Real Time Hand Pose Estimation using Depth Sensors

Cem Keskin, Furkan Kirag, Yunus Emre Kara and Lale Akarun
Bogazi¢i University
Computer Engineering Department, 34342, Istanbul, Turkey

keskinc@cmpe.boun.edu.tr, {kiracmus, yunus.kara, akarun}@boun.edu.tr

Abstract

This paper describes a depth image based real-time
skeleton fitting algorithm for the hand, using an object
recognition by parts approach, and the use of this hand
modeler in an American Sign Language (ASL) digit recog-
nition application. In particular, we created a realistic
3D hand model that represents the hand with 21 different
parts. Random decision forests (RDF) are trained on syn-
thetic depth images generated by animating the hand model,
which are then used to perform per pixel classification and
assign each pixel to a hand part. The classification results
are fed into a local mode finding algorithm to estimate the
Jjoint locations for the hand skeleton. The system can pro-
cess depth images retrieved from Kinect in real-time at 30
fps. As an application of the system, we also describe a
support vector machine (SVM) based recognition module
for the ten digits of ASL based on our method, which at-
tains a recognition rate of 99.9% on live depth images in
real—time .

1. Introduction

After the release of multi—touch enabled smart phones
and operating systems, there has been a renewed interest in
natural interfaces and particularly in hand gestures. Hand
gestures are used in these systems to interact with programs
such as games, browsers, e-mail readers and a diverse set
of tools. Vision based hand gesture recognition, and partic-
ularly sign language recognition have attracted the interest
of researchers for more than 20 years. Yet, a framework that
robustly detects the naked hand and recognizes hand poses
and gestures from colored images has continued to be elu-
sive. This can be attributed mostly to the large variance of
the retrieved images caused by changing light conditions,
and to the difficulty of distinguishing the hand from other
body parts. With the release of Kinect [1], a depth sensor

I'This work has been supported by research grants Tubitak 108E161
and BU-BAP 09M101.

that can work in absolute darkness, the hand detection and
segmentation processes are considerably simplified. Thus,
libraries for basic hand gesture recognition tasks have been
developed. However, these only consider hand movement,
and not hand pose. The estimation of the hand skeleton con-
figuration has largely remained unsolved.

Recently, Kinect has been used to achieve real-time
body tracking capabilities, which has triggered a new era of
natural interface based applications. In their revolutionary
work, Shotton et al. fit a skeleton to the human body using
their object recognition based approach [14]. The idea is
applicable to the hand pose estimation problem as well, but
there are some notable differences between the human body
and hand: i) The projected depth image of a hand is much
smaller than that of a body; ii) A body can be assumed to be
upright but a hand can take any orientation; iii) In the case
of hands, the number of possible meaningful configurations
is much higher and the problem of self occlusion is severe.
On the other hand, the inter—personal variance of the shape
of hands is much smaller compared to the huge differences
between fully clothed human bodies.

Most approaches to hand pose estimation problem make
use of regular RGB cameras. Erol er al. [7] divide the
pose estimation methods into two main groups in their re-
view: partial and full pose estimation methods. They further
divide the full pose estimation methods into single frame
pose estimation and model-based tracking methods. Athit-
sos et al. [2] estimate 3D hand pose from a cluttered image.
They create a large database of synthetic hand poses using
an articulated model and find the closest match from this
database. De Campos and Murray [5] use a relevance vec-
tor machine [19] based learning method for single frame
hand pose recovery. They combine multiple views to over-
come the self-occlusion problem. They also report single
and multiple view performances for both synthetic and real
images. Rosales et al. [13] use monocular color sequences
for recovering 3D hand poses. Their system maps image
features to 3D hand poses using specialized mappings. Ster-
giopoulou and Papamarkos [16] fit a neural network into the
detected hand region. They recognize the hand gesture us-

2011 IEEE International Conference on Computer Vision Workshops

978-1-4673-0063-6,/11/$26.00 (©2011 IEEE

1228

ing the grid of the produced neurons. De La Gorce et al. [0]
use model-based tracking of the hand pose in monocular
videos. Oikonomidis et al. [12] present a generative single
hypothesis model-based pose estimation method. They use
particle swarm optimization for solving the 3D hand pose
recovery problem. Stenger et al. [15] apply model-based
tracking using an articulated hand model and estimate the
pose with an unscented Kalman filter.

