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Kurzfassung

Ziel der vorliegenden Dissertation ist die Entwicklung automatischer Methoden zur
Extraktion von Deskriptoren aus dem Web, die mit Musikstücken assoziiert wer-
den können. Die so gewonnenen Musikdeskriptoren erlauben die Indizierung um-
fassender Musiksammlungen mithilfe vielfältiger Bezeichnungen und ermöglichen es,
Musikstücke auffindbar zu machen und Sammlungen zu explorieren. Die vorgestell-
ten Techniken bedienen sich gängiger Web-Suchmaschinen um Texte zu finden, die
in Beziehung zu den Stücken stehen. Aus diesen Texten werden Deskriptoren gewon-
nen, die zum Einsatz kommen können

• zur Beschriftung, um die Orientierung innerhalb von Musikinterfaces zu ver-
einfachen (speziell in einem ebenfalls vorgestellten dreidimensionalen Musik-
interface),

• als Indizierungsschlagworte, die in Folge als Features in Retrieval-Systemen für
Musik dienen, die Abfragen bestehend aus beliebigem, beschreibendem Text
verarbeiten können, oder

• als Features in adaptiven Retrieval-Systemen, die versuchen, zielgerichtete
Vorschläge basierend auf dem Suchverhalten des Benutzers zu machen.

Im Rahmen dieser Dissertation werden verschiedene Strategien zur Extraktion
von Deskriptoren, sowie zur Indizierung und zum Retrieval von Musikstücken erar-
beitet und evaluiert. Weiters wird das Potenzial Web-basierter Retrieval-Ansätze,
die um signalbasierte Ähnlichkeitsinformation erweitert werden, sowie das Poten-
zial Audioähnlichkeitsbasierter Suchansätze, die mit Web-Daten erweitert werden,
untersucht und anhand von Prototypanwendungen demonstriert.
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Abstract

The aim of this PhD thesis is to develop automatic methods that extract textual
descriptions from the Web that can be associated with music pieces. Deriving de-
scriptors for music permits to index large repositories with a diverse set of labels
and allows for retrieving pieces and browsing collections. The techniques presented
make use of common Web search engines to find related text content on the Web.
From this content, descriptors are extracted that may serve as

• labels that facilitate orientation within browsing interfaces to music collections,
especially in a three-dimensional browsing interface presented,

• indexing terms, used as features in music retrieval systems that can be queried
using descriptive free-form text as input, and

• features in adaptive retrieval systems that aim at providing more user-targeted
recommendations based on the user’s searching behaviour for exploration of
music collections.

In the context of this thesis, different extraction, indexing, and retrieval strate-
gies are elaborated and evaluated. Furthermore, the potential of complementing
Web-based retrieval with acoustic similarity extracted from the audio signal, as well
as complementing audio-similarity-based browsing approaches with Web-based de-
scriptors is investigated and demonstrated in prototype applications.
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Chapter 1

Introduction

Music is everywhere. Music is for everyone. Music is more than just the pure
acoustic perception, music is a pop cultural phenomenon – maybe even the most
traditional and most persistent in human history. It takes a central role in most
people’s lives, whether they act as producers or consumers, and has the power to
amplify or change its listener’s emotional state. Even more, for many people, their
musical preferences serve as a display of their personality. In short, if we deal with
music, we must be aware that many factors have to be considered, more or less all of
them far beyond the technical definition of sound as sensation of the ear stimulated
by an oscillation of pressure (cf. [Wikipedia, 2010f]).

Given its cultural importance, it seems no wonder music was the first type of
media that underwent the so-called digital revolution. Based on the technological
advancements in encoding and compression of audio signals (most notably the in-
vention of the mp3 standard) together with the establishment of the Internet as
mainstream communication medium and distribution channel, and, in rapid succes-
sion, the development of high capacity portable music players, in the late 1990s,
digital music has not only stirred up the IT industry, but also initiated a profound
change in the way people “use” music. Today, a lot more people are listening to a lot
more music in a lot more situations than ever before. Music has become a commod-
ity that is naturally being traded electronically, exchanged, shared (legally or not),
and even used as a means for social communication. Despite all these changes in the
way music is used, the way music collections are organised on computers and music
players and the way people search for music within these structures have basically
remained the same.

Currently, the majority of systems for accessing music collections – irrespective
of whether they comprise thousands (private collections) or millions of tracks (digital
music resellers) – makes use of arbitrarily assigned and subjective meta-information
like genre or style in combination with (nearly) objective meta-data like artist name,
album name, track name, record label, or year of release to index the underlying
music collection. Often, the hierarchical scheme genre – artist – album – track is
then used to allow for browsing within the collection. While this may be sufficient
for small private collections, in cases where most contained pieces are not known
a-priori, the unmanageable amount of pieces may easily overstrain the user and
impede the discovery of desired music. Thus, a person searching for music, e.g.,
a potential customer, must already have a very precise conception of the expected
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result. Obviously, the intrinsic problem of these indexing approaches is the limitation
to a rather small set of meta-data, whereas the musical, or more general, the cultural
context of music pieces is not captured. This results in inadequate representations
and makes retrieval of desired pieces impractical and unintuitive.

As a response to these shortcomings of interfaces to music collections, the still
growing but already well-established research field known as “Music Information
Retrieval” (MIR) is — among others — developing methods that aim at extract-
ing musical descriptors directly from the audio signal. Representations built upon
these descriptors allow, for instance, for applications that autonomously analyse and
structure music collections according to some of their acoustic properties, or systems
that recommend similar sounding music to listeners based on the music they already
own. While these signal-based approaches open up many opportunities for alterna-
tive music interfaces based directly on the audio content, they are unable to capture
the non-acoustic, i.e., the contextual, aspects of music. Furthermore, as the de-
scriptors derived from the audio signal usually consist of low-level features of the
signal (as opposed to common high-level concepts, such as melody or rhythm) that
are optimised to perform well in their application area, the obtained representations
used to index the music collection have often no significance for humans.

1.1 Contributions

The objective of this thesis is to develop methods that allow for overcoming the
limitations imposed by current music indexing strategies, i.e., those strategies that
are based solely on a few categories of meta-data, as well as those based on audio
content analysis alone. The fundamental idea behind all presented methods is to
automatically exploit music-relevant information present on the Internet, which can
be considered the central source of today’s common knowledge, to derive charac-
teristic descriptions for music pieces and representations of their cultural context.
More precisely, for a given collection of music pieces, Web pages about these pieces
are retrieved via a common Web search engine. In general, it is assumed that these
pages contain relevant information about the respective music pieces or the work
of the corresponding artists. Thus, relations between textual descriptions and mu-
sic pieces are established. Furthermore, by extracting information from the texts,
human understandable representations of music that make use of a rich vocabulary
are obtained. These representations can facilitate access and improve interaction
when used for labelling, indexing, and retrieval. In combination with audio-based
similarity approaches, Web-based characterisations can even yield additional ben-
efits. This is shown in this thesis by elaborating on three concepts that rely on
text-based descriptions to access music collections. For demonstration purposes, all
three concepts are also realised in prototype interfaces. A schematic overview of the
contributions of this thesis can be seen in Figure 1.1.

In the first concept (the blue bar on the left in Figure 1.1), text descriptors
from the Web are incorporated for augmentation of so-called Music Maps, i.e., two-
dimensional graphical arrangements of music collections, such that similar sounding
music pieces are placed closely together, whereas dissimilar pieces are located far
apart. While an arrangement in this fashion is usually very intuitive, it is difficult to
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Music Collection

Audio Analysis
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Text-Based Retrieval
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Query-by-Description

Searching
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Query              Feedback 
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Figure 1.1: Schematic overview of the methods presented in this thesis. Bars highlighted in
yellow represent the main methods elaborated on in this thesis. The three blue bars represent
the central contributions that make use of the underlying information: the Music Description
Map for facilitated browsing, the Music Search Engine for retrieving music from collections via
descriptive queries, and the Adaptive Searching approach that exploits user feedback to allow
for targeted searching and browsing.

assess which type of music is to be found in which regions without having to listen to
them in advance. Additionally, large Music Maps tend to be cluttered with the labels
of the contained tracks. Here, descriptions automatically derived from Web-data
can be utilised for labelling coherent regions on the maps. In the technique called
Music Description Map (MDM), musically-relevant terms serve as landmarks and
allow for better orientation. For instance, instead of having many overlapping labels
of tracks from Miles Davis and other similar sounding pieces, the MDM displays
musical descriptions of this type of music such as “Trumpet” and “Jazz”. The idea
of creating characteristic landmarks for augmented navigation is further applied in
the nepTune interface, where Music Maps are raised to the third dimension to allow
interactive exploration of a virtual reality landscape created from a music collection.

The principle of matching music pieces with their cultural context is further de-
veloped and deepened in the second concept (the blue bar in the centre in Figure 1.1).
Instead of presenting the indexing keywords to the user to facilitate browsing, rep-
resentations can be compared to natural language queries. This opens up the possi-
bility to build a Music Search Engine that can be used like every Web search engine,
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i.e., in today’s most common and most accepted manner for searching: by typing
arbitrary keywords. For example, instead of just finding tracks that are labelled as
“Rock”, a query like “Rock with Great Riffs” can be formulated to emphasise the
importance of energetic guitar phrases. Another query could be “Chicago 1920”
to express the intention of finding Jazz pieces originating from this particular area
and time. With the integration of acoustic similarity, also tracks without contextual
information present on the Web can be included into the retrieval process.

The third concept (the blue bar on the right in Figure 1.1) aims at combining
the derived descriptors with usage feedback to develop more personalised and user-
oriented music services. As with the music search engine, the process of Adaptive
Searching starts with submitting a descriptive query to retrieve an initial set of
results. By browsing through that set and selecting pieces of interest, other pieces
that could be after the user’s fancy are proposed. Using this iterative process,
targeted searching and assisted exploration of the collection is facilitated. For all
three of the presented concepts, the goal is to demonstrate the potential of Web-
based music descriptors for developing methods that support those users who are
actively searching for music they might like, in contrast to passive consumers who
expect automatically delivered music recommendations based on what they already
listen to.

1.2 Why Automatic Extraction from the Web?

One of the central tasks of this thesis is the labelling (or indexing) of large music
collections with “semantic” descriptors. In this context, the somewhat misleading
notion of “semantic” refers to “words that make sense to humans when describing
music” and that are therefore of help to other humans that search or browse for
music. Furthermore, having a set of words for indexing, computers can be used to
assist in these tasks.

However — ignoring the fact that such labels are always subjective — labelling
of very large music collections (on the order of millions of tracks) is a very labour-
intense task. On the other hand, well-labelled music repositories are valuable, not
least from an economical point of view. Not surprisingly, it is of interest to ef-
ficiently or even automatically accomplish such tasks, for instance by developing
methods that permit a computer to learn how to find or derive such descriptions
for music (e.g., as proposed in the present thesis). This approach can be classified
as belonging to the broad field of artificial intelligence. Public interest in artificial
intelligence has varied considerably in the last decades, with the last buzz probably
due to “intelligent algorithms” that bring order to the Web, i.e., Web search en-
gines, especially Google1. Following the evolution of the Web into a social medium,
it seems recently a trend towards collaborative approaches has established instead.
Since automatic, “intelligent” methods are limited and may not satisfy the user
fully, tasks such as organising (and labelling) the data on the Web or recommending
content are increasingly done by (trusted) humans to provide results closer to “what
humans want”. The general process of exploiting the capacities of communities and
solving large scale problems in a distributed manner, usually organised over the

1http://www.google.com
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Web, is frequently also referred to as crowdsourcing. Examples of tasks that can
be performed efficiently by crowdsourcing are labelling of images, e.g., by playing a
game (and contributing unconsciously, cf. the ESP game by [von Ahn and Dabbish,
2004]), tagging of music pieces and artists (cf. Last.fm2), or the development of
open source operating systems.

This thesis is dedicated to contributing to the field of artificial intelligence rather
than promoting methods for distributed collaboration for the following reasons.
While crowdsourcing approaches have the potential to be applied to a wide area
of problems and are useful for accomplishing otherwise expensive tasks quickly and
efficiently, they are limited in that they still require human manpower. Usually this
also entails the necessity of addressing and finding people willing to participate —
unless they are unaware of participation as when playing games (see above). From an
ethical point of view, this kind of exploitation of participants might be problematic.
Furthermore, open crowdsourcing projects, such as tagging of music as implemented
by Last.fm, are prone to suffer from effects such as a “community bias” or a “pop-
ularity bias” because most people help contributing tags to the same few popular
tracks or artists, whereas lesser known artists (artists from the so-called “long-tail”,
cf. [Anderson, 2006]) are usually neglected by the community. Last but not least, in
the opinion of the author, research on “intelligent algorithms” is much more interest-
ing and challenging than solving problems by crowdsourcing. Therefore, the present
thesis deals with the development of methods to automatically extract descriptions
for music from the Web.

1.3 Organisation of this Thesis

The remainder of this work is organised as follows. Chapter 2 gives an overview
of related work from the fields of Music Information Retrieval, Web Information
Retrieval, Multimedia, and User Interfaces. In Chapter 3, the methodological foun-
dations of this work are explained. Chapter 4 then elaborates the concept of aug-
menting interfaces to music collections by labelling with automatically extracted
descriptions. Furthermore, the interface prototype nepTune is presented. Chapter 5
introduces different approaches for constructing a music retrieval system that cap-
tures cultural information and is capable of dealing with diversified text queries.
Chapter 6 presents steps towards personalisation and user-targeted music retrieval
systems that make use of explicit feedback. The thesis concludes with a critical
discussion and an outlook to future trends and developments (Chapter 7).

2http://www.last.fm
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Chapter 2

Related Work

The aim of this chapter is to review related work, i.e., methods and applications
from the fields of Music Information Retrieval and Information Retrieval (IR). The
first section (2.1) puts an emphasis on work dealing with music-related feature ex-
traction from both content and contextual data. Feature extraction, i.e., calculation
of characteristic descriptors for entities, is a crucial task as it enables indexing of
individual entities as well as calculation of similarity between entities. The concept
of similarity generally plays a central role throughout this chapter. For example, in
Section 2.1.2 – which deals with text-based indexing and retrieval and their most
prominent applications as (Web) search engines – relevance of an indexed docu-
ment to a query can be obtained by calculating the similarity of their respective
representations. After presentation of related methods, the focus is shifted to re-
lated applications. Section 2.3 reviews existing approaches to music search engines.
Finally, Section 2.4 deals with user interfaces to music collections that facilitate
browsing and active search for new and interesting music.

2.1 Music Similarity and Indexing

Since this thesis is situated within an MIR-context, naturally, most related work
originates from this field. However, it should be stated that from a strictly chrono-
logical point of view, the more generic field of IR (cf. Section 2.2) would have to be
introduced first. For now – and to clarify the relation of the two fields – the defini-
tion of IR as “science of searching for documents, for information within documents,
and for metadata about documents” [Wikipedia, 2010b] is sufficient. In practice, in
IR these documents consist of texts. Correspondingly, MIR is the multidisciplinary
science of retrieving information from and about music.

MIR as a dedicated research field has evolved in the 1990’s and been fully es-
tablished with the organisation of the ISMIR conference series [Byrd and Fingerhut,
2002]. The field comprises of a variety of topics and is hence probably most compre-
hensively defined extensionally, for example through the list of topics to be found
in the Call-for-Papers of ISMIR 20101. The following excerpt of this list comprises
the ten topics most related to this thesis:

• content-based querying and retrieval

1http://ismir2010.ismir.net/information-for-authors/call-for-papers/
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• music recommendation and playlist generation

• music signal processing

• database systems, indexing and query languages

• text and web mining

• evaluation of MIR systems

• knowledge representation, social tags, and metadata

• genre, style and mood

• similarity metrics

• user interfaces and user models

Besides this, also topics such as music perception, optical music recognition,
extraction and modelling of higher musical concepts such as melody or rhythm,
or automatic real-time score following, to name but a few, are central research
questions. In the following, work that deals with music representations suitable for
indexing, retrieval, and organisation of collections is addressed. Furthermore, as can
be seen from the titles in this section, only information obtained directly from an
audio signal or from sources that resemble aspects of the cultural context of music
are taken into consideration. Sheet music as well as symbolic notation languages,
e.g., MIDI scores, are excluded. However, in Section 2.3, also music search engines
that are based on symbolic music representations are discussed.

2.1.1 Content-Based Similarity

The aim of content-based approaches is to extract information directly from the au-
dio signal, more precisely from a digital representation of a recording of the acoustic
wave, for example encoded as PCM. The basic approach to feature extraction is as
follows (cf. Figure 2.1): The audio signal is typically chunked into a series of short
segments called frames. Optionally, each frame can be transformed from the time-
domain representation to a frequency-domain representation using an FFT. There-
after, feature extraction is performed on each frame. From the derived features, a
model that summarises the extracted frame-level features can be used as represen-
tation of the track. These models can then, for instance, be utilised for calculating
pairwise similarities of audio tracks. This information is essential when retriev-
ing similar music pieces (e.g., in automatic recommendation or playlist generation,
i.e., query-by-example scenarios), for automatic genre classification (e.g., [Tzanetakis
and Cook, 2002,Aucouturier and Pachet, 2003]), or to automatically structure and
organise music collections according to acoustic closeness.

For the feature extraction step, signal properties of interest range from low-
level features, i.e., features that describe or abstract aspects directly from the signal
or its frequency-domain representation, to high-level features, i.e., features that de-
scribe musically “meaningful” concepts (cf. [Casey et al., 2008]). Low-level features
commonly found in the literature are, for instance, Zero Crossing Rate, Spectral
Centroid, Spectral Flux, RMS, Pitch-Class Profiles (frequently also referred to as

8



2.1. Music Similarity and Indexing
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Figure 2.1: Generic overview of the audio feature extraction process.

Chroma Vectors), Fluctuation Patterns, and MFCCs. A comprehensive comparison
and evaluation of these and other measures can be found in [Pohle, 2005]. High-
level features comprise musical properties such as rhythm, melody, pitch, harmony,
structure, or lyrics and are difficult to extract. In between, often also a category
of mid-level features is defined, comprising features that are built from low-level
features by incorporating musical knowledge with the aim of capturing properties
related to high-level features (e.g., [Bello and Pickens, 2005,Marolt, 2006]). Bound-
aries between these categories are not always clear, hence it is sometimes debatable
for features to which level of abstraction they belong to.

The content-based similarity measure utilised in this work is built upon algo-
rithms that capture spectral properties by exploiting MFCCs, as well as on algo-
rithms aiming at extracting rhythmic patterns, or better, patterns of periodicity,
i.e., the so-called Fluctuation Patterns. A technical description of both approaches
can be found in Section 3.2. For a comprehensive overview of other signal-based
features and their specific applications, the reader is referred to [Casey et al., 2008].

2.1.2 Context-Based Indexing and Similarity

As already mentioned in the introduction of this work, when trying to model music
similarity algorithmically, the cultural context should not be neglected as it contains
important aspects not directly included in the audio signal. On one hand, this is
motivated by the fact that there is no a-priori valid definition of what makes two
musical entities similar. (Is it the melody, the instrumentation, the tempo, or the
fact that two artists share certain political views?) On the other hand, modelling of
contextual factors gains more and more importance as similarity measures relying
solely on content analysis have reached a “glass-ceiling” in terms of classification
accuracy [Aucouturier and Pachet, 2004].

In this section, work that deals with music-related data and extraction of inter-
esting musical aspects not found in the signal is reviewed. Although the presented
methods and their intended applications vary considerably, they all have in common
that they make use of some form of contextual data – often also referred to as “cul-
tural features”, “community meta-data”, or “context-based features”. Irrespective
of its name, such kind of data originates from external sources (in the following
sections from sources that can be accessed primarily through Web technology) and
covers some of the cultural facets that influence the human perception of music.

Incorporating context-based information permits, for example, automatic tag-
ging of artists or music pieces (e.g., [Eck et al., 2007, Sordo et al., 2007]) — also
referred to as “semantic indexing” (e.g., [Whitman, 2005, Turnbull et al., 2007a]),
automatic biography generation (e.g., [Alani et al., 2003]), enriching music players
with meta-information (e.g., [Schedl et al., 2006b]), to enhance user interfaces to mu-
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Content-Based Context-Based

Prerequisites music file meta-data
Popularity bias no yes
Features objective subjective

direct noisy channel
low-level high-level

Table 2.1: A comparison of content- and context-based feature properties.

sic collections (cf. Section 2.4), or simply to estimate the similarity of two musical
entities. As with content-based similarity measures, application fields for context-
based similarity measures are manifold. For example, they can be used for automatic
music recommendation (cf. [Celma and Lamere, 2007]), automatic playlist genera-
tion (e.g., [Aucouturier and Pachet, 2002c, Pohle et al., 2007a]), to unveil artist
relationships (e.g., [Cano and Koppenberger, 2004]), or to build music search en-
gines (cf. Section 2.3). A comprehensive overview of context-based approaches for
similarity assessment can be found in [Schedl and Knees, 2009]. Table 2.1 aims at
giving a brief comparison of content- and context-based feature properties.

Before examining approaches from the literature in detail, general implications
of incorporating context-based similarity measures are discussed (cf. [Turnbull et al.,
2008a]). Usually, and in contrast to content-based features, to obtain context-based
features it is not necessary to have access to the actual music file. By having a
list of artists, applications like, for instance, music information systems can be built
without any acoustic representation of the music under consideration as in [Schedl,
2008]. On the other hand, without meta information like artist or title, context-based
approaches are inapplicable. Improperly labelled pieces and ambiguous identifiers
also pose a problem (cf. [Geleijnse and Korst, 2007]). Furthermore, all cultural
methods depend on the existence of available meta-data, i.e., music not present
within the respective sources is virtually inexistent. This may be the case for music
from the so-called “long-tail” (cf. [Anderson, 2006]), i.e., lesser known or special
interest music (“popularity bias”), as well as for up-and-coming music and sparsely
populated (collaborative) data sources (“cold start problem”), cf. [Celma, 2008]. To
sum up, the crucial point is that in order to derive contextual features, one must
have access to a large amount of user generated data. Assuming this condition can
be met, community data provides a rich source of information on the social context
and reflects the “collective wisdom of the crowd” without any explicit or direct
human involvement necessary. Furthermore, using contextual features, it is possible
to model and monitor temporal changes. By relying on constantly updated sources,
cultural features are capable of capturing recent developments and emerging trends.
This is especially important in the music domain, where the public perception of
artistic work can vary significantly over time. Table 2.2 gives an overview of some
aspects of the different context-based approaches presented in this section.
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Manual Tags Web-Terms Lyrics

Source experts Web service Web pages lyrics portals
Community Req. no yes depends no
Level all artist, track artist track (artist)
Feature Dim. depends moderate very high possibly high
Specific Bias expert community low none
Potential Noise none moderate high low

Co-Occ. Playlists P2P CF

Source Web (search) radio, CDs, Web shared folders users
Community Req. no depends yes yes
Level artist artist, track artist, track all
Feature Dim. sim. matrix sim. matrix sim. matrix user-item-mat.
Specific Bias low low community community
Potential Noise high low high yes

Table 2.2: Overview of different context-based approaches.

2.1.2.1 Manual Annotations

The most intuitive approach to obtain meta-data for music is simply by asking
humans. Since most high-level categories can not be sufficiently modelled algo-
rithmically, it seems straightforward to rely on experts judgements for semantic la-
belling. Two examples of such efforts are allmusic2 and the Music Genome Project3.
While allmusic is more focused on editorial meta-data, the Music Genome Project
aims at representing songs in a feature space consisting of about 400 musically rel-
evant dimensions, i.e., semantic descriptors called “genes” [Wikipedia, 2010d]. Ac-
cording to reports, these descriptors comprise very detailed and specific attributes
such as “Emphasis on Varied Instrumentation”, “Easy Listening Qualities”, “Hard-
core Rap Influence”, “Prominent Saxophone Part”, “Sexist Lyrics”, or “Breathy
Vocals” [Wikipedia, 2010c]. The song representations are used within the Web-
streaming service Pandora4 to provide listeners with high quality recommendations.
However, manual annotation is a very labour-intensive task and evaluation of a sin-
gle song by a musician takes approximately 20-30 minutes. Hence, it is obvious
that the vast number of (commercial) music pieces available is highly unlikely ever
to be fully annotated by musically trained experts. Another aspect concerns the
objectivity of expert judgements. Although description categories aim at capturing
properties that are objectively either present or not, attributes like “Interesting Song
Structure” or “Great Piano Solo” inevitably are inherently subjective. To compen-
sate for expert’s biases, multiple opinions may be included — which further increases
annotation costs. Finally, subjectivity is even more pronounced for expert-generated
content such as reviews and comments.

2http://www.allmusic.com/, formerly All Music Guide (AMG).
3http://www.pandora.com/mgp.shtml
4http://www.pandora.com
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Figure 2.2: Last.fm tag cloud for the band Daft Punk.

2.1.2.2 Collaborative Tags

Another approach to collect semantic annotations is to exploit knowledge and man-
power of Web communities. As one of the characteristics of the so-called “Web
2.0” — where Web sites encourage (even rely on) their users to participating in
the generation of content — available items such as photos, films, or music can be
labelled with tags by the user community. A tag can be virtually anything, but it
usually consists of a short description of one aspect typical to the item (for music,
for example, genre or style, instrumentation, mood, or performer). The more that
people label an item with a tag, the more that tag is assumed to be relevant to
the item. For music, the most prominent platform that makes use of this approach
is Last.fm. Figure 2.2 shows an example of user-generated tags on Last.fm, i.e.,
the most important tags assigned to the French electronic band Daft Punk. Since
Last.fm offers access to the collected tags in a standardised manner, it is a very
valuable source of context-related information.

Using tag profiles of artists or tracks, an estimation of similarity can be obtained
by calculating a distance or a tag overlap. Furthermore, several approaches make
use of tags to collect music-related terms to build a feature vocabulary for related
tasks, e.g., [Pohle et al., 2007b] and [Hu et al., 2009]. [Levy and Sandler, 2008]
retrieve tags from Last.fm and MusicStrands5 (a conceptually similar, but in the
meantime discontinued Web service), to construct a semantic space for music pieces.
To this end, all tags found for a specific track are processed like text documents
and a standard TF·IDF-based document-term matrix is created, i.e., each track is
represented by a term vector (see Section 3.1.3). Different calculation methods are
explored, including dimensionality reduction by applying Latent Semantic Analysis
(LSA) [Deerwester et al., 1990]. Following a similar approach, [Laurier et al., 2009]
explicitly address the usage of tags for music mood representation.

In a broader context, collaborative tagging can be seen as a (more democratic)
extension to the rather elitist approach of expert annotations discussed in Sec-
tion 2.1.2.1. That is, instead of relying on individual opinions, an “average” opinion
is admitted. Additionally, an enthusiastic community is usually faster in annotating
large corpora. Further advantageous results of tag-based approaches are a music-
targeted and small, yet unrestricted, vocabulary with a tolerable amount of unrelated
terms (“noise”) and availability of descriptors for individual tracks (in contrast to,
for example, most Web-term-based approaches, cf. Section 2.1.2.3). Conversely,
tag-based approaches also suffer from limitations. For example, without a large
and active user community, sufficient tagging of comprehensive collections is infea-

5was: http://www.musicstrands.com, now: http://www.strands.com
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sible. Furthermore, tracks from the so-called “long-tail”, i.e., less popular tracks,
are usually only very sparsely tagged and — if the community is too homogeneous
— effects such as a “community bias” may be observed. Another serious issue is
the vulnerability to erroneous information, be it introduced by mistake or purpose
(hacking). An attempt to filter noisy and redundant tags is presented by [Geleijnse
et al., 2007]. By comparing tags of an artist with the set of tags associated with
tracks by that artist, a more reliable and consistent annotation scheme is generated.

To improve and speed up the annotation process, gathering tags via games has
become very popular, e.g., [Law et al., 2007], [Mandel and Ellis, 2007], and [Turnbull
et al., 2007b]. Initially developed to improve tagging in the image domain [von Ahn
and Dabbish, 2004], such games provide some form of incentive — be it just the pure
joy of gaming — and motivate the player to engage in tasks such as finding precise
descriptors for music pieces. By encouraging users to play such games, a large
number of songs can be efficiently annotated with semantic descriptors. Another
recent trend to alleviate the data sparsity problem is automatic tagging/propagation
of tags based on alternative (usually content-based) data sources, e.g., [Sordo et al.,
2007,Eck et al., 2008,Kim et al., 2009].

2.1.2.3 Web-Text Term Profiles

Possibly the most extensive source of cultural data are the zillions of Web pages
available on the Internet. To make the valuable music-relevant information embed-
ded within this huge pool accessible, the majority of the presented approaches uses
a Web search engine to retrieve related documents. In order to restrict the search
to Web pages relevant to music, different query schemes are proposed. For instance,
such schemes may comprise the artist’s name augmented by the keyword sequence
music review [Whitman and Lawrence, 2002,Baumann and Hummel, 2003] or music
genre style [Knees et al., 2004]. Additional keywords are particularly important for
artists whose names have another meaning outside the music context, such as 50
Cent, Hole, and Air. A comparison of different query schemes can be found in [Knees
et al., 2008b]. Using the (unstructured) Web texts, tasks such as music/artist sim-
ilarity estimation and genre (or more general, label) prediction can be modelled as
traditional IR problems. Thus, a variety of established and well-explored techniques
can be applied, e.g., a bag-of-words model in conjunction with a TF·IDF-weighting
to create artist-specific term profiles (cf. Section 3.1.3).

In seminal work, [Whitman and Lawrence, 2002] extract different term sets (un-
igrams, bigrams, noun phrases, artist names, and adjectives) from up to 50 artist-
related pages obtained via the Web search engine Google. After downloading the
Web pages, the authors apply parsers and a Part-of-Speech (PoS) tagger [Brill, 1992]
to determine each word’s part of speech and the appropriate term set. Based on
term occurrences, individual term profiles are created for each artist by employing a
TF·IDF-weighting variant, which assigns a weight to each term in the context of each
artist. The general idea of TF·IDF is to consider terms that occur often within the
document (here, the Web pages of an artist), but rarely in other documents (other
artists’ Web pages). Technically speaking, terms that have a high term frequency
(TF) and a low document frequency (DF) or, correspondingly, a high inverse docu-
ment frequency (IDF) are assigned higher weights (cf. Section 3.1.3). Alternatively,
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the authors propose another variant of weighting in which rarely occurring terms,
i.e., terms with a low DF, should also be weighted down to emphasise terms in the
middle IDF range. This scheme is applied to all term sets except for adjectives.
Calculating the TF·IDF weights for all terms in each term set yields individual fea-
ture vectors or term profiles for each artist. The overlap between the term profiles
of two artists, i.e., the sum of weights of all terms that occur in both artists’ sets,
is then used as an estimate of their similarity. For evaluation, the authors compare
these similarities to two other sources of artist similarity information, which serve
as ground truth (similar-artist-relations from the All Music Guide - now allmusic
- and user collections extracted from the Peer-to-Peer Network OpenNap, cf. Sec-
tion 2.1.2.8).

Extending the work presented in [Whitman and Lawrence, 2002], [Baumann
and Hummel, 2003] introduce filters to prune the set of retrieved Web pages. They
discard all Web pages with a size of more than 40kB after parsing and ignore text in
table cells if it does not comprise at least one sentence and more than 60 characters
to exclude advertisements. Finally, they perform keyword spotting in the URL,
the title, and the first text part of each page. Each occurrence of the initial query
constraints (i.e., the artist’s name, as well as the terms music and review) contributes
to a page score. Pages with a low score are filtered out. In contrast to Whitman
and Lawrence, Baumann and Hummel use a logarithmic IDF weighting in their
TF·IDF formulation. Using these modifications, the authors are able to outperform
the approach presented by Whitman and Lawrence in terms of similarity prediction.

In [Knees et al., 2004], an approach is presented that applies similar Web mining
techniques for the task of automatic artist-to-genre classification. For Web data re-
trieval, Google and Yahoo! 6 are compared. In contrast to [Whitman and Lawrence,
2002], only one unigram-based term list is constructed per artist. To this end, a
TF·IDF variant is employed to create weighted term profiles (represented as vec-
tors). Furthermore, the χ2 -test (Equation 6.2) is applied for term selection, i.e.,
to filter out terms that are less important to describe certain genres and to remove
noisy dimensions in order to increase classification accuracy [Yang and Pedersen,
1997]. Note that for similarity computation, the χ2 -test can not be applied, as it
relies on class assignments (in this case, genre information used for training) which
are in general not available in this scenario. However, to calculate the similarity
between the term profiles of two artists, the cosine similarity can be calculated
on the unpruned term vectors. For classification, k-Nearest Neighbours (k-NN,
e.g., [Cover and Hart, 1967]) and Support Vector Machines (e.g., [Vapnik, 1995])
are used. In [Knees et al., 2008b], the classification approach is re-examined. Not
surprisingly, it is shown that genre classification mainly depends on the occurrence of
proper names (typical artists, album titles, etc.) on Web pages. Table 2.3 shows the
100 highest-scoring terms from the genre “Jazz” according to the χ2 -test (performed
on the uspop2002 collection [Berenzweig et al., 2003]). Motivated by these insights,
a simplified genre classification approach is proposed that does not require to down-
load the top-ranked Web pages for analysis. Instead of extracting terms from Web
pages relevant to a query like “artist” music genre style, Google is queried with a
scheme like “artist” “similar artists” to enforce the occurrence of highly distinctive

6http://www.yahoo.com
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duotones teo saxophonist mobley balakrishna
nefertiti gil mulligan trumpeter dameron
adderley bartz pangaea blakey flagelhorn
relaxin saxophonists concierto cookin ife
agharta tingen bess alton leu
songbird modal bitches wynton melonae
silhouette lechafaud breathless porgy mikkelborg
gorelick macero amandla najee palle
konitz jarrett frelimo bop saeta
tutu cannonball stitt kilimanjaro sitarist
eckstine orea harmon improvisations sivad
filles grover adderly airto shorter
nonet kenny airegin sidemen blackhawk
steamin mabry cleota cosey soprano
sketches mtume lascenseur prestige dewey
decoy ascenseur milesdavis sanborn miles
brew boplicity szwed bebop charlap
dejohnette siesta tadd davis sharrock
zawinul aranjuez yesternow albright birdland
lorber freeloader liebman badal ipanema

Table 2.3: Top 100 χ2 -ranked terms for the genre “Jazz” [Knees et al., 2008b].

proper names relevant to the genre. Since Google delivers not only links to relevant
Web pages but also a short textual summary containing each result’s most relevant
section (“snippets”), for term extraction, only the Google result page is required.

Term profiles, as created in [Knees et al., 2004], are also used by [Pampalk
et al., 2005] for hierarchical clustering of artists. Instead of constructing the feature
space from all terms contained in the downloaded Web pages, a manually assembled
vocabulary of about 1,400 terms related to music (e.g., genre and style names,
instruments, moods, and countries) is used. For genre classification, the unpruned
term set outperforms the vocabulary-based method.

Another Web-term-based approach is presented by [Pohle et al., 2007b]. Based
on a data set of 1,979 artists gathered from allmusic, a vocabulary of about 3,000
tags is extracted from Last.fm and is used to create TF·IDF vectors from occurrences
of these tags on artist-related Web pages. The authors then cluster the artists using
Non-negative Matrix Factorization (NMF) [Lee and Seung, 1999] on the TF·IDF
features. As NMF yields a weighted affinity of each artist to each cluster, Pohle et
al. propose to use this approach for exploring the artist collection by controlling the
weights of the resulting clusters (see also Section 2.4.3).

There further exist other approaches that derive term profiles from more specific
Web resources. For example, [Celma et al., 2006] propose to crawl audio blogs via
RSS feeds to calculate song-specific TF·IDF vectors, e.g., for usage in a music search
engine (cf. Section 2.3). [Hu et al., 2005] extract TF-based features from music
reviews gathered from Epinions.com7.

2.1.2.4 Web-based Music Information Extraction

Instead of just providing features for music entities for similarity estimation or pre-
diction of genre or other categories, Web pages can serve also as source of explicit
meta-data and relation extraction. To this end, methods from Natural Language
Processing (NLP), or more precisely, Information Extraction (IE), are applied, i.e.,

7http://www.epinions.com
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methods that exploit the morphology of words and the syntax of human languages
to (partially) access and model the contained information.

[Schedl and Widmer, 2007] aim at automatically identifying members of bands
and their respective roles (played instruments) within a band. In this respect, they
examine Web pages to detect patterns such as M plays the I or M is the R, where M
represents a potential band member, I an instrument, and R a role. [Krenmair, 2010]
investigates the usage of the GATE framework (see [Cunningham et al., 2002]) to
automatically identify artist names and to extract band-membership relations and
released albums/media for artists. [Schedl et al., 2010b] propose different approaches
to determine the country of origin for a given artist. In one of these approaches,
keyword spotting for terms such as “born” or “founded” is performed in the context
of country names. [Geleijnse and Korst, 2006] use patterns like G bands such as A,
for example A1 and A2, or M mood by A (where G represents a genre, A an artist
name, and M a possible mood) to unveil genre-artist, artist-artist, and mood-artist
relations, respectively.

2.1.2.5 Song Lyrics

The lyrics of a song represent an important aspect of the semantics of music since
they usually reveal information about the “meaning” of a song, its composer, or the
performer: e.g., cultural background (via different languages or use of slang words),
political orientation, or style of music (use of a specific vocabulary in certain mu-
sic styles). While automatic extraction of the lyrics directly from the audio signal
is a very challenging and still unsolved task, lyrics for a good portion of available
commercial songs can be found online. [Knees et al., 2005] and [Korst and Gelei-
jnse, 2006] propose approaches to automatically retrieve lyrics that are as correct as
possible (with respect to what is sung) from the Web by comparing and combining
multiple sources.

[Logan et al., 2004] use song lyrics for tracks by 399 artists to analyse and
compare the semantic content of the lyrics and to determine artist similarity. In a
first step, Probabilistic Latent Semantic Analysis (PLSA) [Hofmann, 1999] is applied
to a collection of over 40,000 song lyrics to extract N topics typical to lyrics. Second,
all lyrics by an artist are processed using each of the extracted topic models to create
N -dimensional vectors of which each dimension gives the likelihood of the artist’s
tracks belonging to the corresponding topic. Artist vectors are then compared by
calculating the L1 distance (also known as Manhattan distance). This similarity
approach is evaluated against human similarity judgements, i.e., the “survey” data
for the uspop2002 set (see [Berenzweig et al., 2003]), and yields worse results than
similarity data obtained via acoustic features (irrespective of the chosen N , the
usage of stemming, or the filtering of lyrics-specific stopwords). However, as lyrics-
based and audio-based approaches make different errors, a combination of both is
suggested.

[Mahedero et al., 2005] demonstrate the usefulness of lyrics for four important
tasks: language identification, structure extraction (i.e., recognition of intro, verse,
chorus, bridge, outro, etc.), thematic categorisation, and similarity measurement.
For similarity calculation, a standard TF·IDF measure with cosine distance is pro-
posed as an initial step. Using this information, a song’s representation is obtained
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by concatenating distances to all songs in the collection into a new vector. These
representations are then compared using an unspecified algorithm. Exploratory ex-
periments indicate potential for cover version identification and plagiarism detection.

Other approaches aim at revealing conceptual clusters (e.g., [Kleedorfer et al.,
2008]) or at classifying songs into genres or mood categories. For instance, the ob-
jective of [Laurier et al., 2008] is classification of songs into four mood categories by
means of lyrics and content analysis. For lyrics, the TF·IDF measure with cosine dis-
tance is incorporated. Optionally, LSA is applied to the TF·IDF vectors (achieving
best results when projecting vectors down to 30 dimensions). Audio-based features
perform better compared to lyrics-based features, however, a combination of both
yields the best results. [Hu et al., 2009] experiment with TF·IDF, TF, and Boolean
vectors and investigate the impact of stemming, PoS tagging, and function words
for soft-categorisation into 18 mood clusters. Best results are achieved with TF·IDF
weights on stemmed terms. An interesting result is that in this scenario, lyrics-based
features alone can outperform audio-based features. Besides TF·IDF and PoS fea-
tures, [Mayer et al., 2008] also propose the use of rhyme and statistical features to
improve lyrics-based genre classification. To extract rhyme features, lyrics are tran-
scribed to a phonetic representation and searched for different patterns of rhyming
lines (e.g., AA, AABB, ABAB). Features consist of the number of occurrences of
each pattern, the percentage of rhyming blocks, and the fraction of unique terms
used to build the rhymes. Statistical features are constructed by counting vari-
ous punctuation characters and digits, and calculating typical ratios like average
words per line or average length of words. Classification experiments show that the
proposed style features and a combination of style features and classical TF·IDF
features outperform the TF·IDF-only-approach.

[Hirjee and Brown, 2009] analyse lyrics for rhyming style information to auto-
matically identify (possibly imperfect) internal and line-ending rhymes. In continu-
ation of this work (i.e., in [Hirjee and Brown, 2010]), the proposed high-level rhyme
features can be used to identify the corresponding rap artist based on the stylistic
information extracted from the lyrics.

In summary, recent literature demonstrates that many interesting musical as-
pects can be covered by exploiting lyrics information. However, since new and
ground breaking applications for this kind of information have not been discovered
yet, the potential of lyrics analysis is currently mainly seen as a complementary
source to content-based features for genre or mood classification.

2.1.2.6 Web-based Co-Occurrences and Page Counts

Circumventing the necessity of creating feature profiles, the work reviewed in this
and in the next two sections applies a more direct approach to estimate relations
and/or similarity. In principle, the idea is that the occurrence of two music pieces
or artists within the same context is considered to be an indication of some sort of
similarity. As a source for this co-occurrence analysis, this section discusses Web
pages and — as an abstraction — page counts returned by search engines.

Using music-related Web pages as data source for MIR tasks was potentially
first performed by [Cohen and Fan, 2000]. Co-occurrences of artists are included in
a Collaborative Filtering system which is used for artist recommendation (cf. Sec-
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tion 2.1.2.9). To determine pages relevant to the music domain, Cohen and Fan
query the Web search engines Altavista8 and Northern Light9. The resulting HTML
pages are parsed and the plain text content is analysed for occurrences of entities,
i.e., artists’ names. Pages with multiple occurrences of artists are interpreted as
“pseudo-users” within the collaborative system that “rate” all tracks by the con-
tained artists positively. As one ground truth for evaluating their approach, Cohen
and Fan implicitly propose another form of context-based similarity estimation,
namely the exploitation of server logs (cf. Section 2.1.2.10).

A similar approach is described in [Schedl, 2008]. For each artist Ai, the top-
ranked Web pages returned by a search engine are retrieved and searched for oc-
currences of all other artist names Aj in the collection. The number of page hits
represents a co-occurrence count, which equals the document frequency of the term
“Aj” in Ai’s pages. In relation to the number of Ai’s total pages, this gives an
(non-symmetric) estimate of similarity. For a symmetrised measure, Ai’s similarity
to Aj and Aj ’s similarity to Ai are averaged. A similar technique can also be applied
to micro-blogging posts (“tweets”) retrieved from Twitter10 [Schedl, 2010].

Other approaches do not directly search for co-occurrences on pages. Instead,
they rely on the page counts returned for search engine requests. Assessment of sim-
ilarity from search engine page counts can be considered an abstraction of the before
mentioned approach to co-occurrence analysis. As opposed to [Cohen and Fan, 2000]
and [Schedl, 2008], the severe shortcoming of page-count-based approaches is that
in order to create a full similarity matrix, the number of necessary search engine
requests is quadratic in the number of artists. Therefore, these approaches scale
poorly to real-world music collections.

[Schedl et al., 2005a] define similarity as the conditional probability that Ai

appears on a Web page known to mention Aj . Since page counts for the queries
“Ai” and “Ai”+”Aj” indicate the relative frequency of this event, the conditional
probability can be estimated. Also for this scenario, it is necessary to restrict search
results to Web pages presumably relevant to music (e.g., by adding the keywords
music review), since unconstrained queries would lead to unjustifiably higher page
counts for common speech artist names (e.g., “Kiss”) and therefore distort the sim-
ilarity relations (cf. Section 2.1.2.3). The similarity measure proposed by [Schedl
et al., 2005a] is also initially non-symmetric and should be averaged if a symmetric
measure is required. Alternatively, the non-symmetric similarity matrix can be ex-
ploited to uncover prototypical artists [Schedl et al., 2005b,Schedl et al., 2005c]. In
general, page counts are a flexible tool for estimating relatedness of concepts. For in-
stance, [Schedl et al., 2006b] assess artist-genre relations using page counts. Another
application scenario is (country-specific) artist popularity estimation [Schedl et al.,
2010a]. Further explored sources for this task are micro-blogging posts, Last.fm
usage statistics, and shared folders on P2P networks (cf. Section 2.1.2.8).

[Zadel and Fujinaga, 2004] restrict similarity calculation to potentially related
artists by invoking the Amazon.com service Listmania! 11 prior to using Google.
Listmania! provides user-compiled lists of related items and can henceforth be a

8http://www.altavista.com
9was: http://www.northernlight.com, now: http://www.nlsearch.com

10http://twitter.com
11http://www.amazon.com/gp/help/customer/display.html?nodeId=14279651
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valuable source of cultural similarity. However, it has to be kept in mind that
long-tail-effects such as a popularity bias may affect this pre-filtering step.

2.1.2.7 Playlists

Another source of co-occurrences of music is playlists. The idea is that songs that
are similar in a sense, are likely positioned closely within playlists since smooth
transitions are usually intended. One of the earlier approaches can be found in
[Pachet et al., 2001], where airplay lists from a French radio station and compilation
CD track listings from CDDB12 are examined to extract co-occurrences between
tracks and between artists.

[Cano and Koppenberger, 2004] create a similarity network via extracting
playlist co-occurrences of more than 48,000 artists from a total of more than 29,000
playlists retrieved from Art of the Mix 13 — a Web service that allows users to up-
load and share their mix tapes or playlists. In the network, a connection between
two artists is made if they co-occur in a playlist. The paper reveals some interesting
properties. For instance, one large cluster of nodes connects more than 99% of the
artists but each artist itself is only connected with a small number of other artists.
Hence, such a similarity measure can only capture (strong) positive similarities be-
tween artists. The probability of indirect links, i.e., that two neighbours of a given
artist are also connected, is low.

In a more recent paper that exploits playlists to derive similarity information,
[Baccigalupo et al., 2008] analyse co-occurrences of artists in more than 1 million
playlists publicly shared by the MusicStrands community. The authors extract the
4,000 most popular artists from the full playlist set, measuring the popularity as the
number of playlists in which each artist occurs. Further, by introducing a distance
parameter, it is taken into account that two artists consecutively occurring in a
playlist are probably more similar than two artists occurring farther away. From
their measure, the authors calculate for each artist a “genre affinity” value to 26
different genres, as well as artist-to-artist affinities. Additionally, normalisation is
performed to account for the popularity bias, i.e., very popular artists co-occur with
a lot of other artists in many playlists.

2.1.2.8 Peer-to-Peer Network Co-Occurrences

P2P network users are commonly willing to reveal various kinds of meta-data about
their shared content. In the case of shared music files, file names and ID3 tags
are disclosed and represent a valuable source of usage data and co-occurrences in
real-world collections.

In early work, data extracted from the P2P network OpenNap14 is used to derive
music similarity information [Whitman and Lawrence, 2002,Ellis et al., 2002,Logan
et al., 2003,Berenzweig et al., 2003]. [Logan et al., 2003] and [Berenzweig et al., 2003]

12CDDB is a Web-based CD identification service that returns, for a given disc identifier, meta-
data like artist and album name, track listing, or release year. This service is offered in a commercial
version operated by Gracenote (http://www.gracenote.com) as well as in an open source imple-
mentation named freeDB (http://www.freedb.org).

13http://www.artofthemix.org
14http://opennap.sourceforge.net
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further determine the 400 most popular artists on OpenNap (by the time of 2002)
and gather meta-data on shared content, resulting in 175,000 user-to-artist relations
from about 3,200 shared music collections. A finer analysis of usage data to estimate
the popularity of artists in specific countries is proposed in [Schedl et al., 2010a]

Additionally, [Logan et al., 2003] compare similarities defined by P2P co-occur-
rences, AMG expert reviews, playlist co-occurrences, data gathered from a survey,
and content-based similarity. To this end, they compare similarity rankings accord-
ing to each data source. The main findings for P2P data are a high sparsity, a high
degree of overlap with playlist data (cf. Section 2.1.2.7), and a low agreement with
the content-based measure (which was also the case for all other sources except for
AMG reviews).

A recent approach that derives similarity information on the artist and on the
song level from the Gnutella P2P file sharing network15 is presented by [Shavitt
and Weinsberg, 2009]. The authors collect meta-data of shared files from more than
1.2 million Gnutella users, yielding a data set of 530,000 songs. One finding of
analysing the resulting data is that users’ shared collections have large overlaps in
terms of contained songs. Therefore, also a subset of the data seems to be represen-
tative, making exhaustive crawls unnecessary. The data gathered is used for artist
recommendation and for song clustering.

[Anglade et al., 2007] cluster users of a P2P network based on their music
preferences to automatically create virtual communities. User-to-user similarity is
derived by applying methods typically used for collaborative filtering.

