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Robust Quad-Based Audio Fingerprinting
Reinhard Sonnleitner and Gerhard Widmer

Abstract—We propose an audio fingerprinting method that
adapts findings from the field of blind astrometry to define sim-
ple, efficiently representable characteristic feature combinations
called quads. Based on these, an audio identification algorithm
is described that is robust to noise and severe time-frequency
scale distortions and accurately identifies the underlying scale
transform factors. The low number and compact representation
of content features allows for efficient application of exact fixed-
radius near-neighbour search methods for fingerprint matching
in large audio collections. We demonstrate the practicability
of the method on a collection of 100,000 songs, analyse its
performance for a diverse set of noise as well as severe speed,
tempo and pitch scale modifications, and identify a number of
advantages of our method over two state-of-the-art distortion-
robust audio identification algorithms.

I. INTRODUCTION

An audio fingerprinting system identifies a piece of audio
from a large collection, given a short query. This is typically
done by extracting highly discriminative content features, a
“fingerprint”, from the collection of audio files as well as the
query piece, and subsequently comparing these features.

Established use cases range from the identification of audio
which is played in noisy environments to the very large scale
application areas of media monitoring as well as copy and
plagiarism detection.

Fingerprinting systems used for media monitoring usually
analyse audio streams of a large number of broadcast channels
or recordings from dance club events, in order to compile
lists of the identified content that was played at any given
time. As these systems operate on huge amounts of data, the
involved data structures should be as compact as possible,
and the systems must efficiently operate on large reference
databases.

Depending on the application, audio fingerprinting systems
should be robust to different kinds of distortions of query
audio material. The minimum requirement is robustness to
signal distortions from noise and various types of lossy audio
compression. Further requirements arise for the task of media
monitoring. While for such systems the robustness to noise
may not be the main concern, the systems need to recognize
audio material that was modified in tempo and/or pitch, and
must efficiently operate on large collections of audio. The most
challenging application area seems to be the monitoring of DJ
sets and DJ (live) performances, due to the large degree of
freedom of introduced signal modifications.

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. It includes programs to
create all audio data and manipulated queries as used in this paper. This
material is 1.3 MB in size.
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The National Institute of Standards and Technology (NIST)
acknowledges the probable encounter with heavily modified
audio/video content in the scope of automated copy detection
systems, and includes several severely distorted files in their
TRECVID 2010 copy detection dataset [1]. According to an
investigation mentioned in [2], this dataset apparently contains
files that are altered in speed from −180% up to +23%.

The main robustness requirements we wish to address in
this paper are: robustness to large time and frequency scale
distortions in combination with efficient operation on large
reference audio collections.

The described signal modifications prove to be substantial
challenges for automated audio identification systems, and no
method described in the academic literature is shown to satisfy
all of these requirements1 (see Section II).

In this paper, we present a solution to the critical task of
developing a system that fulfills the scale change robustness
requirements and can efficiently handle large audio collections.
While it is directly applicable to established use cases, we
think that it also presents a reasonable basis for further study
of track identification in DJ mix sets and electronic music
performances.

The proposed method is a thoroughly refined and substan-
tially extended version of our initial work on that topic [3]2.
The system we present is, to our knowledge, the first audio
fingerprinting method described in the academic literature that
meets all of the above requirements. It can efficiently identify
audio in large collections, and is robust to noise and audio
quality degradation, as well as to severe distortions of speed,
tempo and frequency 3. Moreover, the identification method
uncovers and accurately quantifies the scale transform factors
of distorted audio queries as an integral part of its matching
process.

To make this possible, we adopt research from the field
of blind astrometry [4] to the audio domain. The central
components in this are local, compact geometric hash repre-
sentations of audio content that are invariant to translation and
scaling. The system thereby overcomes the inherent robustness
limitations of methods that depend on equal relative distances
of reference and query features, such as the well-known
Shazam algorithm [5].

1There exists an US patent (US7627477B2) covering a system that is
claimed to be immune to various transformations, including time/frequency
scale modifications.

2We would like to point the readers who are familiar with [3] to Section VII,
which highlights the differences and novelties of the proposed method.

3To clarify our terminology: if both scales are changed by the same scale
factor, we call this a change in “speed”: the song is played faster and at the
same time at a higher pitch, which is usually achieved by resampling the audio
at different rate. Changing the time scale only will be referred to as a “tempo”
change: here, the audio is sped up or slowed down without observable changes
in pitch. Vice versa, if only the frequency scale is modified, this will be called
“pitch shifting”.
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We analyse the performance of the method based on a
freely available audio collection of 100,000 full length songs,
which is considerably larger than what is used in the literature,
and perform experiments on roughly 450,000 queries that
are distorted in speed, tempo and frequency by up to ±30%
relative to the reference audio piece. To demonstrate the noise
robustness of the method we perform experiments on queries
with signal to noise ratios (SNR) in the range of −10dB to
+50dB, and also test the robustness on various other effects.

The paper is organized as follows. Section II discusses
related work and identifies two state-of-the-art methods [6],
[7], that will act as our main reference here. Section III gives
a brief overview of the main points of our new method, in
order to set the context for the precise method description,
which comes in three parts: Section IV describes the feature
extraction process and how to obtain hash representations
from these features, which then together constitute the finger-
prints. Section V describes the data structures that are used
for the audio identification method. Section VI details the
identification method, i.e. the process of matching query audio
with reference data by comparing the fingerprints. Section VII
highlights notable differences and novelties with respect to our
previous work [3]. Section VIII systematically evaluates the
performance of our method on roughly 450,000 queries with
various properties.

II. RELATED WORK

From the numerous fingerprinting methods described in the
literature we first consider those that can at least meet the
following requirements: the algorithms need to operate on
excerpts rather than the whole audio file as it is represented
in the reference database. In general, such systems extract and
compare local audio content features. Next, the methods need
to be robust to signal degradations like noise and distortions
that result from encoding the audio with lossy compression
algorithms.

An audio identification system for copy detection is pre-
sented in [2]. Quantized spectrogram regions are transformed
to a series of horizontal and vertical slices, which are then
represented as 48 dimensional fingerprints. Match candidates
are determined in an exhaustive fashion, and robustness to
speed changes is achieved by additional search with rescaled
versions of the query snippet. While this approach to achieve
scale robustness is effective, its exhaustive nature prevents it
from being efficiently usable on larger reference collections.
The system is evaluated on the TRECVID 2010 dataset [1].

A landmark based system with robustness to moderate
speed changes in the range of ±5% is presented in [8]. The
robustness is achieved by an exhaustive preprocessing step that
searches for common pitch offsets of query fingerprints against
the reference database. If a subset of reference fingerprints
exhibit a constant pitch offset to the query, this offset is used
to rescale the query for subsequent fingerprinting. Similar to
[2], this is a limiting factor regarding applicability to larger
databases.

The work presented in [9] applies cosine filters to the audio
spectrum to compute short-term band energies, which makes

the method robust to moderate frequency distortions. The
method is perfectly usable with large collections of audio and
is robust to audio degradations and to small amounts of tempo
and pitch scale distortions.

