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Abstract

This contribution gives an overview of the state of the art in
the field of computational modeling of expressive music per-
formance. The notion of predictive computational model is
briefly discussed, and a number of quantitative models of
various aspects of expressive performance are briefly re-
viewed. Four selected computational models are reviewed in
some detail. Their basic principles and assumptions are
explained and, wherever possible, empirical evaluations of
the models on real performance data are reported. In addi-
tion to these models, which focus on general, common prin-
ciples of performance, currently ongoing research on the
formal characterisation of differences in individual perfor-
mance style are briefly presented.

1. Introduction

Music performance as the act of interpreting, structuring, and
physically realising a piece of music is a complex human
activity with many facets – physical, acoustic, physiological,
psychological, social, artistic. Since the early investigations
by Seashore and colleagues (Seashore, 1938), the field of
performance research has made great strides towards under-
standing this complex behaviour and the artifacts it produces.
Rather than attempting to do justice to all the great research
that has been done in this area in the past 100 years, we refer
the reader to papers by Gabrielsson (1999, 2003) for an
excellent overview (with some 800 literature references!).

The present article will focus on one specific aspect,
namely, expressive music performance, i.e., the deliberate
shaping by performers of parameters like tempo, timing,
dynamics, articulation, etc. More precisely, the goal is to give

an overview of the current state of the art of quantitative or
computational modelling of expressive performance, and to
give the reader an idea of some of the current research direc-
tions in this area. Computational modelling is an attempt at
formulating hypotheses concerning expressive performance
in such a precise way that they can be empirically verified
(or disproved) on real measured performance data.

In the following, the notion of computational model is
briefly discussed in the context of expressive performance. A
number of models of various specialised aspects of expres-
sive performance are briefly reviewed or at least mentioned,
and four specific models are then discussed in more detail in
the rest of this article: the rule-based performance model
developed at KTH (Sundberg et al., 1983, 1989; Friberg &
Sundberg, 1987; Friberg, 1991, 1995a) and implemented in
the Director Musices system (Friberg et al., 2000; henceforth
called the KTH Model); the structure-level models of timing
and dynamics advocated by Neil Todd (1985, 1989a, 1992;
collectively called the Todd Model); the mathematical model
of musical structure and expression by Guerino Mazzola
(Mazzola, 1990; Mazzola & Zahorka, 1994a; Mazzola et al.,
1995; Mazzola, 2002; Mazzola & Göller, 2002; the Mazzola
Model); and our own recent model that combines note-level
rules with structure-level expressive patterns and was
induced automatically by machine learning systems
(Widmer, 2002; Widmer & Tobudic, 2003; the Machine
Learning Model).

These four models, as indeed most of the modelling
attempts in performance research, try to capture common
performance principles, that is, they focus on commonalities
between performances and performers. A final section of this
article briefly reports on a recent research project that also
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tries to quantify and characterize, if not yet model in a pre-
dictive way, the differences between artists, that is, aspects of
personal artistic performance style.

2. Computational modelling of expressive
music performance

The Encyclopedia Britannica defines a scientific model fairly
generally as a “familiar structure or mechanism used as an
analogy to interpret a natural phenomenon”. In domains of
study that are open to observation and measurement, mathe-
matical models postulate quantitative (possibly causal) rela-
tionships, deterministic or probabilistic, between various
variables that are used to define the state of some system or
phenomenon of interest, possibly dependent on the setting of
some model parameters. Mathematical models might thus
more appropriately be called abstract descriptions, rather than
analogies, of natural phenomena. Computational modelling
involves embodying mathematical models in computer pro-
grams that can immediately be applied to given data for testing
and prediction purposes. A mathematical or computational
model is predictive in the sense that, assuming a specific fixed
setting of all parameters, the model predicts the values of a
specific set of variables from the values of the other variables.

The purpose of computational models of expressive music
performance is thus to specify precisely the physical para-
meters defining a performance (e.g., onset timing, inter-onset
intervals, loudness levels, note durations, etc.), and to quan-
tify (quasi-)systematic relationships between certain proper-
ties of the musical score, the performance context, and an
actual performance of a given piece. Of course, models in
human or artistic domains cannot be expected to be “correct”
in the sense that their predictions will always correspond to
the behaviour observed in humans. Finding criteria for
testing and evaluating such models is thus a research ques-
tion in its own right. Still, computational models are useful
even in “soft” domains; by being able to compare a model’s
predictions with real performances and quantify the discrep-
ancies, the shortcomings of the underlying assumptions and
performance theories can be measured and pinpointed
(Windsor & Clarke, 1997).

A lot of quantitative research on detailed aspects of
expressive performance, based on measurements of tim-
ing, dynamics, etc., has been done in recent decades (e.g.,
Shaffer, 1981, 1984; Shaffer et al., 1985; Clarke, 1985;
Gabrielsson, 1987; Palmer, 1989, 1996a,b; Repp, 1992,
1995, 1998, 1999; Goebl, 2001, to name but a few). Some
of this work is descriptive rather than predictive, focusing on
measuring performance details and describing classes of
common patterns, often with the help of statistical analysis.
Other work has led to quantitative and computational models
of some very specific aspects of expressive performance, for
example, the final ritard and its conspicuous relation to
human motion (Kronman & Sundberg, 1987; Todd, 1995;
Friberg & Sundberg, 1999; Sundberg, 2000; Friberg et al.,

2000; Honing, 2003); the timing of grace notes (Timmers et
al., 2002); vibrato (Desain & Honing, 1996; Schoonderwaldt
& Friberg, 2001); legato (Bresin & Battel, 2000); or staccato
and its relation to local musical context (Bresin & Widmer,
2000; Bresin, 2001). Dannenberg and Derenyi (1998) des-
cribed a model of articulation in trumpet playing (derived
from actual acoustic performances) that was used to drive an
instrument model which synthesises trumpet performances.