2.1.2.9 Collaborative Filtering-based Approaches

Another source from which to derive contextual information is exploiting users’ lis-
tening habits, their shopping behaviour, as well as explicit user feedback. This
approach is also known as collaborative filtering (CF). To perform this type of simi-
larity estimation typically applied in recommender systems, one must have access to
a (large and active) community. Since the relevant CF systems are commercial appli-
cations (e.g., Last.fm or Amazon16), implementation details are usually concealed.
In general, two types of similarity relations can be inferred by tracking users’ habits:
item-to-item similarity (where an item could potentially be a track, an artist, a
book, etc.) and user-to-user similarity. For example, when representing preferences
in a user-item matrix S, where Si,j > 0 indicates that user j likes item i (e.g., j has
listened to artist i at least once or j has bought product i), Si,j < 0 that j dislikes
i (e.g., j has skipped track i while listening or j has rated product i negatively),
and Si,j = 0 that there is no information available (or neutral opinion), user-to-user
similarity can be calculated by comparing the corresponding M -dimensional column
vectors (where M is the total number of items), whereas item-to-item similarity can
be obtained by comparing the respective N -dimensional row vectors (where N is
the total number of users) [Linden et al., 2003, Sarwar et al., 2001]. For a detailed
discussion of CF for music recommendation in the long-tail and real-world examples
from the music domain, the reader is referred to [Celma, 2008].

15http://rfc-gnutella.sourceforge.net
16http://www.amazon.com
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2.1.2.10 Other Sources of Context-Based Information

While the preceding sections cover the currently best established and most promi-
nent sources to derive context-based music information, there also exist alterna-
tive data sources that are considered in the literature, for instance, as previously
mentioned, server logs. [Cohen and Fan, 2000] analyse download statistics from
an AT&T -internal digital music repository which was monitored for three months,
yielding a total of nearly 30,000 music downloads relating to about 1,000 different
artists. Conceptionally, this technique is very similar to exploiting P2P network
co-occurrences (cf. Section 2.1.2.8).

Another approach is the analysis of playlist user ratings [Slaney and White,
2007]. Using the Yahoo! music service17, music piece similarity is obtained by
comparing normalised rating vectors. [Jacobson et al., 2008] propose the usage of
social network data from MySpace18. From the inherent artist network, “communi-
ties” of similar artists are detected that exhibit structures closely related to musical
genre. [Fields et al., 2008] further propose to combine artist relations extracted
from MySpace with content-based similarity for automatic playlist generation (cf.
Section 2.1.3).

Music-related data also includes images such as band photographs or album
artwork. [Schedl et al., 2006a] present methods to automatically retrieve the correct
album cover for a record. [Brochu et al., 2003] use colour histogram representations
of album covers to index music pieces. [L̄ıbeks and Turnbull, 2010] calculate music
similarity based on artists’ promotional photographs. It is shown that the notions
of similarity and genre to some extent correspond to visual appearance.

2.1.3 Hybrid Approaches

As content-based and context-based features stem from different sources and rep-
resent different aspects of music, they can be beneficially combined in order to
outperform approaches based on just one source or to mutually compensate for
limitations. For example, to accelerate the creation and improve the quality of
playlists, in [Knees et al., 2006a] and [Pohle et al., 2007a], Web-term-based artist
profiles are pre-clustered using a Self-Organizing Map (SOM, [Kohonen, 2001], cf.
Section 3.3.1) to find promising relations between artists. Based on the neighbour-
hood on the SOM, audio similarities between tracks of similar artists are calculated.
Not only does this filtering step reduce the number of necessary audio similarity
calculations, it also reduces the number of (audio-based) outliers in the resulting
playlists. [Schnitzer et al., 2007] make use of Last.fm tags instead of Web-based
profiles for pre-clustering and playlist labelling. [Fields et al., 2008] extract related
artists from MySpace and incorporate a content-based approach to measure simi-
larity of tracks by these artists for automatic playlist generation.

[Donaldson, 2007] proposes a hybrid recommender built upon collaborative
filtering data (item similarity) and acoustic features that is capable of disambiguat-
ing the user’s music-seeking intentions. [Shao et al., 2009] combine content-based
features with user access patterns to improve music recommendation.

17http://music.yahoo.com
18http://www.myspace.com
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[Whitman and Smaragdis, 2002] use audio-based and Web-based genre classifi-
cation for the task of style detection on a set of 5 genres with 5 artists each. Combin-
ing the predictions made by both methods linearly, yields perfect overall prediction
for all test cases. [McKay and Fujinaga, 2008] examine combinations of signal-based,
symbolic, and cultural features for genre classification. [Baumann, 2005] linearly
combines audio-based track similarity with Web-based artist similarity to obtain
a new similarity measure. [Whitman, 2005] uses audio features and semantic de-
scriptors to learn the meaning of certain acoustic properties and to overcome the so-
called “semantic gap”. Similarly, to improve the quality of classification according to
certain categories like genre, instrument, mood, or listening situation, [Aucouturier
et al., 2007] combine timbre similarity with contextual meta-data. [Barrington et al.,
2009] present a combined method for retrieval that incorporates multiple sources of
features (i.e., acoustic features related to timbre and harmony, social tags, and Web
documents). These largely complementary information sources are combined to im-
prove prediction accuracy of a set of semantic categories (cf. Section 2.3).

2.2 Web Information Retrieval and Search Engines

Until the 1990s, efficient organisation and indexing of text documents to facilitate
access to the contained information and/or the documents themselves was mainly
the concern of librarians and experts. Since then, with the advent of the World
Wide Web, interest in IR technologies has dramatically increased and today, IR
technologies are an every day commodity.

IR “deals with the representation, storage, organization of, and access to in-
formation items” and comprises tasks such as “modeling, document classification
and categorization, systems architecture, user interfaces, data visualization, filter-
ing, languages, etc.” [Baeza-Yates and Ribeiro-Neto, 1999], p.1–2. The central goal
of IR is to satisfy the information need of the user. From the user’s perspective,
in current systems, this need (unfortunately) has to be expressed directly in a ma-
chine understandable form, i.e., a query usually consisting of a sequence of natural
language keywords. The IR system, on the other side, is required to have a rep-
resentation of indexed documents that models the contained information in some
fashion to be able to match the information need.

To this end, documents are typically modelled using a set of index terms or key-
words directly extracted from the contents of the documents. Commonly, a weight
is also assigned to indicate the importance of each term for the respective document.
The given query is processed and compared with the indexed documents to retrieve
documents which are then ranked by relevance (cf. Section 3.1.3). Relevance is pre-
dicted according to the underlying information model. Upon presentation, the user
may start to examine this ranking (i.e., the search result) for the desired information.
Optionally, the user may be given the possibility to indicate relevant results and to
start a user feedback circle in which the query formulation is iteratively modified to
improve search results (cf. [Baeza-Yates and Ribeiro-Neto, 1999], p.9).

Due to the rapid growth of the Web — especially in the last decade — it is
now the world’s largest publicly accessible repository of data. Without knowing how
many Web pages really exist (estimates of the total number of Web documents range
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from 231.5 million Websites19 to at least 25 billion pages20), it is clear that there
is an ever growing demand for technologies that assist the user in finding relevant
information within this plethora. Moreover, it seems that only the development of
accurate search engines like Google has made the Web accessible and attractive to
use to a wide audience, and thus laid the foundations to pervade the mainstream
society. Apart from the sheer number of documents which need to be indexed, the
Web poses additional challenges to IR systems.

2.2.1 Web Data Mining

Data mining is generally concerned with the discovery of patterns and knowledge in
various data sources. Web data mining, as a more specific task, “aims to discover
useful information or knowledge from the Web hyperlink structure, page content,
and usage data” [Liu, 2007], p.6. For tailoring methods to exploit these three
sources, some unique characteristics of Web data (that distinguish it from tradi-
tional database mining and text mining) have to be taken into account (cf. [Liu,
2007], p.4-5):

• The Web contains a huge amount of most diverse information that covers
virtually any topic.

• The Web is highly heterogeneous in terms of contained data types (i.e., all
types of multimedia data), structuring of data (e.g., tables vs. unstructured
text), and information (e.g., different formulations of redundant information).

• Information is typically linked via hyperlinks.

• Web data is noisy, first, due to heterogeneous content that often includes nav-
igation links or advertisements, and second, because contents on the Web are
arbitrary, i.e., information is often low in quality, contains errors, or is (in-
tentionally) misleading. Especially given that the Web has developed into an
enormous economic factor, some issues that have to be taken into consideration
are spam and other techniques which aim at exploiting the nature of informa-
tion ranking algorithms to acquire more attention — and in consequence more
revenue.

• The Web is used commercially and for (public) services.

• Information on the Web is dynamic, i.e., the Web is subject to constant change.
However, outdated information may persist on the Web and impose difficulties
to data mining approaches if not contextualised chronologically.

• The Web is a social medium, i.e., people communicate via forums, blogs, or
comments, and participate in activities (“Web 2.0”).

In the remainder of this section, the focus is put on methods that mine infor-
mation useful for indexing and retrieval.

19Source: WolframAlpha, URL: http://www.wolframalpha.com/input/?i=number+of+websites
(estimation as of April 2009, page accessed 29-Jun-2010)

20http://www.worldwidewebsize.com (accessed 30-Jun-2010)
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To extract information from Web data, the first step consists in obtaining the
data from the Web. This is usually accomplished automatically by using a Web
crawler. Starting from a seed URL, a crawler follows the contained hyperlinks recur-
sively to find other Web resources. Crawlers that collect as many pages as possible
with the aim of indexing the complete Web (as used by Web search engines) are
called universal crawlers, as opposed to focused crawlers that try to download and
index only Web pages of a certain type (cf. [Chakrabarti et al., 1999]).

After collecting data, the mere application of traditional, purely content-based
text-IR methods to Web documents is not sufficient. First, the number of available
documents on the Web is too large, i.e., it is difficult to select a small subset of
the most relevant Web pages from millions of pages that all contain the desired
keywords. Second, content-based relevance ranking methods are prone to spamming
due to the nature of the used algorithms (cf. Section 3.1). Thus, for indexing the
downloaded content, the link structure, i.e., relations between the Web pages, (as
well as — in later steps — the usage data21) gives important additional information
to determine the “authority” and thus the relevance of a page. Two examples of
ranking algorithms that incorporate information on hyperlink structure are HITS
(see [Kleinberg, 1999]) and PageRank (see [Page et al., 1999]), which is used within
the Google ranking scheme.

HITS (short for Hypertext Induced Topic Search) starts from a ranking for a
given query and expands the result set by including pages that either point to any
page in the result set or that are pointed to from any page in the set. On that
expanded set, an authority ranking and a hub ranking are produced by computing
eigenvectors. An authority page is defined as having many in-links, i.e., hyperlinks
on many other pages point to it. A hub page is defined as having many out-links.
The basic idea of HITS “is that a good hub points to many good authorities and a
good authority is pointed to by many good hubs. Thus, authorities and hubs have
a mutual reinforcement relationship.” [Liu, 2007], p.255. The ability of HITS to
rank pages with respect to a query is considered to be a main strength. However,
HITS can be easily influenced by adding out-links to highly ranked authority pages,
making it susceptible to spam pages. Furthermore, on-line expansion of the result
set and eigenvector calculation at query time are both time consuming tasks.

In contrast to HITS, in the PageRank algorithm, the “prestige” of a Web page
is static within a given set of Web pages, i.e., PageRank for a page is defined query-
independently and can thus be calculated off-line. PageRank favours pages that have
many in-links. More precisely, PageRank of a page i is basically defined as the sum of
PageRank values of all other pages pointing to i. This recursive definition leads to a
system of n linear equations with n unknowns, where n is the number of Web pages.
For calculation, an iterative process that approximates the principal eigenvector of
the adjacency matrix of all Web pages is applied. By prioritising in-links, compared
to HITS, PageRank is less susceptible to spamming. Together with the efficient
off-line calculation that allows for fast ranking at query time, this is considered to
be a contributing factor to Google’s immense success (cf. [Liu, 2007], p.254).

21While in principle it is possible for anybody to build a Web search engine from scratch by
designing crawlers and analysing Web content and link structure, to exploit the third source of Web
data mining, i.e., usage data, one must already have a running system frequented by people, since
this sort of data becomes only available from monitoring users’ behaviour.
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2.2.2 Multimedia Indexing

The IR methods discussed so far all deal with retrieval of texts. However, the Web
contains all types of media that also has to be organised and made accessible in some
way. For indexing databases of multimedia files, typically predefined categories of
meta-data are used. Furthermore, for images, videos, and sound, it is possible
to enable query-by-example search, i.e., the “query” is itself an image (or a sound,
respectively, cf. Section 2.3.2) and by extracting features from the query, similarities
to the items in the database (rather, their feature representations) can be calculated
and a relevance ranking is obtained (cf., for instance, [Lew et al., 2006, Smeaton
et al., 2008]).

On the Web, both these types of retrieval are rather impractical. First, ex-
plicit meta-data generation is infeasible due to the sheer amount of data already
on the Web — not to mention the huge amounts of new content added everyday.
Community-based approaches for tagging are an attempt to deal with this (as are
tagging games, cf. Section 2.1.2.2), but, despite all efficiency of the distributed work-
load, they are unlikely ever to be capable of handling and annotating the amounts
of data presented. The idea of using query-by-example methods to find multime-
dia data, on the other hand, is in principle applicable to the Web. Examples of
such services are TinEye22 for image search and Owl Music Search23 for music (see
below). These services, nevertheless, make the upload of an example media file nec-
essary, which requires preparation, consumes bandwidth, and takes time. This is
likely one reason why these systems are lacking the same acceptance as established
Web search engines. However, in existing Web image retrieval engines, an option
to find images similar to search results is frequently included. Thus, the query file
is already present and features are pre-calculated, which makes this approach more
applicable.

To bring image search to the Web scale and allow instant presentation of relevant
results, images are typically indexed using their Web context. More precisely, text
data that can be associated to the image, such as the filename, anchor texts that
link to the image, or the text adjacent to the image on embedding Web pages is
used to automatically describe the content (e.g., [Frankel et al., 1996,Tsymbalenko
and Munson, 2001,Kherfi et al., 2004]). Although the underlying techniques are not
published exhaustively, it can be assumed that the image search services of state-of-
the-art Web search providers24,25,26 follow very similar approaches. For videos and
music, similar techniques are conceivable. Currently, the most prominent strategy
seems to rely on meta-data like title, tags, and an optional text description often
available on portals dedicated to enabling anyone to share multimedia content such
as YouTube27.

22http://www.tineye.com
23http://owlmm.com
24http://images.google.com
25http://images.search.yahoo.com
26http://www.bing.com/images
27http://www.youtube.com
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2.3 Music Search Engines

This section deals with approaches to retrieve music from databases or from the Web.
In contrast to image search, the idea of using contextual Web data to index music
files found on the Web has not found its way into many (commercial) applications.
The reason for this does not necessarily need to be of technical nature or due to
inapplicability to this task, but could also be linked to the fact that providers of
such a search functionality aim at avoiding any legal grey area, since many of the
audio files found on the Web potentially infringe on a copyright.

However, there exist some search engines that use specialised (focused) crawlers
to find all types of sounds on the Web. As with Web image search, the traced
audio files are then indexed using contextual information extracted from the text
surrounding the links to the files. Examples of such search engines are Aroooga by
[Knopke, 2004] and FindSounds28. Note that the music indexing approach presented
in Chapter 5 also makes use of contextual text information from the Web. Compared
to the above mentioned approaches a direct Web context is not available since the
indexed music pieces do not necessarily originate from the Web. Hence, a textual
context has to be constructed artificially by finding Web pages that mention the
meta-data of tracks.

In the following sections, further approaches to music retrieval are reviewed.
First, exemplary retrieval methods that build upon symbolic representations of music
are presented. Second, approaches that use an actual piece (or snippet) of music
as query are discussed. Systems that allow for cross-media retrieval, more precisely,
query-by-text music retrieval systems, are reviewed third.

2.3.1 Symbolic-Representation-Based Retrieval

Most of the methods to retrieve music from databases proposed so far operate
on symbolic representations (frequently derived from MIDI notations). The The-
mefinder Web search engine29, for instance, allows for querying a symbolic database
by entering melodic sequences in specific text formats, cf. [Kornstädt, 1998].

Other systems that follow more intuitive approaches are also usable for less
musically educated users. For example, in query-by-humming/singing systems the
user can hum or sing a part of the searched piece into a microphone. From that
recording, musical parameters (typically related to melody) are extracted and the
obtained sequence serves as a query to the database (cf. [Ghias et al., 1995]).

An example of a search engine offering exhaustive possibilities for querying is
Musipedia30. Musipedia indexes a large number of music pieces by crawling the
Web for MIDI files that can then be used for identification of pieces. For indexing of
pieces, the melodic contour, pitches and onset times, and a rhythm representation
are extracted. To find a piece in the database, a theme (i.e., the query) can be either
entered in Parsons code notation [Wikipedia, 2010e] or whistled into a microphone
(to find matching melodies), played on a virtual piano keyboard (to find matching
pitch and onset sequences), or tapped on the computer keyboard (to find matching

28http://www.findsounds.com
29http://www.themefinder.org
30http://www.musipedia.org
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rhythms). For a detailed explanation of the incorporated techniques, as well as a
comprehensive comparison of symbolic music retrieval systems and MIR systems in
general, see [Typke, 2007].

2.3.2 Audio-Based Retrieval

All audio-based similarity approaches that find the most similar tracks in a collection
for a given track perform query-by-example retrieval. Therefore, an audio-based
search engine is implicitly included in many systems that offer exploration of the
music space by recommending similar sounding pieces. An example of such a service
is the FM4 Soundpark music player31 that recommends other songs based purely on
the acoustic content (see [Gasser and Flexer, 2009]). The FM4 Soundpark is a
moderated open platform for up-and-coming artists hosted by the Austrian public
broadcasting station FM4 and targets primarily alternative music. Especially in this
case, where artists are generally unknown, content-based similarity is the method of
choice for recommendation.

Another system that incorporates this capability, but also explicitly offers query-
ing of the database by uploading an audio file, is the Owl Music Search engine already
mentioned in Section 2.2.2. This service allows searching for music from commercial
and independent labels, with a focus on music published under a Creative Com-
mons license32. To this end, the song catalogues of music sites such as ccMixter33,
Magnatune34, and Jamendo35 are indexed. [Maddage et al., 2006] propose a vector
space retrieval method for music. In their approach, music is modelled in a hier-
archical scheme incorporating beat structure, harmony events (that model chord
information), and acoustic events (defined as the occurrence of instrumental and
vocal content).

Special cases of query-by-example systems are fingerprinting services such as the
commercial service Shazam36. Instead of retrieving similar music pieces, the aim of
these systems is to identify a query song (more precisely, a specific recording) and
to return the associated meta-data (artist name, title, etc.). Typically, the query
consists of a short, low quality recorded portion of a music piece obtained via a cel-
lular phone. Hence, the feature extraction process (that generates the fingerprints)
must be robust against all kinds of distortions caused by factors such as cheap mi-
crophones, cellular phone connections, or background noises during recording time
to create a unique descriptor that can be matched to the indexed fingerprints in the
collection, cf. [Wang, 2006].

2.3.3 Text-Based Retrieval

An even more challenging task is to design systems that enable cross-media retrieval.
In this case, systems that allow queries consisting of arbitrary natural language text
(e.g., descriptions of sound, mood, or cultural events) and that return music pieces

31http://fm4.orf.at/soundpark
32http://creativecommons.org
33http://ccmixter.org
34http://www.magnatune.com
35http://www.jamendo.com
36http://www.shazam.com
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semantically related to this query, are of interest. Apart from the two text-based
systems mentioned above, the number of systems offering such query modalities is
rather small. The most elaborate approach so far has been presented by [Baumann
et al., 2002]. Their system is supported by a semantic ontology which integrates in-
formation about the artist, genre, year, lyrics, and automatically extracted acoustic
properties like loudness, tempo, and instrumentation, and defines relations between
these concepts. Besides the correct extraction of the features, the mapping of the
query to the concepts in the ontology has to be accomplished. In the end, the system
allows for semantic queries like “something fast from ...” or “something new from
...”. Also phonetic misspellings are corrected automatically.

[Celma et al., 2006] present the music search engine Search Sounds37. The
system uses a special crawler that focuses on a set of manually defined “audio blogs”,
which can be accessed via RSS feeds. In these blogs, the authors explain and describe
music pieces and make them available for download (whether legally or illegally
depends on the blog). Hence, the available textual information that refers to the
music, together with the meta-data of the files, can be used to match text queries to
actual music pieces. Furthermore, for all returned pieces, acoustically similar pieces
can be discovered by means of content-based audio similarity. Audio similarity is
also exploited by [Sordo et al., 2007] for automatically propagating text labels.

Another system that enhances music search with additional semantic informa-
tion is Squiggle by [Celino et al., 2006]. In this framework, queries are matched
against meta-data and further evaluated by a word sense disambiguation compo-
nent that proposes related queries. For example, a query for “rhcp” results in zero
hits, but suggests to search for the band Red Hot Chili Peppers; searching for “Rock
DJ” proposes the song by Robbie Williams, the genre Rock, as well as other artists
(all DJs). The underlying semantic relations are taken from the freely available
community databases MusicMoz 38 and MusicBrainz 39. However, although seman-
tic relations are integrated, the system depends on explicit knowledge which is in
fact a more extensive set of manually annotated meta-data.

A system that can be used for text-based music search and that is not restricted
to a pre-defined set of meta-data is the collaborative music platform Last.fm. Besides
keeping track of user’s listening habits for recommendation, it enables users to assign
tags to the tracks in their collection (cf. Section 2.1.2.2). These tags provide a
valuable source of information on how people perceive and describe music and can
be used for indexing of the music repository. However, tagging is often inconsistent
and noisy. In the present thesis, a (stable) subset of Last.fm data serves as a ground
truth for evaluating some of the proposed methods.

Several approaches aim at indexing music with arbitrary vocabularies, i.e., au-
tomatically assigning music-related descriptors — sometimes also referred to as “se-
mantic labelling” — by building models that incorporate acoustic properties from
low-level features. In early work, [Whitman, 2005] maps low-level characteristics
of audio signals to semantic concepts to learn the “meaning” of certain acoustic
properties. [Turnbull et al., 2007a] present a method for semantic retrieval that is
based on the CAL500 data set (see Section 5.6.1.2). Models of these properties

37http://www.searchsounds.net
38http://www.musicmoz.org
39http://www.musicbrainz.org
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are learned from audio features and can be used to label previously unseen tracks.
Correspondingly, the system can also be used to search for relevant songs based on
queries consisting of the words used for annotation. [Barrington et al., 2009] fur-
ther extend this approach by incorporating multiple (and largely complementary)
sources of features (i.e., acoustic features related to timbre and harmony, social tags,
and Web documents). These information sources are combined via machine learning
methods to improve prediction accuracy. Usefulness of combining contextual data
with content-based features is theoretically founded and also demonstrated by [Au-
couturier et al., 2007], who improve classification according to certain meta-data
categories like genre, instrument, mood, or listening situation by exploiting correla-
tions between meta-data categories.

2.4 User Interfaces to Music Collections

This section reviews different user interfaces to music collections. In general, such
systems use information on music to automatically structure a repository and aid the
user in exploring the contents. A short discussion of Music Information Systems is
given, followed by an overview of the large number of available map-based interfaces.
Finally, other intelligent music interfaces are presented.

2.4.1 Music Information Systems

A classic way for accessing music collections or information on music is via a (typ-
ically Web-based) information system. Examples of music information systems are
allmusic, Yahoo! Music, Last.fm, and also (if restricted to the music domain)
Wikipedia40. Informally defined, a music information system serves as a kind of
multimedia encyclopedia that has entries for different musical entities on different
levels of granularity as well as links between these entity descriptions. In practice,
typical categories included in such a system are discographies, biographical infor-
mation, and line-up for bands, as well as track listings, cover artwork, and other
meta-data for albums. Furthermore, recommendations such as similar artists or
albums are included. The presented data may either originate from editors (as is
the case for allmusic and Yahoo! Music, for instance) or from a community (as in
the case of Last.fm and Wikipedia). A detailed discussion on music information
systems, as well as an approach towards the automatic generation of such a system
from Web data can be found in [Schedl, 2008].

2.4.2 Map-based Interfaces

The idea of map-based music interfaces is to organise musical entities in a two-
dimensional layout to display the global composition of collections and intuitively
visualise similarity by relating it to closeness on the map. Furthermore, orientation
on a map is a concept familiar to people and therefore a particularly good choice to
be incorporated into interfaces for novel purposes. This kind of structuring allows
then for browsing music collections by examining different regions on the map as
well as for implicit recommendation by exploring areas surrounding known pieces.

40http://www.wikipedia.org
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Most systems that create a map for music organisation rely on a Self-Organizing
Map (SOM). In seminal work, [Rauber and Frühwirth, 2001] propose this approach
to form clusters of similar sounding songs and to project them on a two-dimensional
plane (cf. Section 3.3). [Pampalk, 2001] extends this approach to create the Islands
of Music interface. For the Islands of Music, a SOM is calculated on Fluctua-
tion Pattern features and visualised by applying a technique called Smoothed Data
Histogram. Finally, a colour model inspired by geographical maps is applied (see
Section 3.3.2). In addition, several extensions have been proposed, e.g., the usage
of Aligned SOMs to enable a seamless shift of focus between different aspects of
similarity (cf. [Pampalk et al., 2004]) or a hierarchical component to cope with large
music collections (cf. [Schedl, 2003]). [Neumayer et al., 2005] utilise SOMs for brows-
ing in collections and intuitive playlist generation on portable devices. [Leitich and
Topf, 2007] propose mapping to a sphere instead of a plane by means of a GeoSOM
to create the Globe of Music. Other music map approaches use SOM derivatives
(e.g., [Mörchen et al., 2005]) or a k-nearest neighbor graph (as in [Seyerlehner,
2006]). [Vembu and Baumann, 2004] use textual information from Amazon reviews
to structure music collections via a SOM by incorporating a fixed list of musically
related terms to describe similar artists.

For deepening the impression of exploration of music collections, also three-
dimensional extensions to music maps are available. Hence, the user can move
through a virtual terrain to find new music. The first approach in this direction can
be found in [Knees et al., 2006b] (for a detailed description see Section 4.3.1). Recent
alternatives can be found in [Lübbers and Jarke, 2009] or [Gasser and Flexer, 2009].

Apart from generating music maps that resemble geographical maps, other
approaches to visualise the music space in two dimensions have been presented.
Frequently, these interfaces utilise multidimensional scaling (MDS) data projection
techniques (see, e.g., [Cox and Cox, 2000]). For example, [Cano et al., 2002] incorpo-
rate a FastMap in the visualisation of the SongSurfer interface. In the MusicGalaxy
interface by [Stober and Nürnberger, 2010], a pivot-based MDS is applied. Music-
Galaxy combines multiple sources of similarity information, giving the user control
over their influence. Furthermore, when exploring the map, a magnification of simi-
lar tracks supports browsing by compensating for data projection deficiencies. In the
Search Inside the Music interface, [Lamere and Eck, 2007] utilise an MDS approach
for similarity projection into a three-dimensional space. A similarity-graph-based
interface for portable devices is presented by [van Gulik et al., 2004]. [Lillie, 2008]
applies a principal components analysis (PCA) to project multidimensional music
descriptors to a plane in the MusicBox framework. Furthermore, [Lillie, 2008] gives
another comprehensive overview of user interfaces to music collections.

Other map-based interfaces enable additional interaction methods by exploiting
specific devices, foremost tabletop displays. [Hitchner et al., 2007] use a tabletop
display to facilitate browsing and rearrangement of a music collection structured via
a SOM. A similar approach that makes use of a Bricktable multi-touch interface
for structuring Electronica music for DJs is presented by [Diakopoulos et al., 2009].
The SongExplorer by [Julià and Jordà, 2009] structures large collections and allows
for interaction using a reacTable-like interface. [Baur et al., 2010] exploit lyrics-
based descriptors to organise collections in the SongWords tabletop application.
The MUSICtable interface presented by [Stavness et al., 2005] can utilise different
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approaches to map creation (including manual construction) and is intended to
enforce social interaction when creating playlists.

Finally, for map-based interfaces, the underlying maps do not have to be nec-
essarily created artificially. For instance, music collections (or music-related data)
may be made available by distributing them over real geographical maps. [Celma
and Nunes, 2008] use data from Wikipedia for placing bands on their corresponding
position on a world map. [Govaerts and Duval, 2009] extract geographical informa-
tion from biographies on the Web and utilise this information, e.g., to visualise radio
station playlists.

2.4.3 Other Intelligent Interfaces

Although there exist many interesting approaches that are based on manually as-
signed meta-data (e.g., [Torrens et al., 2004] or musiclens41), this section will pri-
marily deal with systems that rely on automatic feature calculations of music pieces
or artists and are therefore capable of “intelligently” structuring and presenting
music collections automatically.

[Pampalk et al., 2005] use hierarchical one-dimensional SOMs on Web-based
artist term profiles to guide the user to relevant artists. At each level, the user
chooses from sets of music descriptions that are determined via term selection ap-
proaches (cf. sections 2.1.2.3 and 4.2). [Pohle et al., 2007b] performs an NMF on Web
term profiles for artists which yields a weighted affinity of each artist to each resulting
“semantic” concept. In the resulting Artist Browser, the influence of each concept
can be adjusted manually to find best fitting artists and to display related Web
content. [Schedl and Pohle, 2010] propose the Three-Dimensional Co-Occurrence
Browser to browse collections of Web pages for multimedia content by selecting
descriptive terms.

A very remarkable interface to discover new pieces and easily generate playlists
is presented by [Goto and Goto, 2005]. From streams of music pieces (represented as
discs), the user can simply pick out a piece to listen to or “collect” similar pieces by
dragging a seed song into one of the streams. The different streams describe different
moods. The number of released discs can be regulated for each mood separately
by “tabs”. Furthermore, the system invites users to experiment with playlists as
all modifications can be undone easily by a so called time-machine function. The
intuitive drag-and-drop interface also facilitates the combinination of playlists.

The Traveller’s Sound Player is an interface for accessing music on mobile music
players by computing song similarities from extracted audio features and creates
a placement for all songs on a circular path using a travelling salesman problem
(TSP) algorithm, cf. [Pohle et al., 2007a]. This arrangement permits the user to
quickly locate music of a particular style by simply turning a wheel, much like
searching for radio stations on a radio. [Schedl et al., 2006b] augment this interface
with genre descriptors extracted via co-occurrence analysis. Following this line of
research, [Schnitzer et al., 2007] make use of Last.fm tags for pre-clustering and
playlist labelling. In the resulting Intelligent iPod prototype, the click wheel on
Apple’s iPod can be used to navigate linearly through an entire music collection,
automatically arranged according to musical similarity.

41http://finetunes.musiclens.de
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Another extension of the Traveller’s Sound Player that is not aiming at portable
music players is the MusicRainbow by [Pampalk and Goto, 2006]. In this interface,
artist similarity is computed from extracted audio features and — using a TSP
algorithm — artists are placed on a “circular rainbow”, where coloured arcs reflect
the genre of each artist. Furthermore, the interface is enriched with descriptive terms
from artist-related Web pages. To give the user more choice in selecting relevant
dimensions of similarity, the subsequentially developed MusicSun interface combines
three types of similarity, namely audio-based similarity, Web-based similarity, and
word-based similarity, cf. [Pampalk and Goto, 2007]. Word-based similarity allows
to focus on specific words instead of overall term similarity and supports the user in
finding other artists that are strongly connected to these words.
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Methodological Background

In this chapter, the methods underlying the techniques proposed in the subsequent
chapters are reviewed. The methods are structured into three main areas: Web
Mining and Document Indexing (Section 3.1), Audio Similarity (Section 3.2), and
Music Maps (Section 3.3). Note that Section 3.1 — apart from Web information
retrieval methods — also reviews methods originally not belonging to Web mining
and document indexing, i.e., supervised learning and classification (here used for
Web page classification) and multiple sequence alignment (here used for redundancy
detection in Web pages and noise removal).

3.1 Web Mining and Document Indexing

This section deals with methods that are used in the next chapters in the context
of Web retrieval and processing of Web content. The first three sections deal with
standard Web retrieval and indexing techniques, namely fetching and processing
of Web data (Section 3.1.1), storing, compressing, and accessing the fetched data
(Section 3.1.2), and assessing relevance of stored Web documents with respect to a
given query (Section 3.1.3). Since for the practical realisation of the proposed meth-
ods, these three steps are performed using the Java-based open source Web crawler
Nutch1 and the underlying open source indexer Lucene2, the indexing and retrieval
variants as implemented in these packages are emphasised. Section 3.1.4 deals with
supervised learning and reviews the random forest classifier used for page classifi-
cation. Section 3.1.5 reviews a technique for multiple sequence alignment which is
here applied for identifying redundant parts on Web pages.

3.1.1 Web Data Retrieval

Since the primary tasks addressed in the following are Web indexing and retrieval,
the general design of a Web search engine (as far as needed for understanding the
proposed methods) is presented. In Web Retrieval, the first step consists in obtaining
data from the Web to operate on. To this end, typically a Web crawler is used to
discover and download millions of Web pages. The principal idea of a Web crawler,
i.e., recursively following the hyperlinks on Web pages to find other Web resources

1http://lucene.apache.org/nutch/
2http://lucene.apache.org/
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starting from one or more seed URLs, has already been discussed in Section 2.2.1.
Here, a more detailed description is given (cf. in the following [Liu, 2007], p.274ff
and p.286ff ).

A central component of a crawler is the so called frontier. The frontier is a list
of unvisited URLs that is initialised with the seed URLs and constantly updated
while new URLs are extracted from the crawled Web pages. In case the frontier is
implemented in a first-in-first-out manner, i.e., the sequence of pages to be visited
next depends on the sequence of pages visited without any further reordering, the
crawler is said to be a breadth-first crawler. In case the frontier is implemented
as a priority queue that reorders contained URLs such that more promising pages
are visited first, the crawler is said to be preferential or a best-first crawler. To
estimate whether a page is promising, different strategies can be applied, for instance,
calculation of PageRank (cf. Section 2.2.1 and [Page et al., 1999]).

For fetching the Web data, the “crawler acts as a Web client [i.e.] it sends an
HTTP request to the server hosting the page and reads the response” [Liu, 2007],
p.277. Typically, fetching of data is performed in parallel by multiple threads.
“The frontier manager can improve the efficiency of the crawler by maintaining
several parallel queues, where the URLs in each queue refer to a single server. In
addition to spreading the load across many servers within any short time interval,
this approach allows to keep connections with servers alive over many page requests,
thus minimizing the overhead of TCP opening and closing handshakes” [Liu, 2007],
p.286. Furthermore, issues like slowly or not responding servers, large files, broken
links, or (cyclic) redirections have to be handled by the crawler.

For the tasks proposed, a music-focused crawler, i.e., a crawler biased towards
music-specific Web pages, is the tool of choice. Alternatively, to obtain Web pages
about a certain topic, one may use a universal crawler, i.e., a crawler that aims to
index as many pages as possible, such as the crawlers used by Web search engines,
and constrain pages to the domain of interest when accessing the harvested data
(e.g., by including additional keywords within queries). In the present work, the
latter approach is chosen, i.e., instead of crawling the Web and maintaining an
index, the large-scale indexes of (commercial) Web search engines are used. More
precisely, to obtain Web data that can be utilised in the proposed methods, the
results returned by a Web search engine are downloaded and processed.

After fetching the data (and extracting the contained hyperlinks that are in-
serted into the frontier), several preprocessing steps are carried out before a doc-
ument is stored and/or indexed. In a first step, all HTML tags are removed to
obtain a plain text document. Next, all stopwords are removed, i.e., “frequently
occurring and insignificant words in a language that help construct sentences but do
not represent any content of the documents. Articles, prepositions and conjunctions
and some pronouns are natural candidates.” [Liu, 2007], p.199. Examples of En-
glish stopwords are a, and, are, for, of, in, is, the, to, or with. For indexing of Web
pages as used in chapters 5 and 6, stopwords in six languages are removed: English,
German, Spanish, French, Italian, and Portuguese.3

A typical next step to be performed is stemming. Stemming is the process of

3While stopword removal is useful in excluding unwanted terms, alternatively, a pre-defined list
of desired expressions can be used. For indexing, only terms included in this list are considered.
Such a vocabulary-based approach is used in Chapter 4.
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removing prefixes and suffixes from a word, and thus reducing it to its stem. Since
syntactic variations are removed, different forms of a word can be mapped to the
same stem and facilitate retrieval of relevant documents. On the other side, impor-
tant discriminating information may be lost. Throughout this thesis, no stemming
is applied. Finally, all letters are converted to lower case, before the text is split
up into a sequence of single word chunks where any white space, line break, or
punctuation mark serves as word delimiter (a method commonly referred to as bag-
of-words-modelling). The resulting sequence is then stored in a data structure that
can be accessed efficiently at the word level, such as an inverted index.

3.1.2 Inverted Index

An inverted index I provides a lookup-table where for each distinctive term t ∈ T
that occurs in a collection of documents (in this case, Web pages), a list of all doc-
uments p that contain that term is provided. The reason for this method is that for
retrieval (where queries consist of a sequence of keywords), documents that contain
the query words can be found easily. Furthermore, in a full inverted index, additional
information is stored with each document entry, such as number of occurrences of
the corresponding term (useful for TF·IDF calculation, see Section 3.1.3) or posi-
tions of the term occurrences in the document (to allow searching for phrases, i.e.,
exactly matching sequences of words). To speed up calculation of IDF, for each term
also the number of documents that contain the term (DF) can be stored explicitly.
A toy example of an inverted index can be seen in Figure 3.1. In this example, three
documents are indexed after stopword removal and conversion to lower case. For
each of the indexed terms, a list of postings (which consist of a document ID, the
frequency of occurrence of the term in that document, and the positions of these
occurrences) is given (cf. [Liu, 2007], p.205). Note that (apart from the discarded
stopwords), the documents can be reconstructed from the information stored in the
index. However, usually, that is not of interest as the original documents are typ-
ically stored elsewhere and the index is only needed to efficiently find entries that
satisfy the constraints (keywords) of a given query.

An additional benefit of inverted indexes is the compression of the data. First,
multiple occurrences of terms within documents or across documents do not have to
be stored redundantly due to the indexing. Furthermore, indexes can be compressed
themselves, e.g., by storing only offset positions instead of absolute positions of
term occurrences. When applying additional compression techniques for variable-
length integers, offset storage can make a significant impact on the total index size,
allowing even full indexes to reside in memory and therefore enhance performance
(cf. [Liu, 2007], p.209ff ). A comprehensive discussion of inverted indexes can be
found in [Zobel and Moffat, 2006].

For retrieving relevant documents from an index, the query has to be processed
in the same way as the documents. That is, conversion of all letters to lower case,
splitting of words at punctuation marks, etc. has to be applied to the query string.
To avoid unnecessary overhead, stopwords should also be removed. After this step,
the index vocabulary has to be searched for the keywords contained in the query. In
this step, efficiency is also important and can be achieved, e.g., by applying binary
search on the lexicographically sorted vocabulary. For single keyword queries, the
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Inverted Index

Documents:

p1:   Punk  rock  is a  rock  music genre.
1            2        3     4       5          6              7

p2:   The music video game DJ  Hero  features avatars of  Daft Punk.  
1             2              3              4    5          6               7                    8        9       10          11

p3:   DJ  Ötzi is not a  DJ.
1         2       3       4      5     6

video

rock

punk

ötzi

not

music

hero

genre

game

features

dj

daft

avatars

(p2, 1, [3])

(p1, 2, [2,5])

(p1, 1, [1]), (p2, 1, [11])

(p3, 1, [2])

(p3, 1, [4])

(p1, 1, [6]), (p2, 1, [2])

(p2, 1, [6])

(p1, 1, [7])

(p2, 1, [4])

(p2, 1, [7])

(p2, 1, [5]), (p3, 2, [1,6])

(p2, 1, [10])

(p2, 1, [8])

1

1

2

1

1

2

1

1

1

1

2

1

1

Figure 3.1: Example of an Inverted Index. Prior to indexing, stopword removal and lower case
conversion are applied to the documents. For each term, the number of documents containing
the term and a list of postings is stored. The format of a posting is (pi, tf , [pos]), where pi is
the document identifier, tf the number of occurrences of the corresponding term in document
pi, and pos the list of positions at which the term occurs in pi.

necessary step consists only in finding all documents that are associated with the
keyword. For instance, querying the index from Figure 3.1 with the query DJ
directly results in a response consisting of documents p2 and p3. (The ordering of
the resulting documents is subject to the methods discussed in Section 3.1.3). For a
composite query like DJ Music where the presence of multiple keywords is treated
as an implicit conjunction, the intersection of the result sets of the single queries
DJ (again, p2 and p3) and Music (p1 and p2) has to be calculated (p2). When
searching for phrases (often indicated by double quotes), in addition, the positional
information of the indexed terms has to be considered. However, the condition that
all retrieved documents must contain all query terms is often weakened to allow
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for retrieval of more documents (implicit disjunction of keywords). In this case, in
the above mentioned example, the query DJ Music would result in retrieval of all
three Web pages. Upon retrieval, documents are ranked according to relevance as
described next.

3.1.3 Term Weighting and Document Ranking

When querying a system, it might not only be of interest to find all documents that
fully satisfy all constraints, but also to obtain a ranking in which the most relevant
documents with respect to the query are listed first.

In the above mentioned bag-of-words-model, a document is represented as the
set of occurring terms (ordering of words in the corresponding text is not considered).
For each term t occurring in a document p, a weight w(t, p) > 0 is assigned. If t
does not occur in p then w(t, p) = 0. Each document p can therefore represented
as a weight vector ~pj = 〈w(t1, pj), w(t2, pj), ..., w(tn, pj)〉 of the vocabulary vector
~t = 〈t1, t2, ..., tn〉 , ti ∈ T, n = |T |. Since every document is now represented by a
vector, this model is also referred to as vector space model.

The computation of w(t, p) depends on the retrieval model. The most com-
mon method is the calculation of a TF·IDF variant. The general scheme of all
TF·IDF approaches is

wtfidf (t, p) = tf(t, p) · idf(t) = tf(t, p) · log |P |
df(t)

. (3.1)

where P is the set of all documents indexed.
The idea behind this is that a high weight should be assigned if a term occurs

frequently within a document (high TF). However, if a term occurs in many docu-
ments (high DF), it is not very discriminative and should therefore not have as much
influence on the weighting (leading to a low IDF). Several versions of TF·IDF have
been proposed. One of them is the “ltc” variant (cf. [Salton and Buckley, 1988]
and [Debole and Sebastiani, 2003]):

wltc(t, p) =

{

(1 + log2 tf(t, p)) log2
|P |

df(t) if tf(t, p) > 0

0 otherwise,
(3.2)

Using the vector space model, it is possible to measure similarity between doc-
uments as well as similarity between a query q 4 and a document p, for instance, by
calculating their cosine similarity :

simcos(q, p) =
~q · ~p
‖~q‖ ‖~p‖ =

∑

t∈T

w(t, q) · w(t, p)

√

∑

t∈T

w(t, q)2 ·
√

∑

t∈T

w(t, p)2
(3.3)

By measuring the angle between two document vectors, normalisation of vectors
prior to comparison is not necessary. In case of another similarity measure (e.g., Eu-
clidean distance), normalisation maybe required to remove the influence of different
documents lengths on the weight scoring function.

4A query can simply be seen as a short document.
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When retrieving documents, the results set can be simply ranked according to
the similarities between query and documents. However, dealing with large docu-
ment collections (such as the Web), it may be inefficient to calculate all these steps
to obtain a relevance ranking for the documents. Therefore, simplified scoring func-
tions may be calculated instead. For instance, in the Lucene indexer, the raw score
of document p for query q is calculated as (cf. [Gospodnetić and Hatcher, 2005]):

score(q, p) =
∑

t∈q

[

√

tf(t, p) · idfluc(t) · boost · lengthNorm
]

(3.4)

idfluc(t) = log
|P |

df(t) + 1
+ 1 (3.5)

The factors boost and lengthNorm are specific to each field in a Lucene index.
In principle, an indexed document can have multiple fields, for instance, a Web page
can be split into distinct fields such as title, URL, and text body. When querying,
the query is compared to each of these fields separately and yields a score for each
field. For assessing the overall relevance of a document, all field-specific scores of
the document have to be combined, typically by summing up. In Equation 3.4, the
value of boost can be adjusted manually for each field to explicitly raise importance
of certain fields. The default setting (that is also used here) is boost = 1. The value
of lengthNorm is determined automatically and depends on the size of the term set
in a field, i.e., here lengthNorm = 1/

√

|T |. Since only one field is considered in this
work, i.e., the contents of the text body, both parameters are constant factors that
do not influence the relevance ranking of documents.

Note that in the Lucene API definition as of version 2.4.0, for score calculation,
additional factors, e.g., to normalise scores over different queries for comparability
or to boost terms in the query, are incorporated. For details about these, the reader
is referred to the API definition5.

Another important source for relevance ranking is link structure (cf. Sec-
tion 2.2.1). In the remainder of this thesis, for retrieval of data, this information is
not incorporated, i.e., for index querying in chapters 5 and 6, the relevance ranking
of documents is done only based on the Lucene scoring scheme.

3.1.4 Text Categorisation

This section deals with text categorisation, i.e., automatically assigning a text docu-
ment to categories (classes) defined through example documents (training set). The
task consists in extracting features from the given examples and to train a classifier
that is then capable of generalising from the learned examples, i.e., being able to
assign also new, previously unseen documents to the correct class (supervised learn-
ing). This can be used, for example, to automatically classify the content of Web
pages into categories like politics, sports, food, or music, to name but a few. Such a
component is essential, e.g., to build focused crawlers, where higher crawling priority
has to be given to pages dealing with a specific topic (cf. Section 3.1.1).

The scenario in which this technique is required in the context of this thesis is
the following: Not all of the Web documents retrieved using a Web search engine

5http://lucene.apache.org/java/2 4 0/api/org/apache/lucene/search/Similarity.html
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are necessarily relevant and may therefore introduce errors to the subsequent steps.
From a given set of such Web pages (instances of class “negative”) and also of Web
pages that do not introduce errors (instances of class “positive”), a classifier can be
trained to decide for new Web pages, whether they should be indexed (if classified
as “positive”) or discarded (if classified as “negative”).

As features (attributes in machine learning terminology) for the Web pages, for
instance, TF·IDF vectors as described in Section 3.1.3 can be utilised. However,
“a major characteristic, or difficulty, of text categorization problems is the high di-
mensionality of the feature space. The native feature space consists of the unique
terms (words or phrases) that occur in documents, which can be tens or hundreds of
thousands of terms for even a moderate sized text collection. This is prohibitively
high for many learning algorithms.” [Yang and Pedersen, 1997]. Therefore, typi-
cally, feature selection approaches such as the χ2-test are applied to find the most
discriminative features and to reduce the dimensionality of the feature space (cf.
Section 6.2) “to make the use of conventional learning methods possible, to improve
generalization accuracy, and to avoid ’overfitting’.” [Joachims, 1998]. A compari-
son of different strategies for feature selection in text categorisation can be found
in [Yang and Pedersen, 1997].

Due to the nature of text categorisation tasks, i.e., high-dimensional input space,
many relevant features, sparse document vectors (w(t, p) = 0 for most t and p),
and, related to the sparsity, linear separability of categories, Support Vector Ma-
chines (SVMs, [Vapnik, 1995]) are a particularly good choice to serve as classifier
(cf. [Joachims, 1998]). However, since SVMs are computationally complex, another
type of classifier is used, namely the Random Forest classifier described next.

Random Forest Classifier

A Random Forest (see [Breiman, 2001]) is a classifier that consists of multiple
decision trees and predicts the class that is obtained by voting on the predictions
made by the individual trees (ensemble classifier). Before discussing this classifier
in more detail, a short explanation of decision tree learning is given.

To build a decision tree for classification of (e.g., TF·IDF-based) instances, a
divide-and-conquer strategy is applied. For each attribute a (i.e., each feature di-
mension), it is calculated how well a is suited to predict the target classes. In the
scenario described above this translates to the question how well “positive” and
“negative” training examples can be separated by just considering a. Typically, an
entropy-based criteria is used for this calculation. Among all attributes, the most
discriminative is chosen and the threshold (i.e., the decision boundary) that best sep-
arates positive from negative examples is determined. Using this, a decision node is
added to the decision tree and the set of training examples is split into corresponding
subsets. For each of the subsets, children nodes are added by repeating this step
recursively on the remaining attributes until no more attributes remain or another
termination criteria is fulfilled. To allow for better generalisation of the classifier,
leaf nodes may be removed after training (pruning). For classification of instances,
the decision tree is traversed top-down (i.e., starting from the root) according to the
attribute values of the instance until a leaf is reached. The (most frequent) class in
the leaf is then the predicted class of the instance. For a detailed description of a
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widely used decision tree classifier (C4.5 ) see [Quinlan, 1993].
The Random Forest classifier additionally incorporates the principles of bagging

and random feature selection for learning the decision trees. Bagging refers to draw-
ing multiple bootstrap samples, i.e., drawing samples with replacement, from the
training examples, and training an ensemble of classifiers using the bootstrap sam-
ples. Random feature selection refers to finding the best predictor (i.e., the most
discriminating attribute) from a randomly selected subset of attributes rather than
from all attributes.

The principle algorithm for training and utilising a Random Forest is as follows
(taken from [Liaw and Wiener, 2002]):

1. “Draw n bootstrap samples from the original data.

2. For each of the bootstrap samples, grow an unpruned classification [...] tree,
with the following modification: at each node, rather than choosing the best
split among all predictors, randomly sample m of the predictors and choose
the best split from among those variables. [...]