In [10], audio identification is approached by applying
methods from computer vision. The STFT representation of
audio is processed in overlapping slices along time. From
these slices, wavelets are computed and compared by their
magnitude, and the top-200 wavelets are compressed based on
individual sign bits. Using Min-Hash, the resulting bit vectors
of a spectrogram slice are represented as 200 byte values,
which are indexed for nearest neighbour lookup. The method
is very robust to tempo changes in the tested range of ±10%,
but sensitive to moderate speed changes in the range of ±2%.

Regarding the main focus of our work – robustness to
both time and frequency scale distortions – we could identify
three publications which suggest solutions to these criteria.
However, to our knowledge, no audio fingerprinting algorithm
has been described that in addition to exhibiting large scale
change robustness is shown to efficiently operate on large
reference collections.

In [6] a method is described that performs the scale invari-
ant feature transform (SIFT [11]) on logarithmically scaled
audio spectrograms, compressed into 64 frequency sub-bands.
The resulting 128-dimensional SIFT-descriptors represent the
fingerprints. Individual fingerprints are matched via nearest
neighbour search using locality sensitive hashing (LSH [12]).
The results show exceptionally high accuracy for severe speed,
tempo and pitch distortions. The evaluation is performed on
a database of 10,141 reference audio excerpts of length 60s.
Given the typical average song duration of four minutes, this
is the equivalent of about 2535 full length songs.

Another method which focuses on the mentioned challenges
is presented in [7]. Its fingerprint hashes consist of triples of
feature components similar to what is used in the context of
symbolic fingerprinting in [13]. The evaluation of [7] shows
high sensitivity to moderate scale distortions of either kind,
which limits the applicability of the method. Due to its high
efficiency, the method is applicable to large databases. The
work shows an evaluation of identification performance under
various conditions on the largest audio collection used in
this specific context throughout the literature, analysing the
performance of the method on 30.000 full length songs. It
operates on data structures of small size: the estimated size of
a reference database for a million songs is just roughly 28GB.

A fingerprinting algorithm for audio copy detection, that
also meets the robustness demands for time-frequency distor-
tions is [14]. The work reports near perfect percentages of
correct song association, although on a rather small reference
database of roughly 250 songs. The method performs feature
extraction on a two-dimensional time-chroma representation
of the audio. From this, image patches are extracted and then
analysed, and a number of low frequency DCT coefficients
of the image patches form the individual 143-dimensional
fingerprints. Selection of match candidates is performed by
exhaustive nearest neighbour lookups. Compared to other
methods, the extraction of fingerprints seems computationally
expensive, and because of the exhaustive candidate lookup the
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method is not readily applicable to larger reference databases.
The methods described in both publications [6] and [14]

report exceptionally high performance for this challenging
task and their methods are more robust to scale distortions
than other previously described work. However, the system
proposed in [7] seems less demanding in terms of computa-
tional costs as well as disk space requirements, and seems
to be the only method applicable for large scale fingerprinting
tasks while still exhibiting limited robustness to moderate scale
distortions. We will take the recent work of [6] and [7] as the
reference methods in the present paper, because of the strong
robustness shown in [6], and the efficiency of [7]. In addition,
the information presented in [7] readily enables comparability.

III. METHOD OVERVIEW

Our identification method operates on compact four-
dimensional, continuous geometric hash representations of
quadruples of points, henceforth referred to as “quads” [4].
The points are local maxima in the two-dimensional time-
frequency representation of reference audio material, and are
referred to as “spectral peaks” throughout the paper. For each
quad we create a compact translation- and scale-invariant hash
which is represented as a point in a four-dimensional vector
space. Section IV describes the feature extraction process in
detail.

Quads, along with their hashes and respective source file-
IDs of reference audio are the so-called fingerprints that we
use for audio identification. The fingerprints are stored as
records in a binary file, which is indexed by a data structure
for subsequent efficient fixed-radius near neighbour queries.
This stage of the method is described in Section V.

For audio identification, i.e. processing and answering
queries, we first extract quads and their hashes from the query
audio excerpt. For each query hash we then perform a range
query in the index data structure. The obtained result sets are
filtered and sorted into sequences of match hypotheses for each
potentially matching file-ID. Finally, the individual sequences
are processed by a powerful verification method, which is the
key technique that makes the identification algorithm perform
with high precision. These steps are described in Section VI.

IV. FEATURE EXTRACTION

In this section we describe the extraction of audio features
and computation of their geometric hash representations.

To begin with, all audio files are downmixed to one-channel
monaural representations sampled at 16 kHz. We compute the
STFT magnitude spectrogram using a Hann-window of size
2048 samples (128 ms) and a hop size of 64 samples (4 ms),
discarding the phases.

A. Constructing quads

The fingerprinting algorithm works on translation- and
scale-invariant geometric hashes of combinations of spectral
peaks. Spectral peaks are local maxima in an STFT magni-
tude spectrogram, and identified by their coordinates in the
spectrogram. Since the notion of a peak P as a point in 2D

spectrogram space will be used extensively in the following,
let us formally introduce the notation:

P = (Px, Py)

where Px is the peak’s time position (STFT frame index), and
Py is the peak’s frequency (STFT frequency bin index).

The extraction of peaks is implemented via a pair of two-
dimensional filters, a max filter and a min filter, which are
implemented as two-dimensional sliding window filters, and a
post processing step to guarantee that there is at most one peak
per window. We first apply the max filter to the spectrogram.
Locations of the spectrogram that are identical to the respective
max-filter values are peaks. However, this does not guarantee
that there is exactly one peak per window, as a spectrogram
might contain regions of uniform magnitude. Examples of such
cases would be silence, clicks, or digitally created tones with
identical magnitudes. According to the max filter result, each
coordinate in such regions is reported as a peak. To clean this
up, we use a second sliding window filter, a min filter of size
3×3, compare the result to the spectrogram, and discard peak
candidates if they are detected by both, the min and the max
filter. To give an example, we assume absolute silence in a
region of the spectrogram. Each magnitude within this region
is both a maximum and a minimum, therefore each peak in
that region will be discarded.

Next, we clean up cases of clicks or tones with a succession
of identical magnitude values, since such cases will not be
detected by the min filter if their uniform regions are smaller
than 3× 3. We group all peaks by magnitude, and search for
adjacent peaks in each group. If adjacent peaks are found, we
keep the first peak in time and frequency and delete all other
peaks in the current filter window. This way we ensure to
report exactly one peak per max filter window. In the current
implementation the cleanup procedure has a quadratic time
complexity in size of peak magnitude groups, but in practice
it seems well applicable to audio spectrograms.

The resulting peak coordinates are now subjected to
parabolic interpolation based on their neighbourhood of 3× 3
in spectrogram space. If the interpolated value lies outside the
neighbourhood in any dimension, the original non-interpolated
value is kept. From this point onwards, peaks are represented
as single precision floating point values.

To create translation- and scale-invariant hashes from
quadruples of peaks, we first have to group peaks into
quads [4], where a quad consists of four spectral peaks
A,B,C,D.

Ay < By (1a)
Ax < Cx ≤ Dx ≤ Bx (1b)
Ay < Cy, Dy ≤ By (1c)

Thus, we define a quad to be valid if the points C,D reside
in the axis-parallel rectangle that is spanned by points A,B.
These validity constraints restrict the number and shapes of
quads that can be grouped from arbitrary peak constellations.
Naturally, there are numerous ways to achieve constrained con-
stellations. We chose the above mainly because of two reasons:
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it can be efficiently computed and effectively limits the number
of possible constellations. The algorithm subsequently strictly
operates on valid quads only.

