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ABSTRACT

Recently, i-vector features have entered the field of Music Infor-
mation Retrieval (MIR), exhibiting highly promising performance
in important tasks such as music artist recognition or music simi-
larity estimation. The i-vector modelling approach relies on a com-
plex processing chain that limits by the use of engineered features
such as MFCCs.

The goal of the present paper is to make an important step to-
wards a trulyend-to-endmodelling system inspired by the i-vector
pipeline, to exploit the power of Deep Neural Networks1 (DNNs)
to learn optimized feature spaces and transformations. Several
authors have already tried to combine the power of DNNs with
i-vector features, where DNNs were used for feature extraction,
scoring or classification. In this paper, we try to use neural net-
works for the important step of i-vector post-processing and clas-
sification for the task of music artist recognition.

Specifically, we propose a novel neural network for i-vector
features with a cosine-distance loss function, optimized with
stochastic gradient decent (SGD). We first show that current net-
works do not perform well with unprocessed i-vector features,
and that post-processing methods such as Within-Class Covari-
ance Normalization (WCCN) and Linear Discriminant Analysis
(LDA) are crucially important to improve the i-vector representa-
tion. We further demonstrate that these linear projections (WCCN
and LDA) can not be learned using general objective functions
usually used in neural networks.

We examine our network on a 50-class music artist recognition
dataset using i-vectors extracted from frame-level timbre features.
Our experiments suggest that using our network with fully unpro-
cessed i-vectors, we can achieve the performance of the i-vector
pipeline which uses i-vector post processing methods such as LDA
and WCCN.

1. INTRODUCTION

In the area of MIR, music artist modelling can have different ap-
plications including in recommender systems, playlist generation
and music similarity estimation. Each artist can be recognized by a
combination of multiple factors such as musical instruments, genre
and voice of the singer(s).

I-vector features first were proposed in the field of speaker ver-
ification [1] and after their revolutionary success, they were used

1The term Deep Neural Networks in this paper refers toMulti-
Layer Artificial Neural Networks which use recent techniques from
Deep Learning such asbatch-normalization, drop-out and stochastic
gradient descent.

in other areas such as emotion recognition [2], language recog-
nition [3] and audio scene classification [4]. Recently, they were
imported into the MIR domain, for singing language identifica-
tion [5], music artist recognition [6] and music similarity [7].

I-vector features have shown to be a promising song-level rep-
resentation for artists. These features project songs into a fixed-
length and low-dimensional space, which is built from frame-level
features such as Mel-Frequency Cepstrum Coefficients (MFCCs)
using Factor Analysis (FA).

First by using a Universal Background Model (UBM) trained
on a sufficient number of songs, similarities among all the songs
of different artists are captured, then via FA these similarities are
discarded and songs are projected into a new space calledTotal
Variability Space (TVS) which contains the remaining factors
that are in a stronger correlation with artist variability. Further, an
estimation of these factors in each song is calculated which con-
tains rich information about the artist. These estimated factors are
called identity vectors or in short,i-vectors. The use of Neural
Networks (NNs) in different areas is increasing every day and re-
cent advances in this area, enabled researchers to tackle problems
which were previously solved by a variety of different approaches
in machine learning, now by only using NNs. The outcome is the
appearance of different NN layers and architectures specialized for
different tasks.

I-vector based systems usually follow a specific pipeline
which contains a chain of different processing steps with specific
goals. Multiple efforts are done by different researchers to come
up with a solution that replaces each of those blocks with NNs.
The reason is that once all of these blocks are replaced with a NN,
they all can be connected through a deep network and optimized
together using the back-propagation algorithm.

The frame-level feature extraction – a part of the i-vector ex-
traction procedure – and scoring and classification of i-vectors are
examples of the steps that have been replaced with NNs. Yet, a so-
lution for post-processing the raw i-vectors2 using neural networks
is not provided in classification tasks. We seek for a NN-based so-
lution to post-process and classify i-vectors without any help from
the i-vector pipeline. We hope that our efforts makes us one step
closer to anend-to-endmusic artist recognition system inspired by
the i-vector pipeline, using neural networks.

In this paper, we extract i-vectors from frame-level timbre fea-
tures and use them as input to NNs. By defining a cosine-distance
loss function, we lead the network to learn a cosine metric which
works the best with i-vector features. Our results suggest that us-

2In this paper, i-vectors that are not encountered with linear projections
such as LDA and WCCN are calledraw i-vectors. In contrast, i-vectors that
are projected with linear projections such as LDA and WCCN arecalled
processed i-vectors.
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ing our network, we can achieve the performance of the i-vector
pipeline which is the state-of-the-art in music artist recognition.

The remainder of this paper is organized as follows. In Sec-
tion 2, the related work is provided. In Section 3, the i-vector fea-
tures are described. In Section 4, we explain our proposed neural
network. In Section 5 the details of the experiments are explained
and the results are reported. And finally, Section 6 concludes the
paper.

2. RELATED WORK

For the task of Music Artist Recognition (MAR) in MIR, multi-
ple approaches have been followed. Frame-level features [8], en-
semble [9] and coding approaches [10] are some of the most used
methods.

NNs are also known to perform well in MAR. In [11, 12, 13],
Deep Belief Networks (DBNs) are used MAR using spectrograms
and timbral features.

I-vector features have proven to be a promising song-level fea-
ture for MAR. In [6], i-vector features extracted from MFCCs and
spectral features are used for MAR. Also, in [14] i-vectors have
shown a significant performance for MAR in noisy environments.

Even though i-vector features are not used with DNNs for
artist recognition, they are combined with deep learning tech-
niques in many different ways. In [15, 16] speech recognition
DNNs are used to produce statistical vectors needed for i-vector
extraction. In [17], a DNN is used to extract a low-dimensional
representation similar to