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ABSTRACT
At this stage development of recommender systems (RS),
an evaluation of competing approaches (methods) yielding
similar performances in terms of experiment reproduction is
of crucial importance in order to direct the further devel-
opment toward the most promising direction. These com-
parisons are usually based on the 10-fold cross validation
scheme. Since the compared performances are often simi-
lar to each other, the application of statistical significance
testing is inevitable in order to not to get misled by ran-
domly caused differences of achieved performances. For the
same reason, to reproduce experiments on a different set
of experimental data, the most powerful significance testing
should be applied. In this work we provide guidelines on how
to achieve the highest power in the comparison of RS and
we demonstrate them on a comparison of RS performances
when different variables are contextualized.

Keywords
recommender systems, evaluation, folding, paired testing,
experimental design

1. INTRODUCTION
The discussions on the evaluation in recommender sys-

tems have been mostly focused on the choice of the evalua-
tion metric (e.g. RMSE vs. precision etc.). However, very
little focus has been given to the next step in evaluation:
the comparison of two or more recommender systems (e.g.
underlying algorithms or methods) using appropriate statis-
tical tests (based on the chosen evaluation metric). In this
paper we address the latter.

When comparing several recommender systems (for in-
stance, method A1 and method A2), the task of determining
which one is better is not trivial. There are two choices that
the evaluators have to make: (i) choosing an appropriate
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evaluation metric m and, after that, (ii) choosing an appro-
priate comparison procedure. This is conceptually explained
in Fig. 1. The vertical axis represents different scalar per-
formance measures m (e.g. precision (P), precision at five
(P@5) etc). Which one suits best the evaluation procedure
depends on the domain specifics the evaluated RS is designed
for. In Fig. 1 we assumed this is F measure indicated by
the blue dot. Next, we select an appropriate significance
test to answer the question whether the two methods are
equivalent, i.e. m(A1) = m(A2). Such test is the one for
which all assumptions regarding tested data are meet and
is the most powerful among such tests. In Fig. 1 we se-
lect the Wilcoxon signed rank test (indicated by the blue
dot) since the resulting F measures typically do not meet
the normality assumption of the t-test (which would be the
most powerful choice).

Why do we need to apply significance testing here? Clearly,
the right selection of a scalar measure is of crucial impor-
tance. However, when a stage of development of certain
field reaches maturity (as is the case with RS today), the
competing algorithms are getting closer and closer regard-
ing their performances. Therefore, one can not tell whether
the achieved performance gap m(A2) − m(A1) is a result
of true performance improvement or just a coincidence re-
lated to the data sample. To resolve the issue, a statis-
tical significance test is applied to test the null hypothe-
sis H0 : m(A1) = m(A2) against the alternative one H1 :
m(A2)! = m(A1).
The statistical power of a significance test is the proba-

bility of rejecting a null hypothesis H0 when it is not true
(i.e. detecting the deviation from the null hypothesis). In
most cases, the hypothesis claims that there is no effect, i.e.
no association among variables or no difference among pop-
ulation means such as the performance of a RS measured
by F-measure etc. This effect is thus the deviation from the
null hypothesis. When the null hypothesis is not true, it
means there is a real effect in the population. Therefore,
the statistical power tells us how likely the test detects this
real effect by rejecting the null hypothesis. For this reason,
the statistical power is also called sensitivity in terms of how
likely the test detects the effect, that is the deviation from
the null hypothesis.

When the performances of the two methods A1 and A2

are close to each other but different, we wish to detect the
difference in order to continue the development into the more
promising direction. The power of significance testing is
thus of crucial importance. Since statistical power, beside
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the effect size, also depends on the sample size. And, since
the user data acquisition required in the comparison of RS is
difficult, we need to achieve the highest available statistical
power for a given user test data. The problem how to achieve
this is addressed in this paper.

High statistical power in RS comparison is also of crucial
importance for the reproduction of experiments. The repro-
duction of a given experiment is executed on a different data
set than the original one with a possibly different effect size.
If one wishes to reproduce the result, the applied test must
be powerful (sensitive) enough to detect the effect.