At the top level, the quad grouping process proceeds through
an audio file from left to right, trying each spectral peak as a
potential root point A of a set of quads, and aims to create up
to a number of q quads for each second of audio.

The process of constructing quads by selecting appropriate
sets of B,C,D points is as follows4: we construct a quad
grouping region of width r, spanning r STFT frames ranging
from rstart to rend , such that the region is centered c STFT-
frames from A and A is outside of the region (earlier in time,
i.e. the region is located to the right of A). This is depicted
in Figure 1a. For the reference database we want to create a
small number of quads. We therefore choose a region of small
width r and the center c in near proximity to A. We take all
m peaks residing in this region and try all

(
m
3

)
combinations

of 3 peak indices in order to construct all valid quads for root
point A. Resulting quads are appended to a result list.

In many cases, creating all
(
m
3

)
quads for a given region

results in large amounts of quads. To restrict the total number,
we pick “strong” quads from the set of valid quads, based
on selecting, for each candidate point B, only a subset of
C,D points based on their magnitude. We pick as many of
the strongest quads, such that we get close to a maximum of
q quads per second of audio. We do this by first creating all
valid quads for each root point A. Then we bin the quads into
groups according to the time values of their root points A, and
select the strong ones for each root point in the binned group
until we reach the number q quads per second.

There are notable advantages of this method over the
method we proposed in [3]: we attain an almost uniform
distribution of quads over time (i.e. per bin). Most importantly,
this grouping method extracts the robust quads from the
set of all possible quads. Applying this proposed grouping
method, we observe increased identification performance of
the fingerprinter. Indeed, if the reference database consists of
only strong quads, we can simply discard weak quads from
query audio to considerably reduce the necessary amount of
work for the identification task.

B. Query quad construction

The parameters for quad extraction in queries are computed
from the reference quad extraction parameters and the speci-
fied tolerance bounds for pitch (p) and time (t) scale distortions
εp, εt, that we are interested to detect. For example, to detect
query snippets such that the reference audio is in the range of
±30% with respect to the query, we let the tolerance bounds
εp = εt = 0.3.

The length or duration of an audio piece with altered time
scale is the inverse of the time scale factor. Thus, to identify

4We will parametrize this process differently, depending on whether we
compute quads for the reference database, or for a piece of query audio. To
create the reference database, we choose parameters in such a way that we
only create a small number of reference quads to keep the resulting reference
database as small as possible. For a query snippet, we will choose parameters
to create a large number of quads. The explanation for this will be given later
in this section.

query audio increased in tempo or speed, the algorithm has
to account for the fact that the relevant peaks from the query
will be closer to each other than the corresponding peaks from
the slower reference. Therefore, we extract peaks from query
audio at higher density, by using smaller max filter sizes: the
width (w) of the query max filter mquery

w is computed from
the reference max filter width mref

w and εt using Equation 2:

mquery
w = mref

w /(1 + εt) (2)

The height (h) of the max filter is computed as

mquery
h = mref

h · (1− εp) (3)

The borders of the query quad grouping region rquery, and
the center c are then obtained in dependency of εt ∈ [0; 1] by:

rquery
start = rref

start/(1 + εt) (4a)

rquery
end = rref

end/(1− εt) (4b)
cquery = (rquery

start + rquery
end )/2 (4c)

The resulting peaks for a piece of reference and query
audio for tolerances εp = εt = 0.3 are depicted in Figure 3.
Note that the query peaks (shown as dots) are extracted at a
higher density, as given in Equations 2, 3. The other aspects
of Figure 3 become relevant in Section VI-C.

To summarize, the reason for different parameterization
for query quad construction is as follows: when the time
or frequency scale of query audio is modified, this affects
not only the density of relevant peaks in the given audio
snippet, but also their relative positions. An example is given
in Figure 1, which shows the grouping for a quad for a given
root point A. In 1a a reference quad is created for a region
of width r that is centered c frames from A. The analogous
example for grouping a query quad for the same audio, but
increased in tempo, or decreased in tempo, is given in 1b
and 1c, respectively. We see that the hollow points, which are
points C,D,B for the reference quad, may happen to move
outside of the grouping region of width r if the time scale of
the audio is modified. By choosing a larger region width r (see
Equations 4) and a larger number q of quads per second of
audio (qps), in combination with a higher density of extracted
peaks, we try to ensure to obtain a quad that corresponds to the
reference quad. Note that Figures 1b and 1c show the locations
of reference peaks after altering the time scale, but does not
show additional peaks that would emerge due to the higher
peak density (i.e. smaller max-filter sizes).

Note that when we consider audio queries of a fixed, limited
duration d (e.g., 15s), there is an important difference between
increased speed/tempo and decreased speed/tempo. Increasing
the tempo of the query audio excerpt relative to the reference
leads to a higher density of relevant audio content; all the
content that was used during the phase of reference quad
grouping is also present when extracting the quads for the
query. However, decreasing the tempo, i.e. stretching the time
scale, may cause some of the relevant spectral peaks to fall out
of the 15s (i.e. not be part of the query any more), so some
important quads do not emerge in the query. This difference in
increasing vs. decreasing the time scale was actually reflected
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(a) Reference quad grouping (b) Query snippet with tempo 130% (c) Query snippet with tempo 70%

Fig. 1. Reference quad grouping (1a) and query quad grouping with increased tempo (1b), and decreased tempo (1c). 1a shows a root point A and the hollow
circles B,C,D to group a reference quad. Figures 1b, 1c show the regions for the tolerance of ±30% in the queries, and the different peak densities. Note
that rquery is scaled according to Equations 4, rather than proportionally to the tolerance bounds of ±30%

Fig. 2. Example of a valid quad A,B,C,D and its corresponding hash.

in the evaluation results of our previous work [3]. We now
alleviate this effect to a great extent by choosing lower values
for the parameters c, r. This has the effect that query quads
of shorter time-span are created, and thus more query quads
can be extracted towards the end of a short audio snippet. Very
similar to the above, severe frequency scale changes (i.e., pitch
or speed, but not tempo) can cause relevant peaks to leave the
observed bandwidth of the audio signal.

C. From quads to translation- and scale-invariant hashes

We now have created quads from spectral peaks in audio,
but these quads are not the actual summarizing representation
that we later use to find match candidates between a query
audio and the reference database. That representation should
be translation- and scale-invariant, and quickly retrievable.
To achieve this, we adapt the hashing model shown in [4].
Instead of invariance to angle-preserving transformations and
rotation, we change the hash model to be invariant to non-
isotropic transformations, i.e. different scale factors of either
dimension. For our hashes, we deliberately discard the prop-
erty of rotational invariance, and the resulting model enables
us to compute translation- and scale-invariant hashes from
the quads. This operation normalizes quads from spectrogram
space, with spectral peaks A,B representing a rectangular
patch with sides always parallel to the axes of the Cartesian
coordinate system, into the two-dimensional unit square: For
a given quad A,B,C,D, the constellation of spectral peaks
is translated to the origin and normalized to the unit square,
resulting in the four points A′, B′, C ′, D′ such that A′ = (0, 0)
and B′ = (1, 1), as shown in Figure 2. The actual continuous
hash of the quad is now given by C ′, D′, and is stored as
a four-dimensional point (C ′x, C

′
y, D

′
x, D

′
y) in a spatial data

structure. Essentially, C ′, D′ are the relative distances of C,D
to A,B in time and frequency, respectively. Thus, the hash

C ′, D′ is not only translation invariant (A′ is always (0, 0)),
but also invariant to non-isotropic scaling.