A number of approaches have been reported to estimate
the hand pose from depth images. Mo and Neumann [11]
use a laser-based camera to produce low-resolution depth
images. They interpolate hand pose using basic sets of fin-
ger poses and inter-relations. Malassiotis and Strintzis [10]
extract PCA features from depth images of synthetic 3D
hand models for training. Liu and Fujimura [9] recognize
hand gestures using depth images acquired by a time-of-
flight camera. The authors detect hands by thresholding the
depth data and use Chamfer distance to measure shape sim-
ilarity. Then, they analyze the trajectory of the hand and
classify gestures using shape, location, trajectory, orienta-
tion and speed features. Suryanarayan et al. [18] use depth
information and recognize scale and rotation invariant poses
dynamically. They classify six signature hand poses using
a volumetric shape descriptor which they form by augment-
ing 2D image data with depth information. They use SVM
for classification.

In this work, we largely follow the approach in [14].
Adopting the idea of an intermediate representation for the
tracked object, we generate synthetic hand images and label
their parts, such that each skeleton joint is at the center of
one of the labeled parts. We form large datasets created
from random and manually set skeleton parameters, and
train several randomized decision trees (RDT) [3], which
are then used to classify each pixel of the retrieved depth
image. Finally, we apply mean shift algorithm to estimate
the joint centers as in [14]. The resulting framework can
estimate the full hand poses in real time. As a proof of con-
cept, we demonstrate the system by using it to recognize
American Sign Language (ASL) digits.

In Section 2 we describe the methodology used for fitting
the skeleton. Section 3 lists the details of conducted exper-
iments and presents our results on ASL digit recognition.
Finally, we conclude the paper and discuss future work in
Section 4.

2. Methodology

The flowchart of the system can be viewed in Figure 1.
Our framework handles automatic generation and labeling
of synthetic training images by manually setting or ran-
domizing each skeleton parameter. It can then form large
datasets by interpolating poses and perturbing joints via ad-
dition of Gaussian noise to each joint angle without violat-
ing skeleton constraints. Multiple decision trees are then

trained on separate datasets, which form forests that boost
the per pixel classification accuracy of the system. Finally,
posterior probabilities of each pixel are combined to esti-
mate the 3D joint coordinates, and the corresponding skele-
ton is rendered. The application can connect to Kinect and
perform skeleton fitting in real-time without experiencing
frame drops.

Hand Pose

Trainer
Generator

Classifier

Skeleton
Joint
Coordinates

Mean-shift
Joint Finder

Figure 1. Flowchart of the system

The overall accuracy of the system largely depends on
the efficiency of the individual RDTs. If the tree height is
excessive or if training images do not reflect the variety of
hand poses encountered in real life, the trees overfit and can-
not generalize well. A solution is to feed a large number of
real life training images to the system. However, Shotton
et al. reported in [4] that synthetic images are more useful
for generalization, since real images of unlikely configura-
tions are rare, and most of the possible configurations do
not exist in real datasets. Given that the inter—personal vari-
ance is much lower for hands, we decided to put more ef-
fort into generating realistic synthetic images that reflect the
variance well, and trained the system using these images.

2.1. Data

We use a 3D skinned mesh model with a hierarchical
skeleton, consisting of 19 bones, 15 joints and 21 different
parts as viewed in Figure 2. The hand parts are chosen in
a way to ensure that all significant skeleton joints are in the
centers of some parts. Hence, the thumb contains three parts
and all the other fingers contain four parts that signify each
bone tip. The palm has been divided into two different parts,
namely, upper and lower palm, so that the topology of the
hand can be inferred better. The model can be animated and
rendered with or without shading to generate depth images
and labeled images, respectively.

