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ABSTRACT

We investigate an approach to a music search engine

that indexes music pieces based on related Web documents.

This allows for searching for relevant music pieces by is-

suing descriptive textual queries. In this paper, we exam-

ine the effects of incorporating audio-based similarity into

the text-based ranking process – either by directly modify-

ing the retrieval process or by performing post-hoc audio-

based re-ranking of the search results. The aim of this com-

bination is to improve ranking quality by including relevant

tracks that are left out by text-based retrieval approaches.

Our evaluations show overall improvements but also ex-

pose limitations of these unsupervised approaches to com-

bining sources. Evaluations are carried out on two col-

lections, one large real-world collection containing about

35,000 tracks and on the CAL500 set.

1. MOTIVATION AND RELATED WORK

In the last years, the development of query-by-description

music search engines has drawn increasing attention [1–

5]. Given the size of (commercial) digital music collec-

tions nowadays (several millions of tracks), this is not a

big surprise. While most “traditional” music retrieval ap-

proaches pursue a query-by-example strategy, i.e., given a

music piece, find me other pieces that sound alike, query-

by-description systems are capable of retrieving relevant

pieces by allowing to type in textual queries targeting mu-

sical or contextual properties beyond common meta-data

descriptors. As this method of issuing queries is the com-

mon way to search the Web, it appears desirable to offer

this type of functionality also in the music domain.

Several approaches to accomplish this goal have been

presented – all of them with a slightly different focus. In [1],

Baumann et al. present a system that incorporates meta-

data, lyrics, and acoustic properties all linked together by

a semantic ontology. Queries are analyzed by means of

natural language processing and tokens have to be mapped

to the corresponding concepts. Celma et al. [2] use a Web

crawler focused on audio blogs and exploit the texts from
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the blogs to index the associated music pieces. Based on

the text-based retrieval result, also musically similar songs

can be discovered. In [3], we propose to combine audio

similarity and textual content from Web documents ob-

tained via Google queries to create representations of mu-

sic pieces in a term vector space. A modification to this

approach is presented in [6]. Instead of constructing term

vector representations, an index of all downloaded Web

documents is created. Relevance wrt. a given query is as-

sessed by querying the Web document index and applying

a technique called rank-based relevance scoring that takes

into account the associations between music tracks and

Web documents (cf. Section 2.1). Evaluations show that

this document-centered approach is superior to the vector

space approach. However, as this method is solely based

on texts from the Web it may neglect important acoustic

properties and suffer from effects such as popularity bias.

Furthermore, inadequately represented tracks and tracks

not present on the Web are penalized by this approach. In

this paper, we aim at remedying these shortcomings and

improving ranking quality by incorporating audio similar-

ity into the retrieval process.

Recently, the method of relevance scoring has also been

adapted to serve as a source of information for automat-

ically tagging music pieces with semantic labels. In [5],

Barrington et al. successfully combine audio content fea-

tures (MFCC and Chroma) with social context features

(Web documents and last.fm tags) via machine learning

methods and therefore improve prediction accuracy. The

usefulness of audio similarity for automatic tagging is also

shown in [4] where tags from well-tagged tracks are prop-

agated to untagged tracks based on acoustic similarity.

The remainder of this paper is organized as follows: In

the next section we review methods for Web-based mu-

sic track indexing and audio-based similarity computation.

Section 3 describes two possible modifications of the ini-

tial approach that are examined in Section 4. In Section 5,

based on these results, we discuss perspectives and lim-

itations of combining Web- and audio-based approaches

before drawing conclusions in Section 6.

2. INCORPORATED TECHNIQUES

In the following, we explain the methods for constructing

a Web-based retrieval system and calculating audio simi-

larity, which we combine in Section 3.



2.1 Web-based Indexing and RRS Ranking

The idea of Web-based indexing is to collect a high num-

ber of texts related to the pieces in the music collection

to gather many diverse descriptions (and hence a rich in-

dexing vocabulary) and allow for a large number of possi-

ble queries. In our first approach, we aimed at permitting

virtually any query by involving Google for query expan-

sion [3]. When introducing rank-based relevance scoring

(RRS), we renounced this step in favor of reduced com-

plexity and improved ranking results [6]. From our point it

is very reasonable to limit the indexing vocabulary to terms

that actually co-occur with the music pieces (which is still

very large). Construction of an index with a corresponding

retrieval scheme is performed as follows.