Figure 2 shows the hash space for general quads, but
the distribution of C ′x, D

′
x hash values might be constrained

to a subspace of this hash space. This “relevant subspace”
constraint implicitly originates from the reference (ref ) quad
grouping stage, and depends on the parameters cref , rref ,
which are the distance of the grouping window center from a
root point Ax and the width of the grouping window:

C ′ref
x min = D′ref

x min =
cref − rref /2

cref + rref /2
(5)

Therefore, all query quads where C ′query
x < C ′ref

x min − εL
can be discarded – no equivalent quads exist in a reference
database, and no range query lookup (L) with radius εL in
the spatial data structure will contain a near neighbour. It is
sufficient to only compare against C ′x, because C ′x ≤ D′x.

An intuitive explanation of what it means when a quad does
not originate from the relevant hash subspace is the following:
a peak of the query quad moved closer to the rootpoint, while
at the same time another one moved farther away, which is of
course not what we wish to detect since it is impossible that the
signal was simultaneously increased and decreased in tempo
or speed. Naturally, we exclude such irrelevant quads from the
set of query quads before we start picking strong quads based
on peak magnitude values (see Subsection IV-A). To convey
the effectiveness of enforcing that constraint, we measured the
amount of possible quads and the size of their relevant subsets:
averaged over 11,700 queries (see Figure 5 below), 44.7% of
possible quads could be rejected. Selecting a number of q
strong quads strictly from the remaining subsets considerably
reduces the number of false negatives in the identification
process.

V. FINGERPRINTS: STORING HASHES FOR EFFICIENT
RETRIEVAL

Once peaks, quads and their hashes are computed from
a piece of reference audio, we store the data in four data
structures that together constitute what we call the reference
database, which allows for efficient selection of match candi-
dates and subsequent verification of match hypotheses from
query audio. We refer to the four individual data structures as
peakfile, refrecords, fidindex and searchtree.

The peakfile contains the continuous (interpolated) two-
dimensional coordinates of all spectral peaks that were ex-
tracted for each piece of reference audio. Note that we do
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not store the peak magnitudes, as they are only used for
the quad grouping to pick strong quads, and are not needed
during the processing stages of audio identification. Each peak
is represented by two single precision floats, and consumes
8 bytes. The peakfile stores peaks for each audio file as a
contiguous sequence of records.

The refrecords file stores all quad records (quads and quad
hashes, along with their audio file-ID) of all audio data in the
reference collection. A quad record consist of spectral peak A
and S, where S denotes the height and width of the quad in
spectrogram space (i.e. Sx = Bx − Ax and Sy = By − Ay),
the quad hash C ′, D′, and the file-ID. Spectral peaks C,D are
omitted, they are needed only for computing the quad hash.

The data for A,S and the quad hash are represented as four
float32 values each, and the file-ID as unsigned int32. In total,
a record in this data structure has a size of 36 bytes.

The fidindex maps each reference audio file to a unique file-
ID and also stores the number of extracted peaks and quads,
along with other meta data. Given a specific audio file-ID, the
fidindex is used to find the corresponding record range in the
peakfile.

The searchtree is used to perform efficient fixed-radius near
neighbour searches of quad hashes. We use a variant of a
shallow bounding-volume hierarchy [15] that stores and refer-
ences nodes of quad hash ranges. Using this tree variant, it is
simple to establish a memory-bounded tree construction. The
tree does not create special leaf nodes – instead it marks inner
nodes as leaves if they cannot be partitioned any further (e.g.
because of the memory bound, or geometric constraints for the
bounding volumes) and uses the pointers in the node structure
to reference record ranges within our refrecords file. Each node
in the hierarchy references a range of records which are stored
contiguously in the refrecords file. On a high level the tree
construction can be understood as a kind of quicksort applied
to the refrecords data structure, where the pivot-based array
partitioning is guided by a binned approximation of the four-
dimensional equivalent of the surface area heuristic [16]. For
each split, the coordinate values of the currently widest axis
of the bounding volume are used. In our implementation, the
tree construction is guided by a memory bound of 2048MB,
and nodes are split as long as their bounding volumes are
not too small. We also prohibit node splitting if the number
of referenced primitives (i.e. refrecord entries) in a node is
lower than a threshold value of 5 hashes. We chose to use
this tree variant because we already had the implementation
along with python bindings, and it is faster than the RTree we
used in [3]. We would like to point the reader to the highly
optimized kD-tree implementation of [4], but we did not yet
test that implementation in our system.

The extraction of reference peaks is performed with a max-
filter width of 151 STFT-frames, and a filter height of 75
frequency bins. The corresponding min-filter has a width of 3
STFT-frames and a height of 3 frequency bins. For reference
quad grouping we choose the center of the grouping window
cref to be 1.3 seconds from each root point A. The width rref

is 0.8 seconds. We group a maximum of q = 9 quads per
second of reference audio.

The reference database we use for the experiments in

Section VIII consists of 100,011 full length songs with a
total duration of 6899 hours of music, with an average
song duration of 248.33s. The indexed audio files altogether
consume 550.4GB of disk space. Using the parameters as
above, 216, 429, 829 peaks were extracted and stored in the
peakfile which consumes 1.65GB. The peaks were grouped
to 209, 855, 025 quads, thus the refrecords file consumes
about 7.2GB of disk space. The nodes of the search tree
consume 1068MB, and the fidindex file has a size of 6.7MB.
Altogether, our reference database has a size of 9.85GB, which
is roughly 1.8% of the size of the audio collection. Creating
the reference database, using our Python implementation, took
24.8h (around 67 files per minute), utilizing seven out of eight
logical cores of an Intel Core i7-4770 (3.4GHz) Processor.

The largest data structure we use is the refrecords file.
While we do not experiment with compressed representations
in this work, we want to point out that the refrecords file
can be compressed from 36 bytes to 24 bytes per record, by
utilizing scaled floating point representation. Hash values are
in the range of [0..1] (in fact, time values C ′x, D

′
x reside in the

smaller range of [C ′ref
x min..1] as described in Section IV-C)

and could be scaled and stored as unsigned short16 values.
Likewise, the width and height of quads (S as above) could
be represented in this format.

VI. IDENTIFICATION ALGORITHM

This section describes the algorithm that tries to identify
a potentially severely distorted piece of query audio. If a
matching audio is found within the reference database, the
algorithm reports the match file-ID, the position of the query
piece within the reference audio, the underlying time and
frequency scale modifications, and a score.

The method of answering a query consists of three stages:
the first processing stage performs the selection of match
candidates, followed by a filtering stage in which we try
to discard false positive candidates. This is explained in
Section VI-A.

Results are then passed to a match sequence estimation
stage, in which we efficiently search for sequences within
the set of matched candidates. For this we adapt and extend
the histogram binning approach that is proposed in [5], com-
bined with an outlier removal step that discards individual
match candidates within sequences based on statistics of the
respective underlying scale transforms. This is explained in
Section VI-B.