We trained several RDTs on synthetic datasets of size
ranging from 60K to 200K images. These datasets are de-
signed with target applications in mind, so that the trained
trees can generalize well to previously unseen hand poses
that can be encountered during common tasks. These con-
tain mostly common hand poses used for games, natural in-

1229

() (®)

Figure 2. 3D hand model with hierarchical skeleton and labeled
parts

terfaces and sign languages, such as the letters of ASL, all of
which are manually modeled. The animator tool can inter-
polate between these poses using the hierarchical skeleton
model, and add slight variations to each frame by perturbing
joint locations, while changing the camera pose. Skeletal
constraints are applied to each interpolated pose, ensuring
that the resulting configurations are feasible.

2.2. Features

Since we perform per pixel classification, the complex-
ity of the features has a large impact on the efficiency of the
system. We use the same simple depth comparison features
as in [14], since their choice proved to be very fast and effi-
cient. For a pixel at coordinate x, two vectors u and v, and
depth image I, where I(c) gives the depth of the pixel at
the coordinate c, a feature I, ,, (I, x) can be computed as
follows:

Fuoll,@)=I(@+)~ I+ —=) (I

u v
() I(x)
The offsets w and v are relative to the pixel in question, and
normalized according to the depth at . This ensures that
the features are 3D translation invariant. Note that, they are
neither rotation nor scale invariant, and the training images
should be generated accordingly. As background segmen-
tation is easy for depth images, we assume that the pixels
corresponding to the hand are known, and the depth values
for the rest of the pixel locations, including the outside of
the image, are taken to be a large constant value.

2.3. Per Pixel Classification

Per pixel classification is done with RDF [3]. RDF
is an ensemble of random decision trees, which improves
the stability and accuracy of individual RDT considerably.
RDTs on the other hand, perform stochastic discrimination,
since they select a random subset of features in each step,

which enables controlled variation during training. More-
over, RDTs, and therefore RDFs are very fast, and can be
implemented on the GPU.

During the training phase, the nodes of the RDTs learn to
split the data into their left and right children in a way that
produces purer nodes at each step. At a pure node, only
samples that belong to the same class remain. In our case,
each node learns a set of offsets w and v, and a threshold
7, and splits the data consisting of (I, x) pairs into two sets
for each child, as follows:

{(I,:B)|Fu,v(f, x) <7})
{(I’m”Fu,v(Ivm) >= T} 3)

Cr(u,v,7) =

CR(U,U,T) =

In the training phase, a large number of pixels and their
depth images are input to the RDF. The features and the
thresholds are chosen randomly by each node, and the split
is scored by the total decrease in entropy:

|Cs (u, v, 7)|

] H(Cs(u,v,7))

S(u,v,7) =H(C)— Z
se{L,R}
“
where H(K) is the Shannon entropy estimated using the
normalized histogram of the labels in the sample set . At
each node, several random selections for (u, v, 7) are made,
and the one producing the maximum score is taken as the
split criterion for the node.

All trees are trained with 2500 random pixels from each
training image of size 160x160. Pixel selection is not forced
to be uniform over class labels, as some of the hand parts
such as finger tips are significantly smaller than the others.
Length of offset vectors w and v are selected uniformly be-
tween zero and 60 pixels. Threshold 7 is selected randomly
from a range between a positive and negative depth value
corresponding to 200mm, which is roughly the size of a
hand. We try up to 4000 different combinations of {u, v, 7}
before choosing the best split for each node.

Classification of a pixel (I,) is performed by starting
at the root node and assigning the pixel either to the left
or the right child recursively until a leaf node is reached.
Each leaf node is associated with a set of posterior proba-
bilities P(¢;|I, x) for each class ¢; learned during the train-
ing phase. For the final decision, the posterior probabilities
estimated by all the trees in the ensemble are averaged:

1 N
Pl z) =+ > Puleill, @))
n=1

where NV is the number of trees in the ensemble.