To obtain a broad basis of track specific texts, for each

music piece m in the collection M , three queries are issued

to Google based on the information found in the id3 tags

of the music pieces:

1. “artist” music

2. “artist” “album” music review -lyrics

3. “artist” “title” music review -lyrics

For each query, at most 100 of the top-ranked Web pages

are retrieved and joined into a set (denoted as Dm in the

following). For retrieval, we utilize the open source pack-

age Nutch 1 . Beside efficient retrieval, a further benefit is

that all retrieved pages are also automatically indexed by

Lucene 2 that uses a tf xidf variant as scoring function [7].

The resulting Web page index is then used to obtain a rel-

evance ranking of Web pages for arbitrary queries. This

page ranking, together with the information on associa-

tions between pages and tracks, serves as input to the RRS

scheme. Compared to the original formulation in [6], we

introduce the additional parameter n that is used to limit

the number of top-ranked documents when querying the

page index. For large collections, this is necessary to keep

response time of the system short. For a given query q and

for each music piece m, scores are calculated as:

RRSn(m, q) =
∑

p∈Dm∩Dq,n

1 + |Dq,n| − rnk(p,Dq,n),

(1)

where Dm is the set of text documents associated with

music piece m (see above), Dq,n the ordered set (i.e., the

ranking) of n most relevant text documents with respect to

query q, and rnk(p,Dq,n) a function that returns the rank

of document p in Dq,n (highest relevance corresponds to

rank 1, lowest to rank |Dq,n|). The final relevance ranking

of music tracks is then obtained by sorting the music pieces

according to their RRS value.

Note that, as suggested in [5, 8], we also experimented

with a weight-based version of relevance scoring (WRS)

that incorporates the scores of the Web page retrieval step

rather than the ranks. In our framework this modification

1 http://lucene.apache.org/nutch
2 http://lucene.apache.org

worsened performance. Possible explanations are the dif-

ferences in the underlying page scoring function or the dif-

ferent sources of Web pages (cf. [8]).

2.1.1 Pseudo-Document Indexing

Instead of modifying the page scoring scheme, we invented

a simple alternative approach for text-based indexing that

lies conceptually between the first vector space approach [3]

and the relevance scoring scheme. For each music piece

m, we concatenate all retrieved texts (i.e., all texts from

Dm) into a single document which we index with Lucene.

Hence, each music piece is represented by a single docu-

ment that contains all relevant texts. Querying this pseudo-

document index results directly in a ranking of music pieces.

This rather “quick-and-dirty” indexing method will serve

as a reference point in the evaluations and give insights

into the capabilities of purely Web-based retrieval.

2.2 Audio-Based Similarity

For calculating music similarities, or more precisely, dis-

tances of tracks based on the audio content, we apply our

algorithm which competed successfully in the “Audio Mu-

sic Similarity and Retrieval” task of MIREX 2007 [9]. For

each piece of music, Mel Frequency Cepstral Coefficients

(MFCCs) are computed on short-time audio frames to char-

acterize the frequency distribution of each frame and hence

model aspects of timbre. On each frame, 25 MFCCs are

computed. Each song is then represented as a Gaussian

Mixture Model (GMM) of the distribution of MFCCs using

a Single Gaussian Model with full covariance matrix [10].

The distance between these models is denoted by dG.

Beside the MFCC-based distance component, also Fluc-

tuation Patterns (FPs) are computed as proposed in [11]. A

track is represented as a 12-band spectrogram and for each

band, a Fast Fourier Transformation (FFT) of the ampli-

tude is taken over a window of six seconds. The result-

ing matrix is referred to as the Fluctuation Pattern of the

song. The FPs of two songs are compared by calculating

the cosine distance, denoted by dFP . Furthermore, two ad-

ditional FP-related features are computed: Bass (FPB) and

Gravity (FPG). These two features are scalar and the dis-

tance between two songs is calculated by subtracting them,

denoted by dFPB and dFPG. To obtain an overall distance

value d measuring the (dis)similarity of two songs, all de-

scribed distance measures are z-normalized and then com-

bined by a simple arithmetic weighting:

d = 0.7 · zG + 0.1 · (zFP + zFPB + zFPG) (2)

where zx is the value of dx after z-normalization. Fi-

nally, distances between two songs are symmetrized. For

similarity computation, we ignore all pairs of songs by the

same artist (artist filtering, cf. [12]) since this similarity is

already represented within the Web features.