Finally, for each match candidate within the filtered se-
quences we apply a verification step, adapted from the findings
in [4]. This step is essential to maintain high identification
precision on large reference audio collections, especially in the
presence of highly repetitive audio material. The verification
is explained in Section VI-C.

A. Match candidate selection and filtering

For each query quad hash a fixed-radius near neighbour
search in the searchtree is performed. This lookup returns a
set of raw match candidates, which consists of those quad
records with hashes that are similar (identical up to the search
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radius εL: C ′query
x − εL ≤ C ′ref

x ≤ C ′query
x + εL etc.) to the

query quad-hashes. We call this the set of raw candidates, as
it will most likely be a mixture of true positives and a (large)
number of false positive matches. From this point onwards,
this stage and subsequent stages operate on the spectral quads
rather than on their hashes, thus we can now discard the hashes
from the result sets.

The raw candidates are processed by a series of three filters
that reject false positives. This considerably reduces the num-
ber of raw candidates and therefore reduces the computational
load of subsequent steps. Conceptually, if these filters are not
applied here, the same effect of candidate rejection takes place
in the verification stage (see VI-C), although in a less efficient
manner.

The first filter tests the query quad and each of its match
candidates (cand) based on coarse pitch coherence, similar to
the spatio-temporal coherence check described in [17]. The
filter routine accepts candidates if the following holds:

Aquery
y /Acand

y ≥ 1/(1 + εp) (6a)

Aquery
y /Acand

y ≤ 1/(1− εp) (6b)

The next filter tests whether accepted candidates adhere to
the previously introduced transform tolerance bounds εp, εt
for pitch and time (see Subsection IV-B). This is achieved
by looking at the different orientation of the query quads and
their candidates and computing the scaling factors for time
and frequency as follows:

stime = (Bquery
x −Aquery

x )/(Bref
x −Aref

x ) (7a)

sfreq = (Bquery
y −Aquery

y )/(Bref
y −Aref

y ) (7b)

Quad candidates are accepted if the following holds:

spitch ≥ 1/(1 + εp)∧spitch ≤ 1/(1− εp) (8a)
stime ≥ 1/(1 + εt) ∧stime ≤ 1/(1− εt) (8b)

The scale factors are stored with the accepted candidates and
will be used in the verification stage to align reference peaks
to query space (see Section VI-C).

The last filter is similar to the coarse pitch coherence filter,
but now that we know the scaling factors of the candidates
with respect to their query quads, we can perform a fine pitch
coherence filter as follows:

|Aquery
p −Aref

p sfreq | ≤ εpfine (9)

where εpfine is the fine pitch coherence threshold. Ideally, we
would expect Aquery

p = Aref
p sfreq , but we have to account for

the fact that the location of spectral peaks is only robust, but
not invariant to signal distortions. We let εpfine = 1.8, which
we determined empirically.

We now sort the remaining accepted candidates by file-ID,
and enter the sequence estimation step.

B. Sequence estimation

We perform this stage and the next stage of match candidate
verification on a per-file-ID basis. Therefore we group the
match candidates by file-ID, and sort the groups by the number
of match candidates, in decreasing order.

Per file-ID, we try to find a sequence of candidates by
processing the matches with a histogram method similar to
the one used in the Shazam algorithm [5]. We adapt the
method such that the query time (the time value of root point
A of each query quad in the sequence) is scaled according
to the uncovered time scale factor stime . The file-ID for the
largest histogram bin (the longest match sequence) is returned,
together with the match position, which is the minimal time
value Ax of the peaks in the histogram bin. This time value
localizes the query snippet within the reference audio.

Resulting sequences with a variance of scale transforms
larger than a threshold value are cleaned up using a simple
variance based outlier detection method.

Finally, if match sequences are found for a given file-ID, and
their number of matched candidates is larger than a threshold
value ts, we try to verify these sequences match-by-match.

C. Match verification

Verification of match hypotheses is based on the insight
that spectral peaks that were extracted nearby a matching
reference quad in the reference audio should also be present
in the query audio [4]. For this verification process we have to
align the peaks of the relevant part of reference audio with the
corresponding part of query audio, by aligning regions around
the respective locations of the match hypothesis. In order to
do so we use the previously computed scale transformation
factors (cf. Equations 7a, 7b) for the current match candidate
and then count the number of peaks that match in aligned
space. We first describe the verification process and then show
a visualization of the method, below.

Naturally, the number of peaks in proximity of the reference
quad will differ from the number of peaks near the matched
query quad. This depends on the query peak extraction density,
and therefore on the scale tolerance parameters εp, εt, but also
on the encoding, noise, and other distortions. Thus, the verifi-
cation process must be robust to the existence of additional and
missing peaks, so called distractors and dropouts. Because we
search for the existence of reference peaks in the query audio,
and not vice versa, distractors tend to get problematic only if
the query peaks are extracted at very high densities – in this
case the probability for false verifications increases. Dropouts
on the other hand, may lead to false rejections. Therefore, we
try not to find all, but just a percentage of tmin of the nearby
reference peaks within the local query excerpt.

We define the nearby reference peaks as the set of N
spectral peaks in the reference audio that exist within a
timespan around the match candidate’s root point A (for some
fixed timespan), and retrieve those via a lookup for the peaks
of the file-ID in the peakfile of our reference database, and
then bisecting the time values5.

5In our initial work [3], we proposed to search for nearby peaks in peak
trees that are part of the reference database. These peak trees consume more
than 13GB for the audio collection we use in this paper. Using the variant we
propose here enables us to perform the verification without the need for these
data structures, and consequently reduce the total disk space requirements of
the reference data structures by more than 50%.
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Fig. 3. Verification of a match candidate for a query snippet of 120% pitch (i.e. the query audio has higher pitch than the unmodified reference audio). The
two black squares are the root points Aref , Aquery . The plus symbols and crosses in the upper figure show all reference peaks in proximity of Aref . The
lower figure shows the location estimates of peaks in query space. The plus symbol means “not verified”, the cross means “verified”. The dots in the lower
figure show all additional peaks which are extracted due to smaller peak filter sizes. The rectangles show the tolerance regions for the alignments. The figure
allows to observe that the high frequency reference peaks were shifted out of the query content. Note that this shows an example using a sampling rate of
16kHz, window size of 2048 samples and a hop size of 64 samples.

The transformation to align a reference peak P ref with a
query peak P query in query space uses the scale transformation
estimate s (cf. Equations 7a, 7b):

P query = Aquery + off (10)
off = (P ref −Aref ) · s (11)

where Aquery is the root point of a query quad and Aref

the root point of an associated reference match candidate. The
vector off is the transformed offset (i.e. the relative position)
in pitch and time from Aref to a nearby peak P ref . P query is
the location estimate in query space where we expect to find a
query peak that corresponds to the reference peak P ref . Note
that we search for P ref in a small rectangular region which
is centered at the location estimate P query . In this specific
implementation with εp = εt = ±30%, we parameterize the
rectangular region to span 12 frequency bins and 18 STFT
frames (0.072s), i.e. we allow larger tolerances to align nearby
peaks than during the match candidate filtering stage, where
we aligned Aref

p , Aquery
p according to Equation 9. Here, we

are less strict, to allow miniscule inaccuracies in the obtained
scale factors, but most importantly to tolerate deviations from
expected locations of spectral peaks that can occur due to
audio signal distortions.