To enhance the classification results, we evaluate the en-
tire set of pixels on the RDTs to recalculate the class label
histograms at the leaves, which can increase the per pixel
classification accuracy by 2-3% for individual trees and by
6—8% for forests.

1230

2.4. Joint Position Estimation

After each pixel is assigned posterior probabilities, these
are used to estimate the joint positions. Note that this ap-
proach is likely to produce many false positives. These out-
liers have a large effect on the centroid of the pixel locations
belonging to a hand part. To reduce the effect of outliers,
the mean shift local mode finding algorithm [4] is preferred
over finding the global centroid of the points belonging to
the same class. Mean shift algorithm estimates the prob-
ability density of each class label with weighted Gaussian
kernels placed on each sample. Each weight is set to be
the pixel’s posterior probability P(c;|I,x) corresponding
to the class label ¢;, times the square of the depth of the
pixel, which is an estimate of the area the pixel covers, in-
dicating its importance. The joint locations estimated using
this method are on the surface of the hand and need to be
pushed back to find an exact match for the actual skeleton.
Since the thickness of the hand is nearly uniform, this trans-
formation becomes a simple translation of the entire hand.

Mean shift algorithm uses a gradient ascent approach to
locate the nearest maximum point. As the maxima are lo-
cal, several different starting points are used and the one
converging to the highest maximum is selected.

2.5. Occlusion Handling

Since hands are highly articulate and flexible objects,
self occlusion of entire hand parts is natural and happens
very frequently. Note that, since each pixel is assigned a
posterior probability for every class, each class label most
likely receives some non—zero probability mass in practice.
A decision regarding the visibility of the joint is made by
thresholding the highest score reached during the mean shift
phase. The effect of the thresholding process is shown in
Figure 2.5. Here, the images on the left are the original
pixel classification results. The images in the middle are the
same images with the corresponding joint locations. These
images show spurious joints, which are caused by false pos-
itive pixels. The images on the right are produced by thresh-
olding the confidence of each joint. However, if the thresh-
old is too high, this process might eliminate proper joints as
well. In the top row, the threshold is too high, and in the
bottom row, the threshold is too low.

Several analytical or machine learning based methods
can be employed to infer the locations of the missing joints
from the known ones. In particular, we trained Artificial
Neural Network (ANN) regressors to estimate missing fin-
ger joints from the fingers, which are trained on commonly
used hand poses to ensure realistic results. For pose classifi-
cation tasks, however, the descriptive power of the skeleton
is high enough even without the missing joints. Assign-
ing the location of each occluded joint to the nearest visible
joint proved to be a simple and efficient heuristic for pose
classification.

(@

Figure 3. Fitting of the hand skeleton and effect of thresholding
the confidence scores of each joint on two examples.

3. Experiments
3.1. Datasets
3.1.1 Synthetic data

Synthetic datasets are used to train the RDFs for per pixel
classification task. Performance of RDFs depends heavily
on the training set provided. Each training image set con-
sists of a depth image synthetically rendered from the hand
model and a corresponding labeled image. A utility is de-
veloped for creating individual hand poses and animating
an interpolation between such poses. The generated image
sequences are then fed to the RDF training module. We
used ASL letters, ASL digits and many well known and
commonly used hand shapes to generate the animation se-
quences. Each of these poses are interpolated and viewed
from different angles using several extra frames, and each
joint in the skeleton is perturbed using Gaussian noise to
account for the inter-personal variance of hand shapes. We
limited the size of each such dataset to 200,000 images due
to memory constraints.

3.1.2 Real data

For pose classification tasks, we collected a dataset consist-
ing of real depth and label images. A dataset for ten ASL
digits are captured from ten different people. Each shot
takes ten seconds, amounting to a total of 300 frames for
each digit per person. To generate the label images, RDFs
trained using synthetic datasets are used. Mean shift algo-
rithm is used to estimate the joint locations of the real im-
ages, and occluded joints are mapped to the closest joints as
explained in Section 2.5. These finalized skeletons form the
dataset that is used for pose classification tasks.

