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ABSTRACT some onset detection functions [2], spectral flux [3] andma fe

In this paper, we address the question of which Iow-IevePthler;?_ectral featureg t identifvi . ticall
acoustical features are the most adequate for identifying m n this paper, we aim at identifying systematically among

sic beats computationally. We consider 172 features conf: Iarg(_e number of low-level features compyted at a regul_ar
puted on consecutive signal frames and systematicallyeval Z?‘mp"“r? rate those Wh(;)lse tellmppral lc;ebhawor would best ('jn_
ate their individual value in the task of providing reliablges Icate the presence and localisation of beats, as measured o

for the presence and localisation of beats in music signaléa.Udlo data whose beats have been previously manually anno-

We compare two ways of evaluating features: their accuracgfited'

in a song-specific classification task (classifying beatsors

beats) and their performance as a front-end to a beat trgqckin 2. DATA, METADATA AND FEATURES

system.

A total of 1360 audio files in linear PCM format were used,

taken from commercial CDs, and containing 90643 beats in

total (with a minimum of 7 beats per piece and a maximum

of 262 beats per piece). The audio data is not publicly avail-

1. INTRODUCTION able for copyright reasons. The data is grouped in 10 cat-

. ) . egories as follows:Acoustic, 84 pieces;Afro-American, 93

Many algorithms have been proposed for beat induction an ieces:Balkan/Greek, 144 piecesChoral, 21 piecesClas

tracking from music audio signals (see [1] for a review), an ical, 204 piecesClassical solo, 79 piecesElectronic, 165

most of these algorithms share a common general SChe”ﬁeceS'Jazz/Bluee 194 pieces:Rock/Pop, 334 pieces; and
First, the audio data is parsed into temporal series of featu o - 10 pieces’. See [4] for more details on the data.

which hopefully convey the predominant rhythmic informa- — \ 4401 of 172 features were used. For all the features,

tion. These features are then processed in order to highligla,]e frame size was set to 23.2 ms and the hop size to 11.6 ms
intrinsic periodicities (pulsenduction). Music data are rarely (1024 and 512 samples, respectively, at a sampling frequenc
e>_<actly per_iodic, so algorithms implement s_trategies 0eCO ot 44100 Hz). The feature sampling rate is therefore 86.1 Hz.
with deviations from constant tempo (bésicking). Here follows a list of features considered. The first-ordér d
While, on the one hand, many diverse formalisms havge entia| of the following features: spectral peak (fronwno

been proposed to induce periodicities from feature listg. (e on SP) harmonic deviation,(f, spectrum low-frequency en-
autocorrelation, Fourier transform, comb filterbanks) &md ergy relation (§), SP third tristimulus (), spectrum maxi-

track changing periodicities (e.g. rule-based modelsptada mum magnitude frequencyJf SP second tristimulus «f,

oscillators, agents), on the o_ther hand, thg Iltt_araturenmn I spectrum rolloff (), SP first tristimulus (), spectrum mag-
level features for beat induction and tracking is scarce- MUpitude kurtosis ), spectrum magnitude skewness){&ero-
sic p(_erceptilon literature QOes refer to many different does crossing rate (f), SP harmonic centroid {f), energy (f2),
beat mdgcﬂqn and tracking (“phenomepal accepts"), as pa pectrum spread{), spectrum high frequency content(,
terns of time intervals, sudden changes in dynamics or gmbr spectrum centroid (£), spectrum flatness,(f), spectrum mag-

long notes, pitch leaps and harmonic changes. However, MOshude geometric mean (), SP magnitude mean, &) and

of these theories have been developed with simplified mUSi§pectrum magnitude meandJ. 13 Mel-Frequency Cepstral
stimuli (artificial sequences of synthesised notes), andoB o efficients (§, to fs,). The magnitude of the energy in
easily be translated into algorithms dealing with audio Si frequency subbands, as well as feature differentials digre

nals. ) . diverse filterbank definitions being considefedhose pro-
A scan of the literature [1] reyeals that relatively few low- | i in [5] (magnitude values;:fto f, first-order differ-
level features have been considered so far; these are energy

values or temporal variations thereof in several frequéaryds,  Here, all frequency subbands are ordered from low to higiuizacies.