A step towards a general model of expressive timing and
dynamics can be found in Clarke (1988), where Clarke pro-
posed a small set of nine generative rules that express the
grouping structure of the music through tempo and dynam-
ics changes. The underlying assumption of a strong system-
atic link between musical structure and structure of
performances is also the basis for the computational models
that will be discussed in more detail in the following 
sections.

Somewhat controversial is Manfred Clynes’ Composer’s
Pulse theory, which postulates particular timing and accent
patterns for specific composers (Haydn, Mozart, Beethoven,
etc.) that repeat within a short period (e.g., one second; see
Clynes, 1983, 1986, 1987). These composer-specific pulse
patterns were derived from pressure curves produced by pro-
fessional musicians (e.g., Pablo Casals, Rudolf Serkin, and
Clynes himself) on a sentograph while listening to or imag-
ining the music of a particular composer. Different patterns
were extracted for double and triple meters. In the model,
they repeat hierarchically at different metrical levels and are
said to form the “composer-specific pulse microstructure”.
Another aspect of this model is a set of rules to link adjac-
ent (sinusodial) tones (“predictive amplitude shaping”, cf.
Clynes, 1983, 1987), again in a composer-specific way.

Attempts at verifying or refuting the theory have led to
quite diverging results and an extended scientific contro-
versy (Repp, 1989; Thompson, 1989; Clynes, 1990; Repp,
1990a,b,c). The “best” perceptual evaluation of Clynes’ pulse
model was provided by Clynes himself (Clynes, 1995); he
found famous pianists, music students, and non-musicians to
prefer performances with the “correct” pulse over such with
any other pulse. Other authors found it difficult to reproduce
such results. Generally, the theoretical background of the
composer-specific pulse model (Becking, 1928; – see
Clynes, 1995) is rather vague and most likely impossible to
verify or disprove through human expressive performances.

There are also some more “implicit” computational
models that base their predictions on analogy or case-based
reasoning. An example of that is the Saxex system by Arcos
and López de Mántaras (Arcos et al., 1998; Mántaras &
Arcos, 2002), which predicts expressive transformations to
jazz (saxophone) phrases by looking at how other, similar
phrases were played by a human musician.

In the following, we will take a closer look at four of the
more comprehensive models that have been published in
recent years. They are rather comprehensive in the sense that
each of them could potentially produce an expressive inter-
pretation of a piece, at least in terms of expressive timing 
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and dynamics, and they have been evaluated more or less
extensively.

3. The KTH model

This well-known rule system has been developed at the Royal
Institute of Technology in Stockholm in more than 20 years
of research, starting with (Sundberg et al., 1983). In the
meantime it has been extended and analysed in many ways
(e.g., Sundberg et al., 1989; Friberg, 1991; Sundberg, 1993;
Friberg et al., 1998) and applied also to contemporary music
(Friberg et al., 1991). A comprehensive description is given
in Friberg (1995a).

3.1 The basic model

The KTH model consists of a set of performance rules that
predict or prescribe aspects of timing, dynamics, and articu-
lation, based on local musical context. The rules refer to a
limited class of musical situations and theoretical concepts
(simple duration ratios between successive notes, ascending
lines, melodic leaps, melodic and harmonic charge, phrase
structure, etc.). Most of the rules operate at a rather low level,
looking only at very local contexts and affecting individual
notes, but there are also rules that refer to entire phrases. The
rules are parameterised with a varying number of parameters.

The KTH model was developed using the so-called
“analysis-by-synthesis approach” (Sundberg et al., 1983;
Friberg & Sundberg, 1987; Sundberg et al., 1991a) that
involves a professional musician directly evaluating any ten-
tative rule brought forward by the researcher. Musician and
researcher are in a constant feed-back loop trying to find the
best formulation and parameter settings for each rule. This
method has the advantage of modelling a kind of performer–
listener interaction (as the authors argue, see Friberg, 1995a),
but falls potentially short by placing high demands on the
evaluating expert musician(s) and by not permitting reliable
evaluations due to the small number of judgements. The
analysis-by-synthesis method was inspired by and adapted
from speech synthesis methods (Friberg, 1995a).

To illustrate, we mention here one particular rule: DURA-
TION CONTRAST (Friberg, 1995a). This rule modifies the ratio
between successive note durations in order to enhance, and
thus make more easily perceivable, differences in duration.
Most commonly it changes the durations of a long and a short
one so that the longer becomes a bit longer, and the shorter
becomes shorter. As for every rule, there is a quantity control
parameter (k) to be set by the researcher. This parameter is
designed so as to give a fairly good result when its value is
around 1. With a k value of 0, a particular rule can be switched
off; when k is set to a negative value, the rules are inverted
(in our example of the DURATION CONTRAST, it would blur
the rhythmic contrasts), which can produce bizarrely unmu-
sical results. An important aspect of the model is that it is
additive. For instance, there are several rules that influence
the duration of a note, and the effects of the individual rules

are added cumulatively to give the final duration. This addi-
tivity is a particular problem when trying to fit the parame-
ters to collections of real recordings (see below).

More recently, some additional model components have
been published (e.g., musical punctuation rules, Friberg 
et al., 1998; articulation rules, Bresin, 2001, 2002; or swing
ratio in Jazz, Friberg & Sundström, 2002). We lack the space
to recapitulate all of these here.

3.2 Empirical evaluation

The KTH Model features a large number of free parameters
that govern the relative strengths of the individual notes 
and a number of other aspects. To turn the rule set into a truly
predictive model, these parameters must be set to fixed
values. Several attempts have been made to find appropriate
parameter settings. Although the “analysis-by-synthesis”
approach involves perceptual judgements from highly 
skilled individual musicians as a basic method, it still needs
independent empirical evaluation on real performances
(Gabrielsson, 1985).

