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ABSTRACT

In music information retrieval (MIR), dealing with differ-
ent types of noise is important and the MIR models are
frequently used in noisy environments such as live per-
formances. Recently, i-vector features have shown great
promise for some major tasks in MIR, such as music sim-
ilarity and artist recognition. In this paper, we introduce
a novel noise-robust music artist recognition system using
i-vector features. Our method uses a short sample of noise
to learn the parameters of noise, then using a Maximum
A Postriori (MAP) estimation it estimates clean i-vectors
given noisy i-vectors. We examine the performance of
multiple systems confronted with different kinds of addi-
tive noise in a clean training - noisy testing scenario. Using
open-source tools, we have synthesized 12 different noisy
versions from a standard 20-class music artist recognition
dataset encountered with 4 different kinds of additive noise
with 3 different Signal-to-Noise-Ratio (SNR). Using these
datasets, we carried out music artist recognition experi-
ments comparing the proposed method with the state-of-
the-art. The results suggest that the proposed method out-
performs the state-of-the-art.

1. INTRODUCTION

In MIR, the task of music artist recognition ' is to recog-
nize an artist, from a part of a song. In real life, MIR sys-
tems have to cope with different kinds of noise; example
situations include music played in a public area such as
a pub or in a live performance. MIR systems are usually
trained with the high quality data from studio recordings
or noise-free audios, yet they may be used in noisy envi-
ronments.

In this paper, we are targeting a use-case, when an artist
recognition mobile app is used in a noisy environment,
while the artist recognition models are trained on clean
data and are integrated inside the app. In such a use-case,

! ' We use the term music artist or artist to refer to the singer or the band
of a song.
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the models can not be trained or adapted on the mobile
phone, due to the limitation of computation. But using the
app, a short example of the noise can be prepared to im-
prove the performance of the system.

[-vector extraction is an unsupervised high-level feature
extraction technique that extracts excerpt-level features us-
ing frame-level features of an audio excerpt. I-vectors were
proposed for the first time in the field of speaker verifica-
tion [4], and then they were frequently used in other areas
such as emotion [29], language [5], and accent recogni-
tion [1] and audio scene detection [9]. Recently, they were
imported into the MIR domain, for singing language iden-
tification [17], music artist recognition [7] and music sim-
ilarity [6]. I-vector features provide a fixed-length low-
dimensional representation for songs which can capture
specific variabilities from acoustic features using Factor
Analysis (FA). In [7], i-vector systems used with noise-
free data, and clean mp3 audio files were used in the artist
recognition experiments.

I-vector based systems consist of 4 main modules: 1)
frame-level feature extraction such as Mel-Frequency Cep-
strum Coefficients (MFCC), 2) i-vector extraction, 3) inter-
class compensation and finally, 4) i-vector scoring. Within-
Class Covariance Normalization (WCCN) and Linear Dis-
criminant Analysis (LDA) are examples of methods used
in the inter-class compensation step. Cosine similarity and
Probabilistic Linear Discriminant Analysis (PLDA) scor-
ing are examples of methods used in the scoring step.

In this paper, we propose a noise-robust artist recog-
nition system using i-vector features that can be adapted
to different kinds of additive noise. We add an estima-
tion step after i-vector extraction, which estimates clean
i-vectors given noisy i-vectors in a clean training - noisy
testing scenario. Our method is superior because it can be
used to adapt i-vector based systems to different kinds of
noise, without training the models with noisy data. This is
done by learning the parameters of noise for different noisy
environments given a short example of additive noise and
estimating clean i-vectors that perform well with the mod-
els trained on clean data.

2. RELATED WORK

To make a MIR system robust to noise, a solution would
be to include noise information inside the MIR models
by adding noisy samples in training data. For example,
in [18] a method called multi-style training is proposed for
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speaker verification in noisy environments. This method
uses noisy data provided in the training set to extract
noisy training i-vectors, with the i-vector extraction models
trained on clean data. But it trains the inter-class compen-
sation and scoring models with noisy training i-vectors.