Index Terms— Music, Beat tracking, Rhythm analysis,
Feature extraction, Learning systems




entials: f; to f,s and magnitude-normalised first-order dif- original version of BeatRoot used a time-domain onset de-
ferentials: g to f55), 36 ERB (Equivalent Rectangular Band- tection algorithm, which found local peaks in the slope of a
width) bands distributed between 50 Hz and 20 kHz (magnismoothed amplitude envelope. Although well-suited to mu-
tude values: §; to fqo, first-order differentials: s to fios and  sic with drums, this method was less reliable at finding anset
magnitude-normalised first-order differentialsyof to f154).  of other instruments, especially in a polyphonic setting, s
An implementation of the energy features proposed in [6]t was replaced with an onset detector based on spectral flux
(f165 to f168). The implementation by [7] of 4 onset detection (see [9]). In these experiments, the spectral flux function i
features, i.e. high-frequency contenis(f), phase deviation replaced by the feature which is being evaluated, and peaks i
(f170), spectral difference {f,) and complex spectral differ- this feature are considered as onsets for the purposes bf bea
ence (f72). More details on feature implementation can betracking.

found in [4]. Given a feature vectof (i), the peak-picking algorithm
selects a peak at frame number subject to the following
3. METHODS constraints:
3.1. Classification f(n) > f(k) for all k such that n —w < k <n+4w

We define two classes: beats and non-beats, and evaluate fea-  f(n)
tures on each music piece according to the following crite-
rion: relevant features are those whose values permit a ma- f(n) = ga(n—1)

chine learning algorithm to achieve high levels of accurac herew — 3 is the size of the window used to find a local
in beat classification. Given the time indexes of beats an o= ; . )
maximum,m = 3 is a multiplier so that the mean is calcu-

the time series of frame feature values, the feature value a ted over a larger range before the pedlis the threshold

sociated with each beat is taken from the frame in the neafbove the Iocalgmean v%hich an onsetpmust reach

vicinity of the beat where the feature value is maximum [4].. . . : gaa)
threshold function with parametergiven by g,(n) =

Instances of non-beats are generated by selecting a randdin®

point between each pair of beats. We used a total of g92g3ax(f (1), aga(n —1) + (1 — a)f(n))
non-beats. The tempo induction algorithm uses the calculated on-

Features are evaluated according to the predictive acci—et time_s to compute cIuster; of i_nter-onset intervalss()OI_
racy of an instance-based classifier (k-NN, with k=3Jlas- fn Ol is defined to bellthe time mterval t:etwegn any pair
sification accuracies are computed via 10-fold cross-valid]? gnsr?ts, not ngce$§arl y sucgesl'S|V(a_. Ac léStﬁrm? dtguri
ations, computed omdividual music pieces. An accuracy Inds the most SIgn| |canf[ metr_lca units, and the clustees ar
CT@en compared to find reinforcing groups, and a ranked set of

estimate of a given feature subset is obtained for each pie mpo hvbotheses is computed. Based on these hvpotheses
and the final accuracy estimate is then computed as the avég— PO yp P ' yp '

age over the whole set of pieces (or the pieces of a specif & beat iracking algorithm employs a multiple agent archi-

music category, when indicated). The evaluation of a giverI\eCture to match sequences of beats to the music, where each

feature accounts for a reduced number of instances taken froagent represents a specific tempo and alignment of beats with

the same music piece, hence the obvious danger of oven‘ittinge music. The agents are evaluated on the basis of the regu-

However, we get a valid estimate of relevance of this featur rity, con_tmuny and salience O.f the onsets correspogdin .
by averaging over a significant number of music pieces. ypothesised beats, and the highest ranked beat sequence is

As we define the same number of beats and non-beats f([)(?tu_lt?]ed a; th? SOIUI'?]n' re evaluated by combining the num
each piece, the classification rate when always guessing ther faset ﬁadieql:sethcei arfbe ra :‘J?Ie ycic;iv ndgth € hum-
most probable class (i.e. the baseline) is 50%. This vaIuBe ot matched bealsthe number ot false positivesa €

should be kept in mind when assessing the goodness of awmber of false negativesto give a score between 0 and 1:

feature set (an accuracy of 50% is bad as it corresponds to th
chance level).
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4. RESULTS

3.2. Beat tracki L . .
eattracking The performance of individual features in both tasks is show

The second evaluation procedure focuses on the performanece Figure 1. Table 1 gives the 4 best features for each task as

of each feature as front-end to the beat tracking system Beatell as a breakdown with respect to music categories.