Already in the early stages of the model’s development,
several perceptual evaluations were reported by the Sundberg
group and guests (Thompson et al., 1989; Sundberg et al.,
1991b) that brought forward evidence for the model’s valid-
ity and reliability. In two listening tests, Sundberg and col-
leagues evaluated the perceptual responsiveness of musicians
and non-musicians to expressive variations (Sundberg et al.,
1991b). In the first experiment, they determined the percep-
tual threshold for the individual rule quantities (k values) 
at which listeners are able to detect differences between 
two examples. Musicians were more sensitive than non-
musicians (who sometimes guessed when they did not hear
the intended variation); the quantity thresholds depended
strongly on the type of rule. In a second experiment, skilled
musicians adjusted the k values for six rules. In one rule
(DURATION CONTRAST), they adjusted the value to zero, in
others close to the threshold of perceptibility.

In experiments with a single piece, Friberg (1995b) used
a simple greedy search method to fit the parameters of a single
rule (the PHRASE ARCH rule) to the timing data of 28 perfor-
mances of the first nine bars of Schumann’s Träumerei (as
measured by Bruno Repp, 1992). Even with this restriction
to only one rule, a total of 18 parameters had to be fitted. Para-
meter settings were found that produced a reasonable fit, but
it was not tested whether these parameter settings generalised
to other pieces. Thus the experiment does not say much about
the general validity or usefulness of the particular parameter
values found. It does, however, indicate that the model as such
is a useable description language for expressive performance.
Other approaches on the same test piece used artificial neural
networks (Bresin & Vecchio, 1995; Bresin, 1998) and fuzzy
logic (Bresin et al., 1995) to approximate parameter settings
that partly matched human expressive performances.

In a recent study by Sundberg and colleagues, it 
was examined how well the KTH model can be fitted to a
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particular performance of a slow Mozart sonata movement
(K.332, first 20 bars of the Adagio) manually, by trial and
error (Sundberg et al., 2003). They focussed exclusively on
expressive timing of the melody (in terms of deviations from
the score) and determined similarity between the perfor-
mance and the model with the correlation coefficient. The
PHRASE ARCH rule (shaping phrases on different structural
levels) seemed to dominate the performance, although they
could not find one single k parameter for these initial 
bars (cf. Kroiss, 2000, see below). Therefore, they tested k
values for each phrase individually. Here again, it was mostly
the PHRASE ARCH rule that got the highest correlations, as
well as HARMONIC CHARGE and negative DURATION

CONTRAST.
Also outside KTH, there have recently been several

attempts to evaluate the KTH model using various computa-
tional approaches. In a more extended study, Kroiss (2000)
used genetic algorithms to fit a set of k parameter values onto
a large number of pieces. The test data were performances of
several complete Mozart piano sonatas performed by a pro-
fessional Viennese pianist (cf. Widmer, 2001, 2002). He
could not find a single set of parameter values that would
produce a fit better than the baseline.

More recently, Zanon and De Poli attempted to fit the
model to real-world data, first with fixed parameter values
(Zanon & De Poli, 2003a), then with time-varying ones
(Zanon & De Poli, 2003b). In the first approach (Zanon &
De Poli, 2003a), several human performances of the first 24
bars of Beethoven’s Sonatine in G major were used that
involved some specific emotional intentions (as for example
anger, fear, happiness, etc.). It was found that most of the
KTH rules were quasi-orthogonal to each other with only few
exceptions (e.g., MELODIC and HARMONIC CHARGE as well
as DURATION CONTRAST). The different emotional intentions
as represented in the performances were differentiated by
particular rules, i.e., the PUNCTUATION rule evidently sepa-
rated fearful or sad performances from happy or neutral ones
(Zanon & De Poli, 2003a, p. 39).

In a second study, Zanon & De Poli (2003b) tried to over-
come one basic restriction of the KTH model, namely, the
fixed k parameter values over the duration of a piece. They
tried to infer optimal k parameters for windows of approxi-
mately 1–2 bars, shifting the windows notewise along with
the score. The degrees of freedom became too many, so that
they restricted the number of included rules in a first esti-
mation phase. In a second phase, both the window size and
the number of considered rules were increased. The two test
pieces were the Beethoven Sonatine as before and the slow
movement of Mozart’s K.332 piano sonata, as in Sundberg
et al. (2003). Particular rules received typical k parameters
for certain structural parts (phrases); however, the overall
results became somewhat confusing, except for the Mozart
excerpt, where the parameter estimation was more success-
ful. The time-varying k parameter estimation was very sen-
sitive to artefacts, such as the timing of grace notes (Zanon
& De Poli, 2003b, p. 308). The parameter setting for the

Mozart excerpt yielded an ambiguous emotional expression
according to Bresin and Friberg (2000).1

The KTH model has also been used to model certain emo-
tional colourings that might not be immediately inherent in
the music structure (Gabrielsson & Juslin, 1996; Bresin &
Friberg, 2000). For example, the DURATION CONTRAST rule
was found to especially distinguish between a sad and a
happy performance. Certain specifically selected subsets of
rules and k parameter settings (“emotional rule palettes”, see
Bresin & Friberg, 2000) were derived from measured per-
formances in order to model emotional colouring of arbitrary
performances.

This extension to emotionality has led to a more compre-
hensive computational model of expressive performances
(the GERM model, Juslin et al., 2002). This model includes,
besides the generative KTH model (“G”) and the emotional
models reported above (“E”), also random variability (“R”)
within certain bounds, and analogies to physical motion
(“M”). Recently, it was proposed to extend it with a factor of
“stylistic unexpectedness” (“S,” Juslin, 2003). Such a com-
bination of several somewhat orthogonal model approaches
expand the degrees of freedom to a rather large size, so that
it will most likely be very difficult to perform stringent
empirical evaluations of this complex model.