An example verification is depicted in Figure 3: here, the
query audio was modified in pitch, such that the query has a
pitch of 120% relative to the reference song. The upper figure
shows an excerpt of the reference audio around the reference
match candidate’s root point A. The plus symbols and crosses
represent the locations of the spectral peaks from this reference
audio excerpt. The lower figure shows the query audio excerpt,
where the dots represent the spectral peaks extracted for this

query snippet. The plus symbols and crosses in the lower
figure show the estimated locations of reference peaks in the
query audio, and the rectangles depict the tolerance regions in
which we search for the existence of a query peak. Crosses
represent successfully aligned peaks, and plus symbols show
failed alignments, respectively. In this example, 75% of the
nearby reference peaks could be aligned.

The candidates that pass the verification step are consid-
ered true matches, and are associated with two measures, a
verification score, and the uncovered scale transforms s. The
verification score is the percentage v/N (with v ≤ N ) of
correctly aligned spectral peaks in the set of nearby peaks.
Finally, if the sequence of verified matches for the given file-
ID covers at least 15% of the query snippet length, we report
the match. Note that this test should also be applied in the
sequence estimation stage, for early rejections.

At this point, we finally know the reference file-ID that
identifies the query audio, the position of the query audio in
the reference track, and the associated time-frequency scale
modification s.

As we are interested in the best matching file-ID only,
we can return the best verified sequence of the current file-
ID as soon as it becomes evident that the next file-ID to
process has a smaller number of associated match candidates
than the number of verified matches in the current file-ID’s
best sequence (for this, the file-IDs are sorted by the number
of match candidates in decreasing order before entering the
sequence estimation step).

This early exit considerably reduces the amount of work to
be done in this processing stage, and its effectivity is shown in
Figure 4. In most of the cases the method identifies the correct
file-ID, transformation and reference position for a query after
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Fig. 4. Histogram of the percentage of candidate file-IDs from the retrieved
set of potential file-IDs that had to be processed in order to answer a query,
computed from 11,700 queries. Note the bin at x = 1.0: here, the contributors
are false negatives, and weakly matched file-IDs with exactly ts matches
(either true or false positives).

processing the first few candidate file-IDs. Weak matches
(with a low number of quads in a verified match sequence
approaching the match threshold ts) and false negatives make
it necessary to process all candidate file-IDs, i.e. it is not
possible to take the early exit.

VII. COMPARISON TO OUR PREVIOUS WORK

In this section we highlight the most important novelty
aspects of the proposed method compared to our previous work
on that topic [3].

We use a lower audio sampling rate of 8kHz instead of
16kHz, and reduce the STFT hop size from 128 samples to
32 samples (4ms). This results in an increased time resolution
of hashes and contributes to higher identification performance.
The decreased sampling rate reduces memory requirements
and allows to compute the STFT in less time.

The peak extractor is refined to apply parabolic interpolation
of peaks and incorporates post processing to guarantee one
peak per window.

Query quad grouping windows are automatically adapted to
the given tolerance parameters, a relevant subspace constraint
is enforced and the quad grouping process creates quads in an
almost uniform distribution over time. Finally, we pick strong
quads based on their respective peak magnitudes.

For lookup, we use a different spatial datastructure that
has higher performance than libspatialindex’s RTree [18]. The
quad records are refined to discard the inner points C,D.
Instead of quad point B of a reference quad, the quad’s height
and width is stored, which reduces work in the filtering stage.
The file ID of quads is incorporated into the quad records to
reduce the level of indirection.

Match sequence detection is now performed prior to
match verification, which considerably decreases computa-
tional costs. It uses outlier detection on candidate sequence
members to further reduce the computational load of the
subsequent verification stage. We refined the order of the filter
chain for increased efficiency.

The verification stage is changed to bisect into relevant
time slices of the peakfile, and no longer depends on storage
intensive peak trees. Instead of the more expensive nearest
neighbour peak search for alignment, we simply check for
a non-zero count of peaks in a parameterizable rectangular
region.

While the general concept of the method is the same, the
whole implementation and parameterization changed and dif-
ferent data structures are used. Altogether, the novel aspects of
the proposed work and the interdependent parameter changes
increase the identification performance while considerably
decreasing the runtimes.

VIII. EXPERIMENTS AND RESULTS

The basis for all the experiments in this paper is the refer-
ence database consisting of 100,011 as described in Section V.
The dataset6 is freely available and we publish information
that allows to recreate the reference collections, along with all
queries that are performed in the experiments.

To create test queries, we randomly choose and fix a set
of 300 reference songs and subject these to different speed,
tempo, pitch and noise level modifications. We then randomly
select a starting position for each selected song, and cut out 20
seconds from the audio, such that we end up with 300 query
snippets with a duration of 20s. These query snippets are used
for all experiments.

We create the snippets from .mp3 encoded data, and encode
the distorted versions in the Ogg Vorbis format [20], using the
default compression rate (cr = 3). We do this to demonstrate
that the system is robust to effects that result from a lossy
audio compression. All modifications are realized with the free
SoX audio toolkit [21].

For all experiments in this work, the fingerprinter is con-
figured with scale transform tolerances εq = εt = 0.31.
Query peak extraction is performed with max-filter sizes of
51 frequency bins and 113 frames. The radius for near-
neighbour range queries is εL = 0.01. Sequences must contain
at least ts = 4 matches, and the threshold for the average
verification score of sequences is set to 0.53. The verification
stage considers peaks in the range of ±1.8s near the reference
candidate rootpoint, and uses rectangular alignment regions
of height 12 frequency bins and 18 time frames. For the
experiments we use a preliminary parallel implementation of
our method, utilizing 7 workers and one master process on
a Intel Core i7-4770 (3.4GHz) machine. All building blocks
of the method are implemented in Python, except the peak
extractor and the searchtree, which are implemented as C
extensions.

The following terms are used in defining our performance
measures: tp (true positives) is the number of cases in which
the correct reference is identified from the query. tn (true
negatives) is the number of cases in which the system correctly
abstains from identifying a reference because there is no
correct reference. fp (false positives) is the number of cases
in which the system predicts the wrong reference. fn (false
negatives) is the number of cases in which the system fails to
return a reference id at all.

We present a rich set of experiments for various query
distortions to evaluate the performance of the system in cases
where the correct reference is present in the database, and

6The dataset we use consists of more than 100, 000 full-length, freely
available creative commons licensed music pieces, hosted by the jamendo
service [19]
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(a) Speed variations (b) Tempo variations (c) Pitch variations

Fig. 5. Precision and accuracy for speed (5a), tempo (5b) and pitch (5c) modifications of 20s queries with a near-neighbour search radius εL = 0.01 on a
database of 100,000 songs. The figures show results of a total of 11,700 queries (3 kinds of distortions for 13 values over 300 queries), where each pair of
data points shows the result of 300 queries. The boxplot pairs show the average verification scores of tp (left) and fp (right) sequences. In cases with perfect
precision, no fp boxplots are shown.