3. Predict new data by aggregating the predictions of the n trees”

The main reasons Random Forest has been chosen over SVMs for classification
in this thesis are the efficiency for learning from large training sets with a high
feature dimensionality and the efficiency for classification of new instances. For
implementation of the methods in Section 5.4.2.2, the Random Forest classifier from
the WEKA package (see [Hall et al., 2009]) is applied with n = 10 trees. In addition,
to compensate for unbalanced training sets (e.g., significantly more negative than
positive examples) a cost-sensitive meta classifier is applied. If such a meta-classifier
is used in conjunction with a Random Forest classifier, the generated trees are more
sensitive to the more important class (in this case, the under-represented class).
Usually, this is done by resampling the training data such that the training set is
more balanced (with respect to the “costs” of the classes). The implementation from
the WEKA package is also utilised for this purpose.

3.1.5 Text Alignment

Another approach to eliminate potential sources of errors is to identify and remove
redundant parts in Web pages before indexing. Since Web pages often contain text
sections not related to the actual content of the page, e.g., navigation bars, standard
text indexing and ranking methods may be easily fooled by this data, leading to the
inclusion of possibly irrelevant pages into responses to queries.

For finding redundant parts, a method originating from bioinformatics is ap-
plied: multiple sequence alignment (MSA). MSA is originally intended to arrange
several DNA sequences (represented as sequences of single characters) to identify
maximum overlaps and regions of similarity. For alignment, gaps have to be inserted
into the sequences. The alignment process can be influenced by choosing rewards
and penalties for correctly aligned characters, alignments with gaps, or misaligned
characters.

The MSA method can be also applied to extract lyrics from multiple Web sources
by matching coherent parts and preserving overlapping segments by [Knees et al.,
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2005]. In the present noise removal scenario, the overlapping segments are going to
be deleted. The idea of performing multiple sequence alignment for identification
of redundant Web data has also been presented, e.g., by [Zhai and Liu, 2005] or
[Herscovici et al., 2007].

In the following, standard approaches for MSA are reviewed and adapted for
alignment of text documents. First, a method to find optimum alignments between
two sequences is introduced. This is followed by a heuristic that allows for align-
ment of more than two sequences. Finally, the identification of redundant parts is
explained.

Needleman-Wunsch algorithm

Prior to the alignment, Web page contents have to be converted into a sequence
of words. To align two word sequences, the Needleman-Wunsch algorithm can be
used [Needleman and Wunsch, 1970]. This algorithm is based on dynamic program-
ming and returns the globally optimal alignment of two strings for a given scoring
scheme. For the task at hand, it is preferred to reward matching pairs of words
with a high score (i.e., 10) and to penalise the insertion of gaps with a low value
(i.e., −1). For mismatching words, a score of 0 is assigned. Using this configuration,
the algorithm is expected to find large coherent segments and prefers to align single
non-matching words instead of inserting gaps.

The algorithm itself uses a two-dimensional array MAT of size (n+1)×(m+1),
where n is the length (the number of words) of the first sequence A and m the length
of the second sequence B. The extra column and the extra row in the array are nec-
essary to enable gaps at the beginning of each sequence. Every entry MATi,j is inter-
preted as the optimal score of the partial alignment of a1, ..., ai ∈ A and b1, ..., bj ∈ B.
Thus, MATn,m contains the score for the optimal alignment of A and B.

Entries of MAT are computed recursively. To calculate MATi,j , the optimal
choice for the next alignment step is made by examining the three following cases
(in the given order):

1. Alignment of ai and bj . This is equivalent to a diagonal step to the lower right
in the array. Thus, the score at position MATi,j is determined as the sum of
MATi−1,j−1 and the score gained through alignment of ai and bj .

2. Alignment of ai with a gap. This is equivalent to a step down. The score at
position MATi,j is then determined as the sum of MATi−1,j and the penalty
for gap insertion.

3. Alignment of bj with a gap. This is equivalent to a step to the right. The
score at position MATi,j is then determined as the sum of MATi,j−1 and the
penalty for gap insertion.

Considering these three options, the one to achieve the highest score is chosen.
Substituting the values chosen, this results in

MATi,j = max











MATi−1,j−1 + s(ai, bj)

MATi−1,j − 1

MATi,j−1 − 1

(3.6)

41



Chapter 3. Methodological Background

… it‘s showtime - for dry climes and bedlam is dreaming of rain when the hills …

… its show time for dry climes and bedlam is dreaming of rain when the hills …

… it‘s showtime - for dry climes and bedlam is dreaming of rain when the hills …

… it‘s showtime - for drag lines and bedlam is dreamin’ of rain when the hills …

… it‘s showtime - for dry climes and bedlam is dreaming of rain when the hills …

Figure 3.2: Example of a multiple text alignment on song lyrics (Los Angeles is burning by Bad

Religion), cf. [Knees et al., 2005]. The four rows on the top are word sequences extracted from
the Web, the row at the bottom is the result obtained with any threshold value t below 0.75.
While in this case the objective is to identify overlapping parts to extract the lyrics, for noise
removal on Web pages, redundant parts should be identified and discarded.

where

s(x, y) =

{

10, if x=y,

0, otherwise.
(3.7)

Before performing the recursive procedure line-by-line, starting at i=1 and j=1,
the array has to be initialised with

MAT0,0 = 0,
MATi,0 = MATi−1,0 − 1 for i=1,...,n, and
MAT0,j = MAT0,j−1 − 1 for j=1,...,m.

After computation of all array entries, a trace back phase is necessary to de-
termine the actual alignment from the scoring matrix. Starting from MATn,m and
depending on the origin of the score in the entries, the alignment is built backwards
until MAT0,0 is reached.

Multiple Sequence Alignment

The principle of the Needleman-Wunsch algorithm is theoretically easily extendible
to more than two sequences. However, for two sequences this algorithm already
uses O(n ·m) in space and time. For every additional sequence the effort is further
multiplied by the length of the sequence and is thus not practicable. To circumvent
this problem, heuristics have been proposed to allow multiple sequence alignment
with reasonable costs based on pairwise sequence alignment. Here, a hierarchical
alignment, as proposed by [Corpet, 1988], is applied.

In the following, row is used to denote a sequence within a completed alignment,
column denotes the list of words that are aligned together on a position in the
alignment (cf. Figure 3.2), length is used to refer to the number of words in a row
(i.e., the number of columns in an alignment), and depth refers to the number of
sequences in a column. For example, the alignment in Figure 3.2 has depth four.

The hierarchical multiple sequence alignment algorithm works as described next.
For all pairs of sequences, pairwise alignment using the Needleman-Wunsch algo-
rithm is performed. The pair achieving the highest score is aligned. This step is
performed again on the remaining sequences, until all are aligned (in case of an odd
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number of sequences, the last remains unaligned). The principle of pairwise align-
ment with respect to the highest score is then again applied to the group of aligned
sequences, until only one alignment remains. For being able to perform pairwise
alignment on pre-aligned sequences consisting of multiple rows, the Needleman-
Wunsch algorithm has to be adapted. The basic idea is that words that already
have been aligned, remain aligned. Thus, the algorithm must be capable of com-
paring columns of words, instead of single words. This is achieved with a simple
modification in the scoring scheme:

MAT ′
i,j = max











MAT ′
i−1,j−1 + scol(a

′
i, b

′
j)

MAT ′
i−1,j − 1

MAT ′
i,j−1 − 1

(3.8)

where a′i is the ith column in alignment A′ with depth k, b′j the jth column in
alignment B′ with depth l, and

scol(x, y) =
k
∑

i=1

l
∑

j=1

s(xi, yj), (3.9)

with xi denoting the ith word in column x, and yj the jth word in column y. As can
be seen, the score for aligning columns is simply given by the sum of the scores be-
tween all combinations of words from both columns. Note that the penalty score for
gap insertions remained constant. Since this is now a score for insertions of columns
consisting solely of gaps, in fact the penalty has been reduced because it is indepen-
dent of the depth of the sequences. Thus, the idea of high rewards for matches and
small penalties for gapping is further enforced for reasons explained above.

Identifying Redundancies

Given the multiple text alignment, redundant parts can be identified. To this end,
every aligned column is examined for the most frequent word w. If the column’s most
frequent word is a gap, the column is skipped. Additionally, a threshold parameter
t is introduced to determine if w is considered to be a redundant word. If the ratio
of occurrences of w in the column and the depth of the alignment is below t, then
the column is skipped too. For applying the method to noise removal, a value of
t = 0.6 is chosen. As a result, several sequences of redundant words are obtained
(columns to be skipped serve as delimiters to identify the boundaries of coherent
segments). All sequences consisting of only one word are discarded. The remaining
sequences are sorted according to length and, starting from the longest sequence, all
occurrences of the sequences are deleted from all corresponding documents.

3.2 Audio Similarity

In this section, different methods to calculate content-based similarity between mu-
sic tracks are reviewed. Section 3.2.1 deals with timbre-related similarity derived
from MFCC features. Since MFCC-based methods suffer from some undesirable
properties, Section 3.2.2 reviews a rank-based method to alleviate these drawbacks.
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Section 3.2.3 deals with another type of audio features, namely Fluctuation Patterns
that model rhythmic aspects. Finally, Section 3.2.4 reviews an approach to combine
MFCC-based similarity and Fluctuation-Pattern-based similarity. A more detailed
explanation of the methods discussed in this section can be found in [Pohle, 2009].

3.2.1 MFCC-based Spectral Features

MFCCs (Mel Frequency Cepstral Coefficients) are a standard signal processing tech-
nique, originally developed for automatic speech recognition [Rabiner and Juang,
1993], but also effective in music-related tasks (cf. [Logan, 2000]). MFCCs describe
the spectrum of a frame and hence aspects related to timbre. Apart from other
perceptually motivated transformations, the non-linear frequency resolution of the
human auditory system is modelled by transforming the spectral representation of
the frames to the Mel frequency scale. Another central property of MFCC-based
approaches is that information on the temporal order of frames is discarded, i.e.,
all frames are treated equally, irrespective of their position within the piece (“bag-
of-frames”, cf. “bag-of-words” in Section 3.1.1). For music piece modelling, the
resulting set of frames is summarised by clustering and/or calculating descriptive
statistics (cf. [Pampalk, 2006]).

To calculate MFCCs, the signal “is analysed by converting it into mono format
at 22050 Hz sample rate. [...] The signal is cut into frames of length 512 samples
(with a hop size of 512 samples, f0 = 43.1 Hz), and each frame is represented on the
perceptually motivated mel scale by calculating the power FFT and subsequently ap-
plying a triangular-shaped mel filterbank with 36 bands. MFCCs are approximated
by calculating the discrete cosine transform (DCT) on the logarithm of this repre-
sentation”. [Pohle, 2009], p.33. As proposed by [Aucouturier and Pachet, 2002b], 19
MFCCs are calculated on each frame.

In early work for music retrieval, the distribution of MFCC-transformed frames
is described via a global supervised tree-based quantisation and the resulting features
are used to retrieve short samples of sounds or tracks from the same artist [Foote,
1997]. A comparable, but more effective idea is presented in [Seyerlehner et al., 2008].
[Logan and Salomon, 2001] apply a k-means clustering to each song’s distribution
of MFCC-features. Every cluster is described by mean, covariance and a weight
proportional to the number of frames belonging to that cluster. The set of k clusters
is denoted the “signature” of the song. For distance computation of two songs,
signatures are compared using the Earth Mover’s Distance [Rubner et al., 1998].

A similar approach is proposed by [Aucouturier and Pachet, 2002a]. For clus-
tering, a Gaussian Mixture Model (GMM) initialised with a k-means clustering is
applied (cf. [Bishop, 1995]). A GMM models a given distribution as weighted sum
of k Gaussian probability density functions and is trained using the EM-algorithm
(Expectation-Maximization algorithm). To calculate the similarity of two songs,
samples are drawn from each GMM and the likelihood of these samples given the
other GMM is calculated. A symmetric similarity estimation is obtained by averag-
ing the resulting likelihoods. According to [Mandel and Ellis, 2005] and [Pampalk,
2006], it is possible to accelerate this algorithm by a factor of about 20, while classi-
fication accuracies remain almost the same. Instead of using a GMM with multiple
Gaussian components, one track is described by one Gaussian only (using mean and
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the full covariance matrix). The models of two songs can then be directly compared
by calculating a symmetrised Kullback-Leibler divergence on the models. The dis-
tance between these models (and thus their corresponding music pieces) is denoted
by distG.

As pointed out in [Aucouturier and Pachet, 2004], although being in general the
most powerful signal-based approach to model similarity, all variants of Gaussian
modelling of MFCCs are limited in that they exhibit what is called a “glass-ceiling”
in terms of classification accuracy, irrespective of the chosen parameters (i.e., number
of chosen MFCCs, k, distance computation). Furthermore, these approaches have
a strong tendency to develop “hubs”, i.e., some models/songs are significantly more
often to be found among other’s nearest neighbours than expected (also referred
to the “always similar problem”). Since other types of similarity measures do not
exhibit this “hub problem” – or at least have different hubs – while also representing
different musical aspects, combined similarity measures can alleviate this problem
(see Section 3.2.4). Another possibility of dealing with this issue is to perform
post-processing on the obtained distance matrix, as explained in Section 3.2.2.

3.2.2 Post-Processing the Distance Matrix

As described in [Aucouturier, 2006] and [Pohle et al., 2006], the Kullback-Leibler
divergence has some undesirable properties. For example, it can be observed that
some particular pieces, so called hubs, are frequently “similar” (i.e., have a small
distance) to many other pieces in the collection without sounding similar. On the
other side, some pieces are never similar to others. Furthermore, the Kullback-
Leibler divergence does not fulfil the triangle inequality.

To cope with these issues imposed by a distance measure that is no metric, [Pohle
et al., 2006] propose a simple rank-based correction called Proximity Verification
that replaces the distances in the distance matrix D with a rank-based measure. The
entries of each row of the distance matrix D are sorted in ascending order, and each
original entry of the row is replaced with its rank. The resulting distance matrix
(denoted D1 here) is transformed into the final matrix by adding the transpose
(resulting in a symmetric matrix): DPV := D1 + D′

1. The resulting matrix has
a better distribution of distances than the original distance matrix, reduces the
“hubness”, and seems to be better suited as input for subsequent steps such as
clustering (cf. Section 3.3.1).

As a consequence of this modification, all subsequent steps can only utilise the
ranking information of audio similarity, i.e., audio similarity information can only
be used to the extent of whether a piece is most similar, second most similar, third
most similar, etc. to a piece under consideration and not to which numerical extent
the two pieces are considered to be similar.

3.2.3 Fluctuation Patterns

The rhythm-based Fluctuation Patterns (FPs) model periodicities in the audio sig-
nal. In the following, only the main steps in the computation of these features are
sketched. For more details, the reader is referred to the original sources, i.e., [Pam-
palk, 2001] and [Pampalk et al., 2002].
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The feature extraction process is carried out on short segments of the signal,
i.e., every third 6 second sequence. In a first step, an FFT is applied to these audio
segments. From the frequencies of the resulting spectrum, 20 critical-bands are cal-
culated according to the bark scale. Furthermore, spectral masking effects are taken
into account. In a next step, several loudness transformations are applied. As a con-
sequence, the processed piece of music is represented by a number of feature matrices
that contain information about the perceived loudness at a specific point in time in
a specific critical band. In the following stage another FFT is applied, which gives
information about the amplitude modulation. These so-called fluctuations describe
rhythmic properties by revealing how often a specific frequency reoccurs. Addition-
ally, a psychoacoustic model of fluctuation strength is applied since the perception
of the fluctuations depends on their periodicity, e.g., reoccurring beats at 4 Hz are
discerned most intensely. In a final step, the median of all Fluctuation Pattern
representations for the processed piece is calculated to obtain a unique, typically
1,200-dimensional feature vector for each piece of music. These vector features can
be used for similarity calculation, for instance, by calculating Euclidean distances
(see Equation 4.4) or the cosine similarity simcos as defined in Equation 3.3. Fol-
lowing the naming convention by [Pohle and Schnitzer, 2007], for further steps (see
Section 3.2.4), distFP denotes the FP-based distance between two music pieces m
and n defined as distFP (m,n) = 1 − simcos(FP (m), FP (n)), where FP (m) repre-
sents the fluctuation pattern of a track m. Alternatively, FP vectors can be used as
input for clustering algorithms, e.g., as a first step for generating music maps (cf.
Section 3.3).

3.2.4 Combined Similarity

To obtain an improved audio similarity measure that incorporates multiple facets
of music, [Pohle and Schnitzer, 2007] propose a combination of existing similarity
measures. Their algorithm competed successfully in the “Audio Music Similarity and
Retrieval” task of MIREX 20076 and therefore represents one of the world-leading
signal-based similarity measures. Based on an initial approach for combination of
MFCC- and FP-based similarity measures proposed by [Pampalk, 2006], [Pohle and
Schnitzer, 2007] developed the following combination scheme:

To complement the single-Gaussian-MFCC-model-based distance distG and the
FP-based distance distFP , two additional FP-related features are computed: Bass
(FPB) and Gravity (FPG) (for details see [Pampalk, 2006]). These two features
are scalar and the distances between two songs, denoted by distFPB and distFPG,
respectively, can thus simply be calculated by subtracting the corresponding feature
values. Note that, in contrast to Section 3.2.1, here, for the MFCC features, 25
MFCCs are computed on each frame. To obtain an overall distance value distcomb

measuring the dissimilarity of two songs, all described distance measures are com-
bined by a simple arithmetic weighting:

distcomb = 0.7 · zG + 0.1 · (zFP + zFPB + zFPG) (3.10)

where zx is the value of distx after z-normalising, i.e., standardising of values

6http://www.music-ir.org/mirex/wiki/2007:MIREX2007 Results
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by subtracting the mean value of all distances originating from the same feature
and dividing by the standard deviation. Finally, distances between two songs are
symmetrised.

3.3 Music Maps

Music maps are an approach to automatical structuring of music collections based on
features extracted from audio content. In the field of Music Information Retrieval,
a frequently used technique is to apply a Self-Organizing Map (SOM) to arrange a
music collection on a two-dimensional map. The SOM is a widely used technique
for exploratory data analysis and visualisation of high-dimensional data sets. It is
explained in Section 3.3.1.

The first approach to structure music collections using a SOM was presented
by [Rauber and Frühwirth, 2001]. Since then, several extensions and alternatives
have been presented as can be seen in Section 2.4.2. One of the most interesting
among these is the Islands of Music visualisation technique by [Pampalk, 2001] that
can also serve as an user interface to music repositories. The Islands of Music are
reviewed in Section 3.3.2.

3.3.1 Self-Organizing Map

Being confronted with complex high-dimensional data without any class informa-
tion, it is desirable to have methods to explore the data and to automatically find
structures inherent to the data (unsupervised learning). An approach to uncover
such intrinsic structures is clustering. “Clustering is the process of organizing data
instances into groups whose members are similar in some way. A cluster is therefore
a collection of data instances which are ’similar’ to each other and are ’dissimilar’
to data instances in other clusters.” [Liu, 2007], p.117–118.

The SOM is both a clustering method and a data projection method that or-
ganises and visualises multivariate data on a usually two-dimensional map (see [Ko-
honen, 2001]). This is achieved by performing clustering within the feature space
and projecting data instances belonging to a cluster to a corresponding cell on a
grid, i.e., the map. The grid structure of the map is also reflected by the clustering
in feature space (see below). Therefore, data items that are located closely in the
feature space should also be located closely on the map.

More formally, the SOM consists of an ordered set of map units, each of which
is assigned a model vector in the original data space that represents the centre of
a cluster. The set of all model vectors of a SOM is called its codebook. There
exist different strategies to initialise the codebook; here, linear initialisation is ap-
plied, cf. [Kohonen, 2001]. For training, the batch SOM algorithm by [Tai, 1995] is
adopted:

• In a first step, for each data item x, the Euclidean distance (Equation 4.4)
between x and each model vector is calculated. The map unit possessing the
model vector that is closest to a data item x is referred to as the best matching
unit and is used to represent x on the map.
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• In the second step, the codebook is updated by calculating weighted centroids
of all data elements associated with the corresponding model vectors. This
reduces the distances between the data items and the model vectors of the best
matching units and also their surrounding units, which participate to a certain
extent in the adaptations. The adaptation strength decreases gradually and
depends on both distance of the units and iteration cycle. This supports the
formation of large clusters in the beginning and a fine-tuning toward the end
of the training. Usually, the iterative training is continued until a convergence
criterion is fulfilled.

As a result, data items which are similar in the high-dimensional space are
assigned to similar locations on the map. The resulting map allows for insights into
the inherent structure and an overview of the distribution of the data.

The data instances input to a SOM are typically feature vectors since the SOM
makes use of Euclidean distances for clustering. For instance, [Pampalk et al., 2002]
uses Fluctuation Pattern vectors as input. Alternatively, similarity matrices, such
as those originating from the MFCC-based similarity measures after post-processing
(Section 3.2.2) or the combined similarity measures (Section 3.2.4), can be used if
the jth column of the similarity matrix is interpreted as vector representation of the
jth song.7

3.3.2 Islands of Music

The Islands of Music are a technique developed by [Pampalk, 2001] to visualise
SOM-based music maps created from Fluctuation Patterns. The idea is to create
appealing interfaces that build upon a metaphor of geographical maps to illustrate
the distribution of music pieces on the music map. Thus, on an Islands of Music
enhanced map, areas onto which only few pieces of music are mapped are indicated
by blue regions (oceans), whereas clusters containing a larger quantity of pieces are
coloured in green, brown, and white (hills, mountains, and snow, respectively).

To obtain a texture that reflects the (discrete) distribution of pieces on the
SOM grid while appearing to represent a landscape, a so-called Smoothed Data
Histogram (SDH) is calculated. An SDH creates a smooth height profile (where
height corresponds to the number of items in each region) by estimating the density
of the data items over the map. To this end, each data item votes for a fixed number
of best matching map units. The selected units are weighted according to the degree
of the matching. The votes are accumulated in a matrix describing the distribution
over the complete map. After each piece of music has voted, the resulting matrix
is interpolated in order to obtain a smooth visualisation. Finally, a colour model
inspired by geographical maps is applied, to give the impression of an island-like
terrain and to emphasise the resulting height profile.

7A superior method for creating music maps from Gaussian-modelled MFCC features has been
recently described by [Schnitzer et al., 2010]. Instead of creating a similarity matrix and inter-
preting the columns as features, SOM training is performed directly on Gaussian music similarity
features. This approach creates music maps that are less costly to compute and better preserve the
original similarity topology. However, for proof-of-concept of the methods presented in Chapter 4,
the (somehow flawed, but nevertheless) well established method that interprets the columns of a
similarity matrix as feature vectors is applied.
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3.3. Music Maps

Figure 3.3 shows an Islands of Music visualisation created with the CoMIRVA
framework8 developed at the Department of Computational Perception (for details
see [Schedl et al., 2007]).

Figure 3.3: An Islands of Music visualisation created with the CoMIRVA framework.

8http://www.cp.jku.at/comirva/

49



Chapter 3. Methodological Background

50



Chapter 4

Automatically Deriving Music Labels for Browsing

A user interested in finding music – whether known or unknown – is not necessarily
willing to formulate a search-engine-specific query. Instead, the available music
collection might just be explored in an undirected manner. This corresponds to
people’s behaviour when searching for new music in (physical) record stores or when
examining private music collections (cf. [Cunningham et al., 2004]). This process of
undirected exploration is called browsing. As stated by [Baeza-Yates and Ribeiro-
Neto, 1999], p.65, “in general, the goal of a searching task is clearer in the mind of
the user than the goal of a browsing task.” Hence, it is important to support the
user in finding items of interest by providing guidance.

In this chapter, an approach to extend map-based browsing interfaces by means
of semantic descriptors is presented. More precisely, audio-based music maps (cf.
Section 3.3) are labelled with automatically extracted terms that describe the musi-
cal characteristics in the different regions of the map. The resulting Music Descrip-
tion Map can be very useful for browsing large music repositories, since the terms
serve as landmarks on the map, allowing for better orientation. Furthermore, this
technique is incorporated into nepTune, an interactive three-dimensional immersive
interface, to support the user in exploring music collections. A schematic overview
of the techniques elaborated in this chapter can be found in Figure 4.1.

The remainder of this chapter is organised as follows. In the next section, short-
comings of standard music maps are discussed and the development of techniques
for meaningful labelling is motivated. Section 4.2 presents the technical details of
the Music Description Map. Section 4.3 elaborates on the nepTune interface and
the integration of the developed labelling techniques. Section 4.4 reports on evalu-
ating the presented techniques. The chapter finishes with a discussion of the results
(Section 4.5).

4.1 Motivation

Since digital music collections nowadays comprise vast amounts of pieces, automatic
structuring and organisation of large music repositories is a central challenge. One
approach to address this challenge is to perform clustering on features extracted from
the audio-signal to create music maps (cf. Section 3.3). This method of structur-
ing a collection in a two-dimensional layout allows then for browsing by examining
different regions on the map. This can be accomplished by selecting the contained
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Music Collection

Audio Feature Extraction

3D Landscape Generation

Music Map

User

nepTune

Web Retrieval

Feature Extraction

Immersive Exploration

Music Description Map

Facilitated Browsing

Automatic Map Labelling

Figure 4.1: Schematic overview of the methods presented in this chapter. Yellow bars indicate
the methods presented. The focus is put on the steps outlined on the right. Blue bars represent
the final outcome of the presented research, i.e., the Music Description Map technique and the
nepTune user interface.

pieces and listening to them. A drawback of this is that maps tend to get cluttered
very easily when the pieces are represented by their meta-data, for instance by a
combination of artist name and title of the track. An example of such a cluttered
music map can be seen in Figure 4.2. To alleviate this, a possible alternative may
consist in introducing a level of abstraction by not displaying individual track de-
scriptors on each map unit but only the names of the most frequently occurring
artists or the most representative genre descriptors (cf. Figure 4.4). For the latter,
genre information has to be available, however. Furthermore, genre descriptors are
a particularly problematic choice since well-distinguishable and thus easily accessi-
ble genre taxonomies mostly consist of a very limited vocabulary while representing
only broad categories (cf. [Pachet and Cazaly, 2000]). To allow for a more diverse
set of descriptors and a possibly more specific association (while not requiring the
availability of explicit stylistic annotations of collections) the approach to be pre-
sented here makes use of descriptors automatically derived from the Web to find
adequate labels for specific regions on music maps and improve orientation. Hence,
this approach exploits context-based data to augment an interface structured by
means of content-based similarity.1

1While most work that deals with incorporating both music content and context use contex-
tual information to learn the “meaning” of certain acoustic properties (i.e., pursue a bottom-up
approach to overcome the so-called “semantic gap”, cf. sections 2.1.3 and 2.3), in this chapter, a
top-down approach to find a mapping between signal and “meaning” is pursued. Instead of assign-
ing descriptions to certain low-level characteristics of an audio signal, the here proposed technique
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Beginner - Faeule
Black Sabbath - War Pigs

Danii Minogue - I Begin To Wonder
Joseph Haydn - Symphonie Nr. 94 in G-Dur (Paukenschlag), Andante

Michael Jackson - Smooth Criminal
Red Hot Chili Peppers - Fortune Faded
Red Hot Chili Peppers - Give It Away

Vanilla Ice - Ice Ice Baby

Air - Sexy Boy
Beatles - With A Little Help From My Friends

Black Sabbath - Paranoid
Daft Punk - Technologic

Darude - Ecstacy
Die Fantastischen Vier - Tag Am Meer
Duke Ellington - Take The ’A’ Train
Michael Jackson - Give In To Me

Miles Davis - Don’t Explain To Me Baby
Rolling Stones - Ruby Tuesday
The Ramones - Blitzkrieg BopAir - All I need

Beatles - Help
Darude - Feel The Beat

Herbert Groenemeyer - Bleibt Alles Anders
Michael Jackson - Leave Me Alone

Queens Of The Stone Age - No One Knows
Robbie Williams - She’s the one
Rolling Stones - I Got The Blues
Rolling Stones - Love Is Strong

Rolling Stones - Street Fighting Man

Absolute Beginner - Rock on
Air - Alpha Beta Gaga

Air - How does it make you feel
Beatles - Penny Lane
Beatles - Ticket To Ride

Beatles - While My Guitar Gently Weeps
Desmond Dekker - Israelites

Die Fantastischen Vier - Bring It Back
Dr. Dre - Forgot About Dre

Dr. Dre - Still D.R.E
John Lee Hooker - Thought I Heard

John Lee Hooker - Trick Bag
Kraftwerk - Taschenrechner

Kylie Minogue - Love At First Sight
Kylie Minogue - Your Disco Needs You

Laid Back - Sunshine Reggae
Las Ketchup - The Ketchup Song

Lee Konitz - Sound Lee
Loft - Summer Summer

Louis Armstrong - Do You Know What It Means To Miss New Orleans
Ludwig van Beethoven - Adagio Molto E Canabile

Madonna - The Power Of Good Bye
Madonna - What It Feels Like For A Girl

Maxi Priest - Close To You
Metallica - Bleeding Me

Metallica - The House Jack Built
Michael Jackson - Dirty Diana
Pink Floyd - Brain Damage

Pink Floyd - The Great Gig In The Sky
Pink Floyd - Us And Them

Queen - Breakthru
Queen - Friends Will Be Friends

Queen - Headlong

Pink Floyd - Time
Samy Deluxe - Bounce Club

Beastie Boys - Sabotage
Die Fantastischen Vier - Zu Geil Fuer Diese Welt

Eminem - Without Me
Madonna - Beautiful Stranger

Madonna - Music
Madonna - Take A Bow
Natalie Imbruglia - Torn
No Doubt - Don’t Speak
No Doubt - Hey Baby

Pink Floyd - Breathe In The Air
Pink Floyd - Speak To Me
Shaggy - It Wasn’t Me
Sydney Bechet - Indiana

Air - Playground Love
Art Tatum - Body And Soul
Daft Punk - Human After All

Joseph Haydn - Symphonie Nr. 104 in D-Dur (Londoner), Adagio allegro
Metallica - Hero Of The Day

Michael Jackson - Jam
Paul Gonsalves And Ray Nance - B P Blues

Queen - A Kind Of Magic
Rammstein - Stripped

Rolling Stones - Harlem Shuffle
Rolling Stones - Paint It, Black

S Club 7 - S Club Party
Scooter - Nessaja

Scooter - Ramp! (The Logical Song)
Seeed - Dancehall Caballeros

The Strokes - 12_51
The Strokes - Last Night

Absolute Beginner - Hammerhart
EAV - Fata Morgana
Madonna - Erotica

Queen - The Show Must Go On
Thelonious Monk - Crepuscle With Nellie

Beatles - Drive My Car
Queen - Who Wants To Live Forever

Rammstein - Links

Beatles - Yesterday

Muddy Waters - The Same Thing
The Ramones - Cretin Hop

Nelly Furtado - I’m like a bird
Nelly Furtado - Turn off the Light

No Angels - Rivers of Joy

Aaliyah - Come back in one piece
Beatles - Ob-La-Di, Ob-La-Da

Billie Holiday - I Cover The Waterfront
Black Sabbath - Iron Man

De La Soul - Oooh
Die Fantastischen Vier - Vier Gewinnt

Hot Butter - Popcorn
Jimmy Cliff - You Can Get It If You Really Want
Muddy Waters - I Just Want To Make Love To You

Queen - Radio Ga Ga
Seeed - Music Monks

The White Stripes - Dead Leaves And The Dirty Ground
Westernhagen - Nimm mich mit

Willie Dixon - Hoochie Coochie Man

Air - Surfing on a Rocket
Dr. Alban - It’s My Life

Joseph Haydn - Symphonie Nr. 94 in G-Dur (Paukenschlag), Menuetto (Allegro molto)

Ben Webster - Stormy Weather
Eminem - 8 Mile

Norah Jones - Sunrise

Kraftwerk - Trans Europe Express
The White Stripes - Fell In Love With A Girl

Inner Circle - I Shot The Sherrif
The Hives - Two-timing touch and broken bones

A-HA - Take on me
Beastie Boys - Fight for your right
Beatles - Back in the U.S.S.R.
Donald Byrd - Groovin’ For Nat

Herbert Groenemeyer - Ich Dreh Mich Um Dich
The Hives - Dead quote Olympics

The Strokes - Reptilia
Wolfgang Ambros - I wue frei sein

Aaliyah - Try Again
Absolute Beginner - Fuechse
Air - Kelly, watch the stars
All Saints - Pure Shores
Beatles - Eleanor Rigby

Darude - You’re My Fantasy
Kraftwerk - Dentaku

Muddy Waters - Mannish Boy
Pink Floyd - Money

Red Hot Chili Peppers - Californication
Red Hot Chili Peppers - Under The Bridge

Robbie Williams - Rock DJ
Rolling Stones - Satisfaction

The White Stripes - Blue Orchid
Vladimir Horowitz - Adagio In B Minor, K.540

Falco - Out Of The Dark
Joseph Haydn - Symphonie Nr. 94 in G-Dur (Paukenschlag), Allegro di molto

Queen - Under Pressure
The White Stripes - Seven Nation Army

Beatles - Strawberry Fields Forever
Joe Newman - I Feel Like A Newman
Pink Floyd - Any Colour You Like

Robbie Williams - Angels
Wolfgang Amadeus Mozart - Symphony 22 in C major K 162- Andantino gracioso

Ziggy Marley And The Melody Makers - Look Who’s Dancing

Eminem - White America
Falco - Vienna Calling

The White Stripes - The Hardest Button To Button
Wolfgang Amadeus Mozart - Symphony 24 in B flat major K 182- Allegro spirituoso

Beatles - Yellow Submarine
Carribean Connection - Living Live The Sunshine Way

Darude - Laa La La E Oo Eoo
Destiny’s Child - Bootylicious
Howard McGhee - Sharp Edge

No Angels - Daylight In Your Eyes
No Doubt - Just A Girl

Rammstein - Rammstein
Robbie Williams - Supreme
Rolling Stones - Brown Sugar
Rolling Stones - Start Me Up
The Ramones - Pet Sematary

Dexter Gordon - Misty
Madonna - Don’t Tell Me
Michael Jackson - Bad

Red Hot Chili Peppers - Suck My Kiss
Rolling Stones - Out of time

Rolling Stones - You Can’t Always Get What You Want
Vladimir Horowitz - Piano Sonata In B Flat Major, K.281 - Allegro

Willie Dixon - Back Door Man

Beatles - Let It Be
Darude - Out Of Control

Beatles - I Am The Walrus
Ben Webster - Our Love Is Here To Stay

Kraftwerk - Tour de France

Air - Cherry Blossom Girl
No Doubt - Bathwater
Rammstein - Sonne

Robbie Williams - Let me entertain you

Kraftwerk - Die Mensch-Maschine
Kraftwerk - Die Roboter

Samy Deluxe - Mehr Rapshit
Sonny & Cher - I Got You Babe

The Ramones - The KKK Took My Baby Away

Bon Jovi - Keep The Faith
Eminem - My Name Is

Fettes Brot - Da draussen
John Lee Hooker - Boom Boom

Joseph Haydn - Symphonie Nr. 104 in D-Dur (Londoner), Allegro spiritoso
Madonna - Frozen

Madonna - Human Nature
No Doubt - Spiderwebs
Scooter - Forever
Snow - Informer

Westernhagen - Weisst Du, dass ich gluecklich bin

Daft Punk - Around the World
Daft Punk - Burnin’

Daft Punk - Harder, Better, Faster, Stronger
Queen - Innuendo

Rolling Stones - It’s Only Rock And Roll
Rolling Stones - Out Of Tears

Rolling Stones - Sympathy For The Devil
Scooter - How Much Is The Fish

Beatles - Day Tripper
Destiny’s Child - Say My Name

Muddy Waters - Let’s Spend The Night Together
Oscar Pettiford - All The Things You Are

Queens Of The Stone Age - Go With The Flow
Queens Of The Stone Age - Little Sister

Ruby Braff - Hustlin’ And Bustlin’
Sonny Stitt - Lover Man

Beatles - All You Need Is Love

Darude - Let The Music Take Control
EAV - Geld oder Leben
Outkast - Hey Ya

Rolling Stones - Angie

ACDC - Highway To Hell
Beatles - Sgt. Peppers Lonely Hearts Club Band

Bon Jovi - It’s My Life
Die Fantastischen Vier - Sie Ist Weg
Eddy Grant - Gimme Hope Jo’anna

Eminem - Ass Like That
Eminem - Lose Yourself
Pink Floyd - Eclipse
Seeed - Riddim No1

Shaggy - Mr. Boombastic

ACDC - Walk All Over You
D12 - Purple Hills

Die Fantastischen Vier - Die Da
Falco - The Sound Of Musik

John Lee Hooker - Boogie At Russian Hill
John Lee Hooker - Same Old Blue Again

Kraftwerk - Das Modell
Rolling Stones - You Got Me Rocking
Teddy Wilson - Stomping At The Savoy

Beatles - Lady Madonna

Muddy Waters - I’m Your Hoochie Coochie Man

Franz Ferdinand - Take me out
Metallica - King Nothing
Metallica - Until It Sleeps

ACDC - Love Hungry Man
ACDC - Touch Too Much
Bon Jovi - These Days

Die Fantastischen Vier - MfG
Eminem - Just Lose It

Falco - Rock Me Amadeus
Joseph Haydn - Symphonie Nr. 104 in D-Dur (Londoner), Menuetto (Allegro)

Peter Tosh - Johnny B. Goode
Robbie Williams - Kids
Samy Deluxe - Zurueck

Shakira - Objection
Wolfgang Amadeus Mozart - Symphony 22 in C major K 162- Presto assai

t.A.T.u - All the things she said

Bob Marley & The Wailers - Soul Rebel
Daft Punk - Aerodynamic
Daft Punk - Da Funk

Daft Punk - Short Circuit
Destiny’s Child - Survivor

Falco - Jeanny
Inner Circle - Sweat

Ludwig van Beethoven - Molto Vivace
Pink Floyd - On The Run
Scooter - Im Your Pusher

Will Smith - Miami
Wolfgang Ambros - Schifoan

Destiny’s Child - Bills, Bills, Bills
EAV - Ba-Ba-Bankueberfall
Fettes Brot - Emanuela

Ludwig van Beethoven - Presto Allegro Assai
The Ramones - Sheena Is a Punk Rocker

Willie Dixon - You Shook Me
Wolfgang Amadeus Mozart - Symphony 22 in C major K 162- Allegro assai

blur - Song 2

Bangles - Walk like an egyptian
Britney Spears - Oops!...I did it again

Busta Rhymes - Put Your Hands Where My Eyes Could See
D12 - My Band

Rolling Stones - Jumpin’ Jack Flash
Shakira - Wherever, Whenever

Willie Dixon - Spoonful

D12 - Bitch
Darude - Sandstorm
EAV - Maerchenprinz

2Pac - Changes
50 Cent - Wanksta
ACDC - Get It Hot

ACDC - Girls Got Rhythm
Beatles - Get Back

Beatles - Nowhere Man
Bon Jovi - Livin’ On A Prayer

Bon Jovi - You Give Love A Bad Name
Britney Spears - Baby One More Time

Busta Rhymes - Dangerous
Busta Rhymes - Gimme Some More
C.J. Lewis - Sweets For My Sweet

Christina Millian - When You Look At Me
Cyndi Lauper - Girls just wanna have fun

D12 - 40 Oz.
Daft Punk - Robot Rock

Don Byas - A Night In Tunisia
EAV - Heisse Naechte

Eminem - The Real Slim Shady
Falco - Junge Roemer

Falco - Mutter, der Mann mit dem Koks ist da
Fettes Brot - Jein

Fettes Brot - Koennen diese Augen luegen

Bone Thugs ’N’ Harmony - Crossroads
Die Fantastischen Vier - Populaer

Eminem - Bitch Please II
Eminem - Mosh

Eminem - When The Music Stops
Jet - Rollover D.J.

Jimmy Cliff - I Can See Clearly Now
Joseph Haydn - Symphonie Nr. 104 in D-Dur (Londoner), Andante

Metallica - Mama Said
Michael Jackson - Black Or White

Muddy Waters - Tom Cat
Scooter - Back In The U.K.
Seeed - Waterpumpee

Figure 4.2: A very cluttered music map.

An additional contribution of the presented approach – although it is only but
a first step in this direction – is Web-based description and indexing of music at
the track level. While Web-based approaches are capable of capturing information
about artists to a certain extent and thus usually perform well on the artist level
(cf. Section 2.1.2.3), finer distinctions between different tracks of artists have not
found their way into feature representations. Hence, another aim of this chapter is
to specifically bridge the gap between signal-based organisation of music archives at
the level of individual tracks and word descriptors of the work of individual musical
artists. By obtaining a mapping between musical pieces in the audio feature space
and the cultural context, this mapping could also be utilised for indexing of tracks
and to allow for querying a music retrieval system by describing musical contents
with familiar terms (cf. Chapter 5).

The presented technique can further be applied for augmenting nepTune, an
advanced three-dimensional music browsing interface that creates a virtual landscape
for exploration. Using the Music Description Map (MDM) technique, the music
landscape can be enriched with meaningful information and also visual add-ons.
Instead of displaying just meta-data on the landscape for orientation, the user can
then choose to see words that describe the heard music or images that are related to
this content. Thus, besides a purely audio-based structuring, nepTune offers more
contextual information that may trigger new associations in the listener/viewer, thus
making the experience of exploration more interesting and rewarding.

aims at describing groups of musical pieces, i.e., regions on a map, with culturally related terms.
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4.2 Music Description Map

Although neither music maps nor the Music Description Map are bound to a specific
audio similarity measure, first the process of creating the music maps that underlie
the presented technique is described briefly. For audio feature extraction and similar-
ity estimation, an MFCC-based method (cf. Section 3.2.1) has been applied, namely
the similarity measure proposed by [Mandel and Ellis, 2005]. To deal with the in-
herent hub-problem discussed in Section 3.2.1, Proximity Verification as described
in Section 3.2.2 is incorporated. Hence, a distance matrix with a better distribution
of distances is obtained that seems to be better suited as input for the next step,
namely training of a map using the SOM algorithm (see Section 3.3.1). Since the
distance matrix contains the pairwise distances between tracks, whereas the SOM
algorithm expects points in Euclidean space as input, each column of the similarity
matrix is interpreted as one vector in Euclidean space, where the ith row corresponds
to the ith song. As result of the SOM training step and the final assignment of each
data point to its best matching unit, a music map, i.e., a two-dimensional grid that
maps every piece in the collection to one of the contained cells, is obtained.

For the creation of a Music Description Map, three steps have to be performed
that are elaborated in the following sections:

1. Retrieval of information from the Web to create term profile descriptions of
the musical artists contained in the collection

2. Association of each track in the collection with the term characterisation of its
corresponding artist and labelling of the SOM based on these representations

3. Finding similarly labelled units to detect and merge larger coherent regions

4.2.1 Artist Term Profile Retrieval

As mentioned before, while it is non-trivial to find specific information on certain
songs, extracting information describing the general style of an artist is feasible (cf.
Section 2.1.2.3). Usually, the acquisition of artist descriptors is realised by invoking
Google with a query like ”artist” music review and analysing the first 50 or 100
returned pages, by counting term frequency and document frequency for either sin-
gle words, bi-grams, or tri-grams and combining them into the TF·IDF measure (cf.
Section 3.1.3). For the purpose of creating an MDM, this approach is also applica-
ble. However, downloading 100 pages for each artist consumes bandwidth and time
and is not necessarily required. To speed up the artist profile extraction (which is
crucial to allow for integration of the technique in time-critical applications like nep-
Tune in the context of a public installation, cf. Section 4.3.1), the search for musical
style is simplified by formulating the query ”artist” music style and retrieving only
Google’s result page containing the top 100 hits (cf. [Knees et al., 2008b]). Besides
links to the first 100 pages, the result page contains extracts of the relevant sections
(“snippets”) of the pages. Hence, instead of each individual Web page, only the
result page — foremost the snippets presented — is analysed, reducing the effort
to downloading and analysing only one Web page per artist. Another advantage of
analysing only the “digest” of the artist-related pages is to incorporate only infor-
mation from the most important sections of the Web pages, more precisely, the most
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relevant sections with respect to the query. Otherwise, structural analysis of each
Web page would be necessary to avoid inclusion of unrelated text portions (e.g.,
from navigation bars, cf. Section 5.4.1.1). Further, to eliminate musically unre-
lated words, a dictionary approach with a reduced version of the vocabulary created
by [Pampalk et al., 2005] is used. Thus, only occurrences of words or phrases that
are contained in this domain-specific vocabulary T of 944 music-related terms are
counted. The list of contained terms can be found in Table A.1. After obtaining, for
each artist a, a term frequency representation ~tfa = 〈tf(t1, a), tf(t2, a), ..., tf(tn, a)〉
of the vocabulary vector ~t = 〈t1, t2, ..., tn〉 , ti ∈ T for each artist a, the important
terms for each cluster are determined as described next.

4.2.2 Map Labelling

Having obtained artist-related term descriptors, a strategy to determine those words
that discriminate between the music in one region of the map and music in another
is needed. For instance the term Music is not a discriminating word, since it occurs
very frequently for all artists; Piano would be a valuable word to indicate piano
music, assuming piano music forms a distinct cluster on the map.

Considering the requirements imposed by the task, the SOM-labelling strategy
proposed by [Lagus and Kaski, 1999] — originally developed to support the WEB-
SOM technique (cf. [Kaski et al., 1998]) — seems to be the best choice. In the
context of clustering text collections, several other strategies for finding discrimina-
tory labels have been proposed, among them the LabelSOM approach by [Rauber,
1999]. However, while Lagus’ and Kaski’s method determines the importance of
descriptors for each cluster based on the contained items, the LabelSOM approach
selects terms that represent the most relevant dimensions for assigning data to a
cluster in the training phase of the SOM. As a consequence, Lagus’ and Kaski’s
approach can also be used in “situations where the data of interest is numeric, but
where some texts can be meaningfully associated with the data items”, as the au-
thors state in the conclusions of [Lagus and Kaski, 1999]. Hence, this strategy can
be applied for the task at hand, i.e., to label a SOM trained on audio features with
semantic descriptors extracted automatically from the Web.

In the heuristically motivated weighting scheme by [Lagus and Kaski, 1999],
knowledge of the structure of the SOM is exploited to enforce the emergence of
areas with coherent descriptions. To this end, terms from directly neighbouring
units are accumulated and terms from a more distant “neutral zone” are ignored.
The goodness G of a term t ∈ T as a descriptor for unit u is calculated as

G(t, u) =





∑

k∈Au
0

F (t, k)





2

∑

i/∈Au
1

F (t, i)
, (4.1)

where k ∈ Au
0 if the L1 distance of units u and k on the map is below a threshold

r0, and i ∈ Au
1 if the distance of u and i is greater than r0 and smaller than r1. In

the experiments presented in the following, values of r0 = 1 and r1 = 2 have been
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chosen. F (t, u) denotes the relative frequency of term t on unit u and is calculated
as

F (t, u) =

∑

a

f(a, u) · tf(t, a)

∑

v

∑

a

f(a, u) · tf(v, a)
, (4.2)

where f(a, u) gives the number of tracks of artist a on unit u. As a result, for each
unit u, a term-goodness vector ~gu = 〈G(t1, u), G(t2, u), ..., G(tn, u)〉 is obtained. 2

For display of terms, all entries with G < 0.01 are ignored and at most 30
terms are selected to appear on a map unit (provided that there is enough space to
display them). Furthermore, the font size of a term is set according to its score (cf.
Figure 2.2). However, this approach can again lead to very cluttered maps. Another
shortcoming is that many neighbouring units may contain very similar descriptions.
Thus, one could easily happen “not to see the wood for the trees” when orienting
on the map. Since the aim is to provide clearly arranged maps to make it simpler
to find music, the next goal is to find coherent parts of the MDM and join them to
single clusters.

4.2.3 Connecting Similar Clusters

To identify adjacent units with similar descriptors the following heuristic is applied:
First, all units on the map are sorted according to max t∈T {G(t, u)}, i.e., the max-
imum G value of the contained terms. Starting with the highest ranked unit, a
recursive cluster expansion step is performed for all units. In this step, the adja-
cent four neighbours (i.e., those units with an L1 distance of 1 to the unit under
consideration) are examined for similar labels. The idea is to create a single vector
representation that adequately reflects the vectors of both connected units. This is
achieved by calculating cosine normalised versions of both units’ description vec-
tors and comparing them to a cosine normalised version of the vector obtained by
adding both units’ vectors. For comparison, Euclidean distances are calculated.3

More precisely, when investigating whether to join clusters u and v, both units’
term-goodness vectors, i.e., ~gu and ~gv, are normalised to obtain the vectors ĝu and

ĝv, respectively, where ĝu =
〈

Ĝ(t1, u), Ĝ(t2, u), ..., Ĝ(tn, u)
〉

and Ĝ(t, u) is the cosine

normalised goodness value calculated as

Ĝ(t, u) =
G(t, u)

√

∑

s∈T

G(s, u)2
. (4.3)

Both ĝu and ĝv are then compared with the normalised version ĝu+v of the
vector sum ~gu+v = ~gu + ~gv by calculating the Euclidean distances euc(ĝu, ĝu+v) and

2To find the most discriminating terms for each cluster, experiments with the χ2 -test (cf. Equa-
tion 6.2) have also been made. The χ2 -test is a well-applicable method to reduce the feature space
in text categorisation problems. In a final assessment, Lagus’ and Kaski’s approach has been chosen
over the χ2 -test because it incorporates information on the structure of the map as well as yielding
more comprehensible results.

3Alternatively, the cosine similarity could be calculated between the non-normalised vectors.
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euc(ĝv, ĝu+v), with euc(~x, ~y) defined as

euc(~x, ~y) =

√

√

√

√

n
∑

i=1

(xi − yi)
2 (4.4)

If both euc(ĝu, ĝu+v) and euc(ĝv, ĝu+v) are below a threshold (in the following,
an empirically determined value of 0.4 is used), i.e., if the resulting vector ~gu+v is
sufficiently similar to the original ones and thus suitable to represent both original
vectors, the candidate unit is admitted to the cluster. Furthermore, all units in
the cluster are assigned the newly obtained term description vector (i.e., ~gu ←
~gu+v and ~gv ← ~gu+v). Thus, as regions grow larger, corresponding descriptors will
become more important globally. For all absorbed units, this procedure is repeated
recursively until no more clusters can be joined.