In summary, there is evidence that the KTH rule model is
a viable representation language for describing expressive
performance. To what extent it can account for the observed
variations in large collections of performances of truly
complex music is still an open issue.

4. The Todd model

In contrast to the KTH model that used the unique 
“analysis-by-synthesis” approach, the following models may be
summarised under the notion of “analysis-by-measurement”,
because they obtain their empirical evidence directly from
measurements of human expressive performances.

In the late 1980s and early 1990s, Neil Todd proposed 
a number of structure-level models of expressive timing
(Todd, 1985, 1989a,b) and dynamics (Todd, 1992), based on
earlier work by researchers like Shaffer and co-workers
(Shaffer et al., 1985; Shaffer & Todd, 1987), Clarke (1985),
Gabrielsson (1987), and Repp (1990c, 1992).

4.1 The basic model

The essence of these models is the assumption that there is
a direct link between certain aspects of the musical structure

1 The k parameter settings of Zanon and De Poli (2003b) were con-
siderably different from the settings found by Sundberg et al. (2003)
for the same performance of the same Mozart piece. Although the
computational study claimed to estimate time-varying parameters,
they had only two sub-sections on which parameters were indepen-
dently fitted, whereas the analysis-by-synthesis study involved a
total of 16 subsections.
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(i.e., grouping structure) and the performance and, secondly,
that this relation can be modeled by one single, simple rule.
The grouping structure, as defined in the theoretical frame-
work of Lerdahl and Jackendoff’s (1983) Generative Theory
of Tonal Music, identifies points of various degrees of sta-
bility in the music, at different structural levels simultane-
ously (cf. the “time-span reduction” component of Lerdahl
& Jackendoff’s theory). It is assumed by Todd (1985) that a
performer slows down at those points of stability in order to
enable the listener to perceive the hierarchical structure of
the music. This is consistent with measurements of expres-
sive performances that observed tempo to be minimal at
phrase boundaries and maximal between them.2

The first approaches modelled production (Todd, 1985,
1989a) and perception (Todd, 1989b) of expressive timing
exclusively. Todd’s last contribution included the interaction
of timing and dynamics as well (Todd, 1992). In Todd
(1989a), a recursive look-ahead procedure was introduced
that reduced the (theoretically) high demands on working
memory introduced by the first model (Todd, 1985). The
interaction between timing and dynamics was modelled by
the simple relation “the faster, the louder”, where intensity
is proportional to the squared tempo (Todd, 1992, p. 3544).
Thus, the hierarchical grouping structure of the music
directly controls the instantaneous tempo (the more closure
and thus, the more important the phrase boundary, the slower
the performed tempo) as well as the expressive dynamics (in
terms of hammer velocity at a computer-controlled piano).
At each level of the hierarchy, the model increases tempo and
dynamics towards the middle of phrases and vice versa. A
basic assumption in these models is the analogy to physical
motion (see also Kronman & Sundberg, 1987; Todd, 1992,
1995) that may even have a (neuro-)physiological basis in the
vestibular system (Todd, 1992, p. 3549).

4.2 Empirical evaluation

The simplistic nature of Todd’s model has the potential
advantage that its theoretical assumptions can be tested 
relatively easily. In his own contributions, Todd (1985,
1989a, 1992) compared the model’s output with the tempo
and dynamics curves from one or two performances of
selected pieces by Haydn (the beginning of the Adagio of the
Sonata No. 59), Mozart (the theme of the K.331 Sonata), and
Chopin (the A� major Nouvelle Étude No. 3 and the F� minor
Prelude op. 28 No. 8, as reported in Shaffer & Todd, 1987).
The real and algorithmic curves look partly similar in the
figures provided; however, no quantitative evaluations were
performed.

In a more recent empirical study (Clarke & Windsor,
2000), a panel of human listeners evaluated both human per-
formances and algorithmic performances created with the

Todd model. In a pilot experiment, two different phrase inter-
pretations of the first four bars of Mozart’s K.331 (see also
Gabrielsson, 1987) were realised by the Todd model and by
two professional pianists. In the human performances, lis-
teners identified the two phrasing versions best when they 
listened to dynamics changes only and to both timing and
dynamics (articulation was eliminated from this experiment).
The artificial performances could not convey the two phrase
interpretations. The Todd model and the pianists sometimes
did the opposite: while the humans emphasised the unex-
pected eighth note as an upbeat to a new phrase, the Todd
model stubbornly played it softest, as the beginning of a new
phrase. Also, the model did not shape the Siciliano pattern
in the typical systematic way as pianists usually realise it 
(see also Gabrielsson, 1983, 1987). The model did perform
better in communicating two phrase interpretations of a
simple eight-bar melody to musically trained participants. A
general finding in these experiments was that expressive
timing and dynamics did not relate to one another in the
simple manner suggested by the model (Todd, 1992). This
finding (faster–louder is too simple) is also supported by
other empirical data (Palmer, 1996a; Windsor & Clarke,
1997; Repp, 1999).