1231

3.2. Per pixel classification results

We investigated the effects of tree height, pixel count, u,
v, and 7 parameters on the per pixel classification accuracy.
Figures 4, 5, and 6 show these effects.

09r 1

08r 1

Per Pixel Classification Rate

5 8 12 15 18 20
Tree Height

Figure 4. The effect of tree height on per pixel classification accu-
racy. The extensions over the bars depict the effect of enhancing
the trees using the entire dataset. The positive effect of increasing
the tree height beyond 20 is outweighed by the impact of increased
need for memory.

Increasing the tree height has a positive effect on per
pixel classification accuracy as expected, but at the cost of
considerable amount of memory for each new level. There-
fore, the height of the trees used in the system is limited
to 20, and the corresponding per pixel classification rate is
67% after the training and 70% after enhancing the trees.
Pixel count needs to be as high as possible, as some parts
of the hand are very small, and are under-represented if the
number of pixels per image is low. For u and v, the best
size is found to be 60, and the effect of changes in 7 has
been found to be negligible as long as it is larger than 20.

3.3. Proof of Concept: American Sign Language
Digit Recognizer

To test the system on a real world application, we devel-
oped a framework for classifying ASL digits in real-time.
The method described in Section 2 gives estimates of the
hand skeleton as output. The pose classifier uses these esti-
mates to recognize the digits by mapping the estimated joint
coordinates to known hand poses.

To train the classifiers, we first train the RDFs and let
them label the real ASL images acquired from the Kinect.
The joint location estimates are found using these labels and
input to several classifiers that categorize the hand configu-
ration into one of the ASL poses.

100

PPCR

994 q
PPCR{enhanced)
98 q
=
g g
£ _____________f_,_ﬂ—/—’f
5 9EF .
Ey
95+ 1
94 - g
93 1 1 L 1 1 1 1
20 30 40 50 =il 70 a0 a0 100
Threshald
(@)
100 T T T T T T
= 95F
o
it
2
o
<L og}f
PPCR
— PPCR{enhanced)
85 1 1 L 1 1 1 1
20 30 40 a0 60 70 g0 90 100
Lirnit for u and v
(b)
Figure 5. The effects of u, v, and 7 on accuracy
100 T T T T T
98
oy
m
5 981 B
3
T
94 ——PPCR]
FPCR{enhanced)
92 1 1 1 1 T I
a 500 1000 1500 2000 2500 3000 3500

Pixel count

Figure 6. The effect of pixel count on accuracy

3.3.1 Hand Pose Classifiers

As the intended usage of the system is real-time recogni-
tion of ASL digits, speed is as important a concern as the
recognition rate. For all the classifiers tested, parameter op-
timization is performed first, and the optimal parameters are
used to conduct 5x2 cross validation tests next.

We trained and tested the system on both real and syn-
thetic data. The results on synthetic data are used mainly
to optimize the parameters, test the effect of occlusion han-
dling methods as discussed in Section 2.5 and to test the
feasibility of tested classifiers for real-time execution. We
trained ANNs, SVMs and decision forests on the synthetic
data. On real data, we only use ANNs and SVMs.

1232

3.3.2 ASL Digit Classification Results on Synthetic
Data

The synthetic dataset used to train the classifiers consists of
20,000 samples, formed by 2000 synthetic images for each
of the ASL digits. The images are generated by perturbing
the manually designed pose templates using Gaussian noise
per joint angle, and by rotating the camera around the hand,
so that the same hand pose is viewed from different angles.

For the ANN, the optimum number of hidden nodes is
estimated to be 20. For SVMs, the optimal parameters are
found to be 2° for the cost parameter and 2~ for the Gaus-
sian spread (). For decision forests, we used 128 trees to
match the accuracy of SVMs.