4.2.4 Example

An example of an MDM with connected map units can be found in Figure 4.3. For
comparison, the underlying SOM is depicted in Figure 4.4 with genre frequencies
for individual units.

Taking a look at the MDM, one can easily identify the contained music at first
sight or at least get a good impression of the collection (2,572 tracks from 7 genres).
A more detailed examination reveals that Jazz has two major clusters – one consist-
ing of Piano Jazz (together with Classical Music), and one consisting of Trumpet
Jazz. Genres like Metal are also represented through more distinct information (e.g.,
Gothic vs. Power Metal). Adjectives (energetic, percussive, aggressive, etc.) can
give information also to users unfamiliar with the presented style descriptors.

4.2.5 Further Enhancements

As can be seen in Section 4.2.4, pieces from culturally related music styles may form
separated clusters on the map due to acoustic properties that enforce discrimination
by the applied music similarity measure. Hence, similar Web descriptors may appear
in different areas on the map. However, the Web descriptors assigned to each cluster
by means of the MDM can also be considered as an alternative feature representa-
tion in a “semantic” term space. To further unveil these “culturogenic” similarities
between clusters that are placed apart, the additional dimension of similarity may
be visualised by an automatic map colouring approach.

One possibility to map similar term vectors to similar colours consists in apply-
ing a multidimensional scaling (MDS) approach to project each item into a colour
space while preserving gradual differences in similarity as well as clear dissimilarities
(cf. [Kaski et al., 1999]). Hence, similar colours on the map indicate similar music.
Furthermore, for an interactive browsing interface, e.g., realised using a touchscreen,
only the most discriminative words could be displayed statically to allow for a coarse
orientation, while more distinct words appear as soon as corresponding regions are
explored. Figure 4.5 depicts a screenshot of a prototype implementation of such a
Colour MDM.
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Figure 4.3: A Music Description Map with joined similar clusters. The displayed terms describe
the musical style in the different regions of the underlying music map (7×10 SOM) depicted in
Figure 4.4. The size of the terms reflect the importance of the descriptor for the corresponding
region. For reasons of readability, line breaks have been edited manually.
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Figure 4.4: A 7×10 SOM trained on a collection containing 2,572 tracks (by 331 artists)
assigned to 7 different genres.Tracks from Jazz, as well as from Classical, tend to cluster at the
(lower) left, Dance at the top. Centre and right side are dominated by Punk and Metal. Hip-Hop
is mainly found at the bottom. Pop occurs frequently in conjunction with Dance and Hip-Hop.
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Figure 4.5: Screenshot of a Colour Music Description Map prototype. In addition to labels,
similar colours indicate similar music also on disconnected regions on the map. Here, for instance,
red areas indicate electronic dance music. An enclave of Trance music can be spotted easily.

4.3 Augmented Exploration in Virtual Music Landscapes

The potential applicability of the MDM in interactive music browsing interfaces has
already been addressed in the last section. This section deals with the integration of
the MDM technique into the nepTune interface, an innovative three-dimensional user
interface for exploring music collections (cf. [Knees et al., 2006b,Knees et al., 2007b]).

The intention behind nepTune is to provide an interface to music collections that
goes beyond the concepts of conventional User Interfaces (UIs), and hence refrain
from including the components contained in almost every window toolkit. Instead,
it should appear like a video game, making it easy and attractive to use. Built
upon the “Islands of Music” metaphor (see Section 3.3.2), an island landscape is
generated where similar sounding pieces are grouped together and accumulations
of similar music are represented as mountains. Figure 4.6 shows a view on such a
generated music landscape. Within the terrain created, the user can move freely to
explore the contained music collection and also hear the closest sounds with respect
to his/her current position. The aim of integrating the MDM is to automatically
add descriptors of the music that serve as landmarks and thus augment the process
of interactive exploration, as elaborated in Section 4.3.2. Before that, in the next
section, a description of the nepTune system is given.
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Figure 4.6: A view over a nepTune-created music landscape. Exploration of the underlying
collection is enabled by freely navigating through the landscape and hearing the music typical
for the region around the listener’s current position.

4.3.1 Prototype: The nepTune Interface

The general philosophy underlying nepTune is that music collections should be struc-
tured (automatically, by the computer) and presented according to intuitive musical
criteria, and that music interfaces should permit and encourage the creative explo-
ration of music repositories, and new ways of discovering hidden treasures in large
collections. To make this kind of philosophy more popular, the first targeted appli-
cation will be as an interactive exhibit in a modern science museum. Thus, the main
focus was not on the applicability as a product ready to use at home. However, that
could be achieved with little effort by incorporating standard music player func-
tionalities. Before describing the technical details of the interface, the conceptual
background of nepTune is discussed.4

Interface Concept

As a central aspect of the interface, similar sounding pieces are automatically grouped
together. Thus, the more similar pieces the user owns, the higher is the terrain in the
corresponding region. To achieve this, essentially, a music map is created and trans-
formed to an artificial, but nevertheless appealing three-dimensional island landscape
(cf. Figures 4.7 and 4.8). Each music collection creates a characteristic and unique
landscape. Another important aspect of the interface is the fact that the music sur-
rounding the listener is played during navigation. Hence, it is not necessary to select
each song manually and scan it for interesting parts. While the user explores the
collection he/she is automatically presented with audio thumbnails from the closest
music pieces (i.e., the central 30 seconds of each piece), giving immediate auditory
feedback on the style of music in the current region. Thus, the meaningfulness of

4For implementation details, such as underlying software frameworks and libraries, the reader is
referred to the original publications, i.e., [Knees et al., 2006b,Knees et al., 2007b].
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Figure 4.7: Screenshot from the nepTune interface showing a group of Rap music islands in
the front and two connected islands containing piano music in the back.

the spatial distribution of music pieces in the virtual landscape can be experienced
directly. As mentioned, the main intention of nepTune is to provide an interface to
music collections that goes beyond the conventional computer interaction metaphors
and that should be fun to use and engage people. Therefore, rather than construct-
ing an interface that relies on the classical point-and-click scheme best controlled
through a mouse, the whole application is designed to be controllable with a stan-
dard game pad as used for video game controlling. A game pad is well suited for
exploration of the landscape as it provides the necessary functionality to navigate
in three dimensions whilst being easy to handle. Furthermore, the closeness to
computer games is absolutely intended to emphasize the “fun factor”.

In the envisioned scenario, i.e., as an interactive exhibit, visitors are encouraged
to bring their own collection, e.g., on a portable mp3 player, and are given the op-
portunity to explore their collection like a landscape. In its current implementation,
the process is invoked by the user through connecting his/her portable music player
via an USB port. This is automatically recognised by nepTune, and the system then
randomly extracts a pre-defined number of audio files from the player and starts to
extract audio features from these (see below). A special challenge for applications
that are presented in a public space is to perform computationally expensive tasks
like audio feature analysis while keeping visitors motivated and convincing them
that there is actually something happening. Hence, to indicate the progress of audio
analysis, it is visualised via a little animation: small, coloured cubes display the
number of items left to process. For each track, a cube with the number of the
track pops up in the sky. When the processing of an audio track is finished, the
corresponding cube drops down and splashes into the sea. After all tracks have
been processed (and after a clustering and structuring phase that is hidden from the
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Figure 4.8: Another screenshot from the nepTune interface. The large peaky mountain in the
front contains classical music. The classical pieces are clearly separated from the other musical
styles on the landscape. The island in the left background contains Alternative Rock, while the
islands on the right contain electronic music.

user), an island landscape that contains the tracks emerges from the sea. Then, it
is the user’s turn to explore the collection by means of a game pad.

The three-dimensional landscape is displayed in front of the user. As described
before, while moving through the terrain, the closest sounds with respect to the
listener’s current position can be heard from the directions where the pieces are
located, to emphasize the immersion. Thus, in addition to the visual grouping of
pieces conveyed by the islands metaphor, islands can also be perceived in an auditory
manner, since one can hear typical sound characteristics for different regions. For
optimal sensation of these effects, sounds are output via a 5.1 surround audio system.
Detaching the USB storage device (i.e., the mp3 player) causes all tracks on the
landscape to immediately stop playback. The game pad is disabled and the viewer’s
position is moved back to the start. Subsequently, the landscape sinks back into the
sea, giving the next user the opportunity to explore his/her collection.

Technical Realisation

In principle, creation of the islands terrain utilises the same techniques as Pampalk’s
Islands of Music approach (see Section 3.3.2). A difference consists in the audio
extraction step. For the version created to serve as a public installation, the number
of files to process is limited to 50 mainly for time reasons, since the application
should be accessible to many users. From the chosen audio files, the central 30
seconds are extracted and analysed. These 30 seconds also serve as looped audio
thumbnail for spatialised playback in the landscape. The idea is to extract the audio

63



Chapter 4. Automatically Deriving Music Labels for Browsing

features only from a typical section of the track which is usually found in the central
part rather than at beginning or end.

As with the Islands of Music, an SDH is calculated to create a three-dimensional
landscape model that contains the musical pieces. However, in the plain SOM
representation, the pieces are only assigned to a cluster rather than to a precise
position. Thus, a strategy to place the pieces on the landscape has to be developed.
The simplest approach would be to spread them randomly in the region of their
corresponding map unit. That has two drawbacks: the first is the overlap of labels,
which occurs particularly often for pieces with long names and results in cluttered
maps. The second drawback is the loss of similarity information inherent in the
ordering of pieces based on their distance to the unit’s centre. It is desirable to have
placements on the map that reflect the positions in feature space in some way.

The solution finally adopted consists in defining a minimum distance dm between
the pieces and placing the pieces on concentric circles around the map unit’s centre
such that this distance is always guaranteed. To preserve at least some of the
similarity information from feature space, all pieces are sorted according to their
distance to the model vector of their best matching unit in feature space. The
first item is placed in the centre of the map unit. Then, on the first surrounding
circle (which has a radius of dm), at most (2π ≈ 6) can be placed such that dm is
maintained (because the circle has a perimeter of 2dmπ). The next circle (radius
2dm) can host up to (4π ≈ 12) pieces, and so on. For map units with few items,
the circle radii are scaled up, to distribute the pieces as far as possible within the
unit’s boundaries. As a result, the pieces most similar to the cluster centres are kept
in the centres of their map units and also distances are preserved to some extent.
More complex (and computationally demanding) strategies are conceivable, but this
simple approach works well enough for the given scenario.

To allow for a more focused browsing, when moving through the landscape labels
of pieces far away from the listener are faded out. This is accomplished by utilising
the mipmap functionality of the used rendering engine (see [Williams, 1983]). Hence,
only the pieces close to the current position are clearly visible, while more distant
pieces are just indicated. To still allow for an overview over the music contained in
other regions, the MDM is incorporated as described in the next section.

4.3.2 Incorporating Web-Based Labels and Images for Orientation

In addition to the auditory feedback that supports the user in exploring the collec-
tion, meaningful term descriptors of the music in the specific regions that serve as
landmarks and facilitate orientation can be very useful. Since both nepTune and
MDM build upon the idea of music maps, integrating the MDM into nepTune to
enable this additional feature is a straightforward task. However, after creating the
MDM, placement of the terms to be displayed on the landscape is non trivial. For
the MDM, relevance of terms to map units can be easily grasped since they are
displayed either directly on the grid’s corresponding cell or, in the case of connected
clusters, within their larger boundaries, since separating grid markers are removed
in order to indicate the coherence of similar cells (cf. Figure 4.3). On the nepTune
landscape, the structure of the underlying SOM should be concealed from the user.
Thus, no grid lines or other markers indicate the boundaries of the clusters. Display-
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Figure 4.9: nepTune with integrated MDM: Important terms serve as visible landmarks.

ing terms on the landscape such that they can serve as landmarks for orientation
therefore requires a strategy that positions terms in an intuitive fashion.

To find suited positions for the descriptors on the map, the following heuristic is
applied: First, the centre of each description cluster has to be determined. To this
end, the centre of gravity of all contained map units of a connected cluster is calcu-
lated. In case the centre of gravity lies outside the area of any of the connected map
units, the centre of the closest contained map unit is chosen instead. For terms with
a term-goodness score G > 0.33 (cf. Section 4.2.2), the same positioning strategy
as for the music pieces is applied, i.e., placement of the term labels on concentric
circles around the cluster’s centre. Starting with placing the label of the highest scor-
ing term in the centre, labels are assigned to surrounding circles according to their
ranking of G values. For terms with a term-goodness score G ≤ 0.33, corresponding
labels are distributed randomly within the corresponding map unit cluster.

Regarding the presentation of the labels, the same technique as on the MDM,
i.e., selection of the label’s font size depending on the score of the term, is again
applied here. Hence, terms that are very important for specific clusters have better
visibility in the landscape. Together with the mipmap functionality also applied
to music piece labels, i.e., fading out labels as they become smaller, this results
in a few landmarks visible over a long distance (see Figure 4.9) that support a
global orientation. Other, more specific labels only become apparent when the
corresponding regions are explored (see Figure 4.10).

In addition to displaying related terms to allow for an augmented exploration of
the nepTune landscape, exploration can be enriched with an alternative mode that
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Figure 4.10: nepTune showing specific terms describing the surrounding music.

adds extra visual elements, more precisely images from the Web that are related to
the artists and the nouns on the MDM. To obtain related images, the images search
function of Google is invoked. For each track, a query consisting of the corresponding
artist’s name is sent to Google and one of the three highest ranked images is then
displayed instead of the track’s meta-data on the landscape. For each noun appearing
on the MDM-enhanced landscape, a related image is obtained by sending the noun
itself as query and randomly selecting one of the first ten retrieved images to be
displayed instead of the noun. Adjectives appearing on the landscape are ignored
since searching for adjectives in an image search results mostly in inappropriate
results, especially in the music context. Figure 4.11 depicts the image-enhanced
version of the scenery contained in Figure 4.10. It should be noted that no further
filtering mechanisms that aim at identifying “correct” visual content are applied.
The intention is just to add another dimension of fun and enjoyment by incorporating
images from “the Web” irrespective of whether these are relevant from a traditional
IR perspective or completely unrelated to the contained music. Hence, for Rock
music images of rocks may appear as well as pictures of houses for House music.

After incorporating the MDM and the mode containing related images, nepTune
now provides a total of four different modes to explore the landscape, namely a plain
landscape mode without any labels, the default mode that displays artist name and
song name as given by the ID3 tags of the mp3 files, the MDM mode with typical
words that describe the heard music, and a mode where images from the Web are
presented that are related to the artists and the descriptions. For comparison,
screenshots of these four modes can be seen in Figure 4.12.

4.3.3 Extensions and Future Directions

In its current state, nepTune has a focus on interactive exploration rather than
on providing full functionality to replace existing music players. However, recently
extensions that allow to use nepTune to access, for instance, private collections at
home have been made. A central step in this direction is allowing the user to select
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Figure 4.11: nepTune showing images based on artists and related nouns (cf. Figure 4.10).

specific tracks. Currently, this is accomplished by putting the focus on the closest
track in front of the listener’s position. Pressing a button on the game pad then
confirms the selection. This enables focused listening, i.e., listening to a specific
track from beginning to end, and would give the opportunity to present additional
track-specific meta-data for the currently selected track, i.e., as in other music player
applications, further ID3 tags like album or track length, as well as lyrics or the cor-
rect album covers could be displayed. Furthermore, by enabling selection of specific
tracks, the application can be easily extended to provide such useful methods as
automatic playlist generation, as has been done recently by [Krenmair, 2008]. This
extension allows to determine a start and an end song on the map and then finds a
path along the distributed pieces on the map that serves as playlist.5 Such a path
can be easily visualised on the landscape and provide some sort of “auto-pilot mode”,
where the movement through the landscape is done automatically by following the
playlist path (Figure 4.13).

The biggest challenges are presented by larger collections (containing tens of
thousands of tracks). One option could consist in incorporating a hierarchical ex-
tension to the SOM such as the GHSOM (e.g., [Rauber et al., 2002]). Another option
could be a level-of-detail approach that makes use of the music descriptors extracted
from the Web. At the top-most level, i.e., the highest elevation, only broad descrip-
tors like musical styles would be displayed. Reducing the altitude would switch to
the next level of detail, making more distinct descriptors appear, along with very
important artists for that specific region. Single tracks could then be found at the
most detailed level. Thus, the relatedness of the interface to geographical maps
would be emphasised and the application would act even more as a “flight simulator
for music landscapes”.

Another future application scenario concerns mobile devices. Currently, versions
of the nepTune interface for Apple’s iOS platform and Google’s Android platform
are being developed. While the audio feature extraction step still should be carried

5A similar idea to create playlists by selecting start and end songs has later been published
by [Flexer et al., 2008].
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(a) (b)

(c) (d)

Figure 4.12: Four screenshots from the same scene in nepTune’s four different exploration
modes. (a) depicts the plain landscape without any labels. (b) shows the default mode, where
artist and song name are displayed. Since the island contains Rap music, tracks of artists like
Busta Rhymes and NaS can be found. (c) shows the MDM mode with typical words that
describe the music, such as Rap, Gangsta, West Coast, lyrical, or Mainstream. (d) depicts the
mode in which related images from the Web are presented on the landscape. In this case, these
images show Rap artists (Busta Rhymes, 2Pac, etc.), as well as related artwork.

out on a personal computer for reasons of performance and battery runtime, it is
possible to perform the remaining steps, i.e., training of the SOM and creation of
the landscape, on the mobile device. Considering the ongoing trend toward mobile
music applications and the necessity of simple interfaces to music collections, the
nepTune interface could be a useful and fun-to-use approach to accessing music also
on portable devices.

4.4 Evaluation

This section deals with evaluating the MDM technique for labelling music maps as
well as the nepTune interface. In both cases, a small group of humans has been
drawn on to assess the qualities of the approaches. In the case of the MDM, a
quantitative evaluation has been carried out, for the nepTune interface, participants
have been asked to report on their impressions when using the system.
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Figure 4.13: Using nepTune for automatic playlist generation

4.4.1 User Evaluation of the Music Description Map

Evaluating the MDM quantitatively is non trivial. The main reason is the lack of any
form of ground truth, i.e., a corpus of music pieces specifically pre-labelled with the
used Web vocabulary. Furthermore, it is not the primary intention of the evaluation
to assess the quality of the retrieved Web data with respect to a given ground
truth, but rather to see whether the derived cluster descriptors can assist users in
browsing music collections. More specifically, it is of interest to investigate if users
can predict which music they will find in which regions, i.e., if the region-specific
descriptors are useful. Hence, six users were asked to provide a small selection of
music pieces from their personal collection, i.e., music they are familiar with. Based
on every collection, a small MDM (6×4) was created, which was presented to the
corresponding user together with a list of the contained music pieces. The users
were then asked to assign each track to the cluster that best describes each track
in their opinion. In case of uncertainty, it was also possible to select a second best
matching cluster. The results of this evaluation can be found in Table 4.1. For each
participant, the collection size (i.e., how many tracks were made available for the
study by each participant), the number of emerging description clusters, and the
number of tracks correctly located (at first try, at second try, or in total) are given.
The total number of matching assignments is also related to the collection size and
expressed in terms of percentage.

Obviously, the results are very heterogeneous. At first glance, a high number of
emerging clusters seems to be responsible for poor results. A deeper investigation
reveals that both, high number of clusters and bad results, have the same sources,
namely many non-English music pieces and many outliers, i.e., single pieces that
are placed on the map away from the others and therefore form their own distinct
description clusters. In test case 6, the collection basically consisted solely of Rap
and Dance music with strong beats and all clusters on the map were labelled very
similarly. In contrast, collections that contained consistent subsets of music (which
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Test Person 1 2 3 4 5 6 total

Tracks in Collection 54 35 28 45 51 41 254
Clusters on MDM 8 5 13 8 6 12

Matching Assignments (1st Choice) 21 18 7 10 42 7 105
Matching Assignments (2nd Choice) 5 4 n.a. 6 3 0 18

Total Matching Assignments 26 22 7 16 45 7 123
Total Matching Assignments (%) 48.1 62.9 25.0 35.6 88.2 17.1 48.4

Table 4.1: Evaluation results of track to MDM cluster assignment.

could be identified by the audio measure) led to few large, clearly separated clusters.
On these collections, highest matchings between MDM and user opinions could be
observed. The conclusion drawn from this evaluation is that the quality and useful-
ness of descriptions relies heavily on the consistency of the cluster contents and the
separability of the music collection. Since the capabilities of the underlying similar-
ity measure are key factors to both of these aspects, the sensitivity of the approach
to the used audio-based features becomes apparent.

4.4.2 Qualitative Evaluation of the nepTune Interface

To gain insights into the usability of nepTune, a small user study has been conducted.
Eight persons were asked to play with the interface and to report on their impressions
afterwards. In general, responses were very positive. People reported that they
enjoyed the possibility to explore and listen to a music collection by cruising through
a landscape. While the option to display related images on the landscape was
generally considered to be a “nice-to-have” extension, the option to display related
words was rated to be a valuable add-on, even if some of the displayed words were
confusing for some users. Controlling the application with a gamepad was intuitive
for all users.

Sceptical feedback was mainly caused by music auralisation in areas where differ-
ent styles collide. However, in general, auralisation was rated positively, especially in
regions containing Electronic Dance Music, Rap/HipHop, or Classical Music, since
it assists in quickly identifying groups of tracks from the same musical style. Two
users suggested creating larger landscapes to allow more focused listening to certain
tracks in crowded regions — a feature that has been enabled in nepTune in the
meantime by allowing to select specific tracks (cf. Section 4.3.3).

4.5 Recapitulation and Discussion

This chapter has dealt with the application of meaningful descriptors to music pieces
arranged on a music map. The descriptors are automatically extracted from the Web
and assigned to the pieces using a top-down technique called Music Description Map
(MDM). Furthermore, the MDM technique has been incorporated into the nepTune
music exploration interface to allow for better orientation when navigating through
the virtual landscape.
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As can be seen in Figure 4.3, in most cases, terms describing the style and genre
of music are typically most important (i.e., most discriminative) to describe the
content of a cluster and to aid the user in finding music. However, experiments with
users showed that there is still ample space for improvements. While well known
music is substantially represented on the Web and can also be sufficiently captured
by the used vocabulary, many non-English music styles can not be described and
result in misleading terms. Furthermore, acoustic outliers that are not clustered
with other pieces also impose some problems on the labelling. In fact, the MDM
assumes a “perfect” underlying similarity measure and clustering, meaning that
clusters should generally contain consistent music that can be described by the used
vocabulary and that no outliers should be placed on the map (although it is clear
that this will never be satisfied in practice, it should be stated that unexpected
descriptions on the map are frequently caused by misplaced music pieces).

Since a hybrid technique like the MDM operates on the combination of content-
and context-based music information, a mismatch between these two complemen-
tary sources, leading to surprising results, is very likely. Hence, one can not expect
to get perfect descriptions all the time. However, it has been shown that the pre-
sented technique is capable of incorporating contextual information sufficiently well
to support users in finding music. Especially in the context of the nepTune interface,
which puts an emphasis on the entertaining aspects of music browsing and does not
require a perfectly labelled landscape, the MDM has proven useful. In summary,
integrating the MDM technique has extended nepTune to a multimedia application
that examines several aspects of music and incorporates information at different
levels of music perception — from the pure audio signal to culturally determined
meta-descriptions — which offers the opportunity to discover new aspects of music.
Not least due to the MDM extension, this makes nepTune an interesting medium
for exploring music collections.
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Chapter 5

Larger Scale Indexing and Retrieval of Music via

Web-Data

While the focus so far was on deriving music-specific terms from the Web mainly
for labelling of pieces to support the process of browsing, this chapter presents
approaches to automatically build a search engine for music collections that can
be queried through natural language. The goal is to perform music piece indexing
also on a larger scale and eliminate the necessity of pre-clustering a music collection
based on audio features.

Most existing (purely text-based) approaches to music search engines depend on
explicit manual annotations and meta-data assigned to the individual audio pieces.
In contrast, here, based on the ID3 tags of a collection of mp3 files, relevant Web
pages are retrieved via a Web search engine and the contents of these pages are
used to characterize the music pieces. This allows for unsupervised indexing using a
rich vocabulary. Conceptually, this approach is comparable to Web image indexing
approaches that make use of contextual text information (see Section 2.2.2). How-
ever, the difference is that in this case the indexed music pieces are not necessarily
located on the Web, and therefore a direct (local) context is not available. Thus, the
context has to be “approximated” by exploiting Web pages that contain references
to the tracks’ meta-data. In the following, various methods and possible extensions
are investigated, namely

• two different indexing (and retrieval) techniques,

• techniques for filtering of noisy data, and

• a technique to incorporate audio-based similarity information.

A schematic overview of the techniques elaborated in this chapter can be found
in Figure 5.1.

5.1 Motivation

Over the past years, using text-based search engines has become the “natural” way
to find and access all types of multimedia content. While there exist approaches to
automatically derive and assign “semantic”, natural language descriptors for images,
videos, and – of course – text, the broad field of (popular) music has not drawn
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Music Collection

Audio Analysis

Audio Similarity

User

Web Retrieval

Page Filtering / Noise Removal

Text-Based Retrieval

Music Search Engine

Query-by-Description

Searching

Indexing

“Ground Truth”

Test Queries and Annotations

Cross Validation Evaluation

Audio-Based Re-Ranking

Figure 5.1: Schematic overview of the methods presented in this chapter. Yellow bars with
solid border indicate the steps proposed to build a text-based music search engine; dashed
borders indicate optional steps also presented in this chapter, i.e., page filtering prior to indexing
(unsupervised as well as supervised by exploiting the ground truth information represented by
the red box) and re-ranking of results based on audio similarity.

that much of attention. Basically all existing music search systems, e.g., those
offered by commercial music resellers, make use of manually assigned subjective
meta-information like genre or style (in addition to more or less objective meta-
data categories like artist name, album name, track name, or year of release) to
index the underlying music collection. A person interested in finding music, e.g., a
potential customer, must have a very precise idea of the expected results already
before issuing the query. The intrinsic problem of these indexing methods is the
limitation to a rather small set of meta-data, neither capable of capturing musical
content nor cultural context of music pieces.

However, as digital catalogues rapidly become larger and more inconvenient
and inefficient to access, the need for more sophisticated methods that enable in-
tuitive searching inside large music collections increases. For example, instead of
just retrieving tracks labelled as Rock by some authority, a system should allow
for formulating a query like “Rock with Great Riffs” to find songs with energetic
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rock with great riffs

1. Chuck Berry - Roll over Beethoven
2. Def Leppard - Pour some sugar on me
3. Pantera - Becoming
4. Buffalo Springfield - Mr. Soul
5. Bob Seger - Turn the page
6. Thin Lizzy - Don’t believe a word
7. Seismic Anamoly - Wreckinball
8. Screaming Trees - Nearly lost you
9. Lynyrd Skynyrd - Sweet Home Alabama

10. Queen - We will rock you
11. Led Zeppelin - Immigrant song
12. AC/DC - Dirty deeds done dirt cheap
13. Carl Perkins - Matchbox
14. White Stripes - Hotel Yorba
15. Urge Overkill - Sister Havana
16. Darkness - I believe in a thing called love
17. Steely Dan - Rikki don’t lose that number
18. Kiss - Deuce
19. Cheap Trick - Dream Police
20. Soundgarden - Black hole sun
21. Standells - Dirty water
22. Black Sabbath - Black Sabbath
23. Byrds - Wasn’t born to follow
24. Black Crowes - Thorn in my pride
25. Sex Pistols - Pretty vacant
26. Troggs - Wild thing
27. Smashing Pumpkins - Rocket
28. Boston - More than a feeling
29. Steppenwolf - Born to be wild
30. Strawbs - New world

dreamy

1. Psychetropic - Dead slow day
2. My Bloody Valentine - When you sleep
3. Mazzy Star - Fade into you
4. T. Rex - Children of the revolution
5. Kourosh Zolani - Peaceful planet
6. Stereolab - Cybeles reverie
7. Altered Images - Don’t talk to me about...
8. Aerobic Jonquil - Sweat machine
9. Michael Masley - Advice from the angel...

10. Catherine Wheel - Black metallic
11. Cat Power - He war
12. Air - Sexy boy
13. Myles Cochran - Getting stronger
14. Kenji Williams - I’m alive
15. Yo la tengo - Tom Courtenay
16. Shins - New slang
17. Cure - Just like heaven
18. Alicia Keys - Fallin’
19. Stan Getz - Corcovado quiet nights...
20. Spiritualized - Stop your crying
21. Kraftwerk - Spacelab
22. Association - Windy
23. Seismic Anamoly - Wreckinball
24. Williamson - What’s on the ceiling...
25. Arthur Yoria - At least you’ve been told
26. Sundays - Here’s where the story ends
27. Sebadoh - Soul and fire
28. Emma’s Mini - Lost
29. Cranberries - Linger
30. Manassas - Bound to fall

Table 5.1: Exemplary rankings for the queries rock with great riffs and dreamy as returned by
one of the retrieval approaches presented in this chapter. Bold entries indicate relevant results
according to the author of this thesis.

guitar phrases. Table 5.1 shows an exemplary ranking obtained for that query to
demonstrate the potential of the methods presented in this chapter. Clearly, music
resellers with very large music databases or music information systems could benefit
from such an engine, as it provides access to their catalogue in the most common
and most accepted manner.

The presented methodology builds upon the work by [Knees et al., 2007a], who
present first steps towards the task of building a search system capable of satisfying
arbitrary natural language queries. In this first approach, for each track in a collec-
tion of mp3 files, a set of relevant Web pages is retrieved via Google. This textual
data allows to represent music pieces in a traditional term vector space (cf. Sec-
tion 3.1.3). Additionally, this contextual information is combined with information
about the content by incorporating an audio similarity measure, which allows for
reduction of the dimensionality of the feature space, as well as description of music
pieces with no (or little) related information present on the Web. This method is
also applied in Chapter 6 where it provides the foundation for the adaptive retrieval
method proposed. Hence, for details about this first approach, the reader is re-
ferred to Chapter 6 and [Knees et al., 2007a]. Throughout this chapter, interesting
differences to the initial approach are pointed out.

In this chapter, the research initiated in [Knees et al., 2007a] is substantiated and
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further steps towards a textually driven music search engine are presented. The idea
of collecting Web pages via a Web search engine as a data source also pertains to the
methods presented here. Building upon that type of data, two different indexing
and corresponding retrieval strategies are elaborated (Section 5.3). Furthermore,
the effects of noisy data detection and filtering as well as the potential of audio-
based ranking modifications are investigated (sections 5.4 and 5.5, respectively).
For extensive evaluation, two test collections with different characteristics as well as
two different Web search engines are employed.

5.2 Web-Data Acquisition

The idea of Web-based indexing is to collect a large number of texts related to
the pieces in the music collection to gather many diverse descriptions (and hence a
rich indexing vocabulary) and allow for a large number of possible queries. As in
Chapter 4, where overcoming the limitation of Web-MIR approaches to the artist
level forms one of the goals, also for this task it is an objective to derive descriptors
for individual tracks. In contrast to Chapter 4, this is not accomplished by finding
discriminative terms based on an audio similarity clustering, but by obtaining more
specific data from the Web. However, typically, when trying to obtain track-specific
Web pages, the number of available pages varies considerably depending on the track
in question (cf. [Knees et al., 2007a]). To gather information that is very specific for
a track but also to gather a high number of available Web pages (via artist related
pages), the results of three queries that are issued to a Web search engine are joined
for each track m in the collection M :

1. “artist” music

2. “artist” “album” music review -lyrics

3. “artist” “title” music review -lyrics

While the first query is intended to provide a stable basis of artist related docu-
ments, the second and third query target more specific pages (reviews of the album
and the track, respectively). The additional constraints to the queries have been cho-
sen based on experiences in related work, cf. [Knees et al., 2008b]. Since searching
for album or track names typically yields a majority of results containing corre-
sponding lyrics (which, in general, do not consist of the desired type of descriptors),
the -lyrics constraint is added to exclude as many of these pages in advance as pos-
sible.1 For each query, at most 100 of the top-ranked Web pages are downloaded.
The set of pages associated with music track m is in the following denoted as Dm

and consists of all Web pages retrieved via the queries described. That is, in case
of completely distinct result sets for the three queries, a total of 300 Web pages is
assigned to each track. Furthermore, all retrieved documents are also stored in an
index I =

⋃

m∈M Dm.

1Unfortunately, it is not feasible to completely filter all lyrics pages by adding constraints to the
query. Additionally, it has to be kept in mind that there is a trade-off between filtering all unwanted
material and unintentional removal of relevant information, e.g., on review pages that contain links
to lyrics.
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In practice, the Java-based open source search engine Nutch is applied to per-
form the retrieval of all Web pages and to store them in a Lucene index. This allows
for efficient access to the retrieved documents in the following steps (cf. Section 3.1).

5.3 Indexing and Retrieval

After obtaining and indexing the related Web pages, the next step consists in ap-
plying methods to associate the textual data with the music pieces (music piece
indexing) and to develop methods that enable music piece retrieval based on these
indexing strategies. As mentioned, the idea is to collect a substantial amount of
texts related to the pieces in the music collection to obtain diverse descriptions and
a rich indexing vocabulary that allows for a large number of possible queries. In the
initial approach in [Knees et al., 2007a], virtually any query is permitted by involv-
ing Google and downloading the top results for automatic query expansion, i.e., by
finding additional, related terms to broaden the result set.2 By using the standard
retrieval approach included in Nutch (see sections 3.1.2 and 3.1.3), the methods
presented here restrict the indexing vocabulary to terms that are included in the re-
trieved Web data. This is not necessarily a drawback, since this still comprehensive
vocabulary is limited to terms that actually occur in the context of the music pieces.
The reasons for the decision to waive on-line query expansion are manifold. First,
the dependency on Google to process queries is a severe drawback. Besides the fact
that automatically querying Google is limited to 1 000 queries per day, it is very
uncommon to need access to the Internet to query a local database. Furthermore,
response time of the system increases by the time necessary to perform the on-line
search and download the Web pages.

Therefore, the two methods presented in the following only build upon the data
obtained in the initial data acquisition step. The first method is conceptually very
similar to the method presented in [Knees et al., 2007a], but uses the Lucene scoring
scheme for retrieval. The second method pursues a different scoring approach centred
around relevance ranking of Web pages based on the Nutch index.

5.3.1 Pseudo Document Vector Space Model Approach

The basic idea behind this approach to associating Web-data to individual music
pieces is simply to agglomerate all information found and treat this agglomeration
as one document. More precisely, for each music piece m, all retrieved texts (i.e.,
all texts d ∈ Dm) are concatenated into a single pseudo document ψm. All resulting
pseudo documents are then indexed (see Section 3.1.2). Hence, each music piece

2In [Knees et al., 2007a], a query to the system is processed by adding the constraint music
and sending it to Google. From the 10 top-ranked Web pages, the “expanded” query vector is
constructed, i.e., a TF·IDF vector in the same feature space as the term vectors for the tracks
in the music collection. This less sparsely populated query vector is then compared to the music
pieces in the collection by calculating cosine distances between the respective vectors. Based on the
distances, a relevance ranking is obtained. Since no thresholding or other constraints are applied for
ranking, in [Knees et al., 2007a], for a query, the whole collection is sorted according to relevance.
In contrast, for the methods presented here, in a first step only tracks that contain any of the query
terms are selected. After that, only this subset of the collection is ranked according to relevance.
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Figure 5.2: Schematic overview of the pseudo document approach to indexing and retrieval.

is directly represented by a single text document within the index. A schematic
overview of the pseudo document approach can be seen in Figure 5.2.

For retrieval, relevance of music pieces with respect to a query q is obtained
by querying the pseudo document index with q. Relevance of the indexed pseudo
documents with respect to q is obtained by calculating the Lucene scoring function
score(q, ψm) for each document ψm that contains at least one term from the query
q (cf. Equation 3.4). As a result, a ranking of pseudo documents is obtained, i.e., a
sequence of ψi, i ∈M . This ordered list of ψi is directly interpretable as a ranking of
i where i ∈M , i.e., a ranking of music pieces since there exists a direct and unique
mapping between music piece i and text document ψi.

The advantage of this approach is that the problem of music indexing is trans-
ferred to the text domain. Therefore only a standard text indexing technique is
needed which is favourable since retrieval of text documents is a well-researched
topic and retrieval systems are optimised in terms of performance.

5.3.2 Web-Document-Centred Approach

This alternative method to obtain a relevance ranking of music pieces with respect to
a given text query operates directly on the index of individual Web pages I. Instead
of just joining all available information for one music piece without differentiating
and constructing pseudo documents that are heterogeneous in structure and content,
a simple ranking function is introduced to propagate relevance information from a
Web document ranking to scores for individual music pieces.

More precisely, relevance of a music piece m with respect to a given query q
is assessed by querying I with q (and obtaining a ranking of Web pages according
to the Nutch/Lucene scoring function, see Equation 3.4) and applying a technique
called rank-based relevance scoring (RRS) to the n most relevant Web documents
in I with respect to q. RRS exploits the associations between pages and tracks
established in the data acquisition step. A schematic overview of this approach can
be seen in Figure 5.3.

The idea of the RRS scoring function is that if a Web page is highly relevant to
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Figure 5.3: Schematic overview of the Web-document-centred approach to indexing and re-
trieval.

query q, this might also be an indicator that the music piece(s) for which this Web
page was relevant in the data acquisition step is also highly relevant. A Web pages
that is not as relevant to q is seen as indicator that associated music pieces are also
not as relevant to q. This relation is expressed in the RRS scheme by exploiting
the rank of a Web page p within the Web page ranking obtained for query q. The
relevance score of a music piece is assessed by summing up the negative ranks of all
associated Web pages occurring in the page ranking.

RRSn(m, q) =
∑

p∈Dm∩Dq,n

RF (p,Dq,n) (5.1)

RF (p,Dq,n) = 1 + |Dq,n| − rnk(p,Dq,n) (5.2)

Here, n denotes the maximum number of top-ranked documents when querying
I, Dq,n the ordered set (i.e., the ranking) of the n most relevant Web documents in
I with respect to query q, and rnk(p,Dq,n) the rank of document p in Dq,n. For
music retrieval, the final ranking is obtained by sorting the music pieces according
to their RRS value.

Note that compared to the first RRS formulation in [Knees et al., 2008a], the
additional parameter n is introduced to limit the number of top-ranked documents
when querying the page index. For large collections, this is necessary to keep re-
sponse times of the system acceptable.3

3Furthermore, as suggested by [Turnbull et al., 2008a,Barrington et al., 2009], a weight-based
version of relevance scoring (WRS) that incorporates the scores of the Web page retrieval step
rather than the ranks, has been explored. In preliminary experiments this modification performed
worse and is therefore not further considered. Possible explanations for these inconsistent results
are the differences in the underlying page scoring function and the different sources of Web pages
(cf. [Turnbull et al., 2008a]).
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5.4 Selection of Pages Using Filtering Techniques

In the data acquisition step, additional constraints have been applied to the query
strings to limit the set of retrieved data to texts that contain useful terms for in-
dexing the corresponding music pieces. Although these constraints are useful in
acquiring more targeted Web pages, still not all retrieved information is relevant.
Incorporating irrelevant information, however, likely affects the indexing quality.
The goal of this section is to identify and filter out texts that lead to retrieval of
irrelevant tracks.

As can be seen from evaluations previously published in [Knees et al., 2008a]
and [Knees et al., 2009], precision, i.e., the fraction of relevant results among all
retrieved documents (cf. Section 5.6.2), hardly ever exceeds 30% using the above
mentioned scoring approaches on the acquired Web data. That is, rankings usually
contain more than twice as many irrelevant pieces as relevant ones. Based on this,
subsequent steps such as combination with audio similarity (cf. Section 5.5) may
also suffer from erroneous input. Clearly, the underlying Web pages are responsible
for the high number of irrelevant pieces. For indexing as described above, all pages
returned by the Web search engine are considered relevant, irrespective of whether
they actually contain information about or descriptions of the corresponding music
piece or artist. Furthermore, the page indexer does not distinguish between text that
occurs in the “main part” of the Web page and text that is used for navigation or
links to stories about other, completely unrelated artists. Thus, to improve precision
of the retrieved set of music pieces, in the following, four different filtering approaches
to remove noisy information and documents are proposed.

5.4.1 Unsupervised Filtering

The characteristic of these filters is that they aim at identifying misleading texts
without information from external sources. Hence, they can be applied to the index
I directly after building it. The first filter does not remove full documents from
the index, but tries to identify those portions within the indexed text that do not
contain specific information. The second approach identifies and removes complete
documents. Both strategies can be applied prior to the pseudo document vector
space model approach (Section 5.3.1), as well as the RRS-based document-centred
approach (Section 5.3.2).

5.4.1.1 Alignment-Based Noise Removal

As mentioned earlier, most indexed Web pages contain not only relevant and inter-
esting information (if any at all). Almost every page contains a site-specific header,
navigation bar, links to related pages, and copyright disclaimers, frequently auto-
matically generated by a content management system (cf. [Yi et al., 2003,Debnath
et al., 2005]). Especially on music pages, these segments often feature lists of other
music artists, genres, or tag clouds to facilitate browsing. This surrounding informa-
tion is usually not relevant to the associated music piece and should thus be ignored.

Removal of this kind of text is the aim of this filter which is called alignment-
based noise removal (ANR). Since large parts of the surrounding text remain the
same for most pages within a Web domain, we can identify redundant segments by
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comparing several texts from the same domain. Coherent parts are most likely to be
non-specific for a given music piece and can therefore be removed. To this end, the
redundant parts of Web sites are identified by applying multiple sequence alignment
as described in Section 3.1.5. This technique was originally used to extract lyrics
from multiple Web sources by matching coherent parts and preserving overlapping
segments (cf. [Knees et al., 2005]). Here, it is applied for the converse purpose,
namely to identify and remove redundant segments.

To apply the filter, all documents belonging to the same domain are collected.
Especially for blogs, the domain alone does not indicate similarly structured pages
— different blogs are typically accessible via separate sub-domains (as is the case,
e.g., for blogspot.com) — the sub-domain is kept if the host section of the URL
contains the word “blog”. For domains that occur only up to five times in the page
index, no filtering is performed. For all other domains, up to eight documents are
chosen randomly and used for alignment. From the alignment, all aligned tokens
occurring in at least 60% of the aligned texts are chosen. Finally, all text sequences
consisting of at least 2 tokens are selected and removed in all Web pages originating
from the domain under consideration.

From experiments it becomes clear that this method excludes almost exclusively
noise from the data. Frequent patterns over all domains comprise the name of the
Website, copyright disclaimers, and login forms (e.g., “Sign In”, “Sign Up Now”,
and co-occurring terms). Structures for navigation and listings for browsing can
also be observed frequently.

5.4.1.2 Too-Many-Artists Filtering

With this filter, the goal is to detect indexed pages that do not deal with only one
type of music, i.e., pages that provide an ambiguous content and are therefore a
potential source of error. Some of these pages can be identified easily, since they
contain references to many artists. Hence, the page index is queried with every artist
name occurring in the music collection and the occurrences of each page in all result
sets are counted. Constructing the filter simply consists in selecting a threshold
for the maximum number of allowed artists per page. By experimenting with this
threshold, promising results were obtained when removing all pages containing more
than 15 distinct artists (cf. tables A.7 to A.12). Throughout the remainder of this
thesis, too-many-artists filtering (2MA) refers to the removal of pages containing
more than 15 artists.

5.4.2 Supervised Filtering

Automatic optimisation of the (unsupervised) Web-based indexing approach is in
general difficult since for arbitrary queries there is no learning target known in ad-
vance (in contrast, for instance, to the approaches presented in [Turnbull et al.,
2007a,Barrington et al., 2009], where the set of possible queries is limited). How-
ever, for the task of identifying sources of noise, automatic optimisation approaches
are somewhat more promising — provided that a set of potential queries with corre-
sponding relevance judgements is available (for example, ground truth annotations
typically used for benchmarking, cf. the orange box in the schematic overview in
Figure 5.1). In the following, such annotations are available through the two test
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collections used for evaluation. Both collections are introduced in more detail in
Section 5.6.1. To exploit the available annotations for supervised learning while still
being able to evaluate performance with the same set, cross validation has to be
carried out.

In general, to obtain a potential set of test queries Q and — associated to that
— judgements on the relevance of each piece in a music collection with respect to
the queries, one may either fall back on manual annotations (if present; as is the case
for the CAL500 set, cf. Section 5.6.1.2), or use community-based labels (as in the
case of the c35k test collection, cf. Section 5.6.1.1). Such annotations, or tags, can
be used directly as test queries to the system and serve also as relevance indicator
(i.e., a track is considered to be relevant for query q if it has been tagged with tag
q). In the supervised approaches, these annotations are used to allow for automatic
selection of the Web data used to index the music collection.

The idea of the supervised filtering is that by observing performance on a given
set of queries, it should be possible to identify Web pages responsible for introducing
errors and to exclude them from future retrieval tasks (as is done in the first super-
vised filter presented in Section 5.4.2.1). Having these negative examples, one may
even train an automatic classifier from these instances to learn to identify mislead-
ing Web pages. This should allow to also exclude other erroneous data (as is done
in the second supervised filter presented in Section 5.4.2.2). Ultimately, for both
filters, the intention is to obtain also better results on previously unseen queries.
This is based on the assumption that documents responsible for introducing noise
to a music piece ranking contain erroneous (at least ambiguous) information and are
likely to introduce noise to other queries too.

The two supervised page filtering approaches presented both build upon the
RRS scoring function presented in Section 5.3.2. In theory it would be possible to
also exploit these filtering steps for usage in the pseudo document approach. To this
end, a hybrid approach would have to be followed, for instance by learning to filter
pages based on RRS scores and applying the resulting filters prior to constructing the
pseudo documents. However, in the following only the applicability of the presented
filters to the RRS-based approach is investigated to keep the methods conceptually
separated.

5.4.2.1 Query-Based Page Blacklisting

Following the general idea outlined in Section 5.4.2, a simple filter that blacklists
Web pages contributing more negatively than positively to query results is con-
structed. Note that blacklisting in this context is synonymous to removal from the
Web page index. By monitoring the performance (the influence, rather) of indexed
Web pages over the course of different test queries, a list of those Web pages that
were responsible for introducing irrelevant tracks into the rankings is created. For
future queries, these Web pages will be excluded. As a consequence of this method,
only observed examples can be judged, i.e., no generalisation is made to predict the
influence of Web pages not involved through one of the test queries.

To rate a page p, a simple score based on RRS is calculated:
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Sn(p) =
∑

q∈Q

(

∑

m∈Mp∩Tq

RRSn(m, q) −
∑

m∈Mp∩Tq

RRSn(m, q)

)

(5.3)

where Q denotes the set of all available queries/annotations, Mp the set of all
music pieces associated with page p, Tq the set of all pieces annotated with q (i.e.,
relevant to query q), and Tq its complement (i.e., all music pieces not relevant to
q). Informally speaking, over all queries, the sum of RRS scores contributed to
negative examples is subtracted from the sum of RRS scores contributed to positive
examples.4 Finally, all Web documents p with Sn(p) < 0 are removed, i.e., all
documents that contributed more negatively than positively over the course of all
queries.

5.4.2.2 Query-Trained Page Classification

While the query-based page blacklisting filter represents (if any) just the “laziest”
form of machine learning (i.e., merely recognising instances without any kind of
generalisation), this filter aims at learning to automatically classify Web pages as
either “positive” (keep) or “negative” (remove). Hence, it should be better suited to
deal with new queries that provoke previously unseen (and thus unrated) Web pages.

Similar to the query-based page blacklisting filter, the Sn(p) value as defined in
Equation 5.3 is used for determination of positive and negative training instances
for the classifier. More precisely, whereas in the query-based page blacklisting filter
in Section 5.4.2.1 this score only served to identify and remove negative instances,
here, the Sn(p) score is used to determine whether a seen Web page can serve as a
“positive” or as a “negative” training instance. Naturally, pages p with Sn(p) > 0
serve as positive examples and, correspondingly, pages with Sn(p) ≤ 0 as negative
examples. Additionally, only pages that appear in the result sets of at least two
queries are considered. Furthermore, since the number of training instances (i.e.,
the number of evaluated Web pages) gets very high for larger values of n (i.e.,
the number of top-ranked Web pages incorporated into RRS), which slows down
training of the classifiers applied, and since there are usually significantly more
negative than positive examples available, the number of total training examples is
limited to 2,000. To this end, a random sampling is performed on the positively, as
well as on the negatively rated Web page sets to construct a balanced training set
with equally distributed classes. In case not enough positive instances are available,
further negative examples are added to the training set and a cost-sensitive meta-
classifier is applied to raise importance of positive instances (misclassification of
positive instances is penalised by the ratio of negative to positive examples). For
the remaining examples (i.e., negative as well as positive examples that are not used
as training instances), a black- and whitelisting approach is applied, i.e., pages with
a negative score are just removed and pages with a positive score will be accepted
without performing additional classification on them.5

4Note that this formulation exhibits some similarities with the relevance feedback formula by
[Rocchio, 1971] (cf. Section 6.3). Indeed, the idea of rating pages based on performance judgements
from other queries can be considered a relevance feedback process.