Because MIR models are usually expensive to train, if
no noisy data is available in training, the only option would
be to use the models trained on clean data for testing the
noisy data and try to reduce the effect of noise on the MIR
models.

In recent years, research focused on studying the vul-
nerability of i-vectors to noise and providing methods for
noise compensation. The de-noising techniques used with
i-vectors can be categorized according to the level they
work on (audio, frame-level features, i-vector extraction,
or scoring) [22].

In [8, 25] spectral and wavelet based enhancement ap-
proaches on the signal level were examined with i-vectors.
In [14], spectrum estimators were used for frame-level
noise compensation, while in [19-21], multiple approaches
were tested using vector Taylor series (VTS) in the cepstral
domain for noise compensation on the feature level. Both
signal-level and feature-level noise compensation tech-
niques have shown inconsistencies because of their depen-
dency on the type and level of noise. Also, they are mostly
designed for speech enhancement and not for music. And
in [18,24] a method was proposed that improves the scor-
ing but it uses noisy audios in model training.

In [16], a novel method called “i-MAP” is proposed for
the purpose of speaker verification in noisy environments
that uses an extra estimation step between i-vector extrac-
tion and inter-class compensation steps. In the estimation
step, it estimates clean i-vectors given noisy i-vectors and
further uses these estimations with inter-class compensa-
tion and scoring models that are trained on clean data. This
method benefits from the Gaussian assumption of i-vectors
and proposes a MAP estimation of a clean i-vector given a
noisy i-vector. The i-MAP method can be used with differ-
ent types and levels of additive noise with the models that
are trained on clean data.

3. REVIEW OF I-VECTOR SYSTEMS

An i-vector refers to vectors in a low-dimensional space
called I-vector Space. The i-vector space models variabil-
ities encountered with both the artist and song [6] where,
the song variability defines as the variability exhibited by
a given artist from one song to another.

The i-vector space is created using a matrix T known
as i-vector space matrix. This matrix is obtained by factor
analysis, via a procedure described in details in [4]. In the
resulting space, a given song is represented by an i-vector
which indicates the directions that best separate different
artists. This representation benefits from its low dimen-
sionality and Gaussian distribution which enables us to use
the properties of Gaussians in the i-vector space.

Conceptually, a Gaussian mixture model (GMM) mean
supervector M adapted to a song from artist o can be de-
composed as follows:

M=m+T.y @))]

where m is the GMM mean supervector and T'.y is an
offset. The low-dimensional subspace vector y is a latent
variable with the standard normal prior and the i-vector w
is a MAP estimate of y. The UBM is a GMM that is trained
unsupervised on acoustic features of sufficient amount of
songs. Also, M is assumed to be normally distributed with
mean vector m.

The obtained i-vector is an artist and song dependent
vector. The low-rank rectangular matrix T (i-vector space
matrix) is used to extract i-vectors from statistical super-
vectors of songs which are computed using UBM.

Using the UBM, we calculate statistical supervectors
for a specific song s. These statistical supervectors are
known as 0*" and 1% order statistics (N, and F,) of song
s

L
( 0" order statistics) N°, = Z Ye(c) (2)
=1

L
( 1% order statistics) F°, = Z'yt(c)Y; 3)
=1

where 7:(c) is the posterior probability of Gaussian
component ¢ of UBM for frame ¢ and Y; is the MFCC fea-
ture vector at frame ¢.

Using the statistical supervectors of songs in training
set, we learn the T matrix via an Expectation Maximiza-
tion (EM) algorithm: E-step, computes the probability of
P(w|X) where X is the given song and w is its i-vector.
M-step, optimizes T by updating the following equation:

w=I+TZ'NG)T) - TE1F(s) @)

where N (s) and F'(s) are diagonal matrices with N*..T
and F'*..T on diameter and N, and F; are 0" and 1% order
statistical supervectors of song s. 3 is the diagonal covari-
ance matrix, estimated during factor analysis training. The
actual computation of an i-vector w for a given song s can
be done using (4) after training T. More information about
the training procedure of T can be found in [4, 15].