3. COMBINATION APPROACHES

This section describes two different approaches for com-

bining the purely text-based retrieval approach with the



audio-based similarity information. According to [5, 13],

the first approach can be considered an early fusion ap-

proach, since it incorporates the audio similarity informa-

tion directly into the relevance scoring scheme, whereas

the second approach can be considered a late fusion ap-

proach, since it modifies the ranking results obtained from

the Web-based retrieval. Basically, both algorithms in-

corporate the idea of including tracks that sound similar

to tracks already present through text-only retrieval. The

score of a track m is calculated by summing up a score

for being present in the text-based ranking and scores for

being present within the nearest audio neighbors of tracks

associated with the text-based ranking.

3.1 Modifying the Scoring Scheme (aRRS)

With this approach, we try to incorporate the audio simi-

larity directly into the scoring scheme of RRS. The advan-

tage is that this has to be calculated only once and does not

require post-processing steps. The audio-influenced RRS

(aRRS) is calculated as:

aRRSn(m, q) =
∑

p∈Pm,q,n

RF (p,Dq,n) ·MF (m, p), (3)

RF (p,Dq,n) = 1 + |Dq,n| − rnk(p,Dq,n), (4)

MF (m, p) = α · I(p,Dm) +
∑

a∈Am

I(p,Da), (5)

where Pm,q,n = (Dm ∪ DAm
) ∩ Dq,n, Na,k the k near-

est audio neighbors of a, Am the set of all tracks a that

contain m in their nearest audio neighbor set, i.e., all a for

which m ∈ Na,k, DAm
the set of all documents associ-

ated with any member of Am, and I(x,D) a function that

returns 1 iff x ∈ D and 0 otherwise. Informally speak-

ing, also tracks sounding similar to track m participate if a

page relevant to m occurs in the page ranking for query q.

The parameter α is used to control the influence of tracks

that are directly associated with a Web page (in contrast to

tracks associated via audio neighbors). In our experiments

we set α = 10. Note that aRRS is a generalization of RRS,

as they are identical for k = 0.

3.2 Post-Hoc Audio-Based Re-Ranking (PAR)

The second approach incorporates audio similarity into an

already existing ranking R. The advantage of this approach

is that it can deal with outputs from arbitrary ranking al-

gorithms. The post-hoc audio-based re-ranking (PAR) is

calculated as:

PAR(m,R) =
∑

t∈(m∪Am)∩R

RF (t, R) · NF (m, t), (6)

NF (m, t) = α·I(m, {t})+G(rnk(m,Nt,k))·I(m,Nt,k),
(7)

G(i) = e−
(i/2)2

2 /
√

2π, (8)

We included the gaussian weighting G in this re-ranking

scheme because it yielded best results when exploring pos-

sible weightings. Parameter α can be used to control the

scoring of tracks already present in R. Note that for k = 0,

R remains unchanged.

4. EVALUATION

For evaluation, we decided to use two test collections with

different characteristics. The first collection is a large real-

world collection and contains mostly popular pieces. The

second collection is the CAL500 set, a manually annotated

corpus of 500 tracks by 500 distinct artists [14]. In the

following, we describe both test collections in more detail.

4.1 The c35k Collection

The c35k collection is a large real-world collection, orig-

inating from a subset of a digital music retailer’s catalog.

The full evaluation collection contains about 60,000 tracks.

Filtering of duplicates (including remixes, live versions,

etc.; cf. [3]) reduces the number of tracks to about 48,000.

As groundtruth for this collection, we utilize last.fm tags.

Tags can be used directly as test queries to the system and

serve also as relevance indicator (i.e., a track is considered

to be relevant for query q if it has been tagged with tag

q). From the 48,000 tracks, we were able to find track-

specific last.fm tags for about 35,000 of the tracks. To ob-

tain a set of test queries, we started with last.fm’s list of

top-tags and manually removed tags useless for our pur-

pose (such as seen live or tags starting with favorite). We

also searched for redundant tags (such as hiphop, hip hop,

and hip-hop) and harmonized their sets of tagged tracks.