The classification accuracies and classification times for
each of the models are listed in Table 1. The first col-
umn gives the average accuracies achieved by the cross—
validation tests. The second column gives the running times
on a single core. Judging from these results, we prefer
SVMs over RDFs as they proved to be more accurate.

The intermediate phases and the final skeletons for sev-
eral examples are given in Figure 7.

Method | Accuracy | Classification
Name Duration (ms)
ANN 99.89 0.0045
SVM 99.96 0.3

RDF-128 99.94 0.32

Table 1. Classification rates and evaluation times of each classifier
on the ASL digit dataset consisting of 20,000 synthetic images.

3.3.3 ASL Digit Classification Results on Real Data

We conducted 5x2 cross validation and grid search to esti-
mate the optimal parameters of the methods again for the
real dataset. Table 2 shows the parameters tested. In Ta-
ble 3, we show the optimal values of the parameters and the
respective accuracies.

Method | Parameter
Name | Values
ANN H = {5,10,15,20,25,30,35,40,45,50,55}
SVM | C={271,20,21 2223 24 25 96 97}
SVM y={275,274,273 272 2-1 20 o1}

Table 2. Tested parameter values (H: hidden nodes, C: SVM cost,
~: Gaussian spread)

Table 3 lists the optimal parameters and recognition rates
on training and validation sets for ANNs and SVMs for real
data. SVMs outperform ANNs and reach near perfect ac-
curacy on the validation set, indicating that the descriptive
power of the skeleton is sufficient for this task.

Method Optimal Training | Validation
Name Parameters Accuracy | Accuracy
ANN | Hidden nodes =40 99.27 98.81
SVM | Cost=25,T =272 100 99.90

Table 3. Optimal parameters and average training and validation
accuracies.

(@) (®) (©)

(9]

Figure 7. Examples of fitted skeletons on synthetic ASL images.
Top row lists the depth images. Second row shows the per pixel
classification results. Third row displays the estimated joint loca-
tions on top of the labeled images. The finalized skeleton is shown
in the bottom row.

4. Discussions and Conclusion

In this study, we described a depth image based real—
time skeleton fitting algorithm for the hand, using RDFs to
classify depth image pixels into hand parts. To come up
with the huge amount of samples that are needed to train
the decision trees, we developed a tool to generate realistic
synthetic hand images. Our experiments showed that the
system can generalize well when trained on synthetic data,
backing up the claims of Shotton et al. in [14]. In particular,

1233

just by feeding manually designed hand poses correspond-
ing to ASL digits to the RDFs, the system learned how to
correctly classify the hand parts for real depth images of
hand poses that are close enough. This in turn enabled us
to collect real data labeled by the RDFs that can be used
for further pose classification tasks. We demonstrated the
efficiency of this approach by reaching a recognition rate
of 99.9% using SVMs on real depth images retrieved with
Kinect. The features used by SVMs are the mean shift
based joint estimates calculated in real time from the per
pixel classification results. We also demonstrated that as
long as the number of target classes are low, and the poses
are distinct enough, occluded joints carry no importance for
classification tasks. We achieved near perfect classification
results by mapping each occluded joint to its nearest visible
neighbor in the skeleton.

We focused on optimizing the speed and accuracy of
the system, in particular by performing grid search over all
model parameters. The resulting framework is capable of
retrieving images from Kinect, apply per pixel classifica-
tion using RDFs, estimate the joint locations from several
hypotheses in the mean shift phase, and finally use these lo-
cations for pose classification at 30 fps, which is the limit
of Kinect. The system is optimized for multicore systems
and is capable of running on high end notebook PCs without
experiencing frame drops. Further enhancement is possible
through the utilization of the GPU, and this framework can
be used along with more CPU intensive applications such
as games and modelling tools. This method is the first to
retrieve the full hand skeleton in real time using a standard
PC and a depth sensor, and has the extra benefit of not being
affected by illumination.