In another empirical study, Windsor and Clarke (1997)
tuned the model’s parameters to human performances of the
initial measures of Franz Schubert’s G� major Impromptu, D.
899, No. 3. They created several different artificial versions
using different level weightings of the Todd (1992) model
and evaluated them with regression analysis against two
repeated human performances by one professional pianist.
The best fit was always between the two repetitions of the
pianist; the best algorithmic performances was one with dif-
ferent level weights for timing and dynamics (the so-called
“hybrid performance” – Windsor & Clarke, 1997, p. 141).
Timing required more emphasis on lower structural levels,
whereas dynamics on higher levels (these results are similar
to findings by Widmer & Tobudic, 2003, where it was found
that intensity is better modeled by quadratic polynomials
than tempo). Further examining the differences between
model and human performances, Windsor and Clarke intro-
duced the notion of “residuals”, which give more detailed
insight into the details of a performance. As they argue, the
most interesting is what is not explained by the model
(Clarke & Windsor, 2000, p. 312). In this way the Todd model
was used as an analysis tool to assess the idiosyncrasies of
human performances. Similar results were recently obtained
in a comparison, with animated two-dimensional tempo–
dynamics visualisations, between the hybrid performance by
Windsor and Clarke (1997) and Alfred Brendel’s professional
performance (Langner & Goebl, 2003).

5. The Mazzola model

A rather different model based mainly on mathematical con-
siderations is the “Mazzola model”. The Swiss mathemati-
cian and Jazz pianist Guerino Mazzola developed his

2 This basic principle of the Todd model is also reflected in the
PHRASE ARCH rules of the KTH model.
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mathematical music theory and performance model from the
1980s up to the present (Mazzola, 1990; Mazzola & Zahorka,
1994a; Mazzola et al., 1995; Mazzola & Göller, 2002). His
most recent book (Mazzola, 2002) extends over more than
1300 pages and gives a supposedly comprehensive survey of
the vast theoretical background as well as its computational
implementation. While previous implementations of this
model required special computer hardware (NeXTStep 
platform, see Mazzola & Zahorka, 1994b), the most recent
version of the software package runs on Mac OS X (Müller,
2002) and is freely available under the GNU public license
at http://www.rubato.org.

5.1 The basic model

The Mazzola model builds on an enormous theoretical back-
ground, namely, the “mathematical music theory” (Mazzola,
1990) that not only covers various aspects of music theory
and analysis through a highly complex mathematical
approach, but involves all sorts of philosophical, semiotic,
and aesthetic considerations as well. Every step of the theory
is explained in specifically mathematical terms and with a
special terminology that is greatly different from what is
commonly used in performance research. The whole theory
is rather “hermetic”, if one may say so. Therefore, we restrict
ourselves here to the more concrete computational facets as
they have been reported in the literature.

The Mazzola model basically consists of an analysis 
part and a performance part. The analysis part involves 
computer-aided analysis tools for various aspects of the
music structure as, e.g., meter, melody, or harmony. Each of
these is implemented in particular plugins, the so-called
RUBETTEs, that assign particular “weights” to each note in a
symbolic score. The performance part that transforms struc-
tural features into an artificial performance is theoretically
anchored in the so-called “Stemma Theory” and “Operator
Theory” (a sort of additive rule-based structure-to-
performance mapping). It iteratively modifies the “perfor-
mance vector fields”, each of which controls a single expres-
sive parameter of a synthesised performance.

To illustrate, we report on an application of the MetroRU-
BETTE (Fleischer et al., 2000). The (inner) metrical analysis
was simply performed by computing all possible combina-
tions of equally-spaced sequences of note onsets in a musical
score with varying inter-onset intervals (e.g., from the small-
est note value occurring, i.e., a sixteenth note, up to a full
bar) and adding up the amount of participation in such
regular patterns for each note. These sums are referred to as
the so-called (inner) metrical weights. In the example
brought forward by Fleischer et al. (2000, Fig. 2), this (inner)
metrical analysis produced a result that is totally different
from a conventional (outer) metrical structure (e.g., Lerdahl
& Jackendoff, 1983), partly because it ignored rests, which
may coincide with metrically strong positions. Other exam-
ples from this study were more convincing, although the
basic concept of such an analytical approach did not become

explicit. This study used a linear mapping between metrical
weight and tone intensity to generate artificial performances.
Unfortunately, the artificial performances were not compared
with real performance data (Fleischer et al., 2000).

The software package also includes a plugin for analysing
expressive performance data (the EspressoRUBETTE). It
analyses MIDI-like data input, performs score-to-
performance matching, and extracts vector fields for a given
human performance (Mazzola, 2002, pp. 903–929). These
operations are summarised here by the term “inverse perfor-
mance theory”. The plugin visualises the extracted perfor-
mance data in several ways; alongside classical pianoroll
notation (pitch against time or score time) it displays the
extracted performance vector fields as two-dimensional
colour contour plots. However, since these visualisations lack
labels, legends, or explanation (e.g., Mazzola, 2002, p. 924),
their meaning remains rather unclear to the reader.

5.2 Empirical evaluation

Unfortunately, we could find no empirical investigations
outside the “Zürich School”3 that tried to systematically eval-
uate the model. One contribution that used RUBATO to gen-
erate various artificial performances of parts of J. S. Bach’s
“Kunst der Fuge” is (Stange-Elbe, 1999). However, no com-
parisons with real performances were made or even intended.
Similar experiments were reported in Mazzola (2002, pp.
833–852), again without any quantitative evaluation with
empirical data.

In an experiment carried out by Jan Beran (reported in
Mazzola, 2002, pp. 871–901), a multiple regression analysis
was conducted on the tempo curves of 28 performances of
the “Träumerei” as measured by Bruno Repp (1992). The
metrical, harmonic, and melodic weights as provided by 
the RUBATO software served as independent variables. The
overall model could explain 84% of the average tempo curve
of the 28 performances, each of the three analytical compo-
nents contributing about equally to the model. Although the
mapping between analytical weights and actual performance
parameters is claimed to be extremely complex (Mazzola,
2002), Beran could explain a large portion of variance with
a simple linear mapping.