4. MAP ESTIMATION OF A CLEAN I-VECTOR

In cases where only clean songs are available for training
but at testing the observations are noisy, the best way to im-
prove the performance of clean models encountered with
noisy data would be to have an estimation of how clean
data looks like. In an i-vector based approach, this esti-
mation is done in the i-vector space by estimating clean
i-vectors given noisy i-vectors.

This section describes a solution for music artist recog-
nition in noisy environments which uses a state-of-the-
art i-vector based system with an extra estimation step.
Our method benefits from a MAP estimation of clean i-
vectors given noisy i-vectors that was proposed in i-MAP
method [16] for speaker verification applications. The es-
timation step is applied after i-vector extraction, as it is
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Figure 1. Block diagram of the estimation step in the proposed artist recognition method. The blocks with an asterisk (x)
indicate the training and testing audio data as the starting point of the diagram.

shown on the top of Figure 1. The resulting estimated
i-vectors are used for inter-class compensation and scor-
ing. The estimation step in i-MAP consists of: a) detecting
noise using a Voice Activity Detector (VAD), b) synthesiz-
ing polluted data, c) estimating the mean and covariance
of noise in i-vector space, and finally d) estimating clean i-
vectors given noisy i-vectors. To estimate a clean i-vector
given a noisy i-vector, i-MAP uses an estimation of the
mean and covariance of noise in i-vector space by using
noise audio samples detected in the noisy testing audios.

Based on i-MAP, the estimation step used in our pro-
posed artist recognition method is described as follows.

Considering two sets of clean and noisy i-vectors, we
define the following random variables:

e X: corresponding to the clean i-vectors
e Y: corresponding to the noisy i-vectors

And as i-vectors are normally distributed, we define:
X ~N(px,Xx) )

Y~ N(py, Ey) (6)

We denote the probability density functions (PDF) of
X and Y by f(X) and f(Y") with the parameters of (ux,
Y x) and (uy, Xy) as mean and covariance of clean and
noisy i-vectors, respectively.

We now consider f(X|Yp) as the conditional PDF of
clean i-vectors given a noisy i-vector Y. By Bayes’ rule,

(Yo X) f(X)
f(Yo)

Using a MAP estimator, a clean i-vector )/(?) can be es-
timated by maximizing f(X|Yp):

f(X[Yo) = (7

Xo = argmax{f(X|¥)} )
using (7) and taking In we solve:

D sX) k=0 ©

The solution of (9) would provide an estimation of clean
i-vector X from noisy i-vector Yj.

4.1 Clean i-vector estimation

In i-MAP [2] it is assumed that when the noise is additive
in the speech signal, the noise will be also additive in i-
vector space. We keep this assumption and thus, the noise
model defines as:

Y=X+N (10)

where N is a random variable corresponds to noise in
i-vector space:

N~ N(un,2N) an

where (uy, ) are parameters of noise in i-vector
space.

Also, the Gaussian conditional PDF f(Yy|X) is defined
as:

f(YO‘X) = %6_%(Y"_X—”N)tZNfl(Yn—X—MN)
(2m)2|EN]2
(12)
and Gaussian PDF f(X) is:
(X = %6_%(X_NXVEX_1(X—#X) (13)
(2m) 2 [Ex]?

where (11x, X x) are parameters of clean i-vectors, and
(N, X ) are parameters of noise in i-vector space. Since
f(Yp|X) and f(X) are Gaussian, the resulting estimate of
f(X]Yp) is also a valid Gaussian PDF as discussed in [22].

Now, by replacing f(Yp|X) and f(X) by (12) and (13)
in (9) and solving it we will have:

Xo = (Sv T HEE) TSR (Yo — ) +Zx ) (14)

X is the MAP estimation of a clean i-vector given a
noisy i-vector Yj.