The issue of choosing the appropriate evaluation metric is
an old one. Herlocker et al. [4] proposed a set of metrics to
choose from, depending on the task at hand. A more recent
comprehensive overview of metrics is given also in Shani [12].
There have also been attempts to capture multiple metrics,
like business-wise, technical-wise and user-wise [11].

P R F P@10 

Pair. t-test 

Indep. t-test 

Mann W. U 

Signed ran. 

2 - test 

P@5 

Figure 1: A conceptual representation of the two
methods comparison selection. First we select a
scalar performance measure such as F measure (hor-
izontal axis) and then an appropriate significance
test (vertical axis).

After the evaluation metric has been chosen it is applied
to each of the observed recommender systems, which yields
a set of measurements for each recommender system. To
the best of the authors’ knowledge, little discussion has
been made with regards to the comparison of recommender
systems’ performance. Jannach [5] suggests using ANOVA
to perform pairwise comparisons. One could also resort to
methods used in machine learning (e.g. Demšar [3]). How-
ever, the choice of the appropriate comparison test depends
heavily on the metrics chosen in step (i).

In this paper we address the issue of performing a cor-
rect comparison between two recommender system when
the evaluation metrics is the confusion table of the classi-
fier. More specifically, we address the pair-wise equivalence
of the 10-fold cross validation scheme.

1.1 Problem statement and proposed solution
The problem we address is the lack of well-established

guidelines for selecting the best statistical test when com-
paring two recommender systems. We propose guidelines
for selecting the statistical test with the highest statistical
power in a common scenario: the outcome of each of the
recommender systems under observation is the set of confu-
sion matrices yielded by the 10-fold cross validation scheme.
The matter is particularly relevant in RS comparison since
users’ data is typically sparse and consequently, the statis-
tical power of significance test is lower.

Furthermore, we present the outcomes of the proposed
methodology on a set of sub-variants of a recommender sys-

Error  
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folds 1 2 3 4 5 6 7 8 9 10  1 2 3 4 5 6 7 8 9 10  
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Figure 2: Illustration of paired vs. indepen-
dent comparisons. The vertical axis represents the
generic error of the analyzed method. The green
(left) boxes represent the method A 1 and the red
ones (right) represent a method A 2 . Each of the
small boxes represents the one fold error values. A
pair of small green and red boxes connected by a
line represents the comparison of both methods in
a selected fold indicated on the horizontal axis. Ob-
serve how the pairwise comparisons are significantly
different while the aggregated is not.

tem (based on the matrix factorization algorithm) with dif-
ferent contextual variables.

2. SELECTING THE STATISTICAL TEST
In this subsection we list and briefly discuss the options

available in the comparison of two methods in RS based on
the 10-fold cross validation scheme and argue that the so
called paired version in the one to select.

2.1 Criteria for significance test selection
In general statistical practice, a significance test is selected

according to the following two competitive directions. They
both have the same goal which is getting the most statistical
power in the testing procedure. Typically, there are several
statistical tests available that test roughly the same null hy-
pothesis and they are ordered according to their power [8].
The first guideline that one must follow is to meet the as-
sumptions of the significance test regarding the variable type
(nominal, ordinal, numeric) and the tested data distribu-
tions. For instance, having numerical data, a paired t-test
could be appropriate but if the data is not distributed nor-
mally, we have to select the Wilcoxon signed rank test. Any
test for which the assumptions are met could be selected.
The second guideline to follow is to select the most powerful
test among acceptable ones. For instance, if the Wilcoxon
signed rank test could be applied, the χ2-test could also be
applied but that would not be an optimal choice since it
yields less statistical power than the Wilcoxon signed rank
test.