However, all forms are kept as queries if they translate to

different queries (in the example above, hiphop translates

to a query with one token, hip hop to two tokens, and hip-

hop to a phrase). As result, a set of 223 queries remained.

From the 223 tags we further removed all tags with a num-

ber of associated tracks above the 0.95-percentile and be-

low the 0.05-percentile, resulting in 200 test queries. A

common way to increase the number of tagged examples

is to use artist-specific tags if no track-specific tags are

present [3, 8]. Since, in our indexing approach, tracks by

the same artist share a large portion of relevant Websites,

we decided against combination with artist tags to avoid

overestimation of performance.

4.2 The CAL500 Set

The CAL500 set is a highly valuable collection for mu-

sic information retrieval tasks [14]. It contains 500 songs

(each from a different artist) which are manually anno-

tated by at least three reviewers. Annotations are made

wrt. a vocabulary consisting of 174 tags describing musi-

cally relevant concepts such as genres, emotions, acoustic

qualities, instruments, or usage scenarios. Although we

consider the fact that our indexing approach is in princi-

ple capable of dealing with large and varying vocabularies,

some of these tags are not directly suited as query, espe-

cially negating concepts (e.g., NOT-Emotion-Angry) can



Recall Precision Prec@10 r-Precision Avg. Prec. (MAP)

Baseline 100.00 3.65 3.60 3.65 3.68

Web only PAR Web only PAR Web only PAR Web only PAR Web only PAR

PseudoDoc 93.66 98.79 4.27 3.67 39.25 17.40 30.78 22.94 25.97 18.81

RRS aRRS PAR RRS aRRS PAR RRS aRRS PAR RRS aRRS PAR RRS aRRS PAR

n = 10 2.18 3.67 10.71 30.15 18.73 6.81 31.19 31.33 30.85 2.16 3.27 6.22 1.19 1.43 2.21
n = 20 3.74 6.16 16.89 29.02 17.95 6.57 32.40 32.15 32.40 3.63 5.17 8.46 1.84 2.25 3.37
n = 50 7.17 11.28 27.76 27.61 16.02 6.17 38.45 37.85 38.40 6.52 8.37 11.66 3.24 3.87 5.53
n = 100 12.72 19.64 39.41 25.99 13.72 5.66 44.10 43.55 43.95 10.24 12.52 14.74 5.54 6.51 8.44

n = 200 18.67 28.65 50.98 23.77 12.10 5.25 47.75 47.75 47.65 14.22 16.67 17.82 8.23 9.61 11.51
n = 500 29.31 44.10 66.60 20.12 9.77 4.81 50.30 49.95 50.15 19.84 21.58 22.02 12.39 14.02 15.91
n = 1000 40.38 58.17 77.63 16.88 8.12 4.50 52.55 51.80 52.35 24.22 24.52 25.21 16.10 17.56 19.23
n = 10000 80.50 95.19 96.68 7.29 4.25 3.85 57.45 57.50 38.20 35.20 32.81 32.26 29.98 28.48 26.45

Table 1. Evaluation results for the c35k collection: Both re-ranking approaches (aRRS and PAR) are compared against the

text-only RRS approach for different numbers of maximum considered top-ranked pages n. For both aRRS and PAR, we

set k = 50, for PAR, α is also set to 50. Values (given in %) are obtained by averaging over 200 evaluation queries.

Recall Precision Prec@10 r-Precision Avg. Prec. (MAP)

