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ABSTRACT

In this paper, we address the question of which low-level
acoustical features are the most adequate for identifying mu-
sic beats computationally. We consider 172 features com-
puted on consecutive signal frames and systematically evalu-
ate their individual value in the task of providing reliablecues
for the presence and localisation of beats in music signals.
We compare two ways of evaluating features: their accuracy
in a song-specific classification task (classifying beats vsnon-
beats) and their performance as a front-end to a beat tracking
system.

Index Terms— Music, Beat tracking, Rhythm analysis,
Feature extraction, Learning systems

1. INTRODUCTION

Many algorithms have been proposed for beat induction and
tracking from music audio signals (see [1] for a review), and
most of these algorithms share a common general scheme.
First, the audio data is parsed into temporal series of features
which hopefully convey the predominant rhythmic informa-
tion. These features are then processed in order to highlight
intrinsic periodicities (pulseinduction). Music data are rarely
exactly periodic, so algorithms implement strategies to cope
with deviations from constant tempo (beattracking).

While, on the one hand, many diverse formalisms have
been proposed to induce periodicities from feature lists (e.g.
autocorrelation, Fourier transform, comb filterbanks) andto
track changing periodicities (e.g. rule-based models, adaptive
oscillators, agents), on the other hand, the literature on low-
level features for beat induction and tracking is scarce. Mu-
sic perception literature does refer to many different cuesto
beat induction and tracking (“phenomenal accents”), as pat-
terns of time intervals, sudden changes in dynamics or timbre,
long notes, pitch leaps and harmonic changes. However, most
of these theories have been developed with simplified music
stimuli (artificial sequences of synthesised notes), and cannot
easily be translated into algorithms dealing with audio sig-
nals.

A scan of the literature [1] reveals that relatively few low-
level features have been considered so far; these are energy
values or temporal variations thereof in several frequencybands,

some onset detection functions [2], spectral flux [3] and a few
other spectral features.

In this paper, we aim at identifying systematically among
a large number of low-level features computed at a regular
sampling rate those whose temporal behavior would best in-
dicate the presence and localisation of beats, as measured on
audio data whose beats have been previously manually anno-
tated.

2. DATA, METADATA AND FEATURES

A total of 1360 audio files in linear PCM format were used,
taken from commercial CDs, and containing 90643 beats in
total (with a minimum of 7 beats per piece and a maximum
of 262 beats per piece). The audio data is not publicly avail-
able for copyright reasons. The data is grouped in 10 cat-
egories as follows:Acoustic, 84 pieces;Afro-American, 93
pieces;Balkan/Greek, 144 pieces;Choral, 21 pieces;Clas-
sical, 204 pieces;Classical solo, 79 pieces;Electronic, 165
pieces;Jazz/Blues, 194 pieces;Rock/Pop, 334 pieces; and
Samba, 42 pieces. See [4] for more details on the data.

A total of 172 features were used. For all the features,
the frame size was set to 23.2 ms and the hop size to 11.6 ms
(1024 and 512 samples, respectively, at a sampling frequency
of 44100 Hz). The feature sampling rate is therefore 86.1 Hz.
Here follows a list of features considered. The first-order dif-
ferential of the following features: spectral peak (from now
on SP) harmonic deviation (f1), spectrum low-frequency en-
ergy relation (f2), SP third tristimulus (f3), spectrum maxi-
mum magnitude frequency (f4), SP second tristimulus (f5),
spectrum rolloff (f6), SP first tristimulus (f7), spectrum mag-
nitude kurtosis (f8), spectrum magnitude skewness (f9), zero-
crossing rate (f10), SP harmonic centroid (f11), energy (f12),
spectrum spread (f13), spectrum high frequency content (f14),
spectrum centroid (f15), spectrum flatness (f16), spectrum mag-
nitude geometric mean (f17), SP magnitude mean (f18) and
spectrum magnitude mean (f19). 13 Mel-Frequency Cepstral
Coefficients (f20 to f32). The magnitude of the energy in
frequency subbands, as well as feature differentials thereof,
diverse filterbank definitions being considered:1 those pro-
moted in [5] (magnitude values: f33 to f40, first-order differ-