4.2 Parameters of Noise in I-vector Space

To use the MAP estimation provided in (14), we need an
estimation of the parameters of clean i-vectors ux, Xx
(which can be estimated from clean training i-vectors 2)
and parameters of noise in i-vector space (i, 2N -

2 We use the term clean training audios (e.g. clean training songs)
to address the audio data in training set that does not contain any noise.
Noisy training audios (e.g. noisy testing songs) indicates audio data in
testing set confronted with noise. The word polluted training audios (e.g.
polluted training songs) indicates the data that are synthesized from clean
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The parameters of clean training i-vectors (ux, Xx)
can be learned by computing the mean and covariance ma-
trix of clean training i-vectors. To learn the parameters
of noise in i-vector space, we follow a similar procedure
suggested in i-MAP (step numbers can be found in Fig-
ure 1): a) we extract clean training i-vectors from clean
training songs and noisy testing i-vectors from noisy test-
ing songs (steps 1 and 2). b) we detect noise audio samples
in noisy testing songs (step 3). c¢) we use the noise audio
samples detected in step 3 to synthesize polluted training
songs from clean training songs (step 4). d) from polluted
training songs, we extract a set of i-vectors known as pol-
luted training i-vectors (step 5). e) using clean training
i-vectors and polluted training i-vectors, we estimate the
parameters of noise in i-vector space (step 6). f) now given
noisy testing i-vectors, by having the parameters of noise
in i-vector space, we estimate clean testing i-vectors via
MAP estimation (step 7). The clean testing i-vectors es-
timated in step 7 are used for testing experiments in the
proposed method.

In step 3, we use a noise detector which has the fol-
lowing steps: We first apply a windowing of 32 ms on the
song’s audio signal. Then for each window, we calculate
the energy of the signal. Using a fixed threshold in energy
of each window, we look at the beginning and ending area
of each song to detect the areas with lower energy in noisy
testing songs. We keep these areas as a set of noise audio
samples. These samples are low-activity and assumed to
be the examples of the additive noise that we are dealing
with. This step provides the short sample of noise (a couple
of seconds) in the use-case example described in Section 1.

Further, for each noise area detected in a noisy testing
song, we estimate the SNR of the song and the noise sam-
ple. We select a limited number of noise areas with longer
durations 3. By adding the selected noise areas (noise
audio samples) to clean training songs with the estimated
SNR, we synthesize another audio set from our clean train-
ing songs which we know as polluted training songs.

Estimating the parameters of noise in step 6 is as fol-
lows: After extracting i-vectors from polluted training
songs, we compute noise in i-vector space for each song
by subtracting a clean training i-vector X; from polluted
training i-vector of that specific song Y; as follows:

N =Y, - X; (15)

where Y”; is the polluted training i-vector extracted
from polluted training song S?; and X is the clean training
i-vector extracted from clean training song S¢; and N/ is
the noise related to Y”; in i-vector space. Now the param-
eters of noise in i-vector space (1, 2 v) can be calculated
by:

training audios in training set, using audio samples of noise detected in
noisy testing set. Noisy testing i-vectors are i-vectors extracted from
noisy audios in testing set, polluted training i-vectors are i-vectors ex-
tracted from polluted training audios, and clean training i-vectors are i-
vectors extracted from clean training audios. Clean testing i-vectors are
estimated via MAP from noisy testing i-vectors.

3 These noise areas are usually very short in time (a couple of seconds).

un = mean(N") (16)
Yy = cov(N') (17)

where
N ={N/]i=1,..,n} (18)

and n is the number of training songs.

To use the proposed method in an adaptive way, we only
need new audio samples of noise (which in our use-case we
assumed the mobile app can provide, also described a fea-
sible solution in step 3 about how to prepare them) to create
a new set of polluted i-vectors to update the parameters of
noise in the i-vector space. When the noise is changed, our
parameters (1, 2 ) can also be updated to that noise.

