bounded
face deformations between any two consecutive frames. The
flow magnitudes are first thresholded to reduce the effect of
noisy small motion. This is followed by quantization into the
four principal directions (up, down, right, and left), and sub-
sequent filtering (spatial and temporal) to capture directional
motion. Polar coordinate representation is used to express the
pixel motion. Temporal information, regarding what happened
to a feature before a particular movement, is of great value
in categorizing an emotion. For example, during expression of
“surprise” the “eyebrows” move downward at the end of the
emotion while in “anger,” this movement happens at the begin-
ning of the emotion.

The performance of the connectionist model is evaluated in
terms of its ability of: 1) retention—performing successfully on
familiar sequences (88%); 2) extrapolation—performing suc-
cessfully on unfamiliar sequences or sequences of unfamiliar
faces (73%); and 3) rejection—rejecting a sequence that does
not display the expression for which the network was trained
(79%).

V. CONCLUSION AND DISCUSSION

The importance of gesture recognition lies in building effi-
cient human–machine interaction. Its applications range from
sign language recognition through medical rehabilitation to vir-
tual reality. In this article, we have provided a survey on ges-
ture recognition, with particular emphasis on hand gestures and
facial expressions. The major tools surveyed for this purpose
include HMMs, particle filtering and condensation algorithm,
FSMs, and ANNs. A lot of research has been undertaken on sign
language recognition, mainly using the hands (and lips). Facial
expression modeling involves the use of eigenfaces, FACS, con-
tour models, wavelets, optical flow, skin color modeling, as well
as a generic, unified feature-extraction-based approach.

A hybridization of HMMs and FSMs is a potential study in
order to increase the reliability and accuracy of gesture recog-
nition systems. HMMs are computationally expensive and re-
quire large amount of training data. Performance of HMM-based
systems could be limited by the characteristics of the training
dataset. On the other hand, the statistically predictive state tran-
sition of the FSM might possibly lead to more reliable recogni-
tion. An interesting approach worth exploring is the independent
modeling of each state of the FSM as an HMM. This can be use-
ful in recognizing a complex gesture consisting a sequence of
smaller gestures.

Soft computing tools [26] pose another promising application
to static hand gesture identification. For large datasets, neural
networks have been used for representing and learning the ges-
ture information. Both recurrent and feedforward networks, with
a complex preprocessing phase, have been used for recogniz-
ing static postures. The dynamic movement of hand has been
modeled by HMMs and FSMs. The similarity of a test hand
shape may be determined with respect to prototype hand con-
tours, using fuzzy sets. TDNN and recurrent neural networks
offer promise in capturing the temporal and contextual relations
in dynamic hand gestures.

With the advent of multimedia data mining [4], the need for
intelligent storage, search, processing, and retrieval of infor-
mation from large, heterogeneous databases through the ap-
plication of user friendly interfaces is assuming utmost im-
portance. This promises wide-ranging applications in fields
from photojournalism through medical technology to biomet-
rics. Due to the increasing involvement of pictorial informa-
tion, the need for image compression and subsequent query-
ing of online image databases is becoming all the more
essential. Analysis of compressed multimedia databases for
gesture identification and/or recognition is another promis-
ing area of investigation. The concept of wavelets may be
employed for face recognition at a coarse level of resolu-
tion, followed by finer-level detection of facial expression at
the appropriate regions of interest by employing increased
resolution.

Fuzzy sets and rough sets provide a natural framework for
dealing with uncertainty or imprecise data. Since “pure” emo-
tional expressions are seldom elicited, people typically demon-
strate “blends" of these expressions. Fuzzy sets can be suitably
employed to represent simultaneous finite membership to mul-
tiple emotional categories such as sad–angry or angry–afraid
expressions. One can also model different degrees of a particu-
lar expression by employing fuzzy membership values to it. For
example, the expression surprise can consist of subcategories
such as dazed surprise, questioning surprise, slight surprise,
moderate surprise, etc. In addition, transition from one expres-
sion to another often requires passage through several other
quantifiable grades of expression (transition from a happy to
angry face will require passage through a neutral face). This
may be suitably expressed in fuzzy linguistic terms, thereby
enhancing understandability and user-friendliness.

Moreover, not all facial expressions can be completely classi-
fied into the six defined categories. There should exist possibility
of learning new categories for clustering, and then interpreting
each and every encountered facial expression. Similarity-based
matching of the retrieved images may be performed on these
clusters, using concepts from approximate reasoning, search-
ing, and learning.
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