1Here, all frequency subbands are ordered from low to high frequencies.



entials: f41 to f48 and magnitude-normalised first-order dif-
ferentials: f49 to f56), 36 ERB (Equivalent Rectangular Band-
width) bands distributed between 50 Hz and 20 kHz (magni-
tude values: f57 to f92, first-order differentials: f93 to f128 and
magnitude-normalised first-order differentials: f129 to f164).
An implementation of the energy features proposed in [6]
(f165 to f168). The implementation by [7] of 4 onset detection
features, i.e. high-frequency content (f169), phase deviation
(f170), spectral difference (f171) and complex spectral differ-
ence (f172). More details on feature implementation can be
found in [4].

3. METHODS

3.1. Classification

We define two classes: beats and non-beats, and evaluate fea-
tures on each music piece according to the following crite-
rion: relevant features are those whose values permit a ma-
chine learning algorithm to achieve high levels of accuracy
in beat classification. Given the time indexes of beats and
the time series of frame feature values, the feature value as-
sociated with each beat is taken from the frame in the near
vicinity of the beat where the feature value is maximum [4].
Instances of non-beats are generated by selecting a random
point between each pair of beats. We used a total of 89283
non-beats.

Features are evaluated according to the predictive accu-
racy of an instance-based classifier (k-NN, with k=3).2 Clas-
sification accuracies are computed via 10-fold cross-valid-
ations, computed onindividual music pieces. An accuracy
estimate of a given feature subset is obtained for each piece,
and the final accuracy estimate is then computed as the aver-
age over the whole set of pieces (or the pieces of a specific
music category, when indicated). The evaluation of a given
feature accounts for a reduced number of instances taken from
the same music piece, hence the obvious danger of overfitting.
However, we get a valid estimate of relevance of this feature
by averaging over a significant number of music pieces.

As we define the same number of beats and non-beats for
each piece, the classification rate when always guessing the
most probable class (i.e. the baseline) is 50%. This value
should be kept in mind when assessing the goodness of any
feature set (an accuracy of 50% is bad as it corresponds to the
chance level).

3.2. Beat tracking

The second evaluation procedure focuses on the performance
of each feature as front-end to the beat tracking system Beat-
Root [8]. In BeatRoot, initial processing of the audio sig-
nal is concerned with finding the onsets of music notes. The

2Experiments described in this paper have been conducted with the free
software Weka, available under GPL athttp://www.cs.waikato.ac.
nz/ml/weka.

original version of BeatRoot used a time-domain onset de-
tection algorithm, which found local peaks in the slope of a
smoothed amplitude envelope. Although well-suited to mu-
sic with drums, this method was less reliable at finding onsets
of other instruments, especially in a polyphonic setting, so
it was replaced with an onset detector based on spectral flux
(see [9]). In these experiments, the spectral flux function is
replaced by the feature which is being evaluated, and peaks in
this feature are considered as onsets for the purposes of beat
tracking.

Given a feature vectorf(i), the peak-picking algorithm
selects a peak at frame numbern, subject to the following
constraints:

f(n) ≥ f(k) for all k such that n − w ≤ k ≤ n + w

f(n) ≥

∑n+w

k=n−mw f(k)

mw + w + 1
+ δ

f(n) ≥ gα(n − 1)

wherew = 3 is the size of the window used to find a local
maximum,m = 3 is a multiplier so that the mean is calcu-
lated over a larger range before the peak,δ is the threshold
above the local mean which an onset must reach, andgα(n)
is a threshold function with parameterα given bygα(n) =
max(f(n), αgα(n − 1) + (1 − α)f(n))