(a) Speed and qps variations (b) Tempo and qps variations (c) Pitch and qps variations

(d) Speed and SNR variations (e) Tempo and SNR variations (f) Pitch and SNR variations

Fig. 6. Precision and accuracy for speed, tempo and pitch distortions (from left to right) on our reference database of 100,000 songs. Figures 6a to 6c (note
the y-axis range) show results for a total of 117,000 queries, for various values of quads per second (qps, parameter q) and a query snippet length of 20s
and εL = 0.01. Each pair of data points shows the average precision and accuracy of 3900 queries for scale modifications in the range of ±30% of the
individual type, as in the experiment shown in Figure 5. Figures 6d to 6f show results for a total of 152,100 queries of various SNR, snippet length of 15s
and εL = 0.01, where each pair of data points is the average over 3900 queries.

show the capability of the system to report true negatives in a
separate experiment. We do this because it is not meaningful
to systematically modify queries that are not present in the
reference database.

For the set of experiments, where there are no true negatives,
we define two performance measures: Recognition Accuracy
is the proportion of queries whose reference is correctly
identified:

Accuracy =
tp

tp+ fp+ fn
=
tp

N
(12)

Precision is the proportion of cases, out of all cases where
the system claimed to have identified the reference, where its
prediction is correct:

Precision =
tp

tp+ fp
(13)

Thus, high precision means low number of false positives. It
is important to assess the precision of fingerprinting systems,

as in many applications a false positive is regarded more
expensive than a false negative. In media monitoring and
revenue distribution, a false positive may lead to revenue
attribution to the wrong artist, and in copy detection, to false
accusations.

To test the system with queries that are not present in the
reference database, we define a third performance measure:

Specificity =
tn

tn+ fp
(14)

High specificity quantifies the capability of the system to avoid
false positives by correctly abstaining from reporting a match.

We now explain the specificity tests and, for convenience,
report the results in the following paragraph. The runtimes for
the experiments are documented in the bottom two rows of
Table I.

To test the specificity of the method, we prepare a second
set of 20, 000 query files from the jamendo service [19].
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We tried to ensure that the files contained in this set are
disjunct with the set of referenced files, by inspecting the
available metadata. We found it is difficult to correctly clean up
duplicates, because often the same song is present in another
album of the same artist, referenced with another track ID, and
inconsistent metadata. We reject music pieces that appear to be
duplicates according to the metadata, and finally keep a subset
of 18.229 files. The system’s specificity on this set is 0.9617.
Inspecting the results leads us to believe that there are still
duplicates present. The metadata of some of the high scoring
matched files are very similar, but not equal to metadata of the
query audio piece. To work around the problem of duplicates,
we perform a second experiment, on yet another dataset that
we prepared to test the specificity of our system. This dataset
consists 50.000 non-free songs from a different collection that
we cannot make available. This experiment results in a higher
specificity of 0.9726, but even in this experiment the top
matching query audio seems to be a duplicate of a song that
is present in our reference database. Because the metadata are
inconsistent, and we do not have a ground truth reference, we
cannot be sure if some of these cases are duplicates or versions
of the matched song, and therefore have to treat such cases as
false positives. For both experiments the queries are of length
20s, starting at position 40s of the query audio piece.

All experiments presented in the following regard queries
of audio that is indexed in the reference database, and show
individual results for speed, tempo and pitch distortions. Note
that in the vast majority of experiments, the reported precision
is impacted by a set of three songs which we believe to be
duplicates, but without the corresponding ground truth we can
not be sure, so we regard these cases as false positives.

A. Results on scale modified queries

We consider scale distortions in the range from 70% to
130% in steps of 5 percentage points, and extract a number of
q ≈ 1500 quads per second of query audio of length 20s.
The results are shown in Figures 5, and are accompanied
by box plots of the average scores of matched sequences,
which are shown for true positives and false positives if such
sequences were predicted. Increasing the verification threshold
(cf. Section VI-C) reduces the number of false positives, at
the cost of introducing a number of false negatives for larger
scale transform modifications. For industrial applications, this
threshold should be optimized via large scale experiments.

Results for the same kind of experiment, for various lengths
of query snippets are given in Table I. Because of space
constraints we show the average performance of the individual
types of distortions. Each row of Table I shows results of
11,700 queries (300 queries are tested for 3 types of scale
distortion, over a range of 13 different scale factors), except
for the last three rows, which show the system’s specificity
and runtimes for queries that are not present in the reference
database.

We observe that false positives with high verification scores
tend to be cases where the fingerprinter confuses different
versions of a song. Specifically, the high-scoring false positives
are due to the fact that it is hard for the fingerprinter to

TABLE I
AVERAGE PERFORMANCE AND RUN TIMES (qps = 1500)

Speed Tempo Pitch mean median
l [s] prec. acc. prec. acc. prec. acc. t [s] t [s]
20.0 .994 .984 .994 .980 .992 .944 1.69 1.65
17.5 .993 .981 .992 .976 .991 .929 1.49 1.45
15.0 .991 .976 .991 .969 .992 .905 1.29 1.26
12.5 .990 .964 .990 .955 .990 .873 1.06 1.03
10.0 .990 .948 .989 .929 .987 .833 0.83 0.80
7.5 .987 .908 .988 .865 .979 .735 0.59 0.57
5.0 .980 .770 .978 .709 .953 .563 0.37 0.35
2.5 .798 .293 .777 .281 .668 .184 0.19 0.16

l [s] tn dataset No. queries Specificity mean median
20.0 jamendo [19] 18.229 .9617 1.96 1.77
20.0 non-free 50.000 .9726 1.89 1.67

TABLE II
PERFORMANCE ON QUERIES WITHOUT SCALE MODIFICATIONS, THAT ARE

DISTORTED BY VARIOUS EFFECTS (qps = 1500)

effect type prec. acc.
bandpass .997 .993

chorus .986 .687
echo .993 .980

flanger .984 .827
gsm .978 .440

tremolo .990 .977

distinguish scale modified and highly repetitive short snippets
of long remixes of electronic music from the original version, a
problem which is equally hard for human listeners (especially
if the major difference of the segment of the remix is, e.g.,
the altered tempo or pitch). Depending on the application it
might be advantageous to maintain a dictionary that relates
versions of a song to a reference version. We currently do not
have such a dictionary for our data set, so we treat those cases
strictly as false positives.

B. Results on qps values

Identification results for various values of the number of
extracted query quads per second (qps, parameter q) are shown
in Figures 6a to 6c. For each value of q an experiment as in
Figure 5 is performed, and the averaged results over the total of
117,000 queries (11,700 queries for 10 values of q) are shown
in the first row of Figure 6. Decreasing the number of query
quads negatively affects the identification performance for the
most severe transformations only, while greatly reducing the
run time of query processing: The mean query runtime for the
qps range from 250 to 2500 in steps of 250 is: 0.74s, 0.94s,
1.14s, 1.34s, 1.51s, 1.69s, 1.86s, 2.02s, 2.17s and 2.33s.

Thus, the proposed method of picking strong quads seems
indeed to be effective in discarding irrelevant quads. Note, that
without imposing a limit of q quads per second, in many cases
more than 4500 quads would be extracted per second of query
audio.