6. The machine learning model

An alternative way of building computational models of
expressive performance is to start from large amounts of
empirical data – precisely measured performances by skilled
musicians – and to have the computer autonomously discover
significant regularities in the data, via inductive machine

3 The term “Zurich School” was introduced by Thomas Noll (see
Mazzola, 2002, p. 744); it involves, besides Mazzola’s group at
Zürich University, the Research Group for Mathematical Music
Theory (MaMuTh) at the Technical University in Berlin.
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learning and data mining techniques. Some of these learn-
ing algorithms produce general performance rules that can
be interpreted and used directly as predictive computational
models. This is the approach that has been developed and
pursued by our research group in Vienna over the past years
(e.g., Widmer, 1995a,b, 1996, 2000, 2002, 2003; Widmer 
et al., 2003). The following two subsections report on machines
learning to predict both local, note-level expressive devia-
tions and higher-level phrasing patterns, and show how these
two types of models can be combined to yield an integrated,
multi-level model of expressive timing and dynamics.

6.1 The note-level model

In a first attempt to find general rules of performance, we
developed a new inductive rule learning algorithm (Widmer,
2003) and applied it to the task of learning note-level rules
for timing, dynamics, and articulation, where by “note-level”
we mean rules that predict how a pianist is going to play a
particular note in a piece – slower or faster than notated,
louder or softer than its predecessor, staccato or legato. This
should be contrasted with higher-level expressive strategies
like the shaping of an entire musical phrase (e.g., with a
gradual ritardando towards the end), which will be addressed
in the next section.

The training data used for the experiments consisted of
recordings of 13 complete piano sonatas by W. A. Mozart
(K.279–284, 330–333, 457, 475, and 533), performed by a
Viennese concert pianist on a Bösendorfer 290SE computer-
controlled piano, from which every detail of timing, dynam-
ics, and articulation could be computed. The resulting dataset
comprises more than 106000 performed notes and represents
some four hours of music.

The experiments were performed on the melodies (usually
the soprano parts) only, which gives an effective training set
of 41116 notes. Each note was described by 29 attributes that
represent both intrinsic properties (such as scale degree,
duration, metrical position) and some aspects of the local
context (e.g., local melodic contour around the note). From
these 41116 examples of played notes, the computer learned
a small set of 17 quite simple classification rules that predict
a surprisingly large number of the note-level choices of 
the pianist. For instance, four rules were discovered that
together correctly predict almost 23% of all the situations
where the pianist lengthened a note relative to how it was
notated (which corresponds to a local slowing down of the
tempo). To illustrate, the following is an example of a 
particularly simple and general rule that was found by the
computer:

RULE TL2:
abstract_duration_context = equal-longer 
& metr_strength £ 1
fi lengthen

“Given two notes of equal duration followed by a longer note,
lengthen the note (i.e., play it more slowly) that precedes the

final, longer one, if this note is in a metrically weak position
(‘metrical strength’ £ 1)”.

This is an extremely simple principle that turns out to be sur-
prisingly general and precise: rule TL2 correctly predicts
1894 cases of local note lengthening, which is 14.12% of all
the instances of significant lengthening observed in the train-
ing date. The number of incorrect predictions is 588 (2.86%
of all the counterexamples).

The complete set of rules is described in detail in
(Widmer, 2002), where also the generality and robustness of
the rules is quantified, based on extensive experiments with
real data. Interestingly, some of the rules discovered by the
machine bear a strong resemblance to performance rules pos-
tulated in the KTH model. In this way, the machine learning
approach provides further circumstantial evidence for the 
relevance and validity of the KTH model.

6.2 The multi-level model

Referring as it does to single notes and their local context,
the above-mentioned rule-based model can only be expected
to account for a rather small part of the expressive patterns
observed in real performances. Musicians understand the
music in terms of a multitude of more abstract structures
(e.g., motifs, groups, phrases), and they use tempo, dynam-
ics, and articulation to “shape” these structures. Music 
performance is a multi-level phenomenon, with musical
structures and performance patterns at various levels em-
bedded within each other.

Accordingly, recent work at our laboratory has focussed
on inductively learning multi-level models of expressive
timing an dynamics from recordings. The goal is for the com-
puter to learn to predict what kind of elementary tempo and
dynamics “shapes” (like a gradual crescendo–decrescendo)
a performer will apply to a given musical phrase in a given
context, at a given level of the phrase hierarchy. Underlying
the model are a number of rather simplistic (but necessary)
assumptions: one, that the expressive timing or dynamics
gestures applied to a phrase by a performer can be reason-
ably approximated by a family of (quadratic) curves (this
assumption is similar to the assumption underlying the Todd
model – see above); two, that a complete multi-level perfor-
mance can be reasonably represented as a linear combination
of such expressive shapes at different hierarchical levels; and
three, that, all other things being equal, similar phrases will
tend to be played similarly by pianists.

Clearly, none of these assumptions can be expected to be
entirely true, but they provide the foundation for an opera-
tional multi-level model of expressive phrasing that is
embodied in a machine learning system (Widmer & Tobudic,
2003). The system takes as input a set of example perfor-
mances by musicians, represented by the musical score, a
hierarchical phrase analysis of the music, plus tempo and
dynamics curves that describe the timing and dynamics
aspects of the expressive performances. It decomposes the
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given performance curves by fitting quadratic approximation
functions to the sections of the curves associated with the
individual phrases, in a levelwise fashion, thus associating an
elementary expressive “shape” with each phrase at each
level. It then predicts elementary expressive shapes for
phrases in new pieces, based on perceived similarity to
known phrases, again at multiple levels, and combines the
individual shapes in a linear fashion into complex compos-
ite expression (tempo and dynamics) curves. Learning is thus
done in a case-based fashion, based on analogies between
pieces. There is no explicit prediction model; the essence of
the model is embodied in the three assumptions mentioned
above.