5. EXPERIMENTS
5.1 I-vector Extractor

Our i-vector extractor consists of a UBM with 1024 Gaus-
sian components. This UBM is trained on all the MFCCs
of the clean training songs in each fold. The 0'" and 1%
order statistics (also known as statistical supervectors) are
calculated for each song from MFCC features of the song
using the UBM. The i-vector space matrix (T) is learned
from the statistical supervectors, via an Expectation Max-
imization (EM) algorithm described in [4, 15] where T is
initialized from random and i-vector space dimensionality
is set to 400. Using T matrix, 400 dimensional i-vectors
are extracted for both training and testing set. All the i-
vector extraction procedure is done unsupervised. We use
20-dimensional MFCCs in all of our i-vector based sys-
tems, extracted with RASTAMAT [10] toolbox with the
same configuration as used in [7, 11]. The i-vector space
matrix (T) is trained using MSR identity toolbox [26].

5.2 Inter-class Compensation and Scoring

As we described in Section 3, i-vectors contain both artist
and song variability. To reduce the song variability in i-
vector space, multiple inter-class compensation methods
such as length normalization, LDA and WCCN are found
effective [4, 12]. Our i-vector inter-class compensation
consists of 3 modules: 1) length-normalization, 2) LDA
and 3) WCCN. For the scoring, we use a simple cosine
scoring approach as detailed in [3].

Length of i-vectors causes negative effects in i-vector
space [3, 12]. To discard these effects, we normalize the
length of i-vectors by dividing each i-vector by its length.
Thus, both training and testing i-vectors are first length
normalized [12]. Using the resulting clean training i-
vectors, a LDA projection matrix V is trained and both
training and testing i-vectors are projected using V. Then
the resulting clean training i-vectors are length normalized
again and then used to train a WCCN projection matrix
B. The WCCN matrix is used to project both training
and testing i-vectors resulted from the LDA step. The fi-
nal WCCN-projected i-vectors are used for cosine scoring.
For each testing i-vector, a similarity score is calculated
for each class separately. These scores are calculated given
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the model i-vectors that are computed by averaging LDA-
WCCN projected clean training i-vectors for each class.
And finally, the class with the maximum score is chosen as
the predicted label for the testing i-vector.

5.3 Within-Class Covariance Normalization (WCCN)

Within-Class Covariance Normalization (WCCN) pro-
vides an effective compensation that can be used with co-
sine scoring. After i-vectors are length normalized and
projected by LDA, they are encountered with WCCN pro-
jection matrix. WCCN scales the i-vector space in the
opposite direction of its inter-class covariance matrix, so
that directions of intra-artist variability are improved for
i-vector scoring. The within-class covariance is estimated
using clean training i-vectors as follows:

« Ng

1 1 _ _
W= EZ(@U% —w%)(w —we)t  (19)
a=1 i=1
where w® = i Sore, w?; is the mean of the LDA pro-

jected i-vectors for each artist «. A is the total number
of artists, and n, is the number of songs of each artist «
in training set. We use the inverse of the W matrix to
normalize the direction of the projected i-vectors. WCCN
projection matrix B can be estimated such that:

BB =wW! (20)

5.4 Cosine Scoring

In the i-vector space, a simple cosine scoring has been suc-
cessfully used to compare two i-vectors [3]. Given a length
normalized, LDA and WCCN projected i-vector w; from
an unknown artist, cosine score for artist «v is defined as:

gR— t , .
score(Wq, w;) = (Wa )" aws

=T 2D
[@all - fJwsll

where W, represents the mean i-vector of artist «, cal-
culated by averaging all the length normalized, LDA and
WCCN projected clean training i-vectors extracted from
all the songs of artist . score(wg, w;) represents the co-
sine score of testing i-vector w; for artist . To predict the
artist label for i-vector w;, the artist with the highest cosine
score is chosen as the label for w;.