The selection of the significance test also depends on the
pre-processing of tested data. In our case this means the
way we store and manipulate results of each fold compari-
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son among methods A1 and A2. The guideline is as follows:
if it is possible to apply a paired significance testing, one
should select it (since it yields higher statistical power com-
pared to the independent comparison). Usually the paired
vs. independent choice is decided by the nature of the ex-
periment and there is no way to perform a paired test if the
data is independent (e.g. the compared values are measures
on different subjects). On the other hand, if the data is
paired one can perform an independent test but some sta-
tistical power is lost. Therefore, such selection would be a
flaw in the experimental design. Such a design flaw can oc-
cur in the case of significance testing based of the 10-fold
cross validation scheme as indicated in Fig. 2.

2.2 Paired vs. Independent Signific. testing
In this section, we list and discuss several options on

how the 10-fold cross validation scheme-based comparison
of two competitive methods, based on scalar performance
measures and significance testing can be implemented. We
also comment on each of them regarding the achieved sta-
tistical power.

We are comparing the performance of two competing meth-
ods A1 and A2 measured by a scalar performance mea-
sure m(A1) and m(A2). We test the null hypotheses H0 :
m(A1) = m(A2) against the alternative one H1 : m(A1)! =
m(A2). There are the following paths of reasoning:

1. Same vs. separate folding: one can (i) run the
10-folding scheme once and compare the competing
methods on the same training / testing folds or (ii)
run the folding scheme twice, first to estimate m(A1)
and then to estimate m(A2) (with a different set of
folds). The first option (same folding) typically yields
higher power in testing the null hypothesis H0 than
the second one does. The reason is in the fact that in
the case of independent testing the differences among
compared values may cancel out while they are pre-
served when paired comparisons are made;

2. Paired vs. independent testing: in the case that
we used the same-folding approach (first option of the
previous step) there are two options on how to com-
pare the two competing methods A1 and A2. First, one
can perform paired testing where performance mea-
sures m(.) of the two methods are compared on the
same fold in a paired way (we call it the ProcPaired
approach) and second, all performance measures m(.)
of each methods are grouped together and then com-
pared as independent sets (we call it the ProcIndep
approach). The situation is depicted in Fig. 2 and
further discussed below. As known from the theory of
hypothesis testing [8], paired tests are stronger than
independent ones.

We claim that the ProcPaired procedure (using same folds
in comparison and comparing rating predictions on the same
test fold items) yields higher statistical power than the other
options listed above. An outline of the recommended proce-
dure is given at the end of this section.

It might seem obvious that one should always use Proc-
Paired when comparing two methods in RS. However, typi-
cally one confusion matrix is computed for each evaluation
fold for each of the competing methods, these matrices are
then summed to one confusion matrix for each method and,

finally, a scalar measure such as F measure is computed
and compared. Such a procedure is actually the ProcIndep
procedure that yields to a lower power than available.

2.3 The recommended testing procedure
In this subsection we outline the testing guidelines Proc-

Paired that we recommend. It is based on the above given
reasoning, also refer to Fig. 1. Recall that the scalar perfor-
mance measure of the method A (such as F-measure) was
denoted by m(A). The procedure is as follows:

1. Select the scalar comparison measure (such as preci-
sion or F-measure);

2. Store the results of each fold and each method sepa-
rately;

3. According to the specific features of the evaluation re-
sults (distributions etc.) select the most powerful test
that meets these specific features of evaluation results
(i.e. t-test for normally distributed numerical values
etc.);

4. Perform the paired version of the selected test.

3. MATERIALS AND METHODS
In this section, we present the experimental design, data

and experimental results in order to demonstrate the per-
formance of the proposed procedure in Sec. 2.

3.1 Dataset
For the purposes of this work we have used the Context

Movie Dataset (LDOS-CoMoDa), that we have acquired in
our previous work [10].

Table 1: Contextual factors in the LDOS-CoMoDa
dataset.

Contextual variable Description
time morning, afternoon, evening, night
daytype working day, weekend, holiday
season spring, summer, autumn, winter
location home, public place, friend’s house
weather sunny/clear, rainy, stormy, snowy,

cloudy
social alone, partner, friends, colleagues, par-

ents, public, family
endEmo sad, happy, scared, surprised, angry,

disgusted, neutral
dominantEmo sad, happy, scared, surprised, angry,

disgusted, neutral
mood positive, neutral, negative
physical healthy, ill
decision user’s choice, given by other
interaction first, n-th

We have created an on-line application for rating movies
which users are using in order to track the movies they
watched and obtain recommendations (www.ldos.si/ recom-
mender.html). Users are instructed to log into the system
after watching a movie, enter a rating for a movie and fill
in a simple questionnaire created to explicitly acquire the
contextual information describing the situation during the
consumption.