5The first version of the query-trained page classification presented in [Knees et al., 2010] de-
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As feature representation for Web pages, characteristic values such as the length
of the page’s (unparsed) HTML content, the length of the parsed content, the num-
ber of different terms occurring on the page, the number of associated music pieces
(i.e., |Mp|), the number of contained artist names (cf. Section 5.4.1.2), as well as
ratios between these numbers are chosen. Furthermore, title and URL of the pages
are utilised to serve as very short textual representations of the respective page (with
a smaller vocabulary), converted into a term vector space and added as numerical
features. For classification, inside the cost-sensitive wrapper, the Random Forest
Classifier from the WEKA package is applied with 10 trees (cf. Section 3.1.4). The
result of this step is an automatic classifier, that predicts whether an indexed Web
page should be kept in the index (i.e., the Web page is likely to contribute mostly rel-
evant tracks to rankings) or removed (likely to contribute mostly irrelevant tracks).

5.5 Post-Hoc Re-Ranking Based on Audio Similarity

Since the methods presented so far are solely based on texts from the Web, important
acoustic properties may be neglected and the indexing may suffer from effects such
as a popularity bias. Foremost, tracks not present on the Web are excluded by this
approach. By incorporating audio similarity into the retrieval process, the methods
proposed in this section aim at remedying these shortcomings and improving ranking
quality. A combination with audio similarity information should especially enforce
the inclusion of lesser known tracks (i.e., tracks from the “long-tail”) into the search
results.

According to [Snoek et al., 2005,Barrington et al., 2009], the presented approach
can be considered a late fusion approach, for it modifies the ranking results obtained
from the Web-based retrieval. Alternatively, so-called early fusion approaches are
conceivable, e.g., by incorporating the audio similarity information directly into
the RRS weighting scheme like proposed in [Knees et al., 2009]. However, since the
proposed re-ranking approach is indifferent about specifics of the underlying ranking
algorithm (and therefore can be applied to both, pseudo document and RRS-based
retrieval), only this type of audio-based ranking modification is discussed.

In the following, a re-ranking approach called post-hoc audio-based re-ranking
(PAR) is described that uses audio-based similarity information in an unsupervised
manner. Basically, the algorithm incorporates the idea of including tracks that sound
similar to tracks already present in a given relevance ranking R of music pieces.
Following the path outlined in Figure 5.1, it is assumed that R (which is an ordered
subset of M) has been obtained via one of the two text-based retrieval methods
presented in Section 5.3. Starting from such a text-based ranking and having access
to audio similarity information for the tracks in R, the new (re-ranking) score of
any track m is calculated by summing up a score for being present in the text-based

fines positive and negative examples by considering only pages that have either contributed ex-
clusively positively or exclusively negatively, respectively, i.e., positive examples are defined as
{p | p ∈ Dq,n, ∀q ∈ Q : Mp ∩ Tq = ∅} and negative as {p | p ∈ Dq,n, ∀q ∈ Q : Mp ∩ Tq = ∅}. This
may result in very unbalanced training sets and — for high values of n — also in bad classification
results. Obviously, the cost-sensitive meta-classifier applied can not compensate for this sufficiently.
For this reason, the definition given here enforces a more balanced set on the expense of introducing
less clearly defined page ratings.
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ranking R and scores for being present within the k nearest audio neighbours of
tracks in the text-based ranking R. For audio similarity computation, the measure
that combines MFCC-based similarity with Fluctuation-Pattern-based similarity is
applied (see Section 3.2.4). Note that for constructing the ranking of acoustically
nearest neighbours for a song, all other songs by the same artist are excluded (a
step known as artist filtering, cf. [Flexer, 2007]), since this similarity is already
represented within the Web features.

The post-hoc audio-based re-ranking scores are calculated as:

PAR(m,R) =
∑

l∈(m∪Am)∩R

RF (l, R) ·NF (m, l) (5.4)

NF (m, l) = α · c(m, {l}) +Wgauss(rnk(m,Nl,k)) · c(m,Nl,k) (5.5)

Wgauss(i) =
1√
2π
e−

(i/2)2

2 (5.6)

where RF (l, R) is calculated according to Equation 5.2 6, Nl,k denotes the k
nearest audio neighbours of track l (i.e., the k most similar tracks to l, sorted in
ascending order according to distcomb, cf. Equation 3.10), and Am the set of all
tracks l that contain m in their nearest audio neighbour set, i.e., all l for which
m ∈ Nl,k. c(x,N) is a function that returns 1 iff x ∈ N and 0 otherwise. The
function Wgauss represents a Gaussian weighting of the audio neighbours depending
on their rank that was introduced because it yielded best results when exploring
possible weightings. Parameter α can be used to control the scoring of tracks already
present in R. Note that for k = 0, R remains unchanged.

5.6 Evaluation

The proposed algorithms can be used to obtain rankings as shown exemplary in
Table 5.1. Since assessing the relevance of each track in the returned rankings
manually is infeasible for large collections and a substantial amount of queries, for
evaluation, automatic methods that compare results against a “ground truth” have
to be applied.

This section deals with automatically evaluating the proposed retrieval meth-
ods as well as assessing the effects of the filtering and re-ranking extensions on a
larger scale. To this end, the different methods are applied to two test collections
with different characteristics. First, these collections are presented (Section 5.6.1).
Second, the evaluation measures used to estimate the performance of the methods
are reviewed (Section 5.6.2). Sections 5.6.3 through 5.6.5 deal with the evaluation
of the methods and extensions. Section 5.6.6 investigates the effects of audio-based
re-ranking on tracks from the “long-tail”.

6Note that RF as described in Equation 5.2 takes a Web page and a ranking of pages as param-
eters. In this context, it is used for calculating a score based on a track’s position within a ranking
of tracks. Apart from the different nature of parameters, the calculation is done in the same way.
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5.6.1 Test Collections

The first collection is a large real-world collection and contains mostly popular pieces.
The second collection is the CAL500 set, a manually annotated corpus of 500 tracks
by 500 distinct artists [Turnbull et al., 2008b]. After discussing preprocessing steps
applied to the collections prior to the Web data acquisition step, both test collections
are described in more detail.

To obtain descriptors for the tracks in an mp3 collection, the values of the fields
“artist”, “album”, and “title” are extracted from the ID3 tags (cf. Section 5.2). Very
commonly, additional information is included in these tags, e.g., tracks that are a
collaboration of two artists often contain the second artist in the title (indicated
by feat., and, with, etc.) or both artists are mentioned in the artist field. Other
meta-information (e.g., to indicate live versions or remixes) can also be found. To
avoid too constrained queries in the next step, this extra information is removed.
One drawback of this preprocessing step is that it affects artists like “Ike & Tina
Turner”, who are afterwards represented only by “Ike”.

Based on the meta-tags, pieces that are likely to contain only speech are also
ignored (e.g., in Rap music this is often indicated by the word Skit) as well as all
tracks named Intro or Outro and tracks with a duration below 1 minute. Further-
more, all duplicates of tracks are excluded from the next steps to avoid unnecessary
similarity computations and redundancies (different versions of tracks could be dis-
played, for example, as alternatives in the retrieval results). Among all duplicates,
the version containing no meta-information like live or remix is chosen for further
processing.

5.6.1.1 c35k Collection

The c35k collection is a large real-world collection, originating from a subset of
a digital music retailer’s catalogue. The full evaluation collection contains about
60,000 tracks. Filtering of duplicates (including remixes, live versions, etc.) reduces
the number of tracks to about 48,000. As groundtruth for this collection, Last.fm
tags are utilised. Tags can be used directly as test queries to the system and also
serve as relevance indicator (i.e., a track is considered to be relevant for query q
if it has been tagged with tag q). Out of the 48,000 tracks, track-specific Last.fm
tags are available for about 35,000. However, most of these tags are not suited for
evaluation purposes (i.e., as test queries). For instance, many of the track-specific
tags consist only of the name of the corresponding artist. Since retrieval using
explicit track meta-data is not the objective of this chapter and manual cleaning
of tag-sets for 35,000 tracks is rather labour-intense, for selection of an appropriate
set of test queries, Last.fm’s list of top tags is exploited. Top tags represent the
most popular (i.e., most frequently used) tags on Last.fm. The majority of the
retrieved 250 top tags consists in genre or style descriptors such as rock, electronic,
or alternative. Beside these, decades (60s, 80s), adjectives (awesome, beautiful), or
tags used to express personal experiences (favorites, albums i own, seen live) can be
found. For creating a test query set, starting from the list of top tags, all personal
tags are removed. Furthermore, redundant tags (such as hiphop, hip hop, and hip-
hop) are identified manually and their sets of tagged tracks are harmonised (i.e., any
track that is tagged with either of the three variants above is defined relevant for all
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three). Different morphological forms are retained as distinct queries as long as they
translate to different queries after query parsing (cf. 3.1.2, in the example above,
hiphop translates to a query with one token, hip hop to two tokens, and hip-hop to a
phrase). As result, a set of 223 queries remains. From the 223 tags, further all tags
with a number of associated tracks above the 0.95-percentile and below the 0.05-
percentile are removed, resulting in 200 test queries. Table A.2 shows the used 200
queries. In addition, for each query, the number of relevant tracks in the collection
is given. A common way to increase the number of tagged examples is to use
artist-specific tags if no track-specific tags are present [Knees et al., 2007a,Turnbull
et al., 2008a]. Since, in the presented indexing approach, tracks by the same artist
share a large portion of relevant Websites, this substitution is omitted to avoid
overestimation of performance.

5.6.1.2 CAL500 Set

The CAL500 set is a highly valuable collection for music information retrieval
tasks [Turnbull et al., 2008b]. It contains 500 songs (each from a different artist;
without album information) which were manually annotated by at least three re-
viewers. Annotations are made with respect to a vocabulary consisting of 174 tags
describing musically relevant concepts such as genres, emotions, acoustic qualities,
instruments, or usage scenarios. Although the presented indexing approaches are in
principle capable of dealing with arbitrary queries and large and varying vocabular-
ies, some of the CAL500 tags are not directly suited as query. Especially negating
concepts (e.g., NOT-Emotion-Angry) can not be used. Hence, all negating tags are
removed. Furthermore, redundant tags (mostly genre descriptors) are joined. For
tags consisting of multiple descriptions (e.g., Emotion-Emotional/Passionate) every
description is used as an independent query. This results in a total set of 139 test
queries (see Table A.3).

5.6.2 Evaluation Measures

To measure the quality of the obtained rankings and the impact of the extensions
as well as different parameter settings, standard evaluation measures for retrieval
systems are calculated, cf. [Baeza-Yates and Ribeiro-Neto, 1999], p.74ff. In the fol-
lowing, R denotes a ranking (i.e., the ranking to be evaluated) obtained for query
q and Tq denotes the set of all pieces annotated with q (i.e., the ground truth of
relevance for query q).

For global assessment of the returned result sets, the well-established measures
precision and recall are calculated. Precision is defined as the fraction of the re-
trieved music tracks that is relevant to the query, whereas recall is the fraction of
the relevant pieces that have been retrieved, i.e.,

Prec(R, q) =
|R ∩ Tq|
|R| (5.7)

Rec(R, q) =
|R ∩ Tq|
|Tq|

(5.8)
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Since usually for retrieval systems the retrieved documents (in this case, music
pieces) are presented according to their relevance (i.e., in a ranking), a system’s
ability to rank relevant documents to the top of the result list should be rewarded
more. Since precision and recall values do not reflect this characteristic, more specific
evaluation measures for rankings have been introduced.

For instance, as a very intuitive measure, precision @ 10 documents (Prec@10)
represents the number of relevant pieces among the first 10 retrieved. This is im-
portant since usually search engines display only the 10 top-most results on the
first page, i.e., Prec@10 measures how many relevant music pieces can be expected
“at first sight”. Other single value summaries of ranking performances used in the
following are R-precision (RPrec) and average precision (AvgPrec), the latter also
known as average precision at seen relevant documents. R-precision measures the
precision at the rth returned document, where r = |Tq|, i.e., it measures precision at
that point at which in an optimal ranking, precision would be 1.0. Average precision
is a measure that favours systems capable of quickly retrieving relevant documents.
It is calculated as the arithmetic mean of precision values at all encountered relevant
documents (when processing the ranking sequentially).

Formally, the respective definitions of precision @ 10 documents, R-precision,
and average precision are as follows (where Rr denotes the r top-most documents
of ranking R):

Prec@10(R, q) = Prec10(R, q) =
|R10 ∩ Tq|
|R10|

(5.9)

RPrec(R, q) = Prec|Tq |(R, q) =

∣

∣R|Tq | ∩ Tq

∣

∣

∣

∣R|Tq |

∣

∣

(5.10)

AvgPrec(R, q) =

∑

m∈R∩Tq
Precrnk(m,R)(R, q)

|R ∩ Tq|
(5.11)

To observe precision over the course of a ranking, further precision at 11 standard
recall levels is calculated that allows for standardised plotting of precision vs. recall
curves. When examining the ranking, the occurrence of a relevant piece allows to
calculate precision at a specific recall level (that depends on the number of relevant
documents encountered so far and the overall number of relevant pieces), in the
following denoted as Prec@Rec(s,R, q), where s corresponds to the recall level, i.e.,

Prec@Rec(s,R, q) = Precr(R, q) ⇐⇒ s =
|Rr ∩ Tq|
|Tq|

(5.12)

Since different queries have different numbers of associated relevant pieces,
in general, observed recall levels will be distinct for different queries. To assess
the quality of an algorithm for a set of queries, i.e., to allow for averaging over
multiple queries, an interpolation to standardised recall levels has to be carried
out. To this end, precision Prec@Rec(sj , R, q) at the 11 standard recall levels
sj , j ∈ {0.0, 0.1, 0.2, ..., 1.0} is interpolated according to

Prec@Rec(sj , R, q) = maxsj≤s≤sj+1Prec@Rec(s,R, q) (5.13)
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Using this standardisation, an average precision vs. recall curve over all queries
can be calculated by averaging Prec@Rec values for each standard recall level. For
a single value comparison of different algorithms, additionally, the area under the
precision at 11 standard recall levels curve (AUC) is calculated. Conceptually, this
measure corresponds to the average precision value.

In general, for evaluation, no single queries are examined but the average (mean)
value over all queries. Furthermore, to compare different settings, statistical signifi-
cance testing is carried out. Since the resulting values of evaluation measures over all
queries are not normally distributed, a non-parametric test is applied to the above
mentioned measures. More precisely, the Friedman test with attached post-hoc tests
at a significance level of α = 0.01 is performed to compare multiple settings, cf. [Hol-
lander and Wolfe, 1999]. For evaluation of the supervised extensions (filtering as
well as combination), a 10-fold cross validation is performed on the test collections,
i.e., in each fold, 90% of the queries are used to train the filters which are then
applied and evaluated on the remaining 10%.

5.6.3 Web Search Engine Impact

Since a Web search engine is the source for the underlying Web data, and there-
fore the primary prerequisite for the proposed approaches, its impact is evaluated
first. For comparison, Web data is acquired by using two distinct Web search en-
gines, namely Google and the lesser-known French search engine exalead7. This is
important to assess the influence of the Web indexing and retrieval algorithms on
downstream approaches such as those presented here as well as for estimating the
consequences of a possible exchange of this commercial component with a (music-
focused) Web index obtained by a self-developed Web crawler in the future. Fig-
ure 5.4 shows precision at 11 standard recall level plots for two different RRS setting
(n = 200 and n = 10000) and the pseudo document approach on both test collec-
tions to compare the performance of Google and exalead. The given baselines depict
collection-specific references that are obtained by averaging over evaluation results
of random permutations of the full collection. Tables 5.2 and 5.3 show additional
evaluation measures for the same settings.

As can be seen, Google clearly outperforms exalead in all settings and for both
collections. Only for (global) precision, does exalead yield better results, leading to
the assumption that the Web pages retrieved via exalead are high in precision but
worse in recall when compared to Google. Not surprisingly, this indicates that the
quality of the algorithm for retrieving the underlying Web data, as well as the size
of the Web index, play central roles for subsequent steps.

Furthermore, the conducted evaluations give other interesting insights. For the
c35k collection, it can be seen that for high values of n, i.e., the number of Web
pages incorporated into the scoring, the RRS approach clearly produces better rank-
ings than the pseudo document method (with respect to presenting relevant results
earlier in the ranking).8 This is further confirmed by the values of precision @ 10
documents, R-precision, and average precision as displayed in Table 5.2. However,

7http://www.exalead.fr
8Note that the recall value of pseudo document retrieval represents the upper bound of recall

for all RRS-based approaches.
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Figure 5.4: Precision at 11 standard recall level plots to compare the impacts of Google and
exalead on the c35k collection (left) and the CAL500 set (right).

RRSn=200 RRSn=10000 PseudoDoc
Google exalead Google exalead Google exalead

Rec 18.67 13.40 80.50 72.48 93.66 87.20
Prec 23.77 23.01 7.29 8.81 4.27 5.52

Prec@10 47.75 33.80 57.45 42.55 39.25 34.95
rPrec 14.22 10.76 35.20 30.25 30.78 26.72
AvgPrec 8.23 5.34 29.98 23.97 25.97 21.16

Table 5.2: IR measures for comparison of Google vs. exalead on the c35k collection averaged
over all test queries. Bold entries indicate the significantly better result between Google and
exalead (or, in case of both entries being printed in bold, no significant difference).

RRSn=200 RRSn=10000 PseudoDoc
Google exalead Google exalead Google exalead

Rec 38.63 33.42 73.27 61.43 81.15 70.52
Prec 19.15 18.72 14.56 15.45 14.50 15.08

Prec@10 30.60 28.63 33.62 30.43 30.72 26.47
rPrec 21.58 18.77 25.06 21.12 25.77 21.31
AvgPrec 13.84 10.85 21.77 16.96 22.66 17.57

Table 5.3: IR measures for comparison of Google vs. exalead on the CAL500 set, cf. Table 5.2.
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for smaller values of n, performance of RRS is worse than of the pseudo docu-
ment ranking. In this context it should be mentioned that large numbers of n are
factually only of theoretical interest, since RRS calculations have to be performed
in addition to page retrieval at query time. Therefore, RRS performs not as ef-
ficiently as traditional retrieval approaches. Furthermore, the fact that retrieval
systems are not optimised to quickly find the, e.g., 10, 000th most relevant result for
a query contributes to that disadvantage. To assess the influence of the parameter
n on the RRS approach in more detail, performance is evaluated systematically for
n ∈ {10, 20, 50, 100, 200, 500, 1000, 10000}. These detailed results can be found in
tables A.5 and A.6 for the c35k collection and the CAL500 set, respectively.

For the CAL500 set, the results exhibit a slightly different picture. First, results
retrieved at the top of the rankings (especially the top 10) are of about the same
quality for all settings, i.e., RRSn=200 performs similar to RRSn=10000 and pseudo
document retrieval. As the ranking progresses, quality of RRSn=200 drops quickly
due to the low recall caused by the small value of n. In contrast to the c35k collection,
for CAL500, the pseudo document approach performs equally well or even slightly
better than RRSn=10000 (cf. R-precision and average precision in Table 5.3).

5.6.4 Page Filtering Impact

To evaluate the impact of the proposed page selection techniques on the ranking
quality, again systematic experiments have been conducted. Detailed results for a
variety of settings can be seen in tables A.13 to A.16. Figure 5.5 shows evaluation
results on both evaluation collections for RRSn=500. The general trends are very
consistent for both search engines used. However, different observations can be
made for the two different test collections.

In general, on c35k, all filters and combinations thereof yield better ranking
results than the unfiltered RRS approach. Furthermore, both supervised filtering
methods are clearly superior to the unsupervised filters. A combination of those,
however, decreases performance (except for overall precision, e.g., for a combination
of unsupervised filters with query-based page blacklisting (QB2), cf. Table A.13 and
Table A.14). For the alignment-based noise removal (ANR), slight improvements,
especially for precision, r-precision, and average precision can be observed. However,
in the Friedman test these results are not significant. For recall and precision @ 10
documents a significant drop in performance when using Google but also a significant
increase when using exalead becomes apparent.

The too-many-artists filter (2MA) outperforms the unfiltered RRS significantly
in terms of precision and average precision for smaller values of n using Google. For
exalead, where precision is initially already higher, this finding can not be confirmed.
Not surprisingly, a decrease is most clearly visible for recall. In addition, the combi-
nation of both unsupervised filters is evaluated (A2). Results are rather inconsistent,
in the plots in Figure 5.5, the combination yields overall better or equal results. For
the averaged single value summaries in tables A.13 and A.14, the general observation
is that a high degree of uninformed filtering can be too much and may affect results.

With the exception of recall for query-trained page blacklisting (QB), both su-
pervised approaches, i.e., QB and query-based page classification (QC), are con-
stantly in the best performing group or at least significantly better than the unfil-
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Figure 5.5: Impact of filters and filter combinations on the RRSn=500 setting using Google (top
row) and exalead (bottom row) on the c35k collection (left column) and the CAL500 set (right
column).
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Figure 5.6: Impact of unsupervised filters on pseudo document retrieval using exalead on c35k
(left) and CAL500 (right).
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tered method. For specific settings, some results report on definitive improvements,
for instance, precision @ 10 seen documents for n = 10000 increases by about 5
percentage points, cf. Table A.13. When combining supervised with unsupervised
approaches (QB2, QC2), one is confronted with ambiguous results. Certainly, the
tendency of getting more precise results (going along with a loss in recall) is also
present here. In contrast to the combination of both unsupervised filters, averaged
single value summaries suggest a potential increase in performance, whereas the pre-
cision at 11 standard recall level plots suggest an overall decrease for combination
of supervised with unsupervised filters.

For the CAL500 set, results are very different and rather disappointing. No pro-
posed filter can significantly improve results (except for precision of the supervised
filters with high values of n, which go along with a dramatic loss in recall due to a
very high number of excluded pages, cf. Table A.15 and Table A.16). Only ANR
seems to have a positive impact on the ranking quality (cf. Figure 5.5). The reasons
are not really clear. One possibility could be that in the case of the c35k set with
associated Last.fm tags, the approaches benefit from the inherent redundancies in
the tags/queries (e.g., metal vs. black metal vs. death metal). In the case of the
CAL500 set, queries exhibit no redundancy, as the set is constructed to describe
different dimensions of music. However, this would only affect the supervised filters.

Another explanation could be that the CAL500 page indices contain consider-
ably fewer pages than the c35k indices (for Google, e.g., approx. 80,000 pages for
CAL500 vs. approx. 2 million pages for c35k). First, and also in the light of the
fact that the CAL500 set has been carefully configured (i.e., especially the fact that
only one track per artist is contained, which leads to more track specific pages on
the artist level, compared to the other tracks) it seems possible that the index does
not contain so many noisy pages. Hence, the proposed strategies do not work here.
Second, since the index is rather small, removal of a relatively high number of pages
has a higher impact on the overall performance. This becomes especially apparent
when examining the results of the supervised approaches for high n. Apart from the
results, it should be noted that the CAL500 set is without doubt very valuable for
research (high quality annotations, freely available, etc.) but at the same time, it is a
highly artificial corpus which can not be considered a “real-world” collection. Hence,
some “real-world” problems maybe can not be simulated with such a small set.

For pseudo document ranking, observations over both collections are more con-
sistent. For both, c35k and CAL500, only ANR filtering yields slightly (though not
significantly) better results. Further filtering (2MA, A2) can only improve preci-
sion at the price of high loss in recall and ranking quality, cf. Figure 5.6. Hence,
the application of ANR seems to be a sensible choice before constructing pseudo
documents, whereas the 2MA filter seems to affect retrieval performance.

5.6.5 Audio-Based Re-Ranking Impact

The next extension to be evaluated is the audio-based re-ranking component. To
this end, re-ranking is applied to RRS and pseudo document indexing in their plain,
unfiltered version as well as in their best performing pre-filtered version, i.e., RRS
with query-based page classification filtering (QC) and pseudo document indexing
with alignment-based noise removal filtering (ANR) enabled. Detailed results for
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different parameter settings for PAR re-ranking can be found in tables A.17 to A.32.

Besides the trivial findings of increasing recall and decreasing precision, a consis-
tent trend for both search engines and both test collections is that an increasing value
of k, i.e., the number of included audio neighbours, leads to increased r-precision
and average precision, while precision @ 10 documents remains mostly unaffected
(except for large n and PseudoDoc, where results are shattering). For the parameter
α it can be observed that higher values — that correspond to a small influence of
the audio neighbours — yield better results in terms of ranking quality. In gen-
eral, RRS ranking benefits from combination with PAR, again with the exception
of RRS settings with a high number of pages taken into consideration (large n). As
with pseudo document ranking, for large n, re-ranking produces significantly worse
results. The finding that an already substantial text-based ranking with high recall
usually yields better results than its re-ranked counterpart has already been made
in [Knees et al., 2009]. The reason is that audio similarity introduces a lot of noise
into the ranking. Hence, to preserve the good performance at the top of the rank-
ings, α should be set to a high value. On the other hand, this prevents theoretically
possible improvements.

Comparisons of unmodified ranking approaches, audio-based re-rankings (using
the parameter settings k = 50 and α ∈ 10, 100), also in conbination with the best
performing filtering techniques, i.e., QC for RRS and ANR for PseudoDoc, can be
seen as precision-recall plots in figures 5.7 and 5.8. Additional results can be found
in tables A.33 to A.40.

The plots suggest that PAR performs very well on all RRS settings. In com-
bination with QC filtering, it benefits from the increased initial ranking quality.
However, improvements become mostly apparent for recall levels above 0.1. If α is
set to a high value, the top of the ranking remains mostly unaffected by the audio
neighbours, i.e., not much difference can be made out between original and re-ranked
results. For small values of α, also the top of the ranking may be reordered, leading
to loss in precision. For recall levels above 0.1, the overall higher recall, i.e., the
fact that in general more and therefore also more relevant pieces are retrieved, has a
clearly positive impact on the ranking curve. On the CAL500 set, PAR re-ranking
is even capable of compensating for the negative impact of QC filtering.

Applying re-ranking to PseudoDoc rankings on the c35k collection leads to
clearly worse results (cf. Figure 5.8). For α = 10, the effect is even more severe. On
the CAL500 set, things look a bit different. Here, results for PseudoDoc can also be
improved by applying PAR re-ranking. Hence, apart from the PseudoDoc setting on
the c35k collection, overall it can be stated that a combination of page pre-selection
with audio-based post-re-ranking can improve the text-only ranking approach.

5.6.6 Impact of Audio-Based Combination on Long-Tail Retrieval

While until this point audio information has been used mainly to improve retrieval
quality, this section takes a look at the potential of audio-based re-ranking for com-
pensating missing Web-based information. More precisely, the usefulness of the
combination approaches for tracks from the so-called “long-tail”, i.e., tracks that
are not present on the Web and can therefore not be indexed with text-only ap-
proaches, is estimated.
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Figure 5.7: Impact of re-ranking on RRSn=500 and QC-filtered RRS using Google (top row) and
exalead (bottom row) on the c35k collection (left column) and the CAL500 set (right column).
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Figure 5.8: Impact of re-ranking on pseudo document retrieval using exalead on c35k (left) and
CAL500 (right).
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original pruned
RRS RRS PAR

Rec 29.31 14.15 49.27
Prec 20.12 19.65 5.06

AvgPrec 12.39 6.30 9.54
Overlap 100.00 48.24 70.49

Table 5.4: Impact of combination with audio on long-tail retrieval on the c35k collection using
Google. The original RRSn=500 setting is compared with the pruned RRSn=500 setting obtained
by removing all tracks by randomly selected 50% of all artists and the PAR re-ranked version of
the pruned RRS.

original pruned
RRS RRS PAR

Rec 47.36 23.95 92.02
Prec 17.20 17.04 13.43

AvgPrec 14.15 7.71 18.53
Overlap 100.00 49.36 94.85

Table 5.5: Impact of combination with audio on long-tail retrieval on the c35k collection using
exalead, cf. Table 5.4

To assess the potential of audio similarity for this task, a situation where all
tracks by 50% of the contained artists in the audio collection have no associated
Web data is simulated. The artists whose tracks are excluded from the text-based
ranking are chosen at random. In addition to recall, precision, and average precision,
an overlap with the original, not simulated text-based ranking is calculated to see
how well audio similarity can fill the gap of missing Web data. Tables 5.4 and 5.5
show the results of this simulation for the c35k collection (using Google) and the
CAL500 set (using exalead), respectively. More detailed results can be found in
tables A.41 to A.44

For the RRS approach, dividing the collection in halves leads to halved values for
recall, average precision, and overlap, whereas precision remains basically unchanged
(due to random sampling). It can also be seen that the combination with audio-
based similarity can bring back a large portion of relevant tracks. However, it is also
apparent that precision suffers significantly. For average precision, PAR re-ranking
can also outperform the original ranking, even when building upon the randomly
pruned rankings. This conforms with findings made in Section 5.6.5 that PAR is
more effective when operating on “sparsely populated” rankings, i.e., rankings with
low recall.
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5.7 Prototype: The Gedoodle Music Search Engine

For demonstration purposes, a music search engine prototype called Gedoodle has
been realised via a simple Web front end. The interface design follows the reduced
style of the Google Web search front page. Therefore, also the name of the prototype
is a reminiscence to Google and also incorporates a musical reference (if maybe not
the most positive one): In German, the word Gedudel (pronounced the same way as
Gedoodle in English) refers to a bit of annoying, possibly repetitive, piece of music
(often in a manner similar to muzak).

Figure 5.9 shows screenshots of the Gedoodle interface in a Web browser and
exemplary results pages. For each retrieved track, title, artist name, album title,
genre, encoding quality, and length are displayed. Furthermore, a link to the corre-
sponding audio file is provided.

In Figure 5.9(b), results for the query smooth and relaxing are shown. As can
be seen, tracks by the bands Count Basic and Tosca are returned as top results.
Although not all of the tracks might be considered smooth and relaxing, the overall
trend towards Acid Jazz music and the downtempo electronic music by Tosca is
correct. Figure 5.9(c) demonstrates a limitation of the current text-based retrieval
approaches. For the query comforting, one could potentially expect tracks that are
similar to those retrieved for the query smooth and relaxing. However, since the
collection contains the track Comforting Lie by the Ska-Pop band No Doubt, that
track is considered most relevant. Furthermore, since the term comforting appears
also frequently in the context of other tracks from the same album (due to track
listings) these tracks are also considered relevant. Currently, such misinterpretations
are common errors that can only be dealt with by explicitly modelling occurrences
of meta-data in the retrieved Web resources. On the other hand, meta-data search
should be provided to the user to allow for retrieval of specific tracks.

The example shown in Figure 5.9(d) demonstrates another quality of “seman-
tic” context-based music search engines not discussed so far, namely the implicit
modelling of relations between artists. For the query damon albarn, who is most fa-
mous for being the lead singer of the band blur, without any reference present in the
meta-data of the pieces, tracks by blur, Gorillaz, Graham Coxon, and Fatboy Slim
are returned. All of these results are comprehensible: Gorillaz is another project by
Damon Albarn, Graham Coxon was/is a band member of blur, and Fatboy Slim was
a collaborator on a blur album.

5.8 Recapitulation and Discussion

This chapter has dealt with the indexing and retrieval of music pieces using relevant
Web pages obtained via a Web search engine. This allows for building a system that
takes free-form text queries for retrieval of music pieces. Two different indexing
strategies are presented and evaluated. Furthermore, possible extensions to improve
these approaches are investigated, namely techniques for filtering of noisy Web data
and a technique to incorporate audio-based similarity information. The latter is also
necessary to open up the presented type of text-based retrieval to music pieces from
the long-tail, i.e., music pieces without a substantial amount of associated Web data.

For the two different indexing strategies presented, it can be seen that the
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(a) Gedoodle interface (b) smooth and relaxing

(c) comforting (d) damon albarn

Figure 5.9: Screenshots of the Gedoodle Music Search Engine. Figure (a) depicts the Gedoodle
search interface. Figures (b), (c), and (d) show exemplary results for the queries smooth and

relaxing, comforting, and damon albarn, respectively.
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document-centred approach that uses the RRS weighting scheme is in principle ca-
pable of producing better rankings than the pseudo document indexing approach.
However, this superiority becomes only clearly apparent if a very high number of
documents is considered for RRS ranking calculation. Since this calculation has to be
carried out at query time, in practice, RRS with a high number of considered pages
is computationally too expensive. On the other hand, pseudo document retrieval
is simpler and more efficient at query time since it translates the music retrieval
task to a text retrieval task. Current disadvantages of pseudo document indexing
are that the proposed supervised page selection methods for noise removal are not
directly applicable and that a combination with audio-based re-ranking may result
in a significant decrease of retrieval quality. Thus, the choice which of these indexing
approaches should be adopted also depends on the usage scenario. For instance, if
retrieval time is not a crucial factor, an RRS-based method will yield better results.
In case retrieval time is crucial, the pseudo document method may be better suited.
For future developments, to alleviate the problem of long response times for RRS, an
incremental version could be designed that modifies the ranking while incorporating
more and more Web pages results and stops as soon as the result can be considered
stable. For fast retrieval of some first relevant results, this could suffice.

For identification and removal of misleading Web data, two unsupervised and
two supervised filtering approaches have been presented. Evaluation shows incon-
sistent results for two used test collections with different characteristics. From the
gained insights it is concluded that the proposed filtering techniques can improve
results significantly when applied to large and diverse music collections with mil-
lions of Web pages associated. In this case, more or less all of the proposed filtering
techniques prove to be useful and improve not only the overall precision but also the
ranking of music pieces. By introducing supervised optimisation, there is still more
potential to tweak performance. For instance, for the automatic page classification
filter, it would not be surprising if a more carefully selected feature set could im-
prove results further. Other classification algorithms could also lead to an improved
identification of relevant Web pages and thus improve precision of the overall music
piece rankings. In terms of alternative filtering and/or ranking approaches, tech-
niques like vision-based page segmentation [Cai et al., 2003] are promising in that
they may help in identifying the relevant parts of a Web page. By extracting smaller
segments from Web pages, the principle of the RRS weighting could be transferred
to individual “blocks” and scoring could be designed more specifically.

With the presented audio-based re-ranking approach, it could be shown that
combining Web-based music indexing with audio similarity in principle has the po-
tential to improve retrieval performance. In its current form, on the other hand,
it became also apparent that audio-based re-ranking primarily leads to inclusion of
many tracks (including many relevant) into the result set without a positive impact
on the ordering in the ranking. Thus, while recall can be increased, audio-based
re-ranking as presented here, has not shown to be applicable for quickly retrieving
more relevant pieces.

A possible reason may be that the applied audio similarity measure is not suited
for the given task. To estimate the potential of the currently applied audio similarity
measure, the ground truth annotations of the c35k collection are used. For every
test query q, all relevant tracks t ∈ Tq serve as seed song to find similar songs
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Figure 5.10: Precision at audio-based nearest neighbour for the c35k collection (averaged over
all test queries; for every query, average of rankings with each relevant track as seed).

(i.e., as a query-by-example query). On the obtained similarity ranking, precision
is calculated at every position k = 1...100 with respect to q. Finally, precision at
every position is averaged over all t and q. Figure 5.10 shows the result for the
c35k collection. Within the top 10 neighbours, a precision of around 7% can be
expected in average based solely on the audio similarity. However, it is questionable
whether this can be improved as audio similarity measures (statically) focus on
specific musical properties, whereas textual queries can be aimed at basically every
aspect of music, from different acoustic properties, to cultural context, to completely
unrelated things.

In general it has to be stated that proper combination of these two sources is
rather difficult since they target different directions and applications. Furthermore,
a combination function can not be optimised in advance to suit every potential
query, i.e., in contrast to, e.g., [Barrington et al., 2009], automatic learning of proper
combination functions (e.g., via machine learning methods) is not applicable for this
task since here, no learning target is present. Web-based music indexing as we
currently apply it is an unsupervised approach. This is implied by the requirement
to deal with a large and arbitrary vocabulary. A possibility to deal with this could
be to perform automatic parameter selection for a combination approach as has been
shown for the supervised noise filtering approaches.
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Chapter 6

Towards Personalised Music Retrieval: Exploiting

User Feedback

After presenting techniques for constructing text-augmented browsing interfaces and
text-based retrieval systems for music, this chapter discusses the potential of com-
bining the used descriptors with usage information to develop more personalised
and user-oriented music services and allow for adaptive searching. More precisely,
this chapter proposes to incorporate a relevance feedback mechanism into the vector
space model used in [Knees et al., 2007a] to exploit explicit user feedback. The aim
of this extension is to be able to compensate for insufficient text queries (as well
as insufficient initial mappings to music tracks) and therefore to better meet the
user’s information need. Besides automatic evaluation of the proposed approach, a
user study is presented which gives further insights into users’ search behaviours.
Finally, the Search’n’Select prototype is presented that utilises query-based retrieval
strategies to support the user interactively in a targeted browsing process.

6.1 Motivation

Although the methods presented in the preceding chapters are capable of capturing
the cultural context of music pieces to some extent, the presented methods still
exhibit many limitations. One obvious problem is that they leave ample space
for improvement in terms of retrieval quality. Furthermore, apart from technical
shortcomings, it has to be kept in mind that users are actually not accustomed to
use free-form text input to search for music. Even if these issues could be sorted
out in the near future, the inherent problem of individual concepts and intentions
behind the issued queries remains. For example, different users will have different
expectations of the pieces that should be returned for the query Folk. Some users
may aim at retrieving music pieces from American singers and songwriters, while
others may intend to find all sorts of folkloristic music. Another example would be
the query Indian music that could target Sitar music, as well as Bollywood movie
soundtracks, as well as traditional native American music. While these user specific
interests may not be adequately expressible via a query, getting explicit feedback
on the relevance of the retrieved pieces from the users can give extremely valuable
information to disambiguate query meaning and clarify the original intention.

To address these limitations, in this chapter, it is proposed to incorporate the rel-
evance feedback method by [Rocchio, 1971] to adapt the retrieval of music pieces to
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Music Collection

Audio Analysis
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Web Retrieval
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Personalised Searching

Modified Features

Figure 6.1: Schematic overview of the methods presented in this chapter. Yellow bars represent
the proposed steps that lead to an adaptive search system (blue bar) that can exploit explicit
feedback given by the user.

the user’s preferences. Not only can the retrieval process increasingly accommodate
to users expectations, the approach can also help to compensate for inadequately
represented initial queries that would otherwise result in low performance. Note
that the methodology used in this chapter is based on [Knees et al., 2007a] and is
highly related to the pseudo document approach presented in Section 5.3.1. Since
there exist some differences to the pseudo document approach, before introducing
relevance feedback into the applied model, the processes of indexing and retrieval
are briefly reviewed. A schematic overview of the methods presented in this chapter
can be found in Figure 6.1.

6.2 Alternative Indexing and Retrieval

In contrast to the approaches presented in Chapter 5, in [Knees et al., 2007a] —
apart from a different TF·IDF formulation — audio similarity is exploited to reduce
the vector space dimensionality and to modify the term descriptors. For retrieval,
query expansion is performed prior to comparison with the track descriptors. The
following describes these steps briefly. For comparability, the same notation as in
Chapter 5 is used.
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Indexing using Term Selection and Audio Similarity

To calculate term profiles, for each music piece m and each term t appearing in I,
tf(t,m) (the term frequency of t in Dm) and df(t,m) (the number of pages related
to m in which the term t occurred) are counted. All terms with df(t,m) ≤ 2 are
removed from m’s term set. Finally, mpf(t) the number of music pieces that contain
term t in their set is calculated (music piece frequency). Further, all terms that
co-occur with less than 0.1% of all music pieces are removed. On the evaluation
collection used for this task (cf. Section 6.4), this results in a vector space with
about 78, 000 dimensions. To calculate the weight wtfimpf (t,m) of a term t for music
piece m, a straight forward modification of the TF·IDF formulation as presented in
Equation 3.2 is used.

wtfimpf (t,m) =

{

[1 + log2 tf(t,m)] log2
|M |

mpf(t) if tf(t,m) > 0

0 otherwise
(6.1)

From the given definition, it can be seen that all Web pages related to a music piece
are treated as one large document (cf. Section 5.3.1).

Dimensionality Reduction

For reducing the dimensionality of the feature space, the χ2-test is applied. The
χ2-test is a standard term selection approach in text classification (e.g., [Yang and
Pedersen, 1997]) and measures the independence of a term t from a given category
or class c. Since in the task at hand there is no class information (e.g., genre in-
formation) available, MFCC-based audio similarity with proximity verification (see
sections 3.2 and 3.2.2) is exploited instead. To this end, for each track m, a 2-class
term selection problem is defined where the χ2-test is used to find those terms that
discriminate Nm,100, the group of the 100 most similar sounding tracks to m, from
Um,100, the group of the 100 most dissimilar sounding tracks to m. Thus, for each
track

χ2(t,m) =
N(AD −BC)2

(A+B)(A+ C)(B +D)(C +D)
(6.2)

is calculated, where A is the number of documents belonging to any piece in
Nm,100 which contain term t (i.e.,

∑

l∈Nm,100
df(t, l)), B the number of documents

belonging to any piece in Um,100 which contain t, C the number of documents in
Nm,100 without t, D the number of documents in Um,100 without t, and N the
total number of examined documents. For each track, the 50 terms with highest
χ2(t,m) values that occur more frequently in Nm,100 than in Um,100 are joined into
a global list. On the used evaluation collection, after this step, 4,679 distinct terms
(feature dimensions) remain. Resulting term weight vectors are cosine normalised
(cf. Equation 4.3) to remove the influence of the length of the retrieved Web pages
as well as the different numbers of retrieved pages per track.

Vector Adaptation

Another use of the information provided by the audio similarity measure is the mod-
ification of the term vector representations toward acoustically similar pieces. This
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step is mandatory for tracks for which no related information could be retrieved from
the Web. For all other tracks, the intention is to emphasise those dimensions that
are typical among acoustically similar tracks. To this end, a simple Gauss weighting
over the 10 most similar tracks is performed for each piece. Modified weights of
term t for music piece m are defined as

w′
tfimpf (t,m) =

10
∑

i=0

1√
2π
e−

(i/2)2

2 · wtfimpf (t, ai(m)), (6.3)

Vectors are again cosine normalised after term weight adaptation.

Retrieval using Query Expansion

To be able to process a broad variety of queries, less sparse query vectors are obtained
by performing query expansion. In the on-line version, the query is extended by the
extra constraint music and sent to Google to construct a term vector from the 10
top Web pages returned. Alternatively, I, the off-line index of retrieved pages can
be used for this operation. The resulting query vector ~q can then be compared to
the music pieces in the collection by calculating Euclidean distances on the cosine
normalised vectors (cf. Equation 4.4). From the distances, a relevance ranking is
obtained which forms the response to the query.

6.3 Relevance Feedback

Relevance feedback is an iterative process in which the user is presented with a
ranked list of the music pieces that are most similar to the query. After examination
of the list, the user marks those pieces which are relevant in his/her opinion (explicit
relevance feedback). In principle, implicit relevance feedback could also be deployed,
e.g., by measuring the time a user is listening to the returned tracks. The intention
is to modify the query vector such that it moves toward the relevant and away from
the non-relevant pieces. Since both music pieces and queries are representable as
weighted term vectors, the relevance feedback method by [Rocchio, 1971] can be
easily incorporated to adapt search results according to users’ preferences. Thus,
based on the relevance judgements, the modified query vector ~qrf can be calculated
as

~qrf = α ~q +
β

|Dr|
∑

∀~di∈Dr

~di −
γ

|Dn|
∑

∀~dj∈Dn

~dj (6.4)

where ~q is the original query vector constructed from the returned Web pages, Dr the
set of relevant music pieces (according to the user) among the retrieved pieces, and
Dn the set of non-relevant pieces among the retrieved pieces (cf. [Baeza-Yates and
Ribeiro-Neto, 1999], p.118-119). The parameters α, β, and γ can be used to tune
the impacts of original vector, relevant pieces, and non-relevant pieces, respectively.
In the presented experiments, equal values are assigned to all parameters, i.e., α =
β = γ = 1. The modified vector is again cosine normalised. Based on the new query
vector, new results are presented to the user in the next step.
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6.4 Evaluation

Table 6.1 gives an example that demonstrates the effects of relevance feedback. The
left column shows the first 60 results for the query Speed Metal as returned by the
text-based search engine. The right column shows the first 60 results if feedback
is incorporated. Upon every 20 presented documents the query vector is modified
based on the relevance information. Clearly, the number of relevant documents
increases quickly after the first feedback iteration step.

6.4.1 Automatic Evaluation using Last.fm Tags

For automatic evaluation, the collection from [Knees et al., 2007a] is used. This
collection comprises 12, 601 tracks by 1, 200 artists. Similar to the c35k collection
presented in Section 5.6.1.1, Last.fm tags are used as test queries as well as for
relevance indication (here in total 227 queries).

To measure the impact of relevance feedback (as well as of query expansion), for
each test query three rankings are constructed. The first is the text-based ranking
obtained via on-line query expansion. The second ranking is obtained by construct-
ing a query vector via off-line query expansion. For the third ranking, relevance
feedback is simulated by starting with the first 20 results obtained through the off-
line based query vector. The next 20 results are then calculated from the query
vector modified according to the relevance judgements of the already seen music
pieces, and so on.

The precision at 11 standard recall level plots resulting for these three methods
(averaged over all 227 test queries) are depicted in Figure 6.2. Not surprisingly, the
usage of relevance feedback has a very positive effect on the precision of the returned
music pieces. Starting from the same level (about 49% precision at recall level 0)
the traditional approach without relevance feedback drops to 34% precision at recall
level 10, while relevance feedback boosts precision to 52%. This trend is also clearly
visible for all other recall levels. Besides this, it can be seen that the values of the
off-line index approach without relevance feedback are constantly below the values
of the on-line approach that uses Google for query vector construction.

Additional evaluation measures are shown in Table 6.2. Again, on-line query
expansion using Google performs better than off-line expansion. For instance, for
on-line expansion about 50% of the pieces among the first ten are relevant in aver-
age, whereas in average only 40% out of the first ten are relevant when using the
off-line index. This number is consistent with the results obtained by means of a
user study presented in the next section.

6.4.2 Evaluation via User Experiments

Additionally, a small user study with 11 participants has been conducted to gain
insights into users’ music search behaviour and to assess the impact of the relevance
feedback under less artificial conditions. Each participant was asked to submit 5
queries of choice to the system. For each query, 5 feedback iterations with 20 results
each were presented. Thus, in total, relevance to the query had to be judged for 100
results. Additionally, each query had to be evaluated twice. In one run, the ranking
was not influenced by the ratings at all, i.e., the first 100 retrieval results without
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no relevance feedback with relevance feedback

1. Deicide - Dead But Dreaming Deicide - Dead But Dreaming
2. Deicide - Trifixion Deicide - Trifixion
3. Deicide - Repent To Die Deicide - Repent To Die
4. Skitzo - Kill With a Vengeance (live) Skitzo - Kill With a Vengeance (live)
5. Deicide - In Hell I Burn Deicide - In Hell I Burn
6. Iron Savior - Protector Iron Savior - Protector
7. Entombed - Chief Rebel Angel Entombed - Chief Rebel Angel
8. Deicide - Satan Spawn, The Caco-Daemon Deicide - Satan Spawn, The Caco-Daemon
9. Iron Savior - Warrior Iron Savior - Warrior

10. Nightwish - Nightshade Forests Nightwish - Nightshade Forests
11. Powergod - Back To Attack Powergod - Back To Attack
12. Deicide - Oblivious To Evil Deicide - Oblivious To Evil
13. Steel Prophet - Unseen Steel Prophet - Unseen
14. Steel Prophet - The Ides Of March Steel Prophet - The Ides Of March
15. Steel Prophet - Messiah Steel Prophet - Messiah
16. Steel Prophet - Goddess Arise Steel Prophet - Goddess Arise
17. Steel Prophet - Ghosts Once Past Steel Prophet - Ghosts Once Past
18. Deicide - Behead The Prophet Deicide - Behead The Prophet
19. Deicide - Revocate The Agitator Deicide - Revocate The Agitator
20. Steel Prophet - Dawn Of Man Steel Prophet - Dawn Of Man

21. Steel Prophet - 07-03-47 Steel Prophet - 07-03-47
22. Deicide - Holy Deception Steel Prophet - Mysteries Of Inquity
23. Steel Prophet - Mysteries Of Inquity Powergod - Metal Church
24. Deicide - Sacrificial Suicide Powergod - Burning the Witches
25. Powergod - Madhouse Iron Savior - Paradise
26. Crematory - Lost In Myself - Trance Raymix Powergod - Madhouse
27. Tiamat - Cain Powergod - Bleed for the gods
28. Powergod - Bleed for the gods Iron Savior - For The World (Live)
29. Powergod - Ruler Of The Wasteland Iron Savior - Brave New World
30. Powergod - Burning the Witches Iron Savior - Mindfeeder
31. Powergod - Metal Church Powergod - Stars
32. Crematory - Through My Soul Powergod - Ruler Of The Wasteland
33. Crematory - Reign Of Fear Powergod - Esper
34. Powergod - Soldiers Under Command Stratovarius - Rebel
35. Tiamat - Carry Your Cross An Ill Carry... Powergod - Soldiers Under Command
36. Powergod - Stars Iron Savior - Crazy (Ltd Ed Bonus
37. Crematory - Revolution Iron Savior - Iron Savior (Live)
38. Crematory - Red Sky Electric Six - She’s White
39. Entombed - Left Hand Path (Outro) Powergod - Salvation
40. Monoide - One year after first love Powergod - Prisoner

41. Finntroll - Ursvamp Powergod - The Eagle & The Rainbow
42. Finntroll - Grottans Barn Powergod - Anybody Home
43. Powergod - Esper Powergod - Lost Illusions
44. Iron Savior - For The World (Live) Powergod - Tor With The Hammer
45. Finntroll - Fiskarens Fiende Iron Savior - Riding On Fire (Live)
46. Finntroll - Nattfodd Powergod - Red Rum
47. Finntroll - Trollhammaren Powergod - Steel The Light
48. Chicks on Speed - Procrastinator Iron Savior - No Heroes
49. Deicide - Crucifixation Powergod - I Am A Viking
50. Entombed - Say It In Slugs Powergod - Into The Battle
51. Iron Savior - Mindfeeder Powergod - Kill With Power
52. Crematory - Dreams Powergod - Mean Clean Fighting Machine
53. Tiamat - Light In Extension Powergod - Children Of Lost Horizons
54. Deicide - Mephistopheles Powergod - I’m On Fire
55. Iron Savior - Brave New World Powergod - Gods Of War
56. Tiamat - Nihil Powergod - No Brain No Pain
57. Iron Savior - Paradise Powergod - Observator
58. Crematory - Human Blood Powergod - Evilution Part I
59. Entombed - Something Out Of Nothing Powergod - Powergod
60. Stratovarius - Rebel Corvus Corax - Bitte Bitte

Table 6.1: Effects of relevance feedback on the query Speed Metal. Bold entries indicate
relevant pieces according to Last.fm tag ground truth; automatic query update after 20 results.
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Figure 6.2: Precision at 11 standard recall level plots demonstrating the effects of relevance
feedback (avg. over 227 queries).