The tempo induction algorithm uses the calculated on-
set times to compute clusters of inter-onset intervals (IOIs).
An IOI is defined to be the time interval between any pair
of onsets, not necessarily successive. A clustering algorithm
finds the most significant metrical units, and the clusters are
then compared to find reinforcing groups, and a ranked set of
tempo hypotheses is computed. Based on these hypotheses,
the beat tracking algorithm employs a multiple agent archi-
tecture to match sequences of beats to the music, where each
agent represents a specific tempo and alignment of beats with
the music. The agents are evaluated on the basis of the regu-
larity, continuity and salience of the onsets corresponding to
hypothesised beats, and the highest ranked beat sequence is
returned as the solution.

These beat sequences are evaluated by combining the num-
ber of matched beatsb, the number of false positivesp and the
number of false negativesn to give a score between 0 and 1:
score = b

b+p+n
.

4. RESULTS

The performance of individual features in both tasks is shown
on Figure 1. Table 1 gives the 4 best features for each task as
well as a breakdown with respect to music categories.

For all features, classification accuracies are higher than
beat tracking performance. There are several reasons for that.
The first reason lies in the beat tracking performance mea-
sure itself. Unlike the classification accuracy, this measure is
brittle: because the beat tracker focuses on a specific metrical
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Fig. 1. Performance (in %) of individual features in the classification and beat tracking tasks. Features are indexed by families:
spectral features (from 1 to 19), first-order differential of MFCCs (20-32), energy in Dixon’s filterbank (33-56), energy in ERB
filterbank (57-164), Klapuri’s features (165-168) and Bello’s onset detection features (169-172).

level, a focus on a wrong metrical level can cause the per-
formance to decrease by e.g. one half. This is not the case
for classification as the correct or incorrect classification of a
given beat does not depend on its distance to other beats, but
only on the feature value. Another reason is that, unlike the
beat tracker, the classification process uses some ground-truth
knowledge when making decisions (i.e. in each run,9

10
of the

annotated beats are used to learn how to classify the remain-
ing 1

10
). Further, the classifier is asked to make decisions on

relatively few instances, as we defined as many non-beats as
beats, while for BeatRoot, any time point is a potential beat.
These factors make the classification accuracies overly opti-
mistic with respect to the beat tracking task.

Even if the curves do not have exactly the same shape,
they are correlated. To a certain extent, with the exception
of some outliers, therelative ranking of features is similar in
both tasks (at least within a given feature family). This tells
us that classification accuracies are somehow representative
of the worth of features for beat tracking.

However, in some cases, relative feature rankings are not
similar for both methods. It is our belief that differences in
relative ranking indicate features for which the use of ground-
truth data makes a difference in the determination of beats.
For instance, features related to the representation of thetim-
bre —the first-order differential of MFCCs (features 20 to 32)
and some spectral features such as the spectrum centroid (f15)
and flatness (f16)— are very good for classification while they
do not score well in beat tracking. It may be that these tim-
bre features work well in classification because they permit
the classifier to learn global spectral shapes (i.e. rough instru-
ment models) specific to beats of each music piece. On the
other hand, the beat tracker derives discrete data (peak posi-
tions) from continuous features by peak-picking, and peaks

detected in timbre features represent relatively badly (with
respect to other features) beat positions and periodicities of
interest. The beat tracker peak-picking algorithm adapts its
threshold to each music piece, but, unlike the classifier, this
adaptation is unsupervised, i.e. it has no feedback about what
works and what not. In sum, timbre features are relevant in
the representation of beats, but in order to take the most ad-
vantage of these features, beat tracking should adapt in some
way to the particular timbre recurring on the beats of each
music piece at hand.