There is a natural way of combining the phrase-level 
prediction model with the rule-based learning approach
described above: after fitting quadratic approximation poly-
nomials to a given tempo or dynamics curve and “subtract-
ing” the resulting approximation from the original curve,
what is left is what Windsor and Clarke (1997) called the
“residuals”, i.e., those low-level, local timing and dynamics
deviations that cannot be explained by reference to extended
structural entities like phrases. The rule learning algorithm
described in the previous section can be used to learn a rule-
based model of these local effects. Combining the two
models then yields a predictive computational model of
expressive timing and dynamics that takes into account both
the hierarchical structure of the music an local musical
context. Details of the entire procedure and extended exper-
imental results can be found in (Widmer & Tobudic, 2003).

6.3 Empirical evaluation

Both the note-level rule model and the multi-level model
have been extensively tested on real performances. In
(Widmer, 2002), coverage and precision on the large train-
ing set of 41116 played notes are listed in detail for each 
discovered rule, thus giving a very detailed picture of the rel-
ative generality and reliability of the rules. Also, quantitative
experiments with large numbers of new test performances are
described that show that the rules carry over to other per-
formers and even music of a different style with virtually no
loss of precision. For example, the rules were tested on per-
formances of quite different music (Chopin), and quite sur-
prisingly, some of them exhibited significantly higher
prediction accuracy than on the original (Mozart) data they
had been learned from. The machine seems to have discov-
ered some fundamental, though mostly simple, local perfor-
mance principles.

The predictive performance of the multi-level model is
quantified in (Widmer & Tobudic, 2003), again by measur-
ing how well it manages to predict the details of a pianist’s
performances. More precisely, it was measured how closely
the tempo and dynamics curves predicted by the model
match the curves extracted from actual human performances
(of new, previously unseen pieces). Experiments with a sub-
stantial number of extended performances by one particular

concert pianist show that on average, the curves predicted by
the model fit the actual performances better than chance and,
in particular, better than straight lines that would correspond
to strictly mechanical performances. The results are better for
dynamics than for timing and tempo. More detailed investi-
gations revealed that the poor performance of the model in
the tempo domain is largely due not to problems of the learn-
ing algorithm, but to fundamental problems of approximat-
ing real tempo curves with hierarchies of quadratic functions.
In other words, quadratic functions may not be a good mod-
eling language for expressive timing.

Quantitative improvements over these first results are
reported in Tobudic and Widmer (2003a), where the case-
based learning algorithm was optimised. The model was then
extended towards an explicit modelling of the hierarchical
context of phrases, using a first-order logic representation
language and a newly developed measure of structural simi-
larity (Tobudic & Widmer, 2003b); again, this led to some
quantitative improvements. Currently ongoing research sug-
gests that the model’s predictive accuracy can be improved
still further by refining the definition and representation of
musical context.

Also, an “expressive” Mozart performance generated by
the multi-level model after learning from real performances
of other Mozart pieces won Second Prize in a “computer 
performance rendering contest” in Tokyo in 2002, where
computer interpretations of classical music were rated by lis-
teners. That also indicates that what the machine extracts
from the performance data seem to be at least “reasonable”
performance patterns.

7. Current research: quantification of
individual style

Predictive models like those presented above generally focus
on fundamental, common performance principles, that is, on
those aspects that most performances have in common. In
this section, we will briefly address some ongoing research
that also tries to quantify and characterize, if not yet model
in a predictive way, the differences between artists, that is,
aspects of personal artistic performance style.

Of course, there have also been attempts at measuring,
quantifying, and describing stylistic performance differences.
To name just one, Bruno Repp (1992) has presented a strik-
ing demonstration of systematic differences in the styles of
different famous pianists. In a study involving the timing
curves extracted from 28 performances of Robert Schumann’s
Träumerei by 24 famous pianists, he showed that while there
was strong agreement between the performances at a global
level – all pianists more or less observed the major ritardandi
in the piece and clearly expressed the large-scale phrase struc-
ture of the piece through their timing – the differences between
the pianists increased at lower levels of the structural hierar-
chy. A statistical analysis revealed a number of characteristic
and distinctive phrasing behaviours, some of which could be
associated (in a statistical sense) with certain pianists.
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Due to the huge efforts involved in manually measuring
details of expressive timing from audio recordings, Repp’s
analyses were limited to one particular piece. In our institute
in Vienna, a large-scale project is currently being undertaken
which aims at analysing truly large amounts of empirical 
performance data derived from recordings (Widmer et al.,
2003). With the help of new computational methods that
support the semi-automatic measurement of timing and
dynamics from audio recordings, hundreds of recordings are
being measured and characterised in terms of beat-level
timing and global loudness changes.

7.1 Visualisation: performance trajectories

The resulting performance data – beat-level tempo and
dynamics curves – can be represented in an integrated way
as trajectories in a tempo – loudness space that show the joint
development of tempo and dynamics over time (Langner &
Goebl, 2003). Figure 1 shows a complete trajectory repre-
senting a performance of a Chopin Ballade by Artur Rubin-
stein. The line is produced by interpolating between the
measured tempo and dynamics points, and smoothing the
result with a Gaussian window to make the general trends
visible. The degree of smoothing controls the amount of local
variation that becomes visible.

A first intuitive analysis of high-level strategies charac-
terising individual performances is facilitated by an interac-
tive visualisation system called the Performance Worm
(Dixon et al., 2002) that computes and visualises such per-
formance trajectories via computer animation. But the tra-
jectory representation also provides the basis for more
detailed quantitative analysis, with data analysis (data
mining) methods from the field of Artificial Intelligence.
Various avenues towards the characterisation of individual
performance style are being followed, and we will briefly
introduce some of these in the following subsections.