Baseline 100.00 13.32 13.33 13.31 14.31

Web only PAR Web only PAR Web only PAR Web only PAR Web only PAR

PseudoDoc 81.15 98.83 14.50 13.34 30.72 31.15 25.77 26.28 22.66 25.74

RRS aRRS PAR RRS aRRS PAR RRS aRRS PAR RRS aRRS PAR RRS aRRS PAR

n = 10 5.96 62.23 59.08 25.77 14.49 14.84 25.77 23.81 23.74 5.61 18.35 18.44 3.58 14.26 13.51
n = 20 10.19 80.90 75.90 24.87 13.99 14.34 25.98 26.40 25.61 8.84 20.55 20.70 5.30 18.36 17.20
n = 50 17.99 93.45 89.52 22.84 13.33 13.63 26.06 27.84 26.04 13.49 22.92 22.23 7.57 21.55 20.19
n = 100 26.80 96.60 94.78 21.02 13.15 13.39 29.30 30.07 29.28 18.05 23.88 23.79 10.59 23.07 22.41
n = 200 38.63 97.23 96.38 19.15 13.08 13.22 30.60 31.58 30.79 21.58 24.32 24.38 13.84 24.27 23.90
n = 500 56.31 97.37 97.05 16.86 13.07 13.15 32.68 32.52 33.17 24.06 25.79 25.91 18.02 25.19 25.27
n = 1000 66.91 97.47 97.18 15.54 13.06 13.13 33.47 33.45 33.60 24.86 25.90 26.52 20.37 25.85 25.64
n = 10000 73.27 97.61 97.31 14.56 13.05 13.13 33.62 33.74 33.67 25.06 26.95 26.76 21.77 26.58 25.82

Table 2. Evaluation results for the CAL500 set: Values are obtained by averaging over 139 evaluation queries. Apart from

that, the same settings as in Table 1 are applied.

not be used. Hence, we remove all negating tags. Fur-

thermore, we join redundant tags (mostly genre descrip-

tors). For tags consisting of multiple descriptions (e.g.,

Emotion-Emotional/Passionate) we use every description

as independent query. This results in a total set of 139 test

queries.

4.3 Evaluation Measures and Results

To measure the quality of the obtained rankings and the

impact of the combination approaches, we calculate stan-

dard evaluation measures for retrieval systems, cf. [15].

Table 1 shows the results for the c35k collection (averaged

over all 200 queries): The top row contains the baseline

that has been empirically determined by repeated evalu-

ation of random permutations of the collection. Not un-

expectedly, the incorporation of additional tracks via the

audio similarity measure leads to an increase in overall re-

call while precision is worsened. However, these global

measures are not too important since for rankings one is

in general more interested in how fast (i.e., at which posi-

tion in the ranking) relevant results are returned. To this

end, measures like Precision @ 10 documents, r-Precision

(i.e., precision at the rth returned document, where r is the

number of tracks relevant to the query), and (mean) aver-

age precision (i.e., the arithmetic mean of precision values

at all encountered relevant documents) give more insight

into the quality of a ranking. For r-Precision and aver-

age precision we can clearly see that PAR (and also aRRS)

perform better than text-based RRS. However, when com-

paring this to the pseudo-document indexing approach, we

see that this simple and efficient ranking technique is in

most cases even better than the combination with audio. 3

Thus, although audio similarity may improve results, it

can not keep up to a well working text-based approach.

Furthermore, we can see that incorporation of audio wors-

ens results if recall of the initial ranking is already high

(n=10000, PseudoDoc). The reason is that audio simi-

larity introduces a lot of noise into the ranking. Hence,

to preserve the good performance at the top of the rank-

ings, α should be set to a high value. On the other hand,

this prevents theoretically possible improvements. For the

CAL500 set (Table 2), things look a bit different. Here,

the aRRS approach performs clearly superior to RRS. Im-

provements can even be observed within the first ten docu-

ments. For this collection, also results of the PseudoDoc

approach can be improved by applying post-hoc audio-

based re-ranking. For comparison of different retrieval

strategies, we calculated precision at 11 standard recall

levels. For each query, precision P (rj) at the 11 stan-

dard recall levels rj , j ∈ {0.0, 0.1, 0.2, ..., 1.0} is inter-

polated according to P (rj) = maxrj≤r≤rj+1
P (r). This

allows averaging over all queries and results in character-

3 Note that the Web only recall value of PseudoDoc represents the up-
per bound for all purely text-based approaches.
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Figure 1. Precision at 11 Standard Recall Levels plots: The upper left plot depicts selected curves (averaged over all

queries) from evaluating the c35k set for comparison of the RRS approach and subsequent PAR re-rankings. The upper

right plot depicts (averaged) curves from the CAL500 set for comparison of the RRS and the aRRS approaches. The lower

figures are intended to give an impression of the effects of different parameters for PAR (left) and aRRS (right). Both are

calculated on the CAL500 set.

istic curves for each retrieval algorithm, enabling compari-

son of distinct algorithms/settings. Figure 1 depicts several

precision at 11 standard recall level curves. The two plots

at the top basically confirm what could be seen in tables 1

and 2. The two plots at the bottom show the influence of

parameters α and k on the retrieval quality.