Root [8]. In BeatRoot, initial processing of the audio sig-  For all features, classification accuracies are higher than

nal is concerned with finding the onsets of music notes. Theeat tracking performance. There are several reasonsdor th
2Experiments described in this paper have been conductédthétfree The f.IrSt reaso.n lies in the. bea.t tracking perfo.rmance. mea-

software Weka, available under GPLhatt p: / / waw. cs. wai kat 0. ac.  Sure itself. Unlike the classification accuracy, this meassi

nz/ m / weka. brittle: because the beat tracker focuses on a specificeaktri
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Fig. 1. Performance (in %) of individual features in the classtfa@aand beat tracking tasks. Features are indexed by fsnili
spectral features (from 1 to 19), first-order differentiaMi-CCs (20-32), energy in Dixon'’s filterbank (33-56), eneig ERB
filterbank (57-164), Klapuri's features (165-168) and Bisllonset detection features (169-172).

level, a focus on a wrong metrical level can cause the perdetected in timbre features represent relatively badlyh(wi
formance to decrease by e.g. one half. This is not the casespect to other features) beat positions and periodicitfe
for classification as the correct or incorrect classificattba  interest. The beat tracker peak-picking algorithm adapts i
given beat does not depend on its distance to other beats, lhteshold to each music piece, but, unlike the classifiés, th
only on the feature value. Another reason is that, unlike thadaptation is unsupervised, i.e. it has no feedback abaoait wh
beat tracker, the classification process uses some groutid-t works and what not. In sum, timbre features are relevant in
knowledge when making decisions (i.e. in each r%nof the the representation of beats, but in order to take the most ad-
annotated beats are used to learn how to classify the remaimantage of these features, beat tracking should adapt ie som
ing %). Further, the classifier is asked to make decisions oway to the particular timbre recurring on the beats of each
relatively few instances, as we defined as many non-beats asusic piece at hand.
beats, while for BeatRoot, any time point is a potential beat  As can be seen in Tablel, on average, the best feature for
These factors make the classification accuracies overly optclassification is the first-order differential of the first E
mistic with respect to the beat tracking task. (which amounts to the variation of the signal energy in dB).
Even if the curves do not have exactly the same shap&ther good features are the variation of the energy in low and
they are correlated. To a certain extent, with the exceptiohigh frequency bands (between 100 and 400 Hz and above
of some outliers, theelative ranking of features is similar in 5 kHz) and of measures of the spectrum magnitude mean (fea-
both tasks (at least within a given feature family). Thisstel tures17to 19). These features are correlated with notéonse
us that classification accuracies are somehow representatiBeat tracking also performs very well with these featurad, a
of the worth of features for beat tracking. also with [7]'s onset detection features (the best featared
However, in some cases, relative feature rankings are ndie complex spectral difference). This confirms the common
similar for both methods. It is our belief that differencas i belief that onset times and 10ls are strongly correlated wit
relative ranking indicate features for which the use of gbu  beat positions and periodicities of interest.
truth data makes a difference in the determination of beats. Both methods show similar relative rankings of the energy
For instance, features related to the representation dgifithe  (or variation thereof) in frequency subbands (e.g. feattie
bre —the first-order differential of MFCCs (features 20 t) 32 to 92). They show for instance that energy between 500 Hz
and some spectral features such as the spectrum cenig)id (fand 1.5 kHz (ERB bands 9 to 15) is relatively irrelevant to
and flatness (f)— are very good for classification while they beat tracking. An interpretation is that the voice, whosesp
do not score well in beat tracking. It may be that these timiral energy is maximally present between these frequencies
bre features work well in classification because they permimay be the instrument which is, on average, less representa-
the classifier to learn global spectral shapes (i.e. rougihin  tive of the metrical structure.
ment models) specific to beats of each music piece. On the We can also see in Table 1 that the best features depend to
other hand, the beat tracker derives discrete data (peak posome extent on music category. The union of the 4 best fea-
tions) from continuous features by peak-picking, and peaksures for each of the 10 music categories amounts to a set of 16