On-line Off-line Feedback

Prec@10 49.56 39.74 39.74
rPrec 26.41 23.48 37.66
AvgPrec 25.29 22.99 35.80

Table 6.2: IR measures showing the effect of relevance feedback (avg. over 227 test queries).

relevance feedback were presented in groups of 20. In the other run, relevance
feedback was enabled. Thus, the ratings of the documents had a direct influence
on the following 20 results. Whether the first or the second run was presented first
was chosen randomly for each query to avoid learning effects. Furthermore, the
users were told to evaluate two different feedback strategies. The fact that one run
included no feedback strategy at all was concealed. The 55 different queries issued
by the participants can be found in Table A.4.

Since obtaining users’ relevance judgements for all pieces in the collection for
all queries is infeasible, other measures than those used in Section 5.6.2 have to
be applied to illustrate the impact of relevance feedback, such as the number of
relevant pieces in each iteration step or the number of queries for which all results
were considered relevant, cf. [Harman, 1992]. Table 6.3 displays the results of the
user study. Interestingly, in the first iteration, results are not consistent. Obviously,
users considered different tracks to be relevant in the first and in the second run
(even if only very sporadically). Note that in the second iteration, the feedback
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Iteration 1 2 3 4 5 total

no relevance feedback

Relevant retrieved/iter. (mean) 7.13 5.02 4.05 3.76 3.71 4.73
Relevant retrieved/iter. (sum) 392 276 223 207 204 1,302
Cumulative relevant retr. (sum) 392 668 891 1,098 1,302 1,302

Queries with all relevant 9 3 3 2 1 0
Queries with no relevant 22 26 25 28 30 17

with relevance feedback

Relevant retrieved/iter. (mean) 7.22 4.15 6.47 5.73 6.18 5.95
Relevant retrieved/iter. (sum) 397 228 356 315 340 1,636
Cumulative relevant retr. (sum) 397 625 981 1,296 1,636 1,636

Queries with all relevant 8 1 6 4 5 0
Queries with no relevant 23 27 20 23 22 11

Table 6.3: Results of the user study over 5 iterations. In each iteration, 55 queries were
evaluated (the maximum achievable number of relevant retrieved pieces for each query is 20; the
maximum achievable number per iteration is thus 1,100; advantageous values in bold typeface).

Category Queries Relevant (avg.)

Genre 28 33.25
Artist 12 28.50
Instrumentation 7 24.71
Track 6 2.50
Geographical 5 33.00
Movie related 4 16.00
Other 3 23.33

Total 55 29.75

Table 6.4: Identified query categories, the number of queries belonging to these categories, and
the average number of relevant music pieces (out of 100).

approach performs worse due to an error during presentation, i.e., in the survey, the
most relevant tracks after the first feedback step were not presented to the users and
were therefore not included in the ratings. Nevertheless, the general trend of better
results when using relevance feedback can still be observed.

From the set of issued queries, 6 basic types of queries can be identified.1 Ta-
ble 6.4 shows the different categories as well as the number of queries belonging to
these categories. Note that a query can be assigned to multiple categories (e.g.,
vienna electro dj or rammstein music with strong keyboard). Worst results can be
observed for queries that aim at finding a specific track. Although the user may
select tracks other than the one specified, naturally the overall number of tracks
rated relevant is very low. Furthermore, it can be seen that users are most satisfied
with results for genre queries (e.g., eurodance) and geographically related queries
(e.g., new orleans).

1Since searching for lyrics is currently not supported, queries addressing lyrics are not included.
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Find music pieces by typing a query

Select the pieces you like

Listen to the music

Update the results based on
the pieces you have selected

Selected pieces are stored
in the “Harvest List”

Figure 6.3: Overview of the Search’n’Select interface and usage instructions.

6.5 Prototype: The Search’n’Select Application

To demonstrate the applicability of the proposed methods for building interactive,
user-centred search systems, a prototype called Search’n’Select has been developed,
cf. [Knees, 2007]. Search’n’Select allows users to search for desired music in an iter-
ative process that adapts to the user’s behaviour. In the first step, the user can gain
access to the underlying music collection by issuing simple free-form text queries.
From the returned items, the user selects those after his/her fancy. The marked
pieces are then transferred into a list of “harvested music pieces” (analogous to,
e.g., a shopping cart in an on-line shop). Based on the chosen music pieces, the
consecutively presented results are modified such that they tend to contain more
pieces similar to the ones in the “harvest list”. The user can continue searching by
selecting (or ignoring) more results or by issuing the next query. Figure 6.3 shows
an overview of the application and describes the process.

Search’n’Select can be seen as a combination of retrieval and browsing systems.
By knowing which pieces are of interest to the user, the system can guide the user
further in that direction by presenting other pieces that could be of interest. How-
ever, this guidance is very implicit, i.e., there is no (hierarchical) structure that
informs the user about his/her current position within the collection. Therefore,
a key aspect of this type of browsing is that potentially surprising results may be
presented to the user and allow to explore further regions of the music space.
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6.6 Recapitulation and Discussion

The approach presented in this chapter successfully incorporates relevance feedback
into a search engine for large music collections that can be queried via natural lan-
guage text input. Due to the underlying vector space model, Rocchio’s method for
including relevance feedback could be integrated smoothly. The conducted evalua-
tions show that relevance feedback provides a valuable extension to the system in
that it opens up the possibility to adapt to users’ preferences. Furthermore, the
Search’n’Select application prototype facilitates exploration of the music space by
selecting pieces of interest and incorporates characteristics of both retrieval and
browsing interfaces.

Apart from the improved results induced by relevance feedback, the positive im-
pact on the system’s performance allows to conclude that the vector space represen-
tations of the music pieces is well suited to model the similarity between pieces. To
further advance the system, the translation of queries into the term vector space has
to be improved. Starting with better initial results is also mandatory for the accep-
tance of the system since people usually judge the quality based on the first results.

Due to the similarity with the pseudo document approach introduced in Sec-
tion 5.3.1, integration into this type of indexing poses no big problem. For the
RRS-based retrieval approach from Section 5.3.2, however, a direct incorporation
of the presented relevance feedback method is not possible due to the two-layered
retrieval process. A possible workaround could consist in propagation of relevance
judgements from music pieces back to the associated Web pages, where the query
modification is performed then (cf. Section 5.4.2.1). From this modified query, a
new music piece ranking could be calculated. Given these necessities, the pseudo
document approach should be favoured when considering such extensions, as already
concluded in Section 5.8.
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Chapter 7

Critical Discussion and Future Directions

In this thesis, automatic methods to associate music pieces with textual descrip-
tions extracted from the Web have been presented. The proposed techniques utilise
common Web search engines to find related text content on the Web. From this
content, descriptors are extracted and applied in three scenarios: to serve as labels
that facilitate orientation within browsing interfaces to music collections, to be used
as indexing terms for music retrieval systems that can be queried using descriptive
free-form text as input, and as features in adaptive retrieval systems that aim at
providing user-targeted music recommendations.

In general, exploiting Web-based texts permits to describe music and large music
repositories with a diverse set of terms. One advantage of deriving textual features is
that they are better understandable for humans than content-based descriptors. La-
belling a piece or a region on a map with the words Jazz and Piano will (hopefully)
better indicate to the typical user what type of music to expect than the presenta-
tion of sole statistics of spectral properties. However, this also requires having some
background on musical terminology. As with genre descriptors, not everybody may
be familiar with words that describe finer grained music concepts. Therefore, it may
be valuable to have some redundancy within the applied descriptors, i.e., synonyms
or closely related concepts (something that seems to emerge naturally in collabo-
rative tagging systems, cf. Figure 2.2). Multiple labels also allow for emphasis of
specific aspects of the music and to clarify ambiguous descriptors (i.e., polysemous
music descriptors like the term Indian music, cf. Chapter 6.1)).

The most severe problem with this type of representation is that in order to be
able to describe music with related terms, these terms have to be available. Not only
must a music piece have gained a certain popularity to be present in the Web at all;
even if Web-data is available and ranked accordingly by the used Web search engine,
there is no guarantee that its contents deal with the “right” topics or make use of
the “right” vocabulary. That is, the presented approaches are rather fragile in that
they rely on the existence and accessibility of specific expressions in specific con-
texts. When using the descriptors for labelling — as done in the Music Description
Map technique and in the nepTune interface — this drawback might be acceptable
since similar descriptions could be available instead to assist the user. When using
the descriptions as features, however, this has severe implications. In the proposed
feature space, every term corresponds to a dimension. These dimensions are con-
sidered independent (which is in general not true) and equally important (which is
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relevant when calculating similarities, for instance). Hence, words of interest not
present on Web pages affect the indexing heavily and result in features that have
low quality and may be a bad representation for music tracks.

A possible approach to deal with this is to abandon the idea of the bag-of-words
vector space model and follow a more stable IR approach, i.e., a semantic index-
ing approach. By exploiting such an approach that makes use of dimensionality
reduction methods such as LSA [Deerwester et al., 1990] or NMF [Lee and Seung,
1999], instead of working on a direct term-document representation, a set of “se-
mantic” concepts that consist of a weighted combination of words is produced and
documents are represented within the resulting concept space. Although weighted
combinations of terms may be less intuitive, the advantages are manifold. First, the
resulting concept representation has lower dimensionality since original term vector
dimensions corresponding to terms that have similar meanings are merged into a
joint concept dimension. In the resulting space, polysemous words can be identified
since they contribute to multiple concepts, i.e., they can be observed in different
“semantic” contexts simultaneously. Second, noisy term dimensions are omitted or
marginalised since they do not contribute to a specific concept. Third, resulting
document representations are less sparse. Initial steps that apply such a method
to music-related Web terms have been made by [Pohle et al., 2007b]. To make the
methods presented in this thesis more robust and therefore improve retrieval quality
in corresponding applications, a similar strategy could be pursued.

Another aspect tackled in this thesis is the combination of Web-based descrip-
tors with acoustic similarity extracted from the audio signal. While complementing
primarily audio-based techniques with Web data has shown good potential (as in
the MDM and the nepTune interface), incorporation of audio-based similarity into
text-based retrieval as proposed in this thesis was less successful. However, it is
likely that other forms of combination would yield better results. First, as has been
demonstrated by [Barrington et al., 2009], supervised learning of a pre-specified set
of music-relevant concepts is feasible. A combination of a similar strategy with the
concept-based text descriptions mentioned before is conceivable for future work. Al-
ternatively, for text-based retrieval, a more sophisticated combination with audio
similarity could be realised, e.g., by integrating (Markov chain) random walks on
the audio similarity graph starting from a text-based music piece ranking.

For future research, another very interesting contribution and addition to the
work carried out so far would be the development of an autonomous Web crawler to
index the Web and to replace the functionality and position currently filled by com-
mercial Web search engines. To make such a task feasible, this focused crawler would
have to be trained using machine learning techniques to identify domain specific Web
pages, to follow promising links with higher priority, and, hence, to index only those
parts of the Web that are relevant for subsequent tasks such as those discussed in
this thesis (cf. Section 2.2.1). For building such an application, previously devel-
oped techniques to extract music-relevant information, such as estimation of artist
similarity, co-occurrence analysis, and prototypical artist detection, can be reused.

In addition to Web-based indexing and retrieval, new application areas for Web
data in the music domain seem very interesting — and all of these would also benefit
from having full access to a (music targeted) Web index. For instance, approaches
for entity detection to discover, for instance, new artists could be applied. This
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would be a straight forward extension to existing co-occurrence techniques, capa-
ble of revealing new information. With this kind of technology, new techniques for
discovery of emerging trends in music are conceivable. Another potential research
direction that goes beyond the implicit information modelling contained in the cur-
rent context-based indexing (such as implicit band-member relations, cf. Figure 5.9)
is music information extraction. For instance, having a collection of music-specific
Web pages, explicit information about artists, albums or individual pieces can be ex-
tracted. By applying predefined rules (or rules automatically derived from labelled
examples) these pages can be examined for meta-information such as discographies,
biographical data of artists (or bands, e.g., the history of band members), or re-
lations between artists, composers, or pieces. For instance, such a relation could
indicate whether a song is a cover version of another. If this information is not
explicitly available, other information present from the Web could be used, e.g., for
determining the composer of a given piece or by comparing the lyrics. Furthermore,
such an approach has the potential to be combined with audio-based cover version
detection approaches to include additional evidence. In general, instead of mod-
elling music pieces or artists by weightings of terms or concepts, the development
of intelligent methods to derive factual information about music entities and their
connections is very interesting. Such explicit meta-data is not only a valuable source
for structuring repositories and for making recommendations and therefore of inter-
est for digital music resellers, but also useful for complementing existing intelligent
context- and content-based applications (e.g., for constraining uninformed recom-
mendation systems and to avoid implausible or inappropriate suggestions such as
Christmas music outside the holiday season).

In conclusion of this thesis, it can be stated that Web-based indexing and re-
trieval of music (as well as Web-based MIR in general) is a very important and
relevant research direction. Special attention should be given to the fact that Web-
MIR methods are capable of representing aspects of music not encoded in the audio
signal. Thus, finding the right balance between content- and context-based methods
appears to be the key for the development of future music applications.
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Appendix A

A.1 Supplementary Material

Music vocabulary consisting of 944 entries

17th century Dance Band imaginative Punk Pop
18th century Dance Bands impolite Punk Revival
19th century Dancefloor impressive Punk Rock
20th century Dancehall improvisation Ragga
2step Dancehall reggae improvisatory Ragtime
4 beat dangerous Improvised Music Ramshackle
50s danish impulsive Rap
60s Dark Metal indecent Rapcore
70s Darkstep Indie Pop Rap Metal
80s Dark Wave Indie Rock Rap Rock
90s Death Metal indulgent Rave
A Cappella Deep House Industrial raving
accidental dejected Industrial Dance R&B
Accordion depressive Industrial Metal rebellious
acerbic deranged injurious Reed Organ
Acid desolate Instrumental Reedpipe
Acid House despairing Instrumental Country Reggae
Acid Jazz destructive Instrumental Rock Reggaeton
Acid Rock Detroit Rock intellectual relaxed
acoustical Detroit Techno intelligent religious
adolescent devotional Intelligent Dance Music Renaissance
adult contemporary Didjeridu intense repellent
aesthetic Dirty Rap intimate repulsive
affectionate Dirty South introspective responsive
affective Disco irish restless
African disgusting ironic restrained
African Jazz displeasing israeli Retro Rock
Afro dissatisfying italian Retro Swing
Afro Cuban Jazz distraught Italian Pop rhapsodic
aggressive distrustful Jam Bands Rhythm and Blues
agitated disturbed Jangle Pop rhythmic
allegorical divine japanese R n B
alone Dixieland Japanese Pop RnB
Alt Country Dixieland Jazz J Pop Rock
Alternative Dixieland Revival Japanese Rock Rockabilly
Alternative Country Doom Metal Jazz Rockabilly Revival
Alternative Dance Downbeat Jazz Funk Rock and Roll
Alternative Folk Downtempo Jazz Pop Rock en espanol
Alternative Metal dramatic Jazz Rap Rock Hop
Alternative Rap dreamlike Jazz Rock Rock & Roll
Alternative Rock Dream Pop Jazzrock Rock Steady
Ambient dreamy Jingles Rocksteady
Ambient Groove Drill and Bass Jive Rococco
Ambient Pop druggy jovial romantic
american Drum joyful Roots Rock
Americana Drum and Bass joyous Rotterdam Techno
American Punk Drum n Bass Jungle russian
American Trad Rock Dub Junkanoo sad
American Underground dutch kaleidescopic Sadcore
AM Pop dynamic Klezmer Salsa
amusing dynamics knotty Samba
Anarchist Punk Early Creative Kompa sarcastic
ancestral Early music korean Saxhorn
ancient earthy Kraut Rock Saxophone
andean East Coast Kwaito Saz

Continued on next page
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Appendix A. Appendix

Music vocabulary consisting of 944 entries (continued)

angry East Coast Rap L.A. Punk Scandinavian Metal
angst ridden eastern LA Punk scary
anguished Easy Listening latin Schlager
animated effervescent Latin Continuum schmaltzy
animistic Electro Latin Jazz science fictional
annoying Electroclash Latin Pop scientific
antisocial Electronic Latin Rap scurrilous
anxious Electronica Latin Rock senegalese
archaic Electronic Body Music Lo Fi sensual
archival Electronic Dance loony sentimental
Arena Rock Electropop lovely Serious Music
art elegant loving Serpahine
artistic Emo Lutes sexy
Art Rock emotional lyrical shakers
art song emphatic macabre shamanistic
Asian Pop endearing Mainstream Shamisen
atmospheric energetic Mainstream Jazz Shibuya kei
Aussie Rock enigmatic Makina sinister
austere Enka Mandolin Sitar
australian entertaining manic Ska
autumnal environmental mannered Ska Punk
Avant garde Jazz epic Mariachi Ska Revival
Background Music erotic Marimba Skatepunk
bad mannered eternal masculine Skiffle
Bagpipe ethereal materialistic skittish
Bakersfield Sound ethical maternal sleazy
Ballad ethnic Math Rock slick
Ballroom euphoric M Base slovenian
Ballroom Dance Eurodance meandering Slowcore
Bandoneon european mechanical Sludge Metal
Banjo Euro Pop mechanistic slushy
Baritone Europop Medieval Smooth Jazz
baroque Euro Rock Meditation smouldering
Baroque Pop everchanging meditative Snare Drum
Barrel Drum evocative melancholic Soft Rock
Bass excited melancholy somber
Bass Drum exciting mellow Songwriter
Bass Music existential Melodeon soothing
Beats exotic Melodica sophisticated
Bebop experimental Melodic Metal Sophisti Pop
belgian Experimental Big Band Melodic Trance Sopranino
Bhangra Experimental Rock Melodiflute Soprano
biblical expressionistic Melodina sorrowful
Big Band expressive melodramatic Soul
Big Beat extensive memorable Soul Jazz
binary exuberant menacing south african
Bitpop fearful mendacious Southern Gospel
Black Metal fearsome merengue Southern Rap
bleak feminine Metal Southern Rock
blissful ferocious mexican Space Rock
bloody Fiddle Miami Bass spanish
Bluegrass fierce Microhouse spectacular
Blues fiery microtonal Speed Garage
boisterous filipino middle aged Speed Metal
Bongo Filk Middle Eastern Pop Spinet
Boogie Rock finnish minimalism spirited
Boogie Woogie Flageolet Minimalist Trance Spiritual
Bop Flamenco miserable Spirituals
Bossa Nova Flamenco Guitar Modal Music spooky
bouncy Flute Modern Big Band Square Dance
Bouzouki Folk Modern Creative Steam Organ
Boy Band Folk Rock Modern Free Steel Drum
Brachial Metal forceful modernistic stellar
brash Foreign Language Pop Modern Jazz Stoner Metal
Brass Band Foreign Language Rock Mod Stoner Rock
brassy Foreign Rap modulations strange
bravado Fortepiano moody String
brazilian fractured Mouth Organ String Band
Brazilian Jazz frantic Musicals String Bands
Breakbeat Frat Rock Musique concrete stylish
Breakbeat Hardcore Freakbeat mystical Sunshine Pop
Breakcore freakish mythical Surf Revival
breezy Freeform Nashville Sound Surf Rock
Brill Building Pop Freeform Hardcore nasty swedish
brisk Free Funk native american Swedish Pop
british Free Jazz Natural Trumpet Swing
British Blues Freestyle Neo Bop swiss
British Dance Bands Freestyle house Neo Classical Metal Symphonic Black Metal
British Folk Rock Freetekno Neo Glam Symphony

Continued on next page
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Music vocabulary consisting of 944 entries (continued)

British Invasion freewheeling Neo Prog Synthesizer
British Metal french Neo Psychedelia Synth Pop
British Psychedelia French Pop Neo Traditional Folk Synthpop
British Pop French Rock Neo Traditionalist Synthpunk
British Punk frisky Nerdcore Tabla
British Rap Fugue Neue Deutsche Welle Tabor
British Trad Rock Functional Music NDW taiwanese
Britpop Funk New Age Tambourine
Brit Pop Funk Metal New Beat Tambura
brittle funny New Orleans Brass Tango
Brokenbeat Fusion New Orleans Jazz tanzanian
brooding Futurepop New Romantic Tech House
brotherly futuristic New School Techno
Bubblegum Gabba New Traditionalist Tenor
bustling Gangsta New Wave Thrash
busy Gangsta Rap New York Punk Thrash Metal
byronic Garage New Zealand Rock thrilling
Cabaret Garage Punk nihilistic throbbing
Cajun Garage Rock nocturnal thuggish
calm german noise Timba
Calypso G Funk Noise Pop Timbale
canadian ghastly Noise Rock tonal
Candombe Ghetto Nonet traditional
caribbean Ghetto House norwegian Traditional Country
Castanets Ghettotech Novelty Ragtime Trad Jazz
casual Girl Group No Wave tragic
catastrophic glamorous Nu Jazz Trance
cathartic Glam Rock Nu Metal trancelike
Cathedral gleeful Nu NRG trashy
celebratory Glitch Nu Soul Triangles
Cello Glitter Oboe Trip Hop
Celtic Glockenspiel Ocarina trippy
Chamber Music gloomy Old School Trombone
Chamber Pop Goa Old School EBM Truck Driving Country
changeable Goa Trance Old School Rap Truck
Chanson Go Go Old Skool True Metal
chanting Golden Age Old Style Trumpet
Chapel Gong Old Timey Trumpets
Chicago House Gospel Opera Tuba
Chicano Rap Gospel Spiritual Operetta Tubular Trumpet
chill Gothic Orchestra turkish
Chillout Gothic Metal Orchestral Jazz Turntable
Chimes Goth Metal Organ Twee Pop
chinese Goth Rock oriental Twelve String
Chinese Opera Grand Piano Outlaw Country twitchy
Chinese Pop greasy outraged Tzouras
Chinese Pop Rock greek outrageous uncompromising
Chip Music greenlandic Panpipe unconventional
chirpy Gregorian paranoid uncreative
Choral Grindcore Party Rap uncultured
Christian Rock gritty pastoral Underground
Christmas grotesque paternal Underground Rap
Church gruesome patriotic unethical
Clappers Grunge Percussion unexpressive
Clarinet Guitar percussive unfriendly
Classical Guitar Virtuoso pessimistic unfunny
Classical Guitar gutsy philosophical unhappy
Classic Jazz Gypsy Piano unhealthy
Classic Soul Hair Metal Pimp unimaginative
Claves happy Pipe Organ unintelligent
close harmony Happy Hardcore poetic unintuitive
College Rock Hard Bop polish unnatural
Comedy Rock Hardcore political unpleasant
comical Hardcore Punk Political Rap unreal
compassionate Hardcore Rap Polka unusual
compelling Hardcore Techno Pop Upbeat
complex Hard House Pop Metal uplifting
Concertina Hard Rock Pop Rap Urban
confident Hardrock Popular Music utopian
confrontational Hard Stuff Pop Underground Vallenato
Congo Hard Trance portuguese Variation
contemplative Harmonica Post Bop Variations
Contemporary Music Harmony Post Grunge Vibraphone
Contemporary Bluegrass Harp Post Horn vigorous
Contemporary Country Harpsichord Post Punk Viola
contemptuous harsh Post Rock violent
Continental Jazz haunting powerful Violin
Contrabass hazardous Power Metal vivacious
contralto Heartland Rock Power Pop vocal

Continued on next page
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Music vocabulary consisting of 944 entries (continued)

contrapuntal Heavy Metal primitive vocalese
controversial hedonistic Prog Vocal House
convulsive hideous Progressive Big Band volatile
cool hilarious Progressive Bluegrass vulgar
Country Hi NRG Progressive Country Wave Metal
Country Boogie HipHop Progressive House weird
Country Folk Hip Hop Progressive Jazz welsh
Country Gospel Hip House Progressive Metal West Coast
Country Music Hong Kong Pop Progressive Rock West Coast Jazz
Countrypolitain Honky Tonk Progressive Trance West Coast Rap
Country Pop Horn Prog Rock Western Swing
Country Rock Hornpipe propulsive Whistle
courageous Horrorcore Proto Punk Wind Instrument
courteous Hot Jazz provocative Wood Blocks
Cowbell Hot Rod Psychedelic World Fusion
Cowpunk House Psychedelic Pop worldwide
Crossover humorous Psychedelic Trance Xylophone
Crossover Jazz humourous Psychobilly yearning
cuban hypnotic Pub Rock Yodeling
Cuban Jazz icelandic puerto rican Yodelling
Cymbal IDM pulsating youthful
cynical idyllic Punk Zither
Dance Illbient Punk Metal Zydeco

Table A.1: Music vocabulary consisting of 944 entries.
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female vocalists (5056) party (1763) progressive (771) thrash (236)
female vocalist (5056) romantic (1737) ska (763) melodic death metal (215)
mellow (5003) grunge (1737) synthpop (748) black metal (211)
singer-songwriter (4914) 60s (1694) synth pop (748) darkwave (205)
singer songwriter (4914) piano (1664) political (732) avantgarde (197)
80s (4874) vocal (1654) atmospheric (723) avant-garde (197)
hard rock (4826) hardcore (1604) metalcore (677) breakbeat (194)
chill (4464) female vocals (1581) garage rock (675) shoegaze (184)
00s (4096) indie pop (1560) alt-country (660) dancehall (182)
pop-rock (4081) new wave (1479) christian rock (658) dream pop (169)
pop rock (4081) live (1424) psychedelic rock (646) french (148)
metal (3975) usa (1392) trance (634) melodic metal (148)
hip hop (3898) folk-rock (1377) latin (633) german (147)
hiphop (3898) folk rock (1377) dreamy (627) drum and bass (147)
hip-hop (3898) britpop (1376) house (616) doom metal (142)
punk (3894) psychedelic (1375) melodic (602) remix (138)
soul (3867) rhythm and blues (1327) thrash metal (539) swedish (136)
dance (3852) alternative metal (1271) gothic (538) anime (134)
chillout (3720) uk (1270) progressive metal (526) world music (124)
indie rock (3657) nu metal (1260) emocore (524) electroclash (122)
classical (3587) nu-metal (1260) post-hardcore (520) speed metal (117)
rnb (3289) experimental (1236) art rock (519) idm (108)
relaxing (3154) ambient (1217) guitar virtuoso (470) psytrance (107)
relax (3154) melancholic (1215) irish (463) progressive trance (101)
country (3130) pop punk (1211) death metal (458) noise (97)
british (3081) rock n roll (1199) swing (440) bossa nova (95)
electronic (3035) instrumental (1162) world (436) symphonic metal (86)
emo (2960) blues rock (1104) industrial metal (425) contemporary classical (79)
70s (2894) alternative punk (1085) ethereal (421) japanese (75)
guitar (2815) funky (1053) goth (373) brazilian (74)
sad (2808) dark (1034) stoner rock (372) dark electro (74)
oldies (2787) post-punk (1001) new age (342) finnish (74)
cool (2781) english (992) rockabilly (342) psychobilly (65)
folk (2775) calm (986) ska punk (341) ebm (60)
acoustic (2724) lounge (951) power metal (339) italian (57)
blues (2696) canadian (928) lo-fi (330) grindcore (56)
rap (2680) techno (900) post-rock (325) drum n bass (54)
punk rock (2629) reggae (885) post rock (325) sludge (48)
sexy (2576) industrial (872) christmas (315) brutal death metal (45)
happy (2333) comedy (862) electropop (307) female fronted metal (44)
easy listening (2226) glam rock (844) spanish (300) minimal (43)
jazz (2223) disco (843) gothic rock (291) dnb (38)
ballad (2186) epic (835) dub (287) deutsch (38)
soft rock (2113) rock and roll (833) gothic metal (278) melodic black metal (31)
melancholy (2085) downtempo (830) industrial rock (277) russian (30)
electronica (2022) americana (823) celtic (276) jpop (29)
heavy metal (1876) trip hop (818) acid jazz (261) jrock (29)
progressive rock (1856) trip-hop (818) hardcore punk (249) j-rock (29)
catchy (1808) screamo (815) fusion (239) j-pop (29)
funk (1781) electro (806) australian (236) drone (24)

Table A.2: Evaluation queries for the c35k collection sorted according to the number of relevant
tracks per query.
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male lead vocals (339) piano (84) rap (21)
electric texture (326) romantic (76) string ensemble (20)
acoustic texture (278) touching (75) reading (20)
drum set (275) pop (72) breathy vocals (20)
high energy (231) very danceable (68) rapping (20)
comfortable (184) distorted electric guitar (65) intensely listening (20)
pleasant (184) at a party (62) romancing (19)
positive feelings (172) aggressive (58) horn section (18)
catchy (165) sad (58) contemporary r&b (16)
memorable (165) acoustic guitar (58) screaming (15)
bass (164) going to sleep (56) call and response (15)
synthesized texture (160) electronica (56) piano solo (14)
passionate (160) soft rock (48) at work (14)
strong (160) angry (48) cool jazz (13)
powerful (160) drum machine (44) hand drums (12)
emotional (160) cleaning the house (43) gravelly vocals (12)
awakening (154) male lead vocals solo (40) tambourine (12)
arousing (154) sequencer (39) falsetto (11)
backing vocals (153) distorted electric guitar solo (36) funk (11)
soothing (148) r&b (36) harmonica (10)
calming (148) changing energy level (36) saxophone solo (10)
driving (141) altered with effects (35) bluegrass (10)
rock (136) high-pitched vocals (35) spoken (10)
happy (135) hanging with friends (34) electric blues (9)
fast tempo (135) studying (33) violin (9)
heavy beat (130) country (33) brit pop (9)
electric guitar (124) hard rock (32) fiddle (9)
positive (120) samples (32) sleeping (8)
optimistic (120) ambient sounds (32) roots rock (8)
exciting (117) metal (32) waking up (8)
thrilling (117) jazz (32) trombone (8)
carefree (109) folk (30) alternative folk (8)
mellow (109) soul (29) gospel (7)
lighthearted (109) getting ready to go out (29) contemporary blues (7)
laid-back (109) low-pitched vocals (27) female lead vocals solo (7)
cheerful (107) singer songwriter (25) bebop (6)
festive (107) blues (24) monotone vocals (6)
soft (104) punk (23) organ (6)
tender (104) saxophone (23) duet (6)
alternative (100) weird (22) harmonica solo (6)
synthesizer (99) exercising (22) trumpet solo (6)
loving (98) bizarre (22) country blues (6)
emotional vocals (95) hip hop (21) acoustic guitar solo (6)
playful (92) dance pop (21) with the family (5)
light (92) electric guitar solo (21) swing (5)
female lead vocals (90) world (21)
classic rock (90) trumpet (21)

Table A.3: Evaluation queries for the CAL500 set sorted according to the number of relevant
tracks per query.
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”plastic band” jazz
80ies synth pop latin pop
ac/dc mass in b minor
acdc melodic metal with opera singer as front woman
american folk metal
angry samoans metallica
barbie girl ndw
cello neomedieval music
comedy new orleans
dancehall new zork scene
don’t dream it’s over no new york
drude nur die besten sterben jung
eurodance oldies slow jazz
female electro postmodern
filmmusik punk
gangsta punk rock
german hip hop rammstein music with strong keyboard
ghost dog rem
green day schoenheitsfehler
groove sicherheitsmann
guitar rock brit pop soundtrack
happy sound vienna electro dj
hard rock fast guns’n roses violin
heavy metal with orchestra weilheim
herr lehmann wie lieblich sind deine wohnungen
in extremo live world
indie rock zztop
industrial rock trent reznor

Table A.4: 55 queries issued by users in the user study.

A.2 Detailed Evaluation Results

Explanation for all tables: All entries are obtained by calculating the mean result
over all queries. Values are given in percent. A bold typeface indicates that the
entry belongs to the group of significantly best settings (per line) according to the
Friedman test with a significance level α=0.01. The structure of this appendix
section corresponds to the structure of Section 5.6.2.
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A.2.1 Web Search Engine Impact

Rec Prec Prec@10
Baseline 100.00 3.65 3.60

Google exalead Google exalead Google exalead
RRSn=10 2.18 1.73 30.15 28.42 31.19 27.40
RRSn=20 3.74 2.80 29.02 28.05 32.40 30.30
RRSn=50 7.17 5.46 27.61 26.43 38.45 32.35
RRSn=100 12.72 8.71 25.99 25.06 44.10 35.90
RRSn=200 18.67 13.40 23.77 23.01 47.75 33.80
RRSn=500 29.31 23.19 20.12 20.41 50.30 34.60
RRSn=1000 40.38 34.01 16.88 17.97 52.55 36.80
RRSn=10000 80.50 72.48 7.29 8.81 57.45 42.55
PseudoDoc 93.66 87.20 4.27 5.52 39.25 34.95

rPrec AvgPrec AUC
Baseline 3.65 3.68 4.18

Google exalead Google exalead Google exalead
RRSn=10 2.16 1.42 1.19 0.93 3.05 2.79
RRSn=20 3.63 2.48 1.84 1.38 3.64 3.13
RRSn=50 6.52 4.73 3.24 2.42 4.99 4.13
RRSn=100 10.24 7.41 5.54 3.72 7.11 5.17
RRSn=200 14.22 10.76 8.23 5.34 9.62 6.62
RRSn=500 19.84 15.70 12.39 8.42 13.76 9.79
RRSn=1000 24.22 20.36 16.10 11.96 17.22 13.36
RRSn=10000 35.20 30.25 29.98 23.97 31.25 25.32
PseudoDoc 30.78 26.72 25.97 21.16 27.09 22.29

Table A.5: Google vs. exalead Web search engine impact evaluated on c35k

Rec Prec Prec@10
Baseline 100.00 13.32 13.33

Google exalead Google exalead Google exalead
RRSn=10 5.96 5.58 25.77 26.74 25.77 26.80
RRSn=20 10.19 9.13 24.87 24.11 25.98 25.42
RRSn=50 17.99 15.68 22.84 22.11 26.06 26.55
RRSn=100 26.80 23.66 21.02 20.63 29.30 27.99
RRSn=200 38.63 33.42 19.15 18.72 30.60 28.63
RRSn=500 56.31 47.36 16.86 17.20 32.68 29.28
RRSn=1000 66.91 56.09 15.54 16.25 33.47 29.50
RRSn=10000 73.27 61.43 14.56 15.45 33.62 30.43
PseudoDoc 81.15 70.52 14.50 15.08 30.72 26.47

rPrec AvgPrec AUC
Baseline 13.31 14.31 15.69

Google exalead Google exalead Google exalead
RRSn=10 5.61 5.33 3.58 2.78 4.50 3.77
RRSn=20 8.84 7.65 5.30 4.16 6.13 5.00
RRSn=50 13.49 11.88 7.57 6.34 8.63 7.22
RRSn=100 18.05 15.81 10.59 8.52 11.69 9.61
RRSn=200 21.58 18.77 13.84 10.85 15.16 12.13
RRSn=500 24.06 20.77 18.02 14.15 19.33 15.51
RRSn=1000 24.86 21.02 20.37 15.93 21.77 17.35
RRSn=10000 25.06 21.12 21.77 16.96 23.16 18.27
PseudoDoc 25.77 21.31 22.66 17.57 24.12 19.21

Table A.6: Google vs. exalead Web search engine impact evaluated on CAL500
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A.2.2 Page Filtering Impact

artist threshold 12 15 18 20 12 15 18 20
Rec Prec

RRSn=10 2.10 2.07 2.13 2.16 33.50 35.72 35.09 34.03
RRSn=20 3.88 3.93 3.70 3.66 32.91 32.86 32.45 32.23
RRSn=50 8.09 7.87 7.74 7.86 31.26 31.13 30.91 30.64
RRSn=100 12.14 12.58 12.39 12.58 28.61 29.05 28.62 28.40
RRSn=200 18.29 18.13 18.09 18.01 26.19 26.21 25.86 25.61
RRSn=500 29.22 29.84 29.29 29.25 21.44 21.71 21.65 21.63
RRSn=1000 39.85 40.11 40.02 40.11 18.05 18.19 18.12 18.09
RRSn=10000 75.29 76.80 77.55 78.01 8.00 7.87 7.85 7.82

Prec@10 rPrec
RRSn=10 36.15 37.76 36.39 35.26 2.09 2.05 2.11 2.14
RRSn=20 36.14 37.05 35.95 35.10 3.80 3.67 3.64 3.59
RRSn=50 41.80 41.70 39.95 40.70 7.23 7.08 7.15 7.08
RRSn=100 45.85 46.65 44.90 45.00 10.54 10.78 10.55 10.77
RRSn=200 46.90 48.90 48.35 48.15 14.51 14.68 14.53 14.62
RRSn=500 51.35 51.20 50.30 49.95 20.25 20.35 20.28 20.39
RRSn=1000 52.35 52.85 52.90 52.60 25.08 25.00 24.72 24.70
RRSn=10000 55.95 56.70 56.95 57.00 34.64 35.03 35.26 35.46

AvgPrec AUC
RRSn=10 1.36 1.38 1.37 1.33 3.28 3.34 3.32 3.27
RRSn=20 2.24 2.24 2.16 2.08 4.01 4.07 3.98 3.88
RRSn=50 4.10 4.06 4.00 3.98 5.96 5.86 5.89 5.86
RRSn=100 6.15 6.29 6.13 6.23 7.79 7.91 7.76 7.91
RRSn=200 8.66 8.78 8.69 8.74 10.15 10.19 10.14 10.10
RRSn=500 13.04 13.19 13.10 13.11 14.34 14.57 14.43 14.45
RRSn=1000 16.95 17.01 16.85 16.85 18.26 18.36 18.15 18.18
RRSn=10000 29.33 29.80 30.06 30.24 30.47 31.07 31.26 31.45

Table A.7: Impact of 2MA artist occurrence threshold (Google, c35k)
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artist threshold 5 10 15 20 5 10 15 20
Rec Prec

RRSn=10 1.45 1.81 1.90 1.86 24.69 26.49 28.00 27.45
RRSn=20 2.64 2.91 3.05 2.87 24.31 26.37 27.48 26.86
RRSn=50 5.12 5.39 5.56 5.64 23.53 25.86 26.65 26.50
RRSn=100 8.61 8.53 8.70 8.71 23.39 24.37 25.17 25.31
RRSn=200 13.11 13.30 13.23 13.40 22.01 22.86 23.24 23.44
RRSn=500 22.13 23.29 23.56 23.46 19.62 20.36 20.81 20.87
RRSn=1000 29.33 33.09 33.92 33.82 17.10 18.11 18.39 18.49
RRSn=10000 49.71 63.80 67.67 69.30 11.77 10.36 9.77 9.60

Prec@10 rPrec
RRSn=10 26.07 27.59 26.66 26.69 1.45 1.79 1.58 1.54
RRSn=20 27.33 31.59 29.19 28.50 2.55 2.87 2.62 2.53
RRSn=50 29.20 31.44 33.27 32.55 4.73 5.18 4.88 4.97
RRSn=100 29.60 33.00 33.25 33.95 7.33 7.49 7.73 7.65
RRSn=200 32.05 33.60 32.90 32.25 10.38 10.78 10.49 10.68
RRSn=500 33.50 34.95 35.60 34.15 15.51 16.34 16.38 16.42
RRSn=1000 34.90 36.10 36.85 36.95 18.63 20.32 20.92 20.79
RRSn=10000 36.05 36.95 39.40 39.40 21.32 26.68 28.69 29.42

AvgPrec AUC
RRSn=10 0.78 1.04 0.96 0.97 2.54 2.83 2.67 2.67
RRSn=20 1.21 1.49 1.44 1.38 2.84 3.24 3.43 3.24
RRSn=50 2.11 2.53 2.49 2.50 3.68 4.13 4.23 4.17
RRSn=100 3.23 3.65 3.79 3.88 4.65 4.96 5.34 5.33
RRSn=200 4.80 5.29 5.17 5.36 6.21 6.66 6.59 6.82
RRSn=500 7.68 8.83 8.82 8.66 9.04 10.26 10.32 10.19
RRSn=1000 9.91 11.99 12.37 12.21 11.27 13.31 13.79 13.71
RRSn=10000 13.64 19.81 22.05 22.80 14.96 21.15 23.57 24.25

Table A.8: Impact of 2MA artist occurrence threshold (exalead, c35k)
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artist threshold ∞ 5 10 12 15 18 20 30
Rec

RRSn=10 5.96 5.61 5.60 5.57 5.85 5.83 5.93 5.83
RRSn=20 10.19 8.92 9.71 9.48 9.46 9.75 9.87 10.07
RRSn=50 17.99 15.17 16.61 17.40 17.20 17.36 17.50 17.57
RRSn=100 26.80 23.28 24.85 25.29 25.48 25.85 25.81 26.30
RRSn=200 38.63 30.81 36.47 36.91 37.24 37.91 38.00 38.07
RRSn=500 56.31 40.97 51.34 53.17 54.26 54.69 55.18 55.66
RRSn=1000 66.91 45.57 59.08 61.51 63.78 64.99 65.55 66.15
RRSn=10000 73.27 47.10 63.16 66.08 69.06 70.43 71.11 72.36

Prec
RRSn=10 25.77 26.80 25.92 25.23 25.72 25.75 26.04 25.66
RRSn=20 24.87 24.60 24.58 24.32 24.69 24.95 24.95 24.98
RRSn=50 22.84 22.10 22.51 22.47 22.44 22.64 22.68 22.76
RRSn=100 21.02 20.71 20.90 20.69 20.80 20.96 20.92 21.08
RRSn=200 19.15 19.28 19.30 19.19 19.11 19.24 19.21 19.19
RRSn=500 16.86 17.75 17.40 17.12 16.92 16.88 16.88 16.90
RRSn=1000 15.54 17.03 16.29 15.91 15.74 15.63 15.60 15.59
RRSn=10000 14.56 16.58 15.51 15.09 14.82 14.69 14.64 14.61

Prec@10
RRSn=10 25.77 26.76 25.96 25.20 25.63 25.69 25.99 25.70
RRSn=20 25.98 26.12 25.49 25.46 25.51 25.51 25.87 25.94
RRSn=50 26.06 26.98 26.28 26.00 26.14 26.28 26.57 25.92
RRSn=100 29.30 28.57 29.45 28.94 29.23 29.30 29.01 29.30
RRSn=200 30.60 29.21 30.89 29.74 29.88 30.02 29.80 30.09
RRSn=500 32.68 29.43 32.11 31.32 31.68 31.39 31.17 32.32
RRSn=1000 33.47 29.93 32.69 32.54 32.61 32.83 32.68 33.40
RRSn=10000 33.62 29.93 32.69 32.61 33.33 32.83 32.90 33.19

rPrec
RRSn=10 5.61 5.32 5.51 5.21 5.50 5.47 5.58 5.48
RRSn=20 8.84 8.10 8.42 8.45 8.54 8.52 8.64 8.72
RRSn=50 13.49 12.24 12.97 12.95 13.08 13.17 13.26 13.42
RRSn=100 18.05 15.62 17.51 17.86 17.81 17.65 17.80 17.90
RRSn=200 21.58 18.09 20.80 21.10 21.14 21.28 21.26 21.34
RRSn=500 24.06 19.19 23.11 23.22 23.59 23.76 23.73 24.06
RRSn=1000 24.86 19.48 23.55 24.19 24.54 24.95 24.89 24.80
RRSn=10000 25.06 19.57 23.89 24.49 24.96 24.87 24.96 25.08

AvgPrec
RRSn=10 3.58 3.21 3.30 3.27 3.41 3.52 3.54 3.54
RRSn=20 5.30 4.61 4.84 4.92 5.11 5.27 5.29 5.33
RRSn=50 7.57 7.04 7.35 7.45 7.34 7.42 7.56 7.56
RRSn=100 10.59 9.17 10.01 10.15 10.18 10.23 10.30 10.47
RRSn=200 13.84 11.29 12.97 13.19 13.24 13.45 13.50 13.63
RRSn=500 18.02 13.56 16.49 16.94 17.32 17.50 17.55 17.83
RRSn=1000 20.37 14.48 18.26 18.85 19.48 19.76 19.91 20.22
RRSn=10000 21.77 14.69 19.19 20.03 20.75 21.05 21.22 21.55

Table A.9: Impact of 2MA artist occurrence threshold (Google, CAL500)
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artist threshold ∞ 5 10 12 15 18 20 30
Rec

RRSn=10 5.58 4.92 5.04 5.46 5.42 5.42 5.71 5.75
RRSn=20 9.13 8.00 8.28 8.42 8.39 8.38 8.68 8.97
RRSn=50 15.68 14.65 15.19 15.05 15.21 15.18 15.24 15.58
RRSn=100 23.66 20.24 22.55 22.92 22.86 23.00 23.15 23.40
RRSn=200 33.42 25.78 30.84 31.69 32.34 32.39 32.66 33.12
RRSn=500 47.36 33.85 42.66 44.16 45.40 45.79 46.07 46.79
RRSn=1000 56.09 38.08 49.35 51.39 53.39 54.12 54.55 55.52
RRSn=10000 61.43 40.24 52.94 55.69 58.17 59.15 59.66 60.93

Prec
RRSn=10 26.74 24.82 25.83 26.50 26.73 26.86 27.11 27.30
RRSn=20 24.11 24.30 24.47 24.59 24.30 24.40 24.37 24.48
RRSn=50 22.11 22.28 22.58 22.17 22.23 22.21 22.24 22.29
RRSn=100 20.63 20.77 20.92 20.75 20.73 20.83 20.88 20.77
RRSn=200 18.72 19.21 19.37 19.21 19.16 19.12 19.09 18.83
RRSn=500 17.20 17.85 17.71 17.67 17.62 17.57 17.48 17.22
RRSn=1000 16.25 17.27 16.75 16.58 16.53 16.45 16.39 16.19
RRSn=10000 15.45 16.95 16.11 15.93 15.82 15.69 15.62 15.36

Prec@10
RRSn=10 26.80 24.65 25.80 26.54 26.62 26.74 27.01 27.15
RRSn=20 25.42 24.49 25.30 25.37 25.15 25.17 25.49 25.91
RRSn=50 26.55 26.14 25.96 25.99 26.21 26.07 26.57 26.64
RRSn=100 27.99 26.25 26.68 27.11 26.57 26.79 27.51 27.72
RRSn=200 28.63 25.68 27.11 27.39 28.23 27.79 28.08 28.73
RRSn=500 29.28 25.89 28.48 28.11 28.80 28.73 29.23 29.45
RRSn=1000 29.50 25.53 28.62 28.90 29.88 29.38 29.59 29.74
RRSn=10000 30.43 26.32 29.27 29.41 30.17 29.59 30.02 30.46

rPrec
RRSn=10 5.33 4.68 5.04 5.32 5.26 5.35 5.35 5.39
RRSn=20 7.65 7.00 7.23 7.57 7.57 7.31 7.39 7.49
RRSn=50 11.88 10.83 11.36 11.45 11.63 11.65 11.50 11.94
RRSn=100 15.81 13.45 15.11 15.14 15.46 15.49 15.71 15.73
RRSn=200 18.77 15.14 17.67 17.69 18.31 18.33 18.50 18.78
RRSn=500 20.77 15.87 18.83 19.42 20.09 20.36 20.43 20.63
RRSn=1000 21.02 16.07 19.24 20.06 20.79 20.75 20.79 21.02
RRSn=10000 21.12 16.00 19.17 20.01 20.53 20.58 20.78 21.04

AvgPrec
RRSn=10 2.78 2.69 2.87 2.88 2.92 2.87 2.88 2.85
RRSn=20 4.16 3.69 3.94 4.17 4.16 4.16 4.19 4.20
RRSn=50 6.34 6.05 5.92 5.97 6.12 6.12 6.17 6.34
RRSn=100 8.52 7.57 8.25 8.23 8.24 8.24 8.29 8.50
RRSn=200 10.85 8.93 10.36 10.37 10.55 10.56 10.61 10.83
RRSn=500 14.15 10.42 12.94 13.26 13.62 13.78 13.82 14.09
RRSn=1000 15.93 11.00 14.07 14.58 15.12 15.32 15.41 15.81
RRSn=10000 16.96 11.24 14.82 15.40 15.94 16.19 16.32 16.81

Table A.10: Impact of 2MA artist occurrence threshold (exalead, CAL500)
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A.2. Detailed Evaluation Results

artist threshold ∞ 5 10 12 15 18 20 30
Rec

RRSn=10 6.10 5.46 6.04 5.90 6.01 6.10 6.08 6.11
RRSn=20 9.68 8.92 9.54 9.59 9.48 9.61 9.71 9.62
RRSn=50 18.09 15.94 17.22 17.46 17.59 17.57 17.65 17.88
RRSn=100 26.34 23.53 25.33 25.59 25.91 26.26 26.19 26.28
RRSn=200 38.62 30.98 36.63 37.20 37.27 37.80 37.94 38.26
RRSn=500 55.65 39.65 50.93 52.69 53.46 54.42 54.71 55.05
RRSn=1000 66.48 43.47 58.16 60.54 62.87 64.07 64.65 65.71
RRSn=10000 72.93 45.01 61.94 65.12 68.38 69.88 70.60 72.02