5.5 Dataset

In our experiments, we used Artist20 dataset [11], a freely
available 20-class artist recognition corpus which consists
of 1413 mp3 songs from 20 different artists mostly in pop
and rock genres. The dataset is composed of six albums
from each of 20 artists. A 6-fold cross validation is also
provided with the dataset which is used in all of our exper-
iments. In each fold, 5 out of 6 albums from all the artists
were used for training and the rest were used for testing.
For our experiments with noisy data, we synthesized 12
(4 x 3) different noisy sets from Artist20 dataset with 4
different kinds of additive noise (festival, humming, pink,
pub environment) of 3 different SNRs (5db, 10 db and 20

db), by applying the noise to all the songs. For apply-
ing the noise, the open-source Audio Degradation Toolbox
(ADT) [23] is used.

For all the experiments (except IVEC-CLN and EBLF-
CLN), the models are trained on training folds of clean
dataset and tested on the testing fold of noisy dataset.
For IVEC-CLN and EBLF-CLN experiments, models are
trained on training folds of clean dataset and tested on test-
ing fold of clean dataset.

We found noise samples of festival noise in the
FreeSound repository *. The festival noise sample is an
audio recording from a live performance during a festi-
val with a lot of cheering sounds and human speaking in
loudspeaker. This noise example is available upon request.
For the other additive noises (pub environment, pink-noise,
humming) the noise samples provided in ADT are used.
The pub environment noise sample, recorded in a crowded
pub, and the humming noise is recorded from a damaged
speaker.

5.6 Evaluation

To evaluate the performance of different methods dealing
with different kinds of noise, the averaged Fmeasure over
all the classes is used 3. The reported results in Table 1
show the mean of the averaged Fmeasures over 6-folds of
our cross-validation, + the standard deviation (std) of the
averaged Fmeasures over folds. To examine the statistical
significance, a t-test is applied for each sets of experiments
separately, comparing the Fmeasures of 6 folds between
the proposed method and each of the baselines (for exam-
ple: festival noise with 3 db SNR, comparing IVEC-NSY
and EBLF-NSY). Each set of experiments for a specific
kind of noise with a certain SNR is done independently.

5.7 Baseline Methods

We compare the performance of our proposed method
with two baselines. The first baseline is a state-of-the-art
standard i-vector based artist recognition system known
as IVEC-NSY. The reason we chose this baseline is to
show the improvements by adding the estimation step to
this baseline. We extract 400 dimensional i-vectors us-
ing 20-dimensional MFCCs and a 1024 components GMM
as UBM. Then we apply length normalization, LDA and
WCCN and further apply the cosine scoring to predict the
labels.

The second baseline (EBLF-NSY) uses an extended ver-
sion of Block-Level features [28] (EBLF) used in [27].
EBLF are the winner of multiple tasks in MIREX chal-
lenge © such as music similarity and genre classification
and provide a set of 8 song-level descriptors which repre-
sent different characteristics for a song. These 8 descrip-
tors contain a good variety of features such as rhythm and

4 http://freesond.org

3 Since the number of songs from each artist are more or less the same
(6 albums), the averaged Fmeasure seems to be a good measurement for
our multi-class artist recognition task.

¢ Annual Music Information Retrieval eXchange (MIREX). More in-
formation is available at: http://www.music-ir.org
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timbre in a song. Since these features are frequently used
for multiple purposes in MIR, we chose them as our second
baseline to show how they perform in a noisy environment.
For classification, a WEKA [13] implementation of SMO
support vector machine is used as described in [27]. The
SVM model in this baseline is trained on features of clean
training songs and tested on features of noisy testing songs.

To demonstrate the maximum power of our baselines
on clean data, we also provided the performance of these
methods, dealing with only clean data. In these specific ex-
periments, we train and test the baselines using clean data
and the results can be found in the description of Table 1
as IVEC-CLN and EBLF-CLN.

The performance of EBLF-CLN is comparable with
the baselines in [7] which compares different approaches
for music artist recognition and therefore is a competitive
method to be used as a baseline. Also, the performance of
IVEC-CLN is comparable with the the best results achieved
using a state-of-the-art i-vector based artist recognition
system reported in [7] (which are known to be the best
artist recognition results on Artist20 dataset published so
far). Both IVEC-CLN and [7] use similar i-vector extrac-
tors. The difference between IVEC-CLN and [7] is in the
inter-class compensation and scoring. We used LDA fol-
lowed by WCCN as inter-class compensation and a simple
cosine scoring, while in [7] only LDA is used as inter-class
compensation and the best performance achieved with a
Discriminant Analysis classifier.