7.2 Characterisation: performance alphabets

The performance trajectories must first be converted into a
form that is accessible to the automated data analysis
machinery provided by data mining. To that end, the trajec-
tories are cut into short segments of fixed length, e.g., two
beats, which are then optionally subjected to various nor-
malisation operations. The resulting segments can be
grouped into classes of similar patterns via clustering. The
centers of these clusters – the cluster prototypes – represent
a set of typical elementary tempo – loudness patterns that
can be used to approximately reconstruct a “full” trajectory
(i.e., a complete performance). In that sense, they can be seen
as a simple alphabet of performance, restricted to tempo and
dynamics. Figure 2 displays such an alphabet computed from
a set of Mozart sonata recordings by different artists.

Such performance alphabets support a variety of quanti-
tative analyses. A first useful step consists in the visualisa-
tion of the distribution of performance patterns over pianists,
pieces, musical styles, etc. (Pampalk et al., 2003). That pro-
vides a very global view of aspects of personal style, such 
as “pianist A tends to use abrupt tempo turns combined 
with rather constant dynamics” or “pianist B combines a
crescendo with a ritardando much more often than other
pianists”. An example of such a visualisation can be found
in (Widmer et al., 2003). An extensive study along these lines
using Chopin performances by several famous pianists has
recently revealed a number of characteristic performance
strategies (Goebl et al., 2004).

A more direct way of studying individual performance
style is to search for specific extended patterns in perfor-
mance trajectories that are somehow typical of a particular
pianist. We are currently developing data mining algorithms
that do this by searching for frequent and discriminative sub-
strings in performance trajectories that are coded as
sequences of performance alphabet “letters”. To illustrate,

Fig. 1. Smoothed tempo–loudness trajectory representing a per-
formance of Frédéric Chopin’s Ballade op.47 in Ab major by Artur
Rubinstein. Horizontal axis: tempo in beats per minute (bpm); ver-
tical axis: loudness in sone.

Fig. 2. A “Mozart performance alphabet” (cluster prototypes)
computed by segmentation, mean and variance normalization, and
clustering, from performances of Mozart piano sonatas by six
pianists (Daniel Barenboim, Roland Batik, Vladimir Horowitz,
Maria João Pires, András Schiff, Mitsuko Uchida). To indicate
directionality, dots mark the end points of segments. Shaded regions
indicate the variance within a cluster.
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Figure 3 shows several instances of a particular performance
pattern found in various Mozart performances by Mitsuko
Uchida, and rarely found in any of the other pianists men-
tioned in Figure 2. The pattern represent a particular way of
combining a crescendo–decrescendo (the vertical movement
of the trajectory) with a slowing down during the loudness
maximum and afterwards. Assessing the statistical and,
above all, musical significance of such discovered patterns is
a rather difficult problem that we are currently working on.

7.3 Classification: automatic identification 
of performers

Another way of trying to quantify individual performance
style is to develop computer programs that attempt to iden-
tify artists on the basis of their performance characteristics.
In initial experiments with state-of-the-art machine learning
algorithms we showed that a computer could learn to partly
differentiate several pianists from the Vienna University of
Music, given only one test recording by each pianist (Sta-
matatos & Widmer, 2002). The recordings were made on a
Bösendorfer 290Se computer-controlled piano, so that very
precise and detailed performance information was available.

Recently, we have managed to show that a computer can
also learn, to some extent, to distinguish famous pianists
based only on aspects of their high-level performance tra-
jectories (Zanon & Widmer, 2003b). For instance, in pairwise
identification experiments (Zanon & Widmer, 2003a), com-
puter programs trained to distinguish between two particular
famous pianists achieved correct recognition rates, on new
recordings not used during training, of 80% and above for
certain pianist pairs (e.g., András Schiff vs. Maria João
Pires). The results are still very preliminary, and we have not
yet managed to pinpoint precisely which features are the
most distinguishing ones, but the current results do indicate
that there is relevant information contained in this high-level
representation, and that the machine may help us in getting

a firmer grip on the elusive notion of personal performance
style.

8. Conclusions

This article has tried to give a comprehensive overview of
the state of the art of computational modelling of expressive
music performance. Four somewhat complementary models
and approaches were presented in some detail and, wherever
possible, empirical evaluations of the models on real perfor-
mance data were reported. In addition, currently ongoing
research on the formal characterisation of individual perfor-
mance style was briefly presented.

The results clearly show that there is still ample room for
further research, and the field of computational performance
modelling continues to be active. One recent trend is a
research focus on basic emotions (or “expressive intentions”)
and the way they are expressed and controlled in performed
music (e.g., De Poli et al., 1998). Knowledge gleaned from
such studies inspires research on new control spaces and
devices for the rendering and control of emotional aspects of
music performance (e.g., Bresin & Friberg, 2000; Canazza
et al., 2003).

Generally, the idea of a creative activity being predictable
and, more specifically, the notion of a direct “quasi-causal”
relation between musical score and performance is rather
problematic. The person and personality of the artist as a
mediator between music and listener is totally neglected in
basically all models discussed above. There are some severe
general limits to what any predictive model can describe. For
instance, very often performers intentionally play the repeti-
tion of the same phrase or section totally differently the
second time around. Being able to predict this would pre-
suppose models of aspects that are outside the music itself,
such as performance context, artistic intentions, personal
experiences, listeners’ expectations, etc. Like any human
intellectual activity, music performance is a complex social
and cognitive phenomenon with a rich context. But even if
complete predictive models of such phenomena are strictly
impossible, they advance our understanding and appreciation
of the complexity of artistic behaviour, and it remains an
intellectual and scientific challenge to probe the limits of
formal modelling and rational characterisation.
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