| 1% | 2nd | 3rd | 4th could be potentially improved by using some knowledge of
Whole data ClL | fa fio | fis | fir the_ agoustica! characteristics of the bea_lts of each mLmixep_i
Tr. || fire (45%) | fi71 | fi0 | fivo This is especially true for the case of timbre features which
_ Cl I fio fao | a6 | fun although they are shown to capture beat characteristies, ar
Acoustic Tr. || fire (35.9%) | fir1 | fou | fur relatively irrelevant in unsupervised beat tracking. Fete-
) Cl i frr | foo | Fros search could therefore focus @daptive beat tracking. A
Afro-American Tr. || fi70 (53%) | f f f starting point may be the design of interactive beat trasker
CI.. f172 fm f117 f120 where the user would have to provide some simple feedback
Balkan/Greek f19 (41.5%) f20 f18 f165 on how well the algorithm is doing or e.g. specify a few beats
al f41 : f94 f93 f42 manually. This feedback could be used by the algorithm to
Choral 7 f” (11.5%) f16 f129 f22 better define the concept of beat on each piece. Future work
: o f33 : f95 f59 f94 could also be dedicated to evaluate combinations of femture
Classical y f20 (35.3%) f21 f166 f15 instead of individual features [4] and extend the analysis t
s f17o : f55 f56 f47 different beat trackers (e.g. that do not discretise fesjur
Classical Solo =~ | 20 S I
Tr. || f170 (37.6%) | fs5 | fir2 | fima c ed
; Cl. || fi9 foo | fir | fis Acknowledgments
Electronic Tr. f171 (576%) f172 flg f19 g
Jazz/Blues Cl || fi7 fi9 | foo | fis5 This research was partly funded by the projects?32&l In-
Tr. || f41 (43.8%) | f170 | 172 | foa terfaces2Music. Thanks to Anssi Klapuri, Stephen Hainsiwor
Rock-Pop Cl || f20 fio9 | f1z | fis Giorgos Emmanouil, Matthew Davies and Juan Bello.
Tr. || f171 (62.3%) | fir2 | fi9 | figo
Cl. || fiog fi7 | fi25 | 126 6. REFERENCES
Samba Tr. f5g (536%) f59 f95 f94

[1] F. Gouyon and S. Dixon, “A review of automatic rhythm

. description systems,Computer Music Journal, vol. 29,
Table 1. First to fourth best feature for each method, clas- P y P

sification (Cl.) and beat tracking (Tr.), for all music cate-
gories. Percentages in parenthesis indicate beat trapking [2]
formance.

(3]
different features for classification and 19 different tzas
for beat tracking. This indicates that a beat tracker mag tak
advantage of a hypothetical knowledge of the music genre 9
the pieces it has to process. For instance, if the best tepaur
category is used instead of the globally best (complex spec-
tral difference), an improvement of 3.1 percentage pomits i
obtained (i.e. 48.1% instead of 45%). [5]

5. SUMMARY AND FUTURE WORK

no. 1, pp. 34-54, 2005.

M. Davies and M. Plumbley, “Beat tracking with a two
state model,” irfProc. IEEE ICASSP, 2005, vol. 3.

J. Laroche, “Efficient tempo and beat tracking in audio
recordings,” Journal of the Audio Engineering Society,
vol. 51, no. 4, pp. 226-233, 2003.

ﬁ Gouyon F.,A computational approach to rhythmdescrip-

tion, PhD Thesis, Pompeu Fabra University, Barcelona,
2005.

S. Dixon, E. Pampalk, and G. Widmer, “Classification of
dance music by periodicity patterns,” Rroc. Interna-
tional Conference on Music Information Retrieval, 2003.

[6] A. Klapuri, A. Eronen, and J. Astola, “Analysis of the

The main contribution of this paper is to bring forward a new
issue in automatic rhythm description of audio signals: the
guestion ofwhich acoustical features are the most adequat
for identifying music beats computationally. We evaluate
the worth of a large number of features in both a classificatio
task and a beat tracking system.

Individual features which are best for beat tracking ard8l
those which indicate the presence of onsets [7]. Energy fea-
tures are more relevantin low and high frequency bands. How-
ever, feature performance depends on music category. Dee[{g]
analyses of errors will determine the extent to which fesgur
fail on specific categories. The difference between classifi
tion and beat tracking performance shows that performance

meter of acoustic musical signalsiEEE Trans. Speech
and Audio Processing, vol. 14, no. 1, 2006.

] J. Bello, Towardsthe Automated Analysis of Smple Poly-

phonic Music: A Knowledge-based Approach, PhD The-
sis, Queen Mary University of London, London, 2003.

S. Dixon, “Automatic extraction of tempo and beat from
expressive performances,Journal of New Music Re-
search, vol. 30, no. 1, pp. 39-58, 2001.

S. Dixon, “Onset detection revisited,” iRroceedings
of the 9th International Conference on Digital Audio Ef-
fects, 2006.