Using the CAL500 set, we can (rather informally) eval-

uate how audio similarity influences retrieval of tracks from

the so-called “long tail”. To this end, we restricted the

set of relevant tracks for each query to contain only tracks

from the (in general not so well known) online record label

Magnatune. Absolute numbers resulting from this type of

evaluation are rather discouraging, however, when compar-

ing the results from RRS200 with those from aRRS200 on

this modified ground truth, a small improvement can be ob-

served (e.g., MAP increases from 2.03 to 3.68, rPrec from

2.44 to 2.82). Optimistically spoken, a positive tendency

is recognizable – from a more realistic perspective, both

results are disappointing. In any case, the impact on long

tail tracks needs a thorough investigation in future work.

5. DISCUSSION

We have shown that combining Web-based music index-

ing with audio similarity has the potential to improve re-

trieval performance. On the other side, we have also seen

that even an improved combined retrieval approach may

be outperformed by another, rather simple, text-only ap-

proach. Possible explanations are inadequate combination

functions and/or an inadequate audio similarity measure.

To estimate the potential of the audio similarity measure

for this task, we examined the 100 nearest audio neighbors

for every relevant track for a query and for every query,

i.e., at each position k = 1...100, we calculated the preci-

sion (wrt. the currently examined query). Figure 2 shows

the result averaged over all seed songs and queries for the

c35k collection. Within the top 10 neighbors, a precision

of around 7% can be expected in average based solely on

the audio similarity. However, it is questionable whether

this can be improved as audio similarity measures (stati-

cally) focus on specific musical properties, whereas textual
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Figure 2. Precision at audio-based nearest neighbor for the

c35k set (averaged over all queries; for every query average

of rankings with each relevant track as seed).

queries can be aimed at basically every aspect of music,

from different acoustic properties, to cultural context, to

completely unrelated things.

In general it has to be stated that proper combination of

these two sources is rather difficult since they target dif-

ferent directions and applications. Furthermore, a com-

bination function can not be optimized in advance to suit

every potential query, i.e., in contrast to, e.g., [5], auto-

matic learning of proper combination functions (e.g., via

machine learning methods) is not applicable for this task

since we have no learning target. More precisely, Web-

based music indexing as we currently apply it is an unsu-

pervised approach. This is implied by the requirement to

deal with a large and arbitrary vocabulary.

6. CONCLUSIONS AND FUTURE WORK

We proposed two methods to combine a Web-based music

retrieval system with an audio similarity measure to im-

prove overall ranking results and enable including tracks

not present on the Internet into search results. Based on our

evaluations, we could show that the overall ranking quality

can be improved by integrating purely acoustic similarity

information. However, we were also confronted with the

current limitations of this combination. The first results

gathered, open up new questions for future work, e.g., if

another audio similarity measure could produce more sub-

stantial results. Also the question of combining the dif-

ferent sources will be taken a step further. Possible fu-

ture enhancements could comprise clustering to find co-

herent groups of songs. This could be based on learning

from many queries and finding stable relations between

frequently co-occurring tracks. Another aspect that will be

dealt with in future work is the impact on tracks from the

long tail. Ideally, a combination would allow for retrieval

of relevant tracks irrespective of their presence on the Web.
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[1] S. Baumann, A. Klüter, and M. Norlien. Using natural

language input and audio analysis for a human-oriented

MIR system. Proc. 2nd WEDELMUSIC, 2002.

[2] O. Celma, P. Cano, and P. Herrera. Search Sounds: An

audio crawler focused on weblogs. Proc. 7th ISMIR,

2006.

[3] P. Knees, T. Pohle, M. Schedl, and G. Widmer. A Mu-

sic Search Engine Built upon Audio-based and Web-

based Similarity Measures. Proc. 30th ACM SIGIR,

2007.

[4] M. Sordo, C. Laurier, and O. Celma. Annotating mu-

sic collections: How content-based similarity helps to

propagate labels. Proc. 8th ISMIR, 2007.

[5] L. Barrington, D. Turnbull, M. Yazdani, and G. Lanck-

riet. Combining audio content and social context for se-

mantic music discovery. Proc. 32nd ACM SIGIR, 2009.

[6] P. Knees, T. Pohle, M. Schedl, D. Schnitzer, and K.

Seyerlehner. A Document-centered Approach to a Nat-

ural Language Music Search Engine. Proc. 30th ECIR,

2008.
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