C. Results on effects and noisy queries

The impact of various effects on the performance of the
presented method is evaluated and summarized in Table II.
For comparability we chose the same effects with identical
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Fig. 7. Fraction of time spent in query processing stages, averaged over the
11,700 queries performed for Figure 5 (l = 20s, εL = 0.01, qps = 1500).
This figure represents a median query processing time of 1.65s.

parameterization as in [7]. The most challenging distortions
are the gsm codec and the chorus effect, and to a certain extent
the flanger effect. For the effects bandpass, echo and tremolo,
the system maintains high performance with more than 97%
accuracy and precision.

To evaluate the performance on white noise, we modify each
query snippet of the individual scale transforms and create
noisy versions in SNR ranges from −10dB to +50dB in steps
of 5dB. The results are given in the second row of Figure 6.
For this experiment, a total of 152.100 queries were processed
(11,700 queries for each of the 13 SNR values).

The results show a stable and high performance for SNR
down to +15dB, which is a lower SNR value than what we
expect to encounter in application scenarios.

D. Run times

We identify five building blocks in our method, and take
note of the time spent in these stages over the 11,700 queries
performed for the experiment shown in Figure 5, using query
snippet lengths of 20s and a search radius of εL = 0.01. The
stages are audio decoding (tdec), peak extraction (tpex), quad
extraction (tqex), tree lookup and filtering (tlu), as well as
match sequence estimation and verification (tver).

Figure 7 shows the fraction of time spent for the individual
stages. Time spent on the lookup depends on the number
of box-box intersections during tree traversal, and the size
of the result set that is then filtered for the range constraint
εL, pitch coherency and transform tolerances. The outliers for
match sequence estimation and verification can be explained
in context of Figure 4: in a great majority of all queries, the
method takes the early exit after the first few candidate file-
IDs, which means that only a small fraction of all potential file-
IDs are processed in this stage. For the case of false negative
matches, or weak matches (i.e. approaching the matching
threshold ts) many candidates have to be processed.

In the reasonable scenario where a machine is dedicated to
fingerprinting (we use 7 worker processes), with the settings
as in Figure 5, we can process 213 20s-queries per minute,
and 280 15s-queries per minute. Single-worker run times
for various snippet lengths are given in Table I. We believe
the run times are within practical limits, considering the size
of the reference database and the large tolerances of scale
modifications.

E. Comparison with reference methods
While it is not possible to directly compare our results to

those of [6] (because we do not have access to their test data),
from the published figures it seems fair to say that in terms
of recognition accuracy and robustness, both methods seem
comparable, and both seem to approach the upper end of what
can be expected of an automated audio identification system.
For tempo and pitch scale modifications, our method seems
slightly more robust for the ranges we evaluated on, and it has
a noticeably higher performance for queries that were severely
slowed down in speed. Regarding the efficiency of [6], we do
not know runtimes of the reference implementation, and we do
not know how large the data structures for reference databases
will be in practice. We cannot directly answer if the nearest
neighbour search using LSH will still be that effective in the
presence of very large databases, because the chances that the
nearest neighbour constitutes the correct candidate decreases
with the number of referenced fingerprints. However, given
that LSH allows to be tuned in various ways, we assume that
the method will be well applicable in practice.

The work presented in [7] allows for comparability by
publishing code and data. Given the strong limitations of
the system with regard to scale change robustness, with a
true positive rate of roughly 50% for scale distortions in the
range of ±5% for 20s query snippets, we do not evaluate that
system on our large reference database. However, we utilize
the information given in [7] to recreate the identical distortions
for the robustness experiments, and present the results as
part of our evaluation on our reference database consisting
of 100,000 full length audio pieces (see Table I). We assume
that the limited robustness of [7] is because of the specific
hashing model used in combination with spectral peaks: it
contains absolute values of quantized frequency components
of feature points, and deltas of the quantized time values as
well as frequency values, which are directly used to create
the hash. This resulting representation is prone to aliasing
effects, which occur if one or more peaks of the triple migrate
into a neighbouring bin. Such cases will result in a hash
that is different to the original, even though the triples are
highly similar. This is an inherent property of quantized hash
models, and here, its effect is exposed by the limited location
robustness of the spectral peaks. Aliasing effects of quantized
hashes are expected even for unmodified audio. Depending
on the start position of query snippet decoding, query peaks
sometimes migrate to a neighbouring bin with respect to the
other query peaks. If just one peak of the triple moves relative
to the other two peaks (e.g. assume it is assigned to bint−1
instead of bint along the time axis), the time deltas within
the triple change and the triple is likely to be assigned to a
different hash. We assume that this could be the reason for the
large number of false negatives. The reported false negatives
that occur even in the case of unmodified audio queries are an
indicator for strong robustness limitations of quantized hashes
for key/value lookup methods.

IX. DISCUSSION

The scale transform tolerances ±31% used in this paper do
not reflect the upper bound of what the method can handle.
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It can detect more severe scale modifications, but the runtime
increases with larger values of εp, εt, and decreases with lower
values. This is because larger tolerance values demand a higher
density of query peaks, and due to the implicitly increasing
size of the grouping window width r, a greater number of
query quads will be grouped before the number of qps strong
peaks will be selected. Also, less match candidates will be
rejected due to larger transform tolerances, and therefore more
candidates are passed to the fine pitch coherence filter and
possibly even to the verification stage.

Instead of utilizing quantized hashes, we perform fixed-
radius all near neighbour queries in the continuous four-
dimensional hash space to retrieve raw candidates. Thus, alias-
ing effects of quantized hashes, that predominantly emerge
in combination with lookup tables, are not of concern. To
loosen the strict hash similarity constraints of systems that
use key/value lookup methods, as the work described in [7],
hash keys for adjacent bins must be computed for additional
queries, which in turn limits the efficiency of such methods.
The system described in [4], and our proposed system, allows
for intuitive parameterization of the query radius εL to adapt
to robustness requirements.

We identify two reasons why our method on the whole
exhibits robustness to scale changes, rather than invariance,
despite the invariant hashing model: the very basis of the
method are spectral peaks, and their respective locations are
not invariant to scale changes or introduced digital artifacts.
This is predominantly shown by the lower pitch scale ro-
bustness of our method, compared to speed or tempo. The
second reason is, that under severe scale changes, relevant
peaks leave the observable regions of query audio, thus some
important peaks cannot be found. This, however, is a general
issue with severe signal scale modifications, and not specific
to our method.

In [4], using n-tuples instead of quadruples of points is
discussed. As proposed in [4], we use quad based hashes
and observe that the computational cost and identification
performance is well within reasonable limits. Using triples
will inevitably result in much larger sets of retrieved match
candidates (that need to be filtered and verified subsequently),
because triples have a lower discriminability than quadruples
of points.

X. CONCLUSIONS

We have presented a practical audio identification method
that is highly robust to noise, tempo, speed and pitch dis-
tortions. Due to the compact fingerprints, subsequent search
in hash space can be efficiently performed via an exact
fixed-radius near neighbour scheme. We demonstrated high
identification performance with low processing run times in
experiments of a total of roughly 450,000 queries with various
distortions, against a large database consisting of 100,000 full
length songs (≈ 6899h of music). The proposed reference data
structures take less than 10 GB of disk space. While there
is high potential of false positive matches in a database of
this size (roughly 209 million quads) in combination with the
rather large scale tolerances of ±30%, the proposed filtering

stage and verification of match sequence hypotheses enable
the system to maintain high precision and specificity, even for
musical genres with highly repetitive content.
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