Prec
RRSn=10 27.17 25.66 27.12 26.86 27.22 27.31 27.32 27.42
RRSn=20 25.39 24.42 25.19 25.22 25.36 25.38 25.45 25.45
RRSn=50 23.14 22.45 22.94 22.88 22.87 22.84 22.84 23.07
RRSn=100 21.05 21.01 21.17 21.10 21.10 21.15 21.06 21.14
RRSn=200 19.30 19.24 19.24 19.27 19.19 19.22 19.23 19.29
RRSn=500 16.95 17.92 17.40 17.20 17.00 16.95 16.93 16.96
RRSn=1000 15.81 17.32 16.47 16.13 15.96 15.89 15.85 15.87
RRSn=10000 14.84 16.92 15.79 15.38 15.13 14.99 14.94 14.91

Prec@10
RRSn=10 27.17 25.66 27.07 26.80 27.16 27.32 27.32 27.42
RRSn=20 26.38 25.05 26.20 26.32 26.53 26.67 26.74 26.60
RRSn=50 27.00 25.89 26.73 26.86 26.71 27.00 27.21 27.14
RRSn=100 30.16 30.07 30.13 29.52 29.95 30.24 30.24 29.95
RRSn=200 31.53 30.86 31.33 31.46 30.38 30.81 31.17 31.24
RRSn=500 32.32 31.15 32.49 32.61 31.68 31.96 32.18 32.47
RRSn=1000 32.75 30.50 32.63 32.76 31.97 31.96 32.25 32.61
RRSn=10000 33.11 30.64 33.06 33.62 32.61 32.25 32.61 32.83

rPrec
RRSn=10 6.00 5.46 6.04 5.90 5.90 6.00 5.98 6.01
RRSn=20 8.68 7.75 8.66 8.64 8.55 8.67 8.78 8.70
RRSn=50 13.77 12.54 13.36 13.37 13.35 13.56 13.62 13.61
RRSn=100 17.83 15.99 17.43 17.57 17.43 17.65 17.66 17.66
RRSn=200 22.05 17.89 21.30 21.74 21.78 21.73 21.62 21.78
RRSn=500 24.69 19.10 23.68 23.66 24.01 24.15 24.15 24.48
RRSn=1000 25.43 19.58 24.45 24.74 24.69 25.08 25.09 25.27
RRSn=10000 25.60 19.60 24.53 24.99 24.85 25.18 25.27 25.60

AvgPrec
RRSn=10 3.46 3.12 3.37 3.37 3.44 3.47 3.48 3.47
RRSn=20 4.88 4.41 4.78 4.81 4.82 4.85 4.88 4.88
RRSn=50 8.03 7.09 7.60 7.72 7.82 7.91 7.94 7.99
RRSn=100 10.96 9.43 10.26 10.54 10.65 10.86 10.86 10.93
RRSn=200 14.02 11.45 13.20 13.59 13.59 13.87 13.88 13.98
RRSn=500 18.20 13.62 16.61 17.18 17.36 17.67 17.77 18.04
RRSn=1000 20.42 14.43 18.31 19.05 19.35 19.68 19.84 20.19
RRSn=10000 22.04 14.80 19.34 20.26 20.74 21.17 21.37 21.83

Table A.11: Impact of 2MA artist occurrence threshold on ANR (Google, CAL500)
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Appendix A. Appendix

artist threshold ∞ 5 10 12 15 18 20 30
Rec

RRSn=10 4.65 4.59 4.48 4.61 4.62 4.61 4.65 4.62
RRSn=20 8.46 7.43 7.98 8.24 8.24 8.26 8.29 8.35
RRSn=50 15.63 13.82 14.88 14.92 15.10 15.07 15.15 15.52
RRSn=100 23.92 19.98 22.50 22.87 23.25 23.32 23.42 23.83
RRSn=200 34.26 25.89 31.15 32.17 32.88 33.25 33.32 34.08
RRSn=500 47.22 32.91 42.11 43.67 45.39 45.86 46.06 47.05
RRSn=1000 55.68 36.49 48.67 50.74 52.67 53.62 54.02 55.25
RRSn=10000 60.28 37.88 51.36 54.08 56.71 57.77 58.29 59.74

Prec
RRSn=10 24.40 24.87 24.02 24.20 24.18 24.21 24.42 24.48
RRSn=20 23.97 23.02 23.61 23.90 23.74 23.89 23.98 23.92
RRSn=50 21.87 21.50 21.60 21.60 21.69 21.65 21.75 21.81
RRSn=100 20.77 20.52 20.92 20.80 20.89 20.78 20.76 20.70
RRSn=200 19.18 19.28 19.32 19.20 19.29 19.22 19.17 19.12
RRSn=500 17.42 18.06 17.89 17.75 17.73 17.62 17.56 17.43
RRSn=1000 16.53 17.60 17.09 16.92 16.87 16.75 16.70 16.52
RRSn=10000 15.78 17.35 16.53 16.30 16.19 16.03 15.98 15.76

Prec@10
RRSn=10 24.43 24.95 24.01 24.20 24.26 24.33 24.55 24.48
RRSn=20 24.31 23.86 23.60 23.94 24.06 24.06 24.16 24.16
RRSn=50 25.04 24.91 25.31 25.23 25.20 25.13 25.32 25.04
RRSn=100 28.63 26.11 28.26 28.04 28.37 28.01 28.42 28.71
RRSn=200 30.07 27.26 29.27 29.26 29.59 29.59 30.00 30.14
RRSn=500 30.29 27.40 28.84 29.55 30.02 29.59 30.29 30.29
RRSn=1000 30.72 27.98 29.77 30.34 30.82 30.31 30.86 30.86
RRSn=10000 31.44 28.19 29.92 30.77 31.25 30.46 31.44 31.44

rPrec
RRSn=10 4.38 4.30 4.22 4.35 4.35 4.34 4.39 4.35
RRSn=20 6.95 6.45 6.78 7.02 6.94 6.92 6.95 6.92
RRSn=50 11.34 9.96 10.80 11.08 11.01 11.08 11.15 11.28
RRSn=100 15.38 13.13 14.26 14.61 14.90 14.96 15.08 15.29
RRSn=200 19.01 15.26 17.39 18.13 18.35 18.54 18.51 18.92
RRSn=500 21.47 15.98 19.33 19.73 20.61 20.81 20.90 21.29
RRSn=1000 21.70 16.07 19.57 20.18 20.83 21.00 20.92 21.48
RRSn=10000 21.66 16.04 19.80 20.36 20.79 20.92 21.00 21.54

AvgPrec
RRSn=10 2.59 2.55 2.56 2.60 2.55 2.56 2.60 2.59
RRSn=20 3.73 3.48 3.74 3.80 3.67 3.67 3.69 3.71
RRSn=50 6.12 5.48 5.89 5.93 5.94 5.94 5.98 6.09
RRSn=100 8.56 7.63 8.24 8.28 8.29 8.34 8.40 8.52
RRSn=200 11.36 9.28 10.74 10.86 11.01 11.07 11.11 11.28
RRSn=500 14.58 10.80 13.28 13.62 14.03 14.21 14.29 14.52
RRSn=1000 16.37 11.52 14.69 15.12 15.62 15.87 15.96 16.27
RRSn=10000 17.58 11.79 15.48 16.01 16.60 16.90 17.06 17.44

Table A.12: Impact of 2MA artist occurrence threshold on ANR (exalead, CAL500)
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A.2. Detailed Evaluation Results

unsupervised supervised both
filter none ANR 2MA A2 QB QC QB2 QC2

Rec
RRSn=10 2.18 2.01 2.07 1.87 2.01 2.89 1.82 2.81
RRSn=20 3.74 3.95 3.93 3.74 3.89 4.50 3.83 4.21
RRSn=50 7.17 7.48 7.87 7.50 8.15 8.81 7.64 8.53
RRSn=100 12.72 12.09 12.58 11.97 12.80 14.42 12.65 12.65
RRSn=200 18.67 18.22 18.13 18.24 19.08 21.80 18.38 19.85
RRSn=500 29.31 29.60 29.84 29.05 29.96 32.34 29.68 31.79
RRSn=1000 40.38 40.31 40.11 39.78 40.43 43.60 39.83 41.40
RRSn=10000 80.50 79.56 76.80 75.66 73.50 76.02 66.53 69.69
PseudoDoc 93.66 93.31 88.48 87.24 — — — —

Prec
RRSn=10 30.15 31.89 35.72 31.63 34.32 34.97 34.56 32.70
RRSn=20 29.02 31.30 32.86 31.18 33.91 33.78 34.10 32.78
RRSn=50 27.61 29.50 31.13 30.01 32.50 33.32 32.32 31.04
RRSn=100 25.99 27.64 29.05 27.94 31.75 30.65 31.57 28.20
RRSn=200 23.77 25.77 26.21 25.90 28.60 28.39 28.59 25.59
RRSn=500 20.12 21.69 21.71 21.56 24.76 23.32 24.67 21.58
RRSn=1000 16.88 17.86 18.19 17.90 20.75 19.14 20.97 18.05
RRSn=10000 7.29 7.42 7.87 8.24 9.63 9.13 12.52 8.97
PseudoDoc 4.27 4.39 5.09 5.54 — — — —

Prec@10
RRSn=10 31.19 34.94 37.76 33.23 36.45 35.72 35.34 34.16
RRSn=20 32.40 34.96 37.05 33.19 36.75 37.38 36.36 33.84
RRSn=50 38.45 36.20 41.70 38.00 40.25 40.05 40.15 38.05
RRSn=100 44.10 39.05 46.65 40.30 43.40 45.00 43.10 41.60
RRSn=200 47.75 42.15 48.90 42.30 46.95 49.20 47.25 45.25
RRSn=500 50.30 45.95 51.20 46.45 49.75 51.05 50.35 50.15
RRSn=1000 52.55 48.75 52.85 48.60 53.15 52.55 53.65 52.20
RRSn=10000 57.45 57.20 56.70 56.20 62.35 61.25 62.40 55.20
PseudoDoc 39.25 41.05 40.50 41.65 — — — —

rPrec
RRSn=10 2.16 1.99 2.05 1.85 2.01 2.67 1.82 2.12
RRSn=20 3.63 3.68 3.67 3.48 3.69 4.24 3.59 3.70
RRSn=50 6.52 6.85 7.08 6.75 7.30 8.47 7.16 7.76
RRSn=100 10.24 10.41 10.78 10.49 11.52 12.43 10.97 10.80
RRSn=200 14.22 14.54 14.68 14.75 16.03 18.13 15.66 15.74
RRSn=500 19.84 21.01 20.35 21.02 22.54 23.72 22.37 22.15
RRSn=1000 24.22 25.43 25.00 25.38 27.48 28.55 27.12 26.52
RRSn=10000 35.20 35.77 35.03 34.97 35.69 36.41 34.53 32.56
PseudoDoc 30.78 31.52 31.03 31.67 — — — —

AvgPrec
RRSn=10 1.19 1.32 1.38 1.08 1.39 1.78 1.15 1.44
RRSn=20 1.84 2.14 2.24 1.93 2.26 2.70 2.15 2.23
RRSn=50 3.24 3.79 4.06 3.82 4.49 5.14 4.22 4.42
RRSn=100 5.54 5.93 6.29 5.92 7.00 7.71 6.75 6.29
RRSn=200 8.23 8.61 8.78 8.76 10.24 11.64 9.78 9.52
RRSn=500 12.39 13.30 13.19 13.29 15.06 15.90 14.70 14.46
RRSn=1000 16.10 17.37 17.01 17.27 19.41 20.56 19.23 18.27
RRSn=10000 29.98 30.60 29.80 29.65 30.92 31.64 29.08 26.68
PseudoDoc 25.97 26.64 25.75 26.42 — — — —

Table A.13: Comparison of filtering approaches (Google, c35k)
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Appendix A. Appendix

unsupervised supervised both
filter none ANR 2MA A2 QB QC QB2 QC2

Rec
RRSn=10 1.73 1.60 1.90 1.69 1.61 1.49 1.67 2.02
RRSn=20 2.80 2.82 3.05 2.97 2.88 3.03 2.96 2.68
RRSn=50 5.46 5.88 5.56 6.30 5.97 6.22 6.27 5.83
RRSn=100 8.71 9.57 8.70 9.60 9.91 10.30 10.00 10.44
RRSn=200 13.40 14.82 13.23 15.21 15.81 17.56 15.61 15.66
RRSn=500 23.19 26.17 23.56 26.09 26.48 28.55 26.51 26.84
RRSn=1000 34.01 36.30 33.92 35.63 36.07 37.51 34.65 35.36
RRSn=10000 72.48 72.30 67.67 67.67 64.10 67.27 56.66 60.66
PseudoDoc 87.20 86.39 80.84 79.48 — — — —

Prec
RRSn=10 28.42 28.45 28.00 28.50 29.86 29.77 29.79 27.95
RRSn=20 28.05 25.94 27.48 25.92 27.25 28.46 26.69 28.49
RRSn=50 26.43 23.97 26.65 24.21 25.74 30.09 26.01 25.42
RRSn=100 25.06 23.12 25.17 22.26 25.36 29.14 24.54 23.52
RRSn=200 23.01 21.18 23.24 20.73 24.35 27.75 23.87 21.44
RRSn=500 20.41 18.73 20.81 18.42 21.61 22.67 21.55 19.27
RRSn=1000 17.97 16.65 18.39 16.26 19.25 20.04 19.32 16.45
RRSn=10000 8.81 8.30 9.77 9.30 12.19 11.21 14.99 10.69
PseudoDoc 5.52 5.68 6.80 7.11 — — — —

Prec@10
RRSn=10 27.40 29.53 26.66 29.18 30.88 32.22 31.01 31.85
RRSn=20 30.30 29.58 29.19 29.16 31.11 33.48 31.09 32.05
RRSn=50 32.35 32.47 33.27 31.30 35.77 39.45 33.95 33.75
RRSn=100 35.90 33.50 33.25 33.15 36.05 41.65 35.90 37.10
RRSn=200 33.80 35.20 32.90 37.05 38.70 44.50 39.60 39.75
RRSn=500 34.60 39.55 35.60 39.05 43.15 45.75 43.80 40.50
RRSn=1000 36.80 41.95 36.85 40.10 47.65 48.60 46.70 44.20
RRSn=10000 42.55 44.10 39.40 41.80 50.45 55.60 49.65 39.00
PseudoDoc 34.95 35.75 32.70 33.70 — — — —

rPrec
RRSn=10 1.42 1.58 1.58 1.67 1.58 1.49 1.66 1.92
RRSn=20 2.48 2.73 2.62 2.80 2.77 2.76 2.78 2.64
RRSn=50 4.73 5.17 4.88 5.24 5.15 5.82 5.21 5.23
RRSn=100 7.41 7.96 7.73 7.88 8.00 9.06 8.06 8.33
RRSn=200 10.76 11.50 10.49 11.43 12.05 13.71 11.87 11.62
RRSn=500 15.70 16.76 16.38 16.71 18.41 20.13 18.17 17.79
RRSn=1000 20.36 21.26 20.92 20.89 23.24 25.01 22.95 21.21
RRSn=10000 30.25 30.20 28.69 28.24 31.08 31.66 29.17 26.09
PseudoDoc 26.72 27.28 25.60 26.42 — — — —

AvgPrec
RRSn=10 0.93 0.82 0.96 0.88 0.85 0.78 0.90 1.12
RRSn=20 1.38 1.29 1.44 1.39 1.41 1.59 1.46 1.41
RRSn=50 2.42 2.57 2.49 2.62 2.86 3.18 2.80 2.59
RRSn=100 3.72 3.80 3.79 3.72 4.28 4.98 4.29 4.12
RRSn=200 5.34 5.58 5.17 5.55 6.66 7.88 6.46 6.08
RRSn=500 8.42 9.26 8.82 9.05 10.84 12.21 10.81 10.03
RRSn=1000 11.96 12.97 12.37 12.61 15.04 16.17 14.58 13.05
RRSn=10000 23.97 23.90 22.05 21.64 24.32 25.55 21.84 19.02
PseudoDoc 21.16 21.76 19.75 20.41 — — — —

Table A.14: Comparison of filtering approaches (exalead, c35k)
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A.2. Detailed Evaluation Results

unsupervised supervised both
filter none ANR 2MA A2 QB QC QB2 QC2

Rec
RRSn=10 5.96 6.10 5.85 6.01 6.10 5.95 6.05 5.57
RRSn=20 10.19 9.68 9.46 9.48 9.83 9.04 9.42 9.50
RRSn=50 17.99 18.09 17.20 17.59 18.23 17.93 17.93 15.92
RRSn=100 26.80 26.34 25.48 25.91 27.11 22.65 26.18 20.51
RRSn=200 38.63 38.62 37.24 37.27 37.95 28.61 36.38 22.23
RRSn=500 56.31 55.65 54.26 53.46 51.21 45.49 46.89 42.93
RRSn=1000 66.91 66.48 63.78 62.87 53.10 51.52 49.57 50.04
RRSn=10000 73.27 72.93 69.06 68.38 37.98 45.21 36.56 45.61
PseudoDoc 81.15 80.79 77.95 77.24 — — — —

Prec
RRSn=10 25.77 27.17 25.72 27.22 27.22 27.20 27.22 25.00
RRSn=20 24.87 25.39 24.69 25.36 25.07 24.84 24.79 25.21
RRSn=50 22.84 23.14 22.44 22.87 23.22 23.44 23.13 22.96
RRSn=100 21.02 21.05 20.80 21.10 21.69 20.93 21.64 20.96
RRSn=200 19.15 19.30 19.11 19.19 19.67 20.12 19.68 19.75
RRSn=500 16.86 16.95 16.92 17.00 17.74 19.08 18.01 18.99
RRSn=1000 15.54 15.81 15.74 15.96 17.36 17.92 18.65 16.55
RRSn=10000 14.56 14.84 14.82 15.13 20.75 17.59 20.86 16.75
PseudoDoc 14.50 14.55 14.82 14.89 — — — —

Prec@10
RRSn=10 25.77 27.17 25.63 27.16 27.16 27.14 27.16 24.99
RRSn=20 25.98 26.38 25.51 26.53 26.19 25.89 26.27 25.82
RRSn=50 26.06 27.00 26.14 26.71 27.19 28.07 26.94 27.35
RRSn=100 29.30 30.16 29.23 29.95 29.88 28.12 30.17 27.44
RRSn=200 30.60 31.53 29.88 30.38 32.52 30.09 31.87 27.71
RRSn=500 32.68 32.32 31.68 31.68 33.59 31.85 33.66 30.23
RRSn=1000 33.47 32.75 32.61 31.97 33.56 34.02 33.69 31.52
RRSn=10000 33.62 33.11 33.33 32.61 33.60 32.00 33.15 31.20
PseudoDoc 30.72 31.73 31.94 31.65 — — — —

rPrec
RRSn=10 5.61 6.00 5.50 5.90 6.10 5.81 6.05 5.36
RRSn=20 8.84 8.68 8.54 8.55 8.90 8.48 8.84 8.24
RRSn=50 13.49 13.77 13.08 13.35 13.58 13.06 13.34 12.52
RRSn=100 18.05 17.83 17.81 17.43 18.21 14.84 17.85 13.21
RRSn=200 21.58 22.05 21.14 21.78 21.92 17.57 21.19 14.50
RRSn=500 24.06 24.69 23.59 24.01 23.69 21.28 22.53 20.14
RRSn=1000 24.86 25.43 24.54 24.69 23.36 22.96 22.63 21.89
RRSn=10000 25.06 25.60 24.96 24.85 18.91 19.85 18.00 19.71
PseudoDoc 25.77 25.76 25.49 25.68 — — — —

AvgPrec
RRSn=10 3.58 3.46 3.41 3.44 3.52 3.68 3.47 3.60
RRSn=20 5.30 4.88 5.11 4.82 5.00 5.00 4.88 5.04
RRSn=50 7.57 8.03 7.34 7.82 7.99 8.35 7.87 7.36
RRSn=100 10.59 10.96 10.18 10.65 10.84 9.12 10.62 8.34
RRSn=200 13.84 14.02 13.24 13.59 14.12 10.86 13.71 9.22
RRSn=500 18.02 18.20 17.32 17.36 17.24 15.55 16.41 14.71
RRSn=1000 20.37 20.42 19.48 19.35 18.22 17.81 17.16 16.64
RRSn=10000 21.77 22.04 20.75 20.74 13.96 15.22 13.55 14.93
PseudoDoc 22.66 22.84 21.81 21.93 — — — —

Table A.15: Comparison of filtering approaches (Google, CAL500)
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Appendix A. Appendix

unsupervised supervised both
filter none ANR 2MA A2 QB QC QB2 QC2

Rec
RRSn=10 5.58 4.65 5.42 4.62 4.93 3.94 4.87 4.27
RRSn=20 9.13 8.46 8.39 8.24 8.83 6.56 8.58 6.83
RRSn=50 15.68 15.63 15.21 15.10 16.02 13.23 16.23 13.01
RRSn=100 23.66 23.92 22.86 23.25 24.08 17.51 23.70 14.86
RRSn=200 33.42 34.26 32.34 32.88 31.75 22.64 30.67 18.18
RRSn=500 47.36 47.22 45.40 45.39 39.67 34.22 37.34 29.94
RRSn=1000 56.09 55.68 53.39 52.67 38.96 36.95 36.63 35.01
RRSn=10000 61.43 60.28 58.17 56.71 27.05 30.06 26.00 27.31
PseudoDoc 70.52 69.42 67.09 66.02 — — — —

Prec
RRSn=10 26.74 24.40 26.73 24.18 24.22 19.95 23.95 21.25
RRSn=20 24.11 23.97 24.30 23.74 23.39 21.67 23.12 21.78
RRSn=50 22.11 21.87 22.23 21.69 21.65 20.83 22.61 20.46
RRSn=100 20.63 20.77 20.73 20.89 20.73 20.67 21.19 20.41
RRSn=200 18.72 19.18 19.16 19.29 19.19 20.71 19.17 19.53
RRSn=500 17.20 17.42 17.62 17.73 18.01 19.36 18.22 19.21
RRSn=1000 16.25 16.53 16.53 16.87 18.64 18.61 19.52 18.03
RRSn=10000 15.45 15.78 15.82 16.19 21.08 21.44 20.88 17.16
PseudoDoc 15.08 15.13 15.31 15.37 — — — —

Prec@10
RRSn=10 26.80 24.43 26.62 24.26 24.34 19.95 23.97 21.26
RRSn=20 25.42 24.31 25.15 24.06 23.84 21.32 23.37 22.52
RRSn=50 26.55 25.04 26.21 25.20 25.11 25.06 25.51 22.33
RRSn=100 27.99 28.63 26.57 28.37 27.29 26.23 27.70 25.12
RRSn=200 28.63 30.07 28.23 29.59 29.10 28.30 27.38 25.36
RRSn=500 29.28 30.29 28.80 30.02 30.20 29.26 29.63 31.07
RRSn=1000 29.50 30.72 29.88 30.82 31.37 29.71 31.98 29.76
RRSn=10000 30.43 31.44 30.17 31.25 30.38 29.98 29.09 26.03
PseudoDoc 26.47 27.84 25.61 27.55 — — — —

rPrec
RRSn=10 5.33 4.38 5.26 4.35 4.58 3.73 4.61 4.27
RRSn=20 7.65 6.95 7.57 6.94 7.25 6.15 7.15 6.46
RRSn=50 11.88 11.34 11.63 11.01 11.81 10.10 11.59 9.81
RRSn=100 15.81 15.38 15.46 14.90 15.53 12.32 14.92 10.96
RRSn=200 18.77 19.01 18.31 18.35 18.60 14.35 18.18 12.47
RRSn=500 20.77 21.47 20.09 20.61 19.33 17.96 18.36 16.32
RRSn=1000 21.02 21.70 20.79 20.83 18.62 17.93 17.96 17.46
RRSn=10000 21.12 21.66 20.53 20.79 15.28 15.51 14.76 14.14
PseudoDoc 21.31 22.39 20.67 22.03 — — — —

AvgPrec
RRSn=10 2.78 2.59 2.92 2.55 2.73 2.26 2.67 2.54
RRSn=20 4.16 3.73 4.16 3.67 3.95 3.53 3.85 3.56
RRSn=50 6.34 6.12 6.12 5.94 6.37 5.73 6.29 5.55
RRSn=100 8.52 8.56 8.24 8.29 8.74 7.22 8.71 6.49
RRSn=200 10.85 11.36 10.55 11.01 11.12 8.93 10.72 7.53
RRSn=500 14.15 14.58 13.62 14.03 13.25 11.94 12.69 11.07
RRSn=1000 15.93 16.37 15.12 15.62 13.44 12.74 13.12 12.24
RRSn=10000 16.96 17.58 15.94 16.60 10.44 10.80 10.06 9.83
PseudoDoc 17.57 18.57 16.53 17.60 — — — —

Table A.16: Comparison of filtering approaches (exalead, CAL500)

150



A.2. Detailed Evaluation Results

A.2.3 Audio-Based Re-Ranking Impact

PAR, α=10 k = 0 k = 10 k = 25 k = 50 k = 0 k = 10 k = 25 k = 50
Rec Prec

RRSn=10 2.18 4.54 7.28 10.71 30.15 9.30 7.64 6.81
RRSn=20 3.74 7.65 11.85 16.89 29.02 9.12 7.43 6.57
RRSn=50 7.17 14.04 20.56 27.76 27.61 8.73 7.06 6.17
RRSn=100 12.72 22.73 30.85 39.41 25.99 8.18 6.51 5.66
RRSn=200 18.67 31.86 41.69 50.98 23.77 7.56 6.02 5.25
RRSn=500 29.31 46.90 57.56 66.60 20.12 6.81 5.47 4.81
RRSn=1000 40.38 60.12 70.06 77.63 16.88 6.15 5.03 4.50
RRSn=10000 80.50 92.26 95.17 96.68 7.29 4.32 3.99 3.85
PseudoDoc 93.66 97.06 98.04 98.50 4.27 3.75 3.70 3.68

Prec@10 rPrec
RRSn=10 31.19 30.85 30.85 30.85 2.16 3.91 5.15 6.22
RRSn=20 32.40 32.15 32.15 32.15 3.63 6.06 7.48 8.46
RRSn=50 38.45 38.20 38.20 38.20 6.52 9.94 11.15 11.67
RRSn=100 44.10 44.15 44.15 44.15 10.24 13.94 14.64 14.75
RRSn=200 47.75 46.35 46.35 46.35 14.22 17.69 17.85 17.86
RRSn=500 50.30 47.45 47.45 47.45 19.84 22.04 22.04 22.04
RRSn=1000 52.55 43.00 43.00 43.00 24.22 24.87 24.87 24.87
RRSn=10000 57.45 17.50 17.50 17.50 35.20 22.41 22.41 22.41
PseudoDoc 39.25 8.55 8.55 8.55 30.78 12.57 12.57 12.57

AvgPrec AUC
RRSn=10 1.19 1.61 1.90 2.21 3.05 3.28 3.48 3.77
RRSn=20 1.84 2.53 2.95 3.38 3.64 4.04 4.48 4.90
RRSn=50 3.24 4.37 4.99 5.54 4.99 5.92 6.55 7.13
RRSn=100 5.54 7.12 7.83 8.42 7.11 8.61 9.37 9.93
RRSn=200 8.23 10.11 10.88 11.47 9.62 11.48 12.25 12.83
RRSn=500 12.39 14.25 15.00 15.51 13.76 15.68 16.38 16.92
RRSn=1000 16.10 17.06 17.70 18.10 17.22 18.30 18.94 19.36
RRSn=10000 29.98 17.82 17.95 18.02 31.25 19.42 19.53 19.55
PseudoDoc 25.97 11.70 11.71 11.72 27.09 12.93 12.96 12.98

Table A.17: Impact of k on PAR with α=10 (Google, c35k)
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PAR, α=100 k = 0 k = 10 k = 25 k = 50 k = 0 k = 10 k = 25 k = 50
Rec Prec

RRSn=10 2.18 4.54 7.28 10.71 30.15 9.30 7.64 6.81
RRSn=20 3.74 7.65 11.85 16.89 29.02 9.12 7.43 6.57
RRSn=50 7.17 14.04 20.56 27.76 27.61 8.73 7.06 6.17
RRSn=100 12.72 22.73 30.85 39.41 25.99 8.18 6.51 5.66
RRSn=200 18.67 31.86 41.69 50.98 23.77 7.56 6.02 5.25
RRSn=500 29.31 46.90 57.56 66.60 20.12 6.81 5.47 4.81
RRSn=1000 40.38 60.12 70.06 77.63 16.88 6.15 5.03 4.50
RRSn=10000 80.50 92.26 95.17 96.68 7.29 4.32 3.99 3.85
PseudoDoc 93.66 97.06 98.04 98.50 4.27 3.75 3.70 3.68

Prec@10 rPrec
RRSn=10 31.19 30.85 30.85 30.85 2.16 3.91 5.15 6.22
RRSn=20 32.40 32.40 32.40 32.40 3.63 6.06 7.48 8.46
RRSn=50 38.45 38.45 38.45 38.45 6.52 9.94 11.15 11.67
RRSn=100 44.10 44.05 44.05 44.05 10.24 13.93 14.63 14.74
RRSn=200 47.75 47.75 47.75 47.75 14.22 17.67 17.83 17.84
RRSn=500 50.30 50.35 50.35 50.35 19.84 22.04 22.04 22.04
RRSn=1000 52.55 52.30 52.30 52.30 24.22 25.24 25.24 25.24
RRSn=10000 57.45 41.25 41.25 41.25 35.20 33.12 33.12 33.12
PseudoDoc 39.25 23.40 23.40 23.40 30.78 26.22 26.22 26.22

AvgPrec AUC
RRSn=10 1.19 1.61 1.90 2.21 3.05 3.28 3.48 3.77
RRSn=20 1.84 2.53 2.95 3.38 3.64 4.05 4.50 4.91
RRSn=50 3.24 4.38 4.99 5.54 4.99 5.94 6.57 7.15
RRSn=100 5.54 7.14 7.85 8.45 7.11 8.67 9.43 10.00
RRSn=200 8.23 10.17 10.94 11.53 9.62 11.57 12.34 12.93
RRSn=500 12.39 14.69 15.44 15.95 13.76 16.19 16.89 17.42
RRSn=1000 16.10 18.24 18.88 19.28 17.22 19.47 20.11 20.52
RRSn=10000 29.98 27.14 27.27 27.34 31.25 28.52 28.63 28.66
PseudoDoc 25.97 21.38 21.40 21.41 27.09 22.63 22.65 22.67

Table A.18: Impact of k on PAR with α=100 (Google, c35k)
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A.2. Detailed Evaluation Results

PAR, α=10 k = 0 k = 10 k = 25 k = 50 k = 0 k = 10 k = 25 k = 50
Rec Prec

RRSn=10 1.73 3.34 5.23 7.76 28.42 9.03 7.38 6.64
RRSn=20 2.80 5.48 8.51 12.31 28.05 8.94 7.50 6.81
RRSn=50 5.46 10.94 16.39 22.59 26.43 8.62 7.02 6.20
RRSn=100 8.71 17.22 24.74 32.73 25.06 8.14 6.58 5.79
RRSn=200 13.40 25.52 34.86 44.03 23.01 7.65 6.18 5.42
RRSn=500 23.19 40.01 50.75 60.14 20.41 7.03 5.68 4.99
RRSn=1000 34.01 53.43 63.92 72.12 17.97 6.44 5.24 4.66
RRSn=10000 72.48 86.97 91.12 93.66 8.81 4.54 4.10 3.91
PseudoDoc 87.20 93.09 94.92 96.09 5.52 3.94 3.79 3.73

Prec@10 rPrec
RRSn=10 27.40 26.95 26.95 26.95 1.42 2.83 3.94 4.94
RRSn=20 30.30 30.35 30.35 30.35 2.48 4.55 5.89 6.92
RRSn=50 32.35 32.25 32.25 32.25 4.73 7.96 9.25 9.89
RRSn=100 35.90 35.55 35.55 35.55 7.41 11.13 11.97 12.21
RRSn=200 33.80 34.65 34.65 34.65 10.76 14.53 14.83 14.90
RRSn=500 34.60 36.00 36.00 36.00 15.70 18.41 18.50 18.52
RRSn=1000 36.80 36.25 36.25 36.25 20.36 21.81 21.85 21.85
RRSn=10000 42.55 23.00 23.00 23.00 30.25 24.40 24.40 24.40
PseudoDoc 34.95 12.00 12.00 12.00 26.72 15.26 15.26 15.26

AvgPrec AUC
RRSn=10 0.93 1.29 1.53 1.79 2.79 2.95 3.12 3.36
RRSn=20 1.38 1.91 2.23 2.57 3.13 3.43 3.74 4.06
RRSn=50 2.42 3.34 3.85 4.34 4.13 4.77 5.23 5.74
RRSn=100 3.72 5.02 5.67 6.25 5.17 6.36 7.03 7.65
RRSn=200 5.34 7.06 7.83 8.44 6.62 8.29 9.09 9.71
RRSn=500 8.42 10.48 11.27 11.83 9.79 11.75 12.54 13.09
RRSn=1000 11.96 13.94 14.65 15.12 13.36 15.34 16.04 16.50
RRSn=10000 23.97 18.77 18.96 19.06 25.32 20.33 20.50 20.58
PseudoDoc 21.16 12.69 12.74 12.77 22.29 13.88 13.93 13.95

Table A.19: Impact of k on PAR with α=10 (exalead, c35k)
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PAR, α=100 k = 0 k = 10 k = 25 k = 50 k = 0 k = 10 k = 25 k = 50
Rec Prec

RRSn=10 1.73 3.34 5.23 7.76 28.42 9.03 7.38 6.64
RRSn=20 2.80 5.48 8.51 12.31 28.05 8.94 7.50 6.81
RRSn=50 5.46 10.94 16.39 22.59 26.43 8.62 7.02 6.20
RRSn=100 8.71 17.22 24.74 32.73 25.06 8.14 6.58 5.79
RRSn=200 13.40 25.52 34.86 44.03 23.01 7.65 6.18 5.42
RRSn=500 23.19 40.01 50.75 60.14 20.41 7.03 5.68 4.99
RRSn=1000 34.01 53.43 63.92 72.12 17.97 6.44 5.24 4.66
RRSn=10000 72.48 86.97 91.12 93.66 8.81 4.54 4.10 3.91
PseudoDoc 87.20 93.09 94.92 96.09 5.52 3.94 3.79 3.73

Prec@10 rPrec
RRSn=10 27.40 26.95 26.95 26.95 1.42 2.83 3.94 4.94
RRSn=20 30.30 30.35 30.35 30.35 2.48 4.55 5.89 6.92
RRSn=50 32.35 32.35 32.35 32.35 4.73 7.96 9.25 9.89
RRSn=100 35.90 35.85 35.85 35.85 7.41 11.13 11.97 12.21
RRSn=200 33.80 33.95 33.95 33.95 10.76 14.54 14.84 14.92
RRSn=500 34.60 34.95 34.95 34.95 15.70 18.42 18.50 18.52
RRSn=1000 36.80 37.25 37.25 37.25 20.36 21.94 21.99 21.99
RRSn=10000 42.55 38.45 38.45 38.45 30.25 29.55 29.55 29.55
PseudoDoc 34.95 26.65 26.65 26.65 26.72 24.86 24.86 24.86

AvgPrec AUC
RRSn=10 0.93 1.29 1.53 1.79 2.79 2.95 3.12 3.36
RRSn=20 1.38 1.91 2.23 2.57 3.13 3.43 3.75 4.06
RRSn=50 2.42 3.34 3.84 4.34 4.13 4.78 5.24 5.75
RRSn=100 3.72 5.04 5.69 6.27 5.17 6.41 7.08 7.70
RRSn=200 5.34 7.10 7.86 8.47 6.62 8.34 9.14 9.76
RRSn=500 8.42 10.61 11.39 11.95 9.79 11.92 12.70 13.25
RRSn=1000 11.96 14.28 14.99 15.45 13.36 15.73 16.44 16.89
RRSn=10000 23.97 23.84 24.04 24.14 25.32 25.22 25.39 25.46
PseudoDoc 21.16 19.41 19.46 19.49 22.29 20.55 20.60 20.62

Table A.20: Impact of k on PAR with α=100 (exalead, c35k)
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A.2. Detailed Evaluation Results

PAR, α=10 k = 0 k = 10 k = 25 k = 50 k = 0 k = 10 k = 25 k = 50
Rec Prec

RRSn=10 5.96 23.14 40.17 59.08 25.77 16.53 15.56 14.84
RRSn=20 10.19 36.98 58.12 75.90 24.87 15.96 14.98 14.34
RRSn=50 17.99 58.37 79.89 89.52 22.84 15.09 14.16 13.63
RRSn=100 26.80 74.95 89.18 94.78 21.02 14.48 13.66 13.39
RRSn=200 38.63 84.55 93.79 96.38 19.15 13.83 13.39 13.22
RRSn=500 56.31 91.02 95.63 97.05 16.86 13.42 13.24 13.15
RRSn=1000 66.91 92.14 95.85 97.18 15.54 13.28 13.19 13.13
RRSn=10000 73.27 92.40 96.01 97.31 14.56 13.23 13.18 13.13
PseudoDoc 81.15 95.93 98.21 98.83 14.50 13.33 13.36 13.34

Prec@10 rPrec
RRSn=10 25.77 23.74 23.74 23.74 5.61 13.95 17.39 18.44
RRSn=20 25.98 25.61 25.61 25.61 8.84 18.80 20.35 20.70
RRSn=50 26.06 26.04 26.04 26.04 13.49 21.74 22.20 22.20
RRSn=100 29.30 29.50 29.50 29.50 18.05 23.54 23.67 23.67
RRSn=200 30.60 30.94 30.94 30.94 21.58 24.25 24.38 24.39
RRSn=500 32.68 33.02 33.02 33.02 24.06 25.69 25.82 25.83
RRSn=1000 33.47 31.44 31.44 31.44 24.86 24.76 24.89 24.89
RRSn=10000 33.62 30.29 30.29 30.29 25.06 24.30 24.43 24.44
PseudoDoc 30.72 27.63 27.63 27.63 25.77 24.15 24.15 24.15

AvgPrec AUC
RRSn=10 3.58 7.38 10.46 13.51 4.50 8.33 11.56 14.77
RRSn=20 5.30 10.65 14.35 17.20 6.13 11.72 15.72 18.64
RRSn=50 7.57 15.21 18.58 20.16 8.63 16.61 20.12 21.65
RRSn=100 10.59 19.42 21.64 22.44 11.69 20.86 23.26 23.73
RRSn=200 13.84 22.36 23.68 24.09 15.16 23.97 25.12 25.44
RRSn=500 18.02 23.80 24.58 24.84 19.33 25.18 25.91 26.18
RRSn=1000 20.37 23.59 24.24 24.49 21.77 24.89 25.57 25.84
RRSn=10000 21.77 23.03 23.66 23.91 23.16 24.47 25.14 25.39
PseudoDoc 22.66 23.44 23.77 23.89 24.12 24.86 25.20 25.36

Table A.21: Impact of k on PAR with α=10 (Google, CAL500)
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PAR, α=100 k = 0 k = 10 k = 25 k = 50 k = 0 k = 10 k = 25 k = 50
Rec Prec

RRSn=10 5.96 23.14 40.17 59.08 25.77 16.53 15.56 14.84
RRSn=20 10.19 36.98 58.12 75.90 24.87 15.96 14.98 14.34
RRSn=50 17.99 58.37 79.89 89.52 22.84 15.09 14.16 13.63
RRSn=100 26.80 74.95 89.18 94.78 21.02 14.48 13.66 13.39
RRSn=200 38.63 84.55 93.79 96.38 19.15 13.83 13.39 13.22
RRSn=500 56.31 91.02 95.63 97.05 16.86 13.42 13.24 13.15
RRSn=1000 66.91 92.14 95.85 97.18 15.54 13.28 13.19 13.13
RRSn=10000 73.27 92.40 96.01 97.31 14.56 13.23 13.18 13.13
PseudoDoc 81.15 95.93 98.21 98.83 14.50 13.33 13.36 13.34

Prec@10 rPrec
RRSn=10 25.77 23.74 23.74 23.74 5.61 13.95 17.39 18.44
RRSn=20 25.98 25.61 25.61 25.61 8.84 18.80 20.35 20.70
RRSn=50 26.06 26.04 26.04 26.04 13.49 21.76 22.22 22.23
RRSn=100 29.30 29.28 29.28 29.28 18.05 23.65 23.78 23.79
RRSn=200 30.60 30.58 30.58 30.58 21.58 24.25 24.38 24.38
RRSn=500 32.68 32.88 32.88 32.88 24.06 25.75 25.88 25.89
RRSn=1000 33.47 33.74 33.74 33.74 24.86 26.33 26.46 26.46
RRSn=10000 33.62 33.38 33.38 33.38 25.06 26.68 26.81 26.81
PseudoDoc 30.72 31.01 31.01 31.01 25.77 26.64 26.64 26.64

AvgPrec AUC
RRSn=10 3.58 7.38 10.46 13.51 4.50 8.33 11.56 14.77
RRSn=20 5.30 10.65 14.35 17.20 6.13 11.72 15.72 18.64
RRSn=50 7.57 15.23 18.61 20.19 8.63 16.65 20.16 21.69
RRSn=100 10.59 19.39 21.61 22.41 11.69 20.82 23.23 23.70
RRSn=200 13.84 22.16 23.48 23.90 15.16 23.81 24.95 25.28
RRSn=500 18.02 24.20 24.99 25.25 19.33 25.68 26.41 26.68
RRSn=1000 20.37 25.02 25.67 25.92 21.77 26.39 27.07 27.34
RRSn=10000 21.77 25.31 25.93 26.18 23.16 26.68 27.35 27.59
PseudoDoc 22.66 25.44 25.78 25.89 24.12 26.91 27.25 27.41

Table A.22: Impact of k on PAR with α=100 (Google, CAL500)
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A.2. Detailed Evaluation Results

PAR, α=10 k = 0 k = 10 k = 25 k = 50 k = 0 k = 10 k = 25 k = 50
Rec Prec

RRSn=10 5.58 23.53 42.03 61.04 26.74 16.94 15.77 14.87
RRSn=20 9.13 35.39 58.57 75.70 24.11 15.80 14.88 14.25
RRSn=50 15.68 56.68 78.49 90.02 22.11 15.37 14.27 13.76
RRSn=100 23.66 71.86 87.31 94.04 20.63 14.67 13.85 13.47
RRSn=200 33.42 81.96 91.28 95.13 18.72 14.08 13.59 13.33
RRSn=500 47.36 86.55 92.94 95.59 17.20 13.75 13.46 13.27
RRSn=1000 56.09 87.46 93.24 95.85 16.25 13.64 13.43 13.26
RRSn=10000 61.43 87.68 93.29 95.87 15.45 13.59 13.40 13.25
PseudoDoc 70.52 92.90 96.30 97.97 15.08 13.53 13.43 13.38

Prec@10 rPrec
RRSn=10 26.80 24.24 24.24 24.24 5.33 14.86 17.78 18.74
RRSn=20 25.42 24.24 24.24 24.24 7.65 18.04 19.32 19.74
RRSn=50 26.55 26.04 26.04 26.04 11.88 20.38 20.88 21.01
RRSn=100 27.99 27.27 27.27 27.27 15.81 21.87 22.18 22.30
RRSn=200 28.63 27.84 27.84 27.84 18.77 22.37 22.67 22.80
RRSn=500 29.28 29.21 29.21 29.21 20.77 23.09 23.39 23.51
RRSn=1000 29.50 28.99 28.99 28.99 21.02 22.90 23.20 23.33
RRSn=10000 30.43 27.77 27.77 27.77 21.12 21.89 22.19 22.32
PseudoDoc 26.47 26.33 26.33 26.33 21.31 22.30 22.41 22.47

AvgPrec AUC
RRSn=10 2.78 7.00 10.24 13.33 3.77 8.03 11.43 14.61
RRSn=20 4.16 9.62 13.32 16.06 5.00 10.77 14.63 17.55
RRSn=50 6.34 14.17 17.49 19.12 7.22 15.58 19.05 20.66
RRSn=100 8.52 17.25 19.70 20.63 9.61 18.71 21.33 22.04
RRSn=200 10.85 19.29 20.93 21.54 12.13 20.73 22.30 22.80
RRSn=500 14.15 20.75 21.90 22.36 15.51 22.06 23.23 23.70
RRSn=1000 15.93 20.94 22.01 22.46 17.35 22.18 23.36 23.82
RRSn=10000 16.96 20.00 21.05 21.50 18.27 21.37 22.51 22.96
PseudoDoc 17.57 21.24 21.84 22.07 19.21 22.66 23.28 23.54

Table A.23: Impact of k on PAR with α=10 (exalead, CAL500)
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PAR, α=100 k = 0 k = 10 k = 25 k = 50 k = 0 k = 10 k = 25 k = 50
Rec Prec

RRSn=10 5.58 23.53 42.03 61.04 26.74 16.94 15.77 14.87
RRSn=20 9.13 35.39 58.57 75.70 24.11 15.80 14.88 14.25
RRSn=50 15.68 56.68 78.49 90.02 22.11 15.37 14.27 13.76
RRSn=100 23.66 71.86 87.31 94.04 20.63 14.67 13.85 13.47
RRSn=200 33.42 81.96 91.28 95.13 18.72 14.08 13.59 13.33
RRSn=500 47.36 86.55 92.94 95.59 17.20 13.75 13.46 13.27
RRSn=1000 56.09 87.46 93.24 95.85 16.25 13.64 13.43 13.26
RRSn=10000 61.43 87.68 93.29 95.87 15.45 13.59 13.40 13.25
PseudoDoc 70.52 92.90 96.30 97.97 15.08 13.53 13.43 13.38

Prec@10 rPrec
RRSn=10 26.80 24.24 24.24 24.24 5.33 14.86 17.78 18.74
RRSn=20 25.42 24.24 24.24 24.24 7.65 18.04 19.32 19.74
RRSn=50 26.55 25.97 25.97 25.97 11.88 20.39 20.90 21.02
RRSn=100 27.99 27.41 27.41 27.41 15.81 21.85 22.16 22.28
RRSn=200 28.63 28.13 28.13 28.13 18.77 22.25 22.56 22.68
RRSn=500 29.28 28.71 28.71 28.71 20.77 23.11 23.42 23.54
RRSn=1000 29.50 29.57 29.57 29.57 21.02 23.53 23.83 23.95
RRSn=10000 30.43 30.00 30.00 30.00 21.12 23.65 23.95 24.07
PseudoDoc 26.47 26.62 26.62 26.62 21.31 22.75 22.86 22.92

AvgPrec AUC
RRSn=10 2.78 7.00 10.24 13.33 3.77 8.03 11.43 14.61
RRSn=20 4.16 9.62 13.32 16.07 5.00 10.77 14.63 17.55
RRSn=50 6.34 14.10 17.42 19.05 7.22 15.55 19.01 20.63
RRSn=100 8.52 17.14 19.59 20.52 9.61 18.66 21.28 21.99
RRSn=200 10.85 19.16 20.79 21.40 12.13 20.77 22.35 22.85
RRSn=500 14.15 20.78 21.93 22.39 15.51 22.22 23.39 23.86
RRSn=1000 15.93 21.39 22.46 22.92 17.35 22.76 23.93 24.40
RRSn=10000 16.96 21.47 22.52 22.97 18.27 22.78 23.92 24.37
PseudoDoc 17.57 21.72 22.33 22.56 19.21 23.36 23.98 24.24

Table A.24: Impact of k on PAR with α=100 (exalead, CAL500)
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A.2. Detailed Evaluation Results

PAR, k = 25 RRS α=1 α=5 α=10 α=20 α=40 α=50 α=100
Prec@10

RRSn=10 31.19 30.45 30.80 30.85 30.85 30.85 30.85 30.85
RRSn=20 32.40 31.05 32.05 32.15 32.25 32.35 32.35 32.40
RRSn=50 38.45 34.35 38.30 38.20 38.30 38.30 38.45 38.45
RRSn=100 44.10 33.85 42.60 44.15 44.35 44.15 44.05 44.05
RRSn=200 47.75 31.90 44.95 46.35 47.35 47.45 47.35 47.75
RRSn=500 50.30 24.40 43.90 47.45 49.05 49.05 49.60 50.35
RRSn=1000 52.55 19.00 37.50 43.00 47.75 50.65 51.70 52.30
RRSn=10000 57.45 9.85 14.20 17.50 22.55 29.75 32.45 41.25
PseudoDoc 39.25 5.80 7.00 8.55 11.10 15.20 17.40 23.40

rPrec
RRSn=10 2.16 5.11 5.15 5.15 5.15 5.15 5.15 5.15
RRSn=20 3.63 7.39 7.48 7.48 7.48 7.48 7.48 7.48
RRSn=50 6.52 10.77 11.13 11.15 11.15 11.15 11.15 11.15
RRSn=100 10.24 14.08 14.64 14.64 14.64 14.64 14.64 14.63
RRSn=200 14.22 16.69 17.81 17.85 17.86 17.84 17.84 17.83
RRSn=500 19.84 19.43 21.93 22.04 22.06 22.04 22.04 22.04
RRSn=1000 24.22 18.51 24.22 24.87 25.15 25.19 25.21 25.24
RRSn=10000 35.20 8.60 17.47 22.41 26.70 30.03 30.90 33.12
PseudoDoc 30.78 4.95 8.95 12.57 17.22 21.69 22.94 26.22