The main focus of this paper is skeleton fitting to the
hands from a single frame. Consequently, temporal in-
formation is ignored, which can certainly be used to en-
hance the quality of the fitted skeleton, via methods such
as Kalman [20] or particle filtering [8]. Inverse kinemat-
ics or some machine learning based inference method can
also be used to precisely locate the occluded joints. Such
enhancements are indeed possible, and will be the focus of
our future work.

References

[1] Microsoft Corp. RedmondWA. Kinect for Xbox 360. 1

[2] V. Athitsos and S. Sclaroff. Estimating 3D hand pose from a
cluttered image. 2003 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2003. Pro-
ceedings., pages 11-432-9, 2003. 1

L. Breiman. Random forests. Machine Learning, 45:5-32,
2001. 2,3

D. Comaniciu and P. Meer. Mean shift: a robust approach
toward feature space analysis. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 24(5):603 —619,
may 2002. 4

(3]

(4]

(3]

(6]

(7]

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

1234

T. de Campos and D. Murray. Regression-based Hand Pose
Estimation from Multiple Cameras. 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recog-
nition - Volume 1 (CVPR’06), pages 782-789, 2006. 1

M. de La Gorce, D. J. Fleet, and N. Paragios. Model-Based
3D Hand Pose Estimation from Monocular Video. [EEE
transactions on pattern analysis and machine intelligence,
pages 1-14, Feb. 2011. 2

A. Erol, G. Bebis, M. Nicolescu, R. D. Boyle, and
X. Twombly. Vision-based hand pose estimation: A review.
Computer Vision and Image Understanding, 108(1-2):52—
73, Oct. 2007. 1

M. Isard and A. Blake. Condensation - conditional den-
sity propagation for visual tracking. International Journal
of Computer Vision, 29:5-28, 1998. 7

X. Liu and K. Fujimura. Hand gesture recognition using
depth data. Sixth IEEE International Conference on Auto-
matic Face and Gesture Recognition, 2004. Proceedings.,
pages 529-534, 2004. 2

S. Malassiotis and M. Strintzis. Real-time hand posture
recognition using range data. Image and Vision Computing,
26(7):1027-1037, July 2008. 2

Z. Mo and U. Neumann. Real-time Hand Pose Recognition
Using Low-Resolution Depth Images. 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recog-
nition - Volume 2 (CVPR’06), pages 1499-1505, 2006. 2

1. Oikonomidis, N. Kyriazis, and A. Argyros. Markerless and
efficient 26-DOF hand pose recovery. In Proceedings of the
10th Asian conference on Computer vision-Volume Part 111,
pages 744-757. Springer, 2011. 2

R. Rosales, V. Athitsos, L. Sigal, and S. Sclaroff. 3D hand
pose reconstruction using specialized mappings. In Proceed-
ings Eighth IEEE International Conference on Computer Vi-
sion. ICCV 2001, volume 2000, pages 378-385. IEEE Com-
put. Soc, 2001. 1

J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake. Real-time human pose
recognition in parts from single depth images. In CVPR,
2011. 1,2,3,6

B. Stenger, P. Mendonga, and R. Cipolla. Model-based
3D tracking of an articulated hand. In Proceedings of the
2001 IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition. CVPR 2001, pages 11-310-11-
315. IEEE Comput. Soc, 2001. 2

E. Stergiopoulou and N. Papamarkos. Hand gesture recog-
nition using a neural network shape fitting technique. Engi-
neering Applications of Artificial Intelligence, 22(8):1141—
1158, Dec. 2009. 1

P. Suryanarayan, A. Subramanian, and D. Mandalapu. Dy-
namic Hand Pose Recognition Using Depth Data. 2010
20th International Conference on Pattern Recognition, pages
3105-3108, Aug. 2010. 2

M. E. Tipping and A. Smola. Sparse bayesian learning and
the relevance vector machine, 2001. 1

G. Welch and G. Bishop. An introduction to the kalman filter,
1995. 7