5.8 The Proposed Method

Our proposed method is shown in Table 1 as IVEC-MAP.
All the i-vector extraction (UBM,T), inter-class compen-
sation (LDA,WCCN) and scoring models are only trained
with clean training data and the only extra information
used in the proposed method compared to the baselines,
is the mean and covariance of noise in i-vector space. The
number of at least 500 i-vectors are needed to estimate the
parameters of noise as reported in [16] in a speaker verifi-
cation scenario. We used all the polluted training i-vectors
for parameter estimation, since our training set is not very
big (~ 1100 songs).

5.9 Results and Discussion

By looking at Table 1 it can be seen that the proposed
method outperformed the baselines in all 12 cases of 4
different additive noises with 3 different SNRs. Having
a closer look at the results suggests the IVEC-NSY base-
line performed much better and more robust than EBLF-
NSY.By looking at the results dealing with noises of dif-
ferent SNR levels, it can be seen that as expected the lower
the SNR (more noise), the lower the performance of our
baselines are. Unlike the baselines, the change in SNR
does not affect the performance of our proposed method
significantly in festival and humming noises. Considering
the standard deviation of the averaged Fmeasures for all the
6-folds, results suggest that the proposed method is always
higher than 1 std from the performance of EBLF-NSY in
all the noises with all different SNRs. When the noise

Averaged Fmeasure (%)

snr nois. IVEC-NSY EBLF-NSY  IVEC-MAP
fest.  68.2248.85 19.01+23.31 81.08+7.68
£ hum. 7528+8.14  52145.15 82.56+6.82
v pink  60.444+10.27 6.64+11.58  74.88+6.67
pub  44.1148.13 14.01£22.27 71.12+8.09
fest.  74.27£897  24.32427.39 81.91+7.55
g hum. 77.15£8.97  25.714£26.5  82.64+7.24
S pink  68.58+8.22 11.89+16.38  78.05+7.2
pub  66.15+9.04  22.7£25091 79.87+£7.31
fest.  77.284+7.6 36.12£26.76  81.89+7.47
5 hum. 7732+£743 36.894253  82.86+7.1
& pink 74.57+7.63 13.93£21.31 80.54+7.53
pub  76.74+7.8 26.17£29.05 82.63£7.2

Table 1. Comparison of artist recognition performance of
different methods on Artist20 dataset dealing with differ-
ent kinds and levels of additive noise. The numbers indi-
cate the averaged Fmeasure (as described in Section 5.6)
with the standard deviation over all the folds. The per-
formance of the baselines IVEC-CLN and EBLF-CLN on
clean data are 83.73+7.58 and 72.2617.42 respectively.

is in its highest level (SNR=5 db) the proposed method’s
Fmeasure is higher than IVEC-NSY by 1 std. On average,
the proposed method achieved the relative averaged Fmea-
sure of 28.41, 12.99 and 7.21 percentage points higher than
IVEC-NSY encountering additive noises with 5, 10 and 20
db SNR, respectively. Applying a t-test hypothesis test-
ing on the averaged Fmeasures for different folds to ex-
amine the performance between the proposed method and
the baselines (IVEC-NSY and EBLF-NSY), shows that the
test rejects the null hypothesis at 5% significance level for
all the experiments and our results are statistically signifi-
cant.

6. CONCLUSION

In this paper, we proposed a noise-robust artist recogni-
tion system using i-vector features and a MAP estima-
tion of clean i-vectors given noisy i-vectors. Our method
outperformed the state-of-the-art standard i-vector system
and EBLF, also showed a stable performance dealing with
multiple kinds of additive noise with different SNRs. We
showed that by adding an estimation step to a standard i-
vector based artist recognition system, the performance in
noisy environments can be significantly improved.
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