AvgPrec
RRSn=10 1.19 1.76 1.89 1.90 1.90 1.90 1.90 1.90
RRSn=20 1.84 2.76 2.95 2.95 2.95 2.95 2.95 2.95
RRSn=50 3.24 4.60 4.97 4.99 4.98 4.98 4.99 4.99
RRSn=100 5.54 7.00 7.78 7.83 7.84 7.85 7.85 7.85
RRSn=200 8.23 9.25 10.75 10.88 10.94 10.94 10.93 10.94
RRSn=500 12.39 11.40 14.65 15.00 15.18 15.34 15.37 15.44
RRSn=1000 16.10 11.81 16.79 17.70 18.28 18.64 18.72 18.88
RRSn=10000 29.98 8.37 14.69 17.95 21.16 24.07 24.95 27.27
PseudoDoc 25.97 5.47 9.13 11.71 14.75 17.85 18.79 21.40

AUC
RRSn=10 3.05 3.30 3.48 3.48 3.48 3.48 3.48 3.48
RRSn=20 3.64 4.16 4.49 4.48 4.50 4.50 4.50 4.50
RRSn=50 4.99 5.95 6.50 6.55 6.54 6.58 6.58 6.57
RRSn=100 7.11 8.33 9.30 9.37 9.38 9.41 9.40 9.43
RRSn=200 9.62 10.48 12.10 12.25 12.33 12.32 12.33 12.34
RRSn=500 13.76 12.71 16.02 16.38 16.59 16.76 16.81 16.89
RRSn=1000 17.22 13.27 18.05 18.94 19.60 19.88 19.95 20.11
RRSn=10000 31.25 9.43 16.21 19.53 22.79 25.67 26.45 28.63
PseudoDoc 27.09 6.27 10.25 12.96 16.00 19.13 20.12 22.65

Table A.25: Impact of α on PAR with k = 25 (Google, c35k)
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Appendix A. Appendix

PAR, k = 50 RRS α=1 α=5 α=10 α=20 α=40 α=50 α=100
Prec@10

RRSn=10 31.19 30.45 30.80 30.85 30.85 30.85 30.85 30.85
RRSn=20 32.40 31.05 32.05 32.15 32.25 32.35 32.35 32.40
RRSn=50 38.45 34.35 38.30 38.20 38.30 38.30 38.45 38.45
RRSn=100 44.10 33.85 42.60 44.15 44.35 44.15 44.05 44.05
RRSn=200 47.75 31.90 44.95 46.35 47.35 47.45 47.35 47.75
RRSn=500 50.30 24.40 43.90 47.45 49.05 49.05 49.60 50.35
RRSn=1000 52.55 19.00 37.50 43.00 47.75 50.65 51.70 52.30
RRSn=10000 57.45 9.85 14.20 17.50 22.55 29.75 32.45 41.25
PseudoDoc 39.25 5.80 7.00 8.55 11.10 15.20 17.40 23.40

rPrec
RRSn=10 2.16 6.19 6.22 6.22 6.22 6.22 6.22 6.22
RRSn=20 3.63 8.37 8.46 8.46 8.46 8.46 8.46 8.46
RRSn=50 6.52 11.30 11.66 11.67 11.67 11.67 11.67 11.67
RRSn=100 10.24 14.19 14.75 14.75 14.74 14.75 14.75 14.74
RRSn=200 14.22 16.70 17.82 17.86 17.87 17.86 17.86 17.84
RRSn=500 19.84 19.43 21.93 22.04 22.06 22.04 22.04 22.04
RRSn=1000 24.22 18.51 24.22 24.87 25.15 25.19 25.21 25.24
RRSn=10000 35.20 8.60 17.47 22.41 26.70 30.03 30.90 33.12
PseudoDoc 30.78 4.95 8.95 12.57 17.22 21.69 22.94 26.22

AvgPrec
RRSn=10 1.19 2.07 2.20 2.21 2.21 2.21 2.21 2.21
RRSn=20 1.84 3.18 3.37 3.38 3.38 3.38 3.38 3.38
RRSn=50 3.24 5.15 5.52 5.54 5.54 5.54 5.54 5.54
RRSn=100 5.54 7.59 8.37 8.42 8.43 8.44 8.44 8.45
RRSn=200 8.23 9.84 11.34 11.47 11.53 11.52 11.52 11.53
RRSn=500 12.39 11.91 15.16 15.51 15.69 15.85 15.88 15.95
RRSn=1000 16.10 12.21 17.19 18.10 18.68 19.04 19.12 19.28
RRSn=10000 29.98 8.43 14.76 18.02 21.22 24.14 25.01 27.34
PseudoDoc 25.97 5.48 9.14 11.72 14.76 17.86 18.80 21.41

AUC
RRSn=10 3.05 3.59 3.77 3.77 3.77 3.77 3.77 3.77
RRSn=20 3.64 4.58 4.90 4.90 4.91 4.91 4.91 4.91
RRSn=50 4.99 6.53 7.09 7.13 7.13 7.16 7.17 7.15
RRSn=100 7.11 8.89 9.86 9.93 9.94 9.97 9.96 10.00
RRSn=200 9.62 11.06 12.68 12.83 12.91 12.91 12.91 12.93
RRSn=500 13.76 13.25 16.55 16.92 17.13 17.29 17.35 17.42
RRSn=1000 17.22 13.69 18.47 19.36 20.01 20.29 20.37 20.52
RRSn=10000 31.25 9.46 16.23 19.55 22.81 25.69 26.47 28.66
PseudoDoc 27.09 6.29 10.27 12.98 16.02 19.15 20.14 22.67

Table A.26: Impact of α on PAR with k = 50 (Google, c35k)

160



A.2. Detailed Evaluation Results

PAR, k = 25 RRS α=1 α=5 α=10 α=20 α=40 α=50 α=100
Prec@10

RRSn=10 27.40 26.80 26.95 26.95 26.95 26.95 26.95 26.95
RRSn=20 30.30 29.75 30.30 30.35 30.35 30.35 30.35 30.35
RRSn=50 32.35 30.20 32.25 32.25 32.35 32.30 32.30 32.35
RRSn=100 35.90 30.95 35.05 35.55 35.80 35.75 35.80 35.85
RRSn=200 33.80 28.55 35.20 34.65 34.80 34.25 34.15 33.95
RRSn=500 34.60 23.10 37.00 36.00 35.90 35.90 35.60 34.95
RRSn=1000 36.80 19.20 34.50 36.25 37.85 37.45 37.55 37.25
RRSn=10000 42.55 11.85 17.60 23.00 28.15 34.10 35.65 38.45
PseudoDoc 34.95 7.25 10.20 12.00 15.15 19.55 20.95 26.65

rPrec
RRSn=10 1.42 3.94 3.94 3.94 3.94 3.94 3.94 3.94
RRSn=20 2.48 5.84 5.89 5.89 5.89 5.89 5.89 5.89
RRSn=50 4.73 9.06 9.24 9.25 9.25 9.25 9.25 9.25
RRSn=100 7.41 11.70 11.96 11.97 11.97 11.97 11.97 11.97
RRSn=200 10.76 14.23 14.81 14.83 14.84 14.84 14.84 14.84
RRSn=500 15.70 17.16 18.49 18.50 18.51 18.52 18.52 18.50
RRSn=1000 20.36 18.54 21.83 21.85 21.95 21.98 21.98 21.99
RRSn=10000 30.25 10.69 21.04 24.40 26.88 28.45 28.77 29.55
PseudoDoc 26.72 6.68 11.76 15.26 19.19 22.43 23.21 24.86

AvgPrec
RRSn=10 0.93 1.42 1.53 1.53 1.53 1.53 1.53 1.53
RRSn=20 1.38 2.09 2.23 2.23 2.23 2.23 2.23 2.23
RRSn=50 2.42 3.59 3.84 3.85 3.85 3.84 3.84 3.84
RRSn=100 3.72 5.27 5.66 5.67 5.69 5.69 5.69 5.69
RRSn=200 5.34 7.04 7.80 7.83 7.84 7.85 7.86 7.86
RRSn=500 8.42 9.38 11.17 11.27 11.34 11.36 11.37 11.39
RRSn=1000 11.96 11.08 14.35 14.65 14.84 14.94 14.96 14.99
RRSn=10000 23.97 9.55 16.44 18.96 21.02 22.63 23.06 24.04
PseudoDoc 21.16 6.43 10.49 12.74 15.09 17.27 17.89 19.46

AUC
RRSn=10 2.79 2.90 3.10 3.12 3.12 3.12 3.12 3.12
RRSn=20 3.13 3.52 3.74 3.74 3.75 3.75 3.75 3.75
RRSn=50 4.13 4.86 5.24 5.23 5.24 5.24 5.24 5.24
RRSn=100 5.17 6.46 7.02 7.03 7.04 7.05 7.05 7.08
RRSn=200 6.62 8.13 9.06 9.09 9.09 9.12 9.12 9.14
RRSn=500 9.79 10.52 12.50 12.54 12.65 12.73 12.72 12.70
RRSn=1000 13.36 12.34 15.79 16.04 16.16 16.29 16.34 16.44
RRSn=10000 25.32 10.79 17.91 20.50 22.43 24.00 24.47 25.39
PseudoDoc 22.29 7.37 11.67 13.93 16.24 18.41 19.01 20.60

Table A.27: Impact of α on PAR with k = 25 (exalead, c35k)
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PAR, k = 50 RRS α=1 α=5 α=10 α=20 α=40 α=50 α=100
Prec@10

RRSn=10 27.40 26.80 26.95 26.95 26.95 26.95 26.95 26.95
RRSn=20 30.30 29.75 30.30 30.35 30.35 30.35 30.35 30.35
RRSn=50 32.35 30.20 32.25 32.25 32.35 32.30 32.30 32.35
RRSn=100 35.90 30.95 35.05 35.55 35.80 35.75 35.80 35.85
RRSn=200 33.80 28.55 35.20 34.65 34.80 34.25 34.15 33.95
RRSn=500 34.60 23.10 37.00 36.00 35.90 35.90 35.60 34.95
RRSn=1000 36.80 19.20 34.50 36.25 37.85 37.45 37.55 37.25
RRSn=10000 42.55 11.85 17.60 23.00 28.15 34.10 35.65 38.45
PseudoDoc 34.95 7.25 10.20 12.00 15.15 19.55 20.95 26.65

rPrec
RRSn=10 1.42 4.94 4.93 4.94 4.94 4.94 4.94 4.94
RRSn=20 2.48 6.87 6.92 6.92 6.92 6.92 6.92 6.92
RRSn=50 4.73 9.70 9.88 9.89 9.89 9.89 9.89 9.89
RRSn=100 7.41 11.95 12.21 12.21 12.21 12.21 12.21 12.21
RRSn=200 10.76 14.31 14.89 14.90 14.92 14.92 14.92 14.92
RRSn=500 15.70 17.18 18.51 18.52 18.52 18.53 18.53 18.52
RRSn=1000 20.36 18.54 21.83 21.85 21.95 21.98 21.98 21.99
RRSn=10000 30.25 10.69 21.04 24.40 26.88 28.45 28.77 29.55
PseudoDoc 26.72 6.68 11.76 15.26 19.19 22.43 23.21 24.86

AvgPrec
RRSn=10 0.93 1.67 1.79 1.79 1.79 1.79 1.79 1.79
RRSn=20 1.38 2.43 2.57 2.57 2.57 2.57 2.57 2.57
RRSn=50 2.42 4.08 4.34 4.34 4.34 4.34 4.34 4.34
RRSn=100 3.72 5.85 6.24 6.25 6.27 6.27 6.27 6.27
RRSn=200 5.34 7.65 8.41 8.44 8.45 8.46 8.47 8.47
RRSn=500 8.42 9.94 11.73 11.83 11.90 11.92 11.94 11.95
RRSn=1000 11.96 11.54 14.82 15.12 15.31 15.41 15.43 15.45
RRSn=10000 23.97 9.65 16.54 19.06 21.12 22.73 23.16 24.14
PseudoDoc 21.16 6.45 10.52 12.77 15.12 17.29 17.92 19.49

AUC
RRSn=10 2.79 3.13 3.34 3.36 3.36 3.36 3.36 3.36
RRSn=20 3.13 3.84 4.06 4.06 4.06 4.06 4.06 4.06
RRSn=50 4.13 5.37 5.75 5.74 5.75 5.75 5.75 5.75
RRSn=100 5.17 7.08 7.64 7.65 7.66 7.67 7.67 7.70
RRSn=200 6.62 8.75 9.67 9.71 9.71 9.74 9.74 9.76
RRSn=500 9.79 11.07 13.05 13.09 13.20 13.28 13.27 13.25
RRSn=1000 13.36 12.79 16.24 16.50 16.61 16.74 16.80 16.89
RRSn=10000 25.32 10.86 17.99 20.58 22.50 24.07 24.54 25.46
PseudoDoc 22.29 7.39 11.69 13.95 16.27 18.43 19.03 20.62

Table A.28: Impact of α on PAR with k = 50 (exalead, c35k)

162



A.2. Detailed Evaluation Results

PAR, k = 25 RRS α=1 α=5 α=10 α=20 α=40 α=50 α=100
Prec@10

RRSn=10 25.77 22.16 23.88 23.74 23.74 23.74 23.74 23.74
RRSn=20 25.98 24.24 25.61 25.61 25.61 25.61 25.61 25.61
RRSn=50 26.06 26.69 26.12 26.04 26.04 26.04 26.04 26.04
RRSn=100 29.30 28.35 29.35 29.50 29.28 29.28 29.28 29.28
RRSn=200 30.60 28.78 31.29 30.94 30.86 31.08 30.79 30.58
RRSn=500 32.68 25.83 31.37 33.02 33.09 33.02 33.17 32.88
RRSn=1000 33.47 25.47 29.71 31.44 33.45 33.81 33.60 33.74
RRSn=10000 33.62 23.31 28.99 30.29 32.66 32.88 33.67 33.38
PseudoDoc 30.72 23.53 27.34 27.63 29.64 31.08 31.15 31.01

rPrec
RRSn=10 5.61 17.16 17.30 17.39 17.39 17.39 17.39 17.39
RRSn=20 8.84 19.39 20.32 20.35 20.35 20.35 20.35 20.35
RRSn=50 13.49 21.74 22.02 22.20 22.22 22.22 22.22 22.22
RRSn=100 18.05 22.65 23.69 23.67 23.71 23.76 23.78 23.78
RRSn=200 21.58 23.06 24.55 24.38 24.30 24.41 24.37 24.38
RRSn=500 24.06 22.28 24.30 25.82 25.75 25.74 25.90 25.88
RRSn=1000 24.86 20.78 23.77 24.89 26.27 26.59 26.51 26.46
RRSn=10000 25.06 19.42 22.79 24.43 25.71 26.69 26.76 26.81
PseudoDoc 25.77 18.92 22.96 24.15 25.67 26.22 26.28 26.64

AvgPrec
RRSn=10 3.58 10.29 10.46 10.46 10.46 10.46 10.46 10.46
RRSn=20 5.30 14.01 14.35 14.35 14.35 14.35 14.35 14.35
RRSn=50 7.57 18.11 18.59 18.58 18.61 18.61 18.61 18.61
RRSn=100 10.59 20.88 21.64 21.64 21.64 21.62 21.61 21.61
RRSn=200 13.84 22.02 23.58 23.68 23.59 23.48 23.49 23.48
RRSn=500 18.02 21.56 23.86 24.58 24.81 24.97 25.01 24.99
RRSn=1000 20.37 20.48 23.38 24.24 24.86 25.33 25.39 25.67
RRSn=10000 21.77 19.09 22.42 23.66 24.78 25.44 25.57 25.93
PseudoDoc 22.66 19.45 22.56 23.77 24.91 25.33 25.63 25.78

AUC
RRSn=10 4.50 11.35 11.56 11.56 11.56 11.56 11.56 11.56
RRSn=20 6.13 15.34 15.72 15.72 15.72 15.72 15.72 15.72
RRSn=50 8.63 19.61 20.16 20.12 20.16 20.16 20.16 20.16
RRSn=100 11.69 22.55 23.21 23.26 23.25 23.23 23.23 23.23
RRSn=200 15.16 23.41 25.05 25.12 25.00 24.96 24.97 24.95
RRSn=500 19.33 22.93 25.24 25.91 26.10 26.31 26.39 26.41
RRSn=1000 21.77 21.69 24.79 25.57 26.21 26.75 26.77 27.07
RRSn=10000 23.16 20.28 23.88 25.14 26.26 26.89 27.03 27.35
PseudoDoc 24.12 20.47 23.92 25.20 26.42 26.78 27.10 27.25

Table A.29: Impact of α on PAR with k = 25 (Google, CAL500)
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PAR, k = 50 RRS α=1 α=5 α=10 α=20 α=40 α=50 α=100
Prec@10

RRSn=10 25.77 22.16 23.88 23.74 23.74 23.74 23.74 23.74
RRSn=20 25.98 24.24 25.61 25.61 25.61 25.61 25.61 25.61
RRSn=50 26.06 26.69 26.12 26.04 26.04 26.04 26.04 26.04
RRSn=100 29.30 28.35 29.35 29.50 29.28 29.28 29.28 29.28
RRSn=200 30.60 28.78 31.29 30.94 30.86 31.08 30.79 30.58
RRSn=500 32.68 25.83 31.37 33.02 33.09 33.02 33.17 32.88
RRSn=1000 33.47 25.47 29.71 31.44 33.45 33.81 33.60 33.74
RRSn=10000 33.62 23.31 28.99 30.29 32.66 32.88 33.67 33.38
PseudoDoc 30.72 23.53 27.34 27.63 29.64 31.08 31.15 31.01

rPrec
RRSn=10 5.61 18.21 18.35 18.44 18.44 18.44 18.44 18.44
RRSn=20 8.84 19.74 20.67 20.70 20.70 20.70 20.70 20.70
RRSn=50 13.49 21.74 22.03 22.20 22.23 22.23 22.23 22.23
RRSn=100 18.05 22.66 23.70 23.67 23.72 23.77 23.79 23.79
RRSn=200 21.58 23.07 24.56 24.39 24.31 24.41 24.38 24.38
RRSn=500 24.06 22.28 24.30 25.83 25.75 25.74 25.91 25.89
RRSn=1000 24.86 20.78 23.77 24.89 26.27 26.59 26.52 26.46
RRSn=10000 25.06 19.43 22.79 24.44 25.71 26.70 26.76 26.81
PseudoDoc 25.77 18.92 22.96 24.15 25.67 26.22 26.28 26.64

AvgPrec
RRSn=10 3.58 13.34 13.51 13.51 13.51 13.51 13.51 13.51
RRSn=20 5.30 16.86 17.20 17.20 17.20 17.20 17.20 17.20
RRSn=50 7.57 19.69 20.17 20.16 20.19 20.19 20.19 20.19
RRSn=100 10.59 21.68 22.44 22.44 22.44 22.41 22.41 22.41
RRSn=200 13.84 22.43 23.99 24.09 24.00 23.90 23.90 23.90
RRSn=500 18.02 21.82 24.12 24.84 25.07 25.24 25.27 25.25
RRSn=1000 20.37 20.73 23.63 24.49 25.11 25.58 25.64 25.92
RRSn=10000 21.77 19.34 22.67 23.91 25.03 25.68 25.82 26.18
PseudoDoc 22.66 19.56 22.68 23.89 25.02 25.45 25.74 25.89

AUC
RRSn=10 4.50 14.56 14.77 14.77 14.77 14.77 14.77 14.77
RRSn=20 6.13 18.26 18.64 18.64 18.64 18.64 18.64 18.64
RRSn=50 8.63 21.14 21.69 21.65 21.70 21.69 21.69 21.69
RRSn=100 11.69 23.02 23.68 23.73 23.72 23.70 23.70 23.70
RRSn=200 15.16 23.73 25.37 25.44 25.32 25.28 25.29 25.28
RRSn=500 19.33 23.20 25.52 26.18 26.37 26.58 26.66 26.68
RRSn=1000 21.77 21.95 25.06 25.84 26.48 27.02 27.04 27.34
RRSn=10000 23.16 20.52 24.12 25.39 26.50 27.13 27.27 27.59
PseudoDoc 24.12 20.63 24.08 25.36 26.58 26.95 27.26 27.41

Table A.30: Impact of α on PAR with k = 50 (Google, CAL500)
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A.2. Detailed Evaluation Results

PAR, k = 25 RRS α=1 α=5 α=10 α=20 α=40 α=50 α=100
Prec@10

RRSn=10 26.80 22.73 24.17 24.24 24.24 24.24 24.24 24.24
RRSn=20 25.42 23.88 24.24 24.24 24.24 24.24 24.24 24.24
RRSn=50 26.55 26.19 26.12 26.04 25.97 25.97 25.97 25.97
RRSn=100 27.99 27.12 27.12 27.27 27.41 27.48 27.41 27.41
RRSn=200 28.63 28.06 28.06 27.84 28.20 28.06 27.99 28.13
RRSn=500 29.28 26.91 28.13 29.21 28.71 28.71 28.78 28.71
RRSn=1000 29.50 24.82 28.20 28.99 29.50 29.86 30.00 29.57
RRSn=10000 30.43 23.38 26.69 27.77 28.71 30.14 30.07 30.00
PseudoDoc 26.47 23.88 26.04 26.33 27.27 27.41 27.27 26.62

rPrec
RRSn=10 5.33 17.38 17.78 17.78 17.78 17.78 17.78 17.78
RRSn=20 7.65 18.94 19.32 19.32 19.32 19.32 19.32 19.32
RRSn=50 11.88 20.80 20.85 20.88 20.90 20.90 20.90 20.90
RRSn=100 15.81 21.19 22.33 22.18 22.16 22.17 22.17 22.16
RRSn=200 18.77 21.99 22.84 22.67 22.70 22.55 22.54 22.56
RRSn=500 20.77 21.10 22.87 23.39 23.62 23.59 23.46 23.42
RRSn=1000 21.02 20.11 22.56 23.20 23.77 23.87 23.83 23.83
RRSn=10000 21.12 18.77 21.03 22.19 23.21 23.42 23.65 23.95
PseudoDoc 21.31 18.88 21.28 22.41 22.72 23.00 22.92 22.86

AvgPrec
RRSn=10 2.78 10.10 10.24 10.24 10.24 10.24 10.24 10.24
RRSn=20 4.16 13.20 13.30 13.32 13.32 13.32 13.32 13.32
RRSn=50 6.34 17.37 17.49 17.49 17.42 17.42 17.42 17.42
RRSn=100 8.52 19.49 19.78 19.70 19.68 19.62 19.59 19.59
RRSn=200 10.85 20.55 21.03 20.93 20.91 20.84 20.83 20.79
RRSn=500 14.15 20.36 21.79 21.90 21.92 21.99 22.00 21.93
RRSn=1000 15.93 19.46 21.51 22.01 22.32 22.42 22.45 22.46
RRSn=10000 16.96 18.10 20.34 21.05 21.77 22.32 22.42 22.52
PseudoDoc 17.57 18.77 20.95 21.84 22.36 22.48 22.44 22.33

AUC
RRSn=10 3.77 11.23 11.42 11.43 11.43 11.43 11.43 11.43
RRSn=20 5.00 14.41 14.59 14.63 14.63 14.63 14.63 14.63
RRSn=50 7.22 18.72 19.00 19.05 19.01 19.01 19.01 19.01
RRSn=100 9.61 20.97 21.43 21.33 21.39 21.31 21.28 21.28
RRSn=200 12.13 21.82 22.40 22.30 22.38 22.38 22.39 22.35
RRSn=500 15.51 21.62 23.15 23.23 23.34 23.44 23.48 23.39
RRSn=1000 17.35 20.77 22.85 23.36 23.73 23.85 23.92 23.93
RRSn=10000 18.27 19.36 21.70 22.51 23.21 23.80 23.92 23.92
PseudoDoc 19.21 20.07 22.40 23.28 23.74 23.93 23.95 23.98

Table A.31: Impact of α on PAR with k = 25 (exalead, CAL500)

165



Appendix A. Appendix

PAR, k = 50 RRS α=1 α=5 α=10 α=20 α=40 α=50 α=100
Prec@10

RRSn=10 26.80 22.73 24.17 24.24 24.24 24.24 24.24 24.24
RRSn=20 25.42 23.88 24.24 24.24 24.24 24.24 24.24 24.24
RRSn=50 26.55 26.19 26.12 26.04 25.97 25.97 25.97 25.97
RRSn=100 27.99 27.12 27.12 27.27 27.41 27.48 27.41 27.41
RRSn=200 28.63 28.06 28.06 27.84 28.20 28.06 27.99 28.13
RRSn=500 29.28 26.91 28.13 29.21 28.71 28.71 28.78 28.71
RRSn=1000 29.50 24.82 28.20 28.99 29.50 29.86 30.00 29.57
RRSn=10000 30.43 23.38 26.69 27.77 28.71 30.14 30.07 30.00
PseudoDoc 26.47 23.88 26.04 26.33 27.27 27.41 27.27 26.62

rPrec
RRSn=10 5.33 18.33 18.74 18.74 18.74 18.74 18.74 18.74
RRSn=20 7.65 19.36 19.74 19.74 19.74 19.74 19.74 19.74
RRSn=50 11.88 20.93 20.97 21.01 21.02 21.02 21.02 21.02
RRSn=100 15.81 21.31 22.45 22.30 22.28 22.29 22.29 22.28
RRSn=200 18.77 22.12 22.96 22.80 22.82 22.67 22.67 22.68
RRSn=500 20.77 21.23 22.99 23.51 23.75 23.71 23.58 23.54
RRSn=1000 21.02 20.23 22.68 23.33 23.89 24.00 23.96 23.95
RRSn=10000 21.12 18.90 21.15 22.32 23.33 23.55 23.78 24.07
PseudoDoc 21.31 18.93 21.34 22.47 22.78 23.06 22.98 22.92

AvgPrec
RRSn=10 2.78 13.18 13.33 13.33 13.33 13.33 13.33 13.33
RRSn=20 4.16 15.94 16.05 16.06 16.07 16.07 16.07 16.07
RRSn=50 6.34 19.00 19.12 19.12 19.05 19.05 19.05 19.05
RRSn=100 8.52 20.43 20.72 20.63 20.61 20.55 20.53 20.52
RRSn=200 10.85 21.15 21.64 21.54 21.51 21.44 21.44 21.40
RRSn=500 14.15 20.82 22.25 22.36 22.38 22.46 22.47 22.39
RRSn=1000 15.93 19.92 21.97 22.46 22.78 22.88 22.91 22.92
RRSn=10000 16.96 18.55 20.79 21.50 22.22 22.77 22.87 22.97
PseudoDoc 17.57 19.00 21.18 22.07 22.59 22.71 22.67 22.56

AUC
RRSn=10 3.77 14.41 14.61 14.61 14.61 14.61 14.61 14.61
RRSn=20 5.00 17.33 17.51 17.55 17.55 17.55 17.55 17.55
RRSn=50 7.22 20.33 20.61 20.66 20.63 20.63 20.63 20.63
RRSn=100 9.61 21.68 22.14 22.04 22.10 22.02 21.99 21.99
RRSn=200 12.13 22.32 22.89 22.80 22.88 22.87 22.88 22.85
RRSn=500 15.51 22.09 23.62 23.70 23.80 23.90 23.94 23.86
RRSn=1000 17.35 21.23 23.32 23.82 24.19 24.31 24.38 24.40
RRSn=10000 18.27 19.81 22.15 22.96 23.66 24.25 24.37 24.37
PseudoDoc 19.21 20.33 22.66 23.54 24.00 24.19 24.21 24.24

Table A.32: Impact of α on PAR with k = 50 (exalead, CAL500)
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A.2. Detailed Evaluation Results

RRS +PAR, k = 50 QC +PAR, k = 50
α = 10 α = 100 α = 10 α = 100

Rec
RRSn=10 2.18 10.71 10.71 2.89 10.89 10.89
RRSn=20 3.74 16.89 16.89 4.50 16.24 16.24
RRSn=50 7.17 27.76 27.76 8.81 26.69 26.69
RRSn=100 12.72 39.41 39.41 14.42 38.17 38.17
RRSn=200 18.67 50.98 50.98 21.80 51.99 51.99
RRSn=500 29.31 66.60 66.60 32.34 67.24 67.24
RRSn=1000 40.38 77.63 77.63 43.60 78.84 78.84
RRSn=10000 80.50 96.68 96.68 76.02 94.13 94.13

Prec
RRSn=10 30.15 6.81 6.81 34.97 7.35 7.35
RRSn=20 29.02 6.57 6.57 33.78 7.01 7.01
RRSn=50 27.61 6.17 6.17 33.32 6.68 6.68
RRSn=100 25.99 5.66 5.66 30.65 6.13 6.13
RRSn=200 23.77 5.25 5.25 28.39 5.61 5.61
RRSn=500 20.12 4.81 4.81 23.32 5.01 5.01
RRSn=1000 16.88 4.50 4.50 19.14 4.66 4.66
RRSn=10000 7.29 3.85 3.85 9.13 3.94 3.94

Prec@10
RRSn=10 31.19 30.85 30.85 35.72 34.70 34.75
RRSn=20 32.40 32.15 32.40 37.38 37.00 37.10
RRSn=50 38.45 38.20 38.45 40.05 39.85 40.00
RRSn=100 44.10 44.15 44.05 45.00 45.30 45.15
RRSn=200 47.75 46.35 47.75 49.20 49.00 48.90
RRSn=500 50.30 47.45 50.35 51.05 50.00 51.30
RRSn=1000 52.55 43.00 52.30 52.55 46.05 53.50
RRSn=10000 57.45 17.50 41.25 61.25 24.70 48.90

rPrec
RRSn=10 2.16 6.22 6.22 2.67 6.88 6.88
RRSn=20 3.63 8.46 8.46 4.24 9.01 9.01
RRSn=50 6.52 11.67 11.67 8.47 14.02 14.03
RRSn=100 10.24 14.75 14.74 12.43 17.33 17.33
RRSn=200 14.22 17.86 17.84 18.13 21.92 21.97
RRSn=500 19.84 22.04 22.04 23.72 25.98 26.08
RRSn=1000 24.22 24.87 25.24 28.55 28.91 29.67
RRSn=10000 35.20 22.41 33.12 36.41 27.71 35.24

AvgPrec
RRSn=10 1.19 2.21 2.21 1.78 2.95 2.94
RRSn=20 1.84 3.38 3.38 2.70 4.29 4.30
RRSn=50 3.24 5.54 5.54 5.14 7.66 7.67
RRSn=100 5.54 8.42 8.45 7.71 10.84 10.85
RRSn=200 8.23 11.47 11.53 11.64 15.12 15.18
RRSn=500 12.39 15.51 15.95 15.90 18.99 19.54
RRSn=1000 16.10 18.10 19.28 20.56 22.31 23.76
RRSn=10000 29.98 18.02 27.34 31.64 22.36 30.58

Table A.33: Impact of PAR on filtered RRS (Google, c35k)
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RRS +PAR, k = 50 QC +PAR, k = 50
α = 10 α = 100 α = 10 α = 100

Rec
RRSn=10 1.73 7.76 7.76 1.49 6.95 6.95
RRSn=20 2.80 12.31 12.31 3.03 12.81 12.81
RRSn=50 5.46 22.59 22.59 6.22 22.60 22.60
RRSn=100 8.71 32.73 32.73 10.30 33.55 33.55
RRSn=200 13.40 44.03 44.03 17.56 46.50 46.50
RRSn=500 23.19 60.14 60.14 28.55 64.02 64.02
RRSn=1000 34.01 72.12 72.12 37.51 73.73 73.73
RRSn=10000 72.48 93.66 93.66 67.27 89.56 89.56

Prec
RRSn=10 28.42 6.64 6.64 29.77 6.87 6.87
RRSn=20 28.05 6.81 6.81 28.46 6.50 6.50
RRSn=50 26.43 6.20 6.20 30.09 6.34 6.34
RRSn=100 25.06 5.79 5.79 29.14 6.09 6.09
RRSn=200 23.01 5.42 5.42 27.75 5.66 5.66
RRSn=500 20.41 4.99 4.99 22.67 5.02 5.02
RRSn=1000 17.97 4.66 4.66 20.04 4.70 4.70
RRSn=10000 8.81 3.91 3.91 11.21 4.03 4.03

Prec@10
RRSn=10 27.40 26.95 26.95 32.22 30.90 30.90
RRSn=20 30.30 30.35 30.35 33.48 33.50 33.50
RRSn=50 32.35 32.25 32.35 39.45 39.55 39.45
RRSn=100 35.90 35.55 35.85 41.65 41.55 41.65
RRSn=200 33.80 34.65 33.95 44.50 44.15 44.45
RRSn=500 34.60 36.00 34.95 45.75 45.25 45.40
RRSn=1000 36.80 36.25 37.25 48.60 45.85 48.10
RRSn=10000 42.55 23.00 38.45 55.60 31.40 47.20

rPrec
RRSn=10 1.42 4.94 4.94 1.49 4.84 4.85
RRSn=20 2.48 6.92 6.92 2.76 7.10 7.10
RRSn=50 4.73 9.89 9.89 5.82 11.10 11.10
RRSn=100 7.41 12.21 12.21 9.06 14.22 14.23
RRSn=200 10.76 14.90 14.92 13.71 17.98 17.98
RRSn=500 15.70 18.52 18.52 20.13 22.71 22.70
RRSn=1000 20.36 21.85 21.99 25.01 26.22 26.43
RRSn=10000 30.25 24.40 29.55 31.66 28.00 31.32

AvgPrec
RRSn=10 0.93 1.79 1.79 0.78 1.50 1.50
RRSn=20 1.38 2.57 2.57 1.59 2.84 2.84
RRSn=50 2.42 4.34 4.34 3.18 5.23 5.23
RRSn=100 3.72 6.25 6.27 4.98 7.75 7.76
RRSn=200 5.34 8.44 8.47 7.88 11.22 11.22
RRSn=500 8.42 11.83 11.95 12.21 15.63 15.83
RRSn=1000 11.96 15.12 15.45 16.17 19.16 19.65
RRSn=10000 23.97 19.06 24.14 25.55 22.38 26.36

Table A.34: Impact of PAR on filtered RRS (exalead, c35k)
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A.2. Detailed Evaluation Results

RRS +PAR, k = 50 QC +PAR, k = 50
α = 10 α = 100 α = 10 α = 100

Rec
RRSn=10 5.96 59.08 59.08 5.95 57.95 57.95
RRSn=20 10.19 75.90 75.90 9.04 70.59 70.59
RRSn=50 17.99 89.52 89.52 17.93 84.10 84.10
RRSn=100 26.80 94.78 94.78 22.65 82.90 82.90
RRSn=200 38.63 96.38 96.38 28.61 86.07 86.07
RRSn=500 56.31 97.05 97.05 45.49 91.86 91.86
RRSn=1000 66.91 97.18 97.18 51.52 92.74 92.74
RRSn=10000 73.27 97.31 97.31 45.21 88.29 88.29

Prec
RRSn=10 25.77 14.84 14.84 27.20 14.80 14.80
RRSn=20 24.87 14.34 14.34 24.84 13.77 13.77
RRSn=50 22.84 13.63 13.63 23.44 13.87 13.87
RRSn=100 21.02 13.39 13.39 20.93 13.32 13.32
RRSn=200 19.15 13.22 13.22 20.12 13.42 13.42
RRSn=500 16.86 13.15 13.15 19.08 13.47 13.47
RRSn=1000 15.54 13.13 13.13 17.92 13.50 13.50
RRSn=10000 14.56 13.13 13.13 17.59 13.43 13.43

Prec@10
RRSn=10 25.77 23.74 23.74 27.14 23.81 23.81
RRSn=20 25.98 25.61 25.61 25.89 25.18 25.18
RRSn=50 26.06 26.04 26.04 28.07 27.70 27.77
RRSn=100 29.30 29.50 29.28 28.12 27.99 27.63
RRSn=200 30.60 30.94 30.58 30.09 30.29 29.86
RRSn=500 32.68 33.02 32.88 31.85 32.45 31.65
RRSn=1000 33.47 31.44 33.74 34.02 33.02 34.17
RRSn=10000 33.62 30.29 33.38 32.00 29.50 31.80

rPrec
RRSn=10 5.61 18.44 18.44 5.81 18.62 18.62
RRSn=20 8.84 20.70 20.70 8.48 19.37 19.37
RRSn=50 13.49 22.20 22.23 13.06 22.58 22.56
RRSn=100 18.05 23.67 23.79 14.84 21.90 21.83
RRSn=200 21.58 24.39 24.38 17.57 23.35 23.06
RRSn=500 24.06 25.83 25.89 21.28 25.13 25.25
RRSn=1000 24.86 24.89 26.46 22.96 26.16 26.62
RRSn=10000 25.06 24.44 26.81 19.85 23.91 24.82

AvgPrec
RRSn=10 3.58 13.51 13.51 3.68 13.51 13.51
RRSn=20 5.30 17.20 17.20 5.00 15.66 15.66
RRSn=50 7.57 20.16 20.19 8.35 20.35 20.34
RRSn=100 10.59 22.44 22.41 9.12 19.52 19.54
RRSn=200 13.84 24.09 23.90 10.86 21.06 20.87
RRSn=500 18.02 24.84 25.25 15.55 23.98 24.02
RRSn=1000 20.37 24.49 25.92 17.81 24.49 25.30
RRSn=10000 21.77 23.91 26.18 15.22 21.82 22.92

Table A.35: Impact of PAR on filtered RRS (Google, CAL500)
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RRS +PAR, k = 50 QC +PAR, k = 50
α = 10 α = 100 α = 10 α = 100

Rec
RRSn=10 5.58 61.04 61.04 3.94 49.01 49.01
RRSn=20 9.13 75.70 75.70 6.56 59.89 59.89
RRSn=50 15.68 90.02 90.02 13.23 76.24 76.24
RRSn=100 23.66 94.04 94.04 17.51 75.47 75.47
RRSn=200 33.42 95.13 95.13 22.64 79.01 79.01
RRSn=500 47.36 95.59 95.59 34.22 85.99 85.99
RRSn=1000 56.09 95.85 95.85 36.95 85.74 85.74
RRSn=10000 61.43 95.87 95.87 30.06 79.64 79.64

Prec
RRSn=10 26.74 14.87 14.87 19.95 13.35 13.35
RRSn=20 24.11 14.25 14.25 21.67 13.12 13.12
RRSn=50 22.11 13.76 13.76 20.83 14.08 14.08
RRSn=100 20.63 13.47 13.47 20.67 12.97 12.97
RRSn=200 18.72 13.33 13.33 20.71 13.10 13.10
RRSn=500 17.20 13.27 13.27 19.36 13.68 13.68
RRSn=1000 16.25 13.26 13.26 18.61 13.11 13.11
RRSn=10000 15.45 13.25 13.25 21.44 13.56 13.56

Prec@10
RRSn=10 26.80 24.24 24.24 19.95 19.71 19.71
RRSn=20 25.42 24.24 24.24 21.32 19.14 19.14
RRSn=50 26.55 26.04 25.97 25.06 26.33 26.26
RRSn=100 27.99 27.27 27.41 26.23 25.90 25.97
RRSn=200 28.63 27.84 28.13 28.30 27.91 27.48
RRSn=500 29.28 29.21 28.71 29.26 30.29 29.93
RRSn=1000 29.50 28.99 29.57 29.71 28.63 29.64
RRSn=10000 30.43 27.77 30.00 29.98 28.13 28.42

rPrec
RRSn=10 5.33 18.74 18.74 3.73 15.72 15.72
RRSn=20 7.65 19.74 19.74 6.15 16.41 16.41
RRSn=50 11.88 21.01 21.02 10.10 19.77 19.71
RRSn=100 15.81 22.30 22.28 12.32 20.32 20.33
RRSn=200 18.77 22.80 22.68 14.35 20.89 20.58
RRSn=500 20.77 23.51 23.54 17.96 23.80 23.59
RRSn=1000 21.02 23.33 23.95 17.93 23.00 23.21
RRSn=10000 21.12 22.32 24.07 15.51 21.28 21.82

AvgPrec
RRSn=10 2.78 13.33 13.33 2.26 10.70 10.70
RRSn=20 4.16 16.06 16.07 3.53 12.74 12.74
RRSn=50 6.34 19.12 19.05 5.73 16.56 16.57
RRSn=100 8.52 20.63 20.52 7.22 17.26 17.27
RRSn=200 10.85 21.54 21.40 8.93 18.54 18.45
RRSn=500 14.15 22.36 22.39 11.94 21.07 21.22
RRSn=1000 15.93 22.46 22.92 12.74 21.08 21.44
RRSn=10000 16.96 21.50 22.97 10.80 19.35 19.61

Table A.36: Impact of PAR on filtered RRS (exalead, CAL500)
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A.2. Detailed Evaluation Results

ψ +PAR, k = 50 ANR +PAR, k = 50
α = 10 α = 100 α = 10 α = 100

Rec 93.66 98.50 98.50 93.31 98.34 98.34
Prec 4.27 3.68 3.68 4.39 3.68 3.68
Prec@10 39.25 8.55 23.40 41.05 9.30 25.40
rPrec 30.78 12.57 26.22 31.52 13.42 26.91
AvgPrec 25.97 11.72 21.41 26.64 12.35 22.29
AUC 27.09 12.98 22.67 27.89 13.70 23.66

Table A.37: Impact of PAR on filtered PseudoDoc (Google, c35k)

ψ +PAR, k = 50 ANR +PAR, k = 50
α = 10 α = 100 α = 10 α = 100

Rec 87.20 96.09 96.09 86.39 95.83 95.83
Prec 5.52 3.73 3.73 5.68 3.74 3.74
Prec@10 34.95 12.00 26.65 35.75 13.05 28.25
rPrec 26.72 15.26 24.86 27.28 16.17 25.51
AvgPrec 21.16 12.77 19.49 21.76 13.45 20.33
AUC 22.29 13.95 20.62 22.92 14.64 21.48

Table A.38: Impact of PAR on filtered PseudoDoc (exalead, c35k)

ψ +PAR, k = 50 ANR +PAR, k = 50
α = 10 α = 100 α = 10 α = 100

Rec 81.15 98.83 98.83 80.79 98.83 98.83
Prec 14.50 13.34 13.34 14.55 13.34 13.34
Prec@10 30.72 27.63 31.01 31.73 28.06 32.16
rPrec 25.77 24.15 26.64 25.76 24.29 26.50
AvgPrec 22.66 23.89 25.89 22.84 23.91 25.90
AUC 24.12 25.36 27.41 24.33 25.39 27.47

Table A.39: Impact of PAR on filtered PseudoDoc (Google, CAL500)

ψ +PAR, k = 50 ANR +PAR, k = 50
α = 10 α = 100 α = 10 α = 100

Rec 70.52 97.97 97.97 69.42 97.97 97.97
Prec 15.08 13.38 13.38 15.13 13.38 13.38
Prec@10 26.47 26.33 26.62 27.84 27.70 27.99
rPrec 21.31 22.47 22.92 22.39 22.94 24.06
AvgPrec 17.57 22.07 22.56 18.57 22.72 23.65
AUC 19.21 23.54 24.24 20.09 24.09 25.21

Table A.40: Impact of PAR on filtered PseudoDoc (exalead, CAL500)
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A.2.4 Impact of Audio-Based Combination on Long-Tail Retrieval

orig prun +PAR orig prun +PAR
Rec Prec

RRSn=10 2.18 1.02 5.40 30.15 27.95 6.80
RRSn=20 3.74 1.70 9.01 29.02 28.08 6.79
RRSn=50 7.17 3.41 16.67 27.61 27.26 6.52
RRSn=100 12.72 6.35 25.57 25.99 25.72 6.01
RRSn=200 18.67 9.19 34.86 23.77 23.39 5.56
RRSn=500 29.31 14.15 49.27 20.12 19.65 5.06
RRSn=1000 40.38 19.32 60.58 16.88 16.46 4.68
RRSn=10000 80.50 38.70 86.38 7.29 7.21 3.85
PseudoDoc 93.66 45.00 90.32 4.27 4.26 3.64

AvgPrec Overlap
RRSn=10 1.19 0.56 1.09 100.00 49.19 51.67
RRSn=20 1.84 0.91 1.81 100.00 48.13 51.97
RRSn=50 3.24 1.60 3.13 100.00 48.64 55.73
RRSn=100 5.54 2.98 5.14 100.00 49.45 60.06
RRSn=200 8.23 4.28 6.93 100.00 48.71 63.87
RRSn=500 12.39 6.30 9.54 100.00 48.24 70.49
RRSn=1000 16.10 7.97 11.36 100.00 47.94 76.12
RRSn=10000 29.98 14.61 16.23 100.00 48.60 90.32
PseudoDoc 25.97 12.80 13.05 100.00 48.84 93.33

Table A.41: Impact of audio-combination on long-tail retrieval (Google, c35k)

orig prun +PAR orig prun +PAR
Rec Prec

RRSn=10 1.73 1.10 4.65 28.42 26.90 6.70
RRSn=20 2.80 1.68 7.44 28.05 27.22 6.44
RRSn=50 5.46 3.23 14.44 26.43 26.50 6.41
RRSn=100 8.71 5.00 21.77 25.06 25.57 6.03
RRSn=200 13.40 7.53 30.63 23.01 23.31 5.68
RRSn=500 23.19 12.44 44.47 20.41 20.52 5.23
RRSn=1000 34.01 18.15 56.23 17.97 18.15 4.86
RRSn=10000 72.48 37.95 82.50 8.81 8.99 3.93
PseudoDoc 87.20 45.37 87.04 5.52 5.72 3.71

AvgPrec Overlap
RRSn=10 0.93 0.57 1.08 100.00 54.50 55.67
RRSn=20 1.38 0.87 1.58 100.00 53.87 56.56
RRSn=50 2.42 1.54 2.80 100.00 53.84 59.69
RRSn=100 3.72 2.34 4.09 100.00 51.93 60.59
RRSn=200 5.34 3.36 5.71 100.00 51.37 64.01
RRSn=500 8.42 5.08 8.15 100.00 50.96 69.78
RRSn=1000 11.96 7.12 10.54 100.00 51.02 75.02
RRSn=10000 23.97 13.42 15.76 100.00 50.59 87.81
PseudoDoc 21.16 11.54 12.81 100.00 50.51 91.03

Table A.42: Impact of audio-combination on long-tail retrieval (exalead, c35k)
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A.2. Detailed Evaluation Results

orig prun +PAR orig prun +PAR
Rec Prec

RRSn=10 5.96 3.13 39.47 25.77 25.07 15.72
RRSn=20 10.19 4.79 56.59 24.87 24.26 14.85
RRSn=50 17.99 8.17 76.57 22.84 22.32 14.07
RRSn=100 26.80 12.11 87.07 21.02 20.25 13.64
RRSn=200 38.63 17.19 92.44 19.15 18.49 13.41
RRSn=500 56.31 25.70 94.32 16.86 16.40 13.25
RRSn=1000 66.91 31.13 94.86 15.54 15.19 13.20
RRSn=10000 73.27 34.39 94.97 14.56 14.22 13.18
PseudoDoc 81.15 38.34 97.18 14.50 14.40 13.37

AvgPrec Overlap
RRSn=10 3.58 2.05 9.54 100.00 51.15 69.08
RRSn=20 5.30 2.98 12.77 100.00 49.78 76.21
RRSn=50 7.57 4.20 16.17 100.00 48.96 85.90
RRSn=100 10.59 5.57 18.24 100.00 48.94 91.80
RRSn=200 13.84 6.86 19.08 100.00 48.89 94.94
RRSn=500 18.02 8.79 19.58 100.00 49.04 96.76
RRSn=1000 20.37 10.13 19.73 100.00 49.24 97.19
RRSn=10000 21.77 11.01 19.84 100.00 49.43 97.24
PseudoDoc 22.66 11.46 19.95 100.00 49.15 98.23

Table A.43: Impact of audio-combination on long-tail retrieval (Google, CAL500)

orig prun +PAR orig prun +PAR
Rec Prec

RRSn=10 5.58 3.14 40.25 26.74 25.87 15.27
RRSn=20 9.13 4.53 55.84 24.11 23.43 14.68
RRSn=50 15.68 7.75 76.77 22.11 21.47 14.17
RRSn=100 23.66 11.65 86.59 20.63 20.20 13.85
RRSn=200 33.42 17.04 90.39 18.72 18.44 13.55
RRSn=500 47.36 23.95 92.02 17.20 17.04 13.43
RRSn=1000 56.09 28.24 92.18 16.25 16.04 13.40
RRSn=10000 61.43 30.80 92.30 15.45 15.20 13.39
PseudoDoc 70.52 35.01 95.86 15.08 15.63 13.54

AvgPrec Overlap
RRSn=10 2.78 1.69 9.21 100.00 48.40 64.96
RRSn=20 4.16 2.52 12.19 100.00 48.84 74.13
RRSn=50 6.34 3.66 15.61 100.00 49.11 84.99
RRSn=100 8.52 4.69 17.27 100.00 49.61 90.80
RRSn=200 10.85 6.02 18.02 100.00 49.71 93.67
RRSn=500 14.15 7.71 18.53 100.00 49.36 94.85
RRSn=1000 15.93 8.62 18.58 100.00 49.43 95.08
RRSn=10000 16.96 9.05 18.41 100.00 49.39 95.10
PseudoDoc 17.57 9.57 18.81 100.00 49.67 97.33

Table A.44: Impact of audio-combination on long-tail retrieval (exalead, CAL500)
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