As can be seen in Table1, on average, the best feature for
classification is the first-order differential of the first MFCC
(which amounts to the variation of the signal energy in dB).
Other good features are the variation of the energy in low and
high frequency bands (between 100 and 400 Hz and above
5 kHz) and of measures of the spectrum magnitude mean (fea-
tures 17 to 19). These features are correlated with note onsets.
Beat tracking also performs very well with these features, and
also with [7]’s onset detection features (the best feature being
the complex spectral difference). This confirms the common
belief that onset times and IOIs are strongly correlated with
beat positions and periodicities of interest.

Both methods show similar relative rankings of the energy
(or variation thereof) in frequency subbands (e.g. features 57
to 92). They show for instance that energy between 500 Hz
and 1.5 kHz (ERB bands 9 to 15) is relatively irrelevant to
beat tracking. An interpretation is that the voice, whose spec-
tral energy is maximally present between these frequencies,
may be the instrument which is, on average, less representa-
tive of the metrical structure.

We can also see in Table 1 that the best features depend to
some extent on music category. The union of the 4 best fea-
tures for each of the 10 music categories amounts to a set of 16



1st 2nd 3rd 4th

Cl. f20 f19 f18 f17Whole data
Tr. f172 (45%) f171 f19 f170
Cl. f19 f20 f26 f17Acoustic
Tr. f172 (35.9%) f171 f94 f41
Cl. f19 f17 f20 f164Afro-American
Tr. f172 (53%) f171 f117 f120
Cl. f19 f20 f18 f165Balkan/Greek
Tr. f41 (41.5%) f94 f93 f42
Cl. f11 f16 f129 f22Choral
Tr. f33 (11.5%) f95 f59 f94
Cl. f20 f21 f166 f15Classical
Tr. f170 (35.3%) f55 f56 f47
Cl. f20 f21 f19 f166Classical Solo
Tr. f170 (37.6%) f55 f172 f171
Cl. f19 f20 f17 f18Electronic
Tr. f171 (57.6%) f172 f18 f19
Cl. f17 f19 f20 f165Jazz/Blues
Tr. f41 (43.8%) f170 f172 f94
Cl. f20 f19 f17 f18Rock-Pop
Tr. f171 (62.3%) f172 f19 f169
Cl. f128 f17 f125 f126Samba
Tr. f58 (53.6%) f59 f95 f94

Table 1. First to fourth best feature for each method, clas-
sification (Cl.) and beat tracking (Tr.), for all music cate-
gories. Percentages in parenthesis indicate beat trackingper-
formance.

different features for classification and 19 different features
for beat tracking. This indicates that a beat tracker may take
advantage of a hypothetical knowledge of the music genre of
the pieces it has to process. For instance, if the best feature per
category is used instead of the globally best (complex spec-
tral difference), an improvement of 3.1 percentage points is
obtained (i.e. 48.1% instead of 45%).

5. SUMMARY AND FUTURE WORK

The main contribution of this paper is to bring forward a new
issue in automatic rhythm description of audio signals: the
question ofwhich acoustical features are the most adequate
for identifying music beats computationally. We evaluated
the worth of a large number of features in both a classification
task and a beat tracking system.

Individual features which are best for beat tracking are
those which indicate the presence of onsets [7]. Energy fea-
tures are more relevant in low and high frequency bands. How-
ever, feature performance depends on music category. Deeper
analyses of errors will determine the extent to which features
fail on specific categories. The difference between classifica-
tion and beat tracking performance shows that performance

could be potentially improved by using some knowledge of
the acoustical characteristics of the beats of each music piece.
This is especially true for the case of timbre features which,
although they are shown to capture beat characteristics, are
relatively irrelevant in unsupervised beat tracking. Future re-
search could therefore focus onadaptive beat tracking. A
starting point may be the design of interactive beat trackers
where the user would have to provide some simple feedback
on how well the algorithm is doing or e.g. specify a few beats
manually. This feedback could be used by the algorithm to
better define the concept of beat on each piece. Future work
could also be dedicated to evaluate combinations of features
instead of individual features [4] and extend the analysis to
different beat trackers (e.g. that do not discretise features).
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