The part of the dataset used in this study consists of 1611
ratings from 89 users to 946 items with associated contextual
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factors. Additional information about our Context Movies
Database (LDOS-CoMoDa) can be found in [7] and [10].

All the contextual factors and conditions acquired are
listed in Tab. 1.

3.2 Experimental Design
The experimental design applied in this study is equiva-

lent to the one used in our previous work [10]. It considers
the improvement of a matrix factorization (MF) [6] based
RS when different potentially contextual variables are con-
textualized in a MF model.

We used the 10-fold cross validation scheme on the data
presented in Subsection 3.1. We compared the procedures
ProcPaired and ProcIndep detailed in Subsection 2, the re-
sults are given in Table 2.

4. RESULTS
The experimental results on the comparison of the three

pairs of methods are reported in this Section. In Table 2 we
report the p-values and the achieved (post hoc) statistical
powers. The statistical power was computed as suggested
by Cohen [2] using the free tool [1]. The listed p values
were computed using the Wilcoxon signed rank test [13] for
paired comparisons and the Mann Whitney U [9] test for
independent ones.

Table 2: The achieved (post hoc) statistical power
for the paired test (pw pa.) and for the independent
test (pw in.) along with the computed p-values us-
ing the Wilcoxon signed rank test and the Mann
Whitney U test, respectively.
Id Var1 Var2 pw pa. p pa. pw in. p in.
1 physical weather 0.42 0.001 0.14 0.24
2 decision social 0.997 0.004 0.25 0.19
3 interaction social 0.06 <0.01 0.05 0.43

Observe that the achieved post hoc statistical power is
higher in the proposed (paired) procedure as in the case of
independent ones.

4.1 Discussion
The first combination (physical vs. weather) exhibits mod-

erate to low power in the paired version (pw=0.42) and a
very low power in the independent version (pw=0.14). An
increase in the test power is relevant since the power of 0.14
is not useful while the power 0.42 is low but still useful. The
paired comparison detected the difference in the proposed
methods’ performances (p < α = 0.05) while the unpaired
version did not. This is a consequence of the low power of
the unpaired test.

The second combination (decision vs. social) achieves a
power close to 1 in the paired version and a very low power
of 0.25 in the independent version. The difference in power
is again substantial. Regarding the acceptance of the null
hypotheses we have the same situation and the same expla-
nation as in the case of the combination 1 (previous para-
graph).

The third combination (interaction vs. social) achieves an
extremely low power in both versions, far below the values
that allow an interpretation (this is due to the very low ef-
fect size, we do not discuss it here). However, the paired
version rejects the null hypothesis (p < 0.01, indicating that
the methods are of different performances) despite the ex-
tremely low power while the independent version does not

reject it. Note that despite the low achieved power of the
paired version the rejection of the null hypotheses is valid.

5. CONCLUSION AND FUTURE WORK
In this study we outlined the procedure for the comparison

of two methods in RS based on the 10-fold cross validation
scheme that achieves high statistical power. We demon-
strated the statistical power improvement on real users’ data
in comparison of matrix factorization models with different
contextualized variables.

Further work will concentrate on a comparison of RS re-
garding the selected final tasks such as best five and not
limited to scalar performance measures such as precision at
five.
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J. Tasič. Database for contextual personalization.
Electr. review, 78(5):270–274, 2011.

[8] E. L. Lehmann and J. P. Romano. Testing Statistical
Hypotheses. Springer, 3rd edition, 11 2010.

[9] H. B. Mann and W. D. R. On a test of whether one of
two random variables is stochastically larger than the
other. Ann. of Math. Statistics, 18(1):50–60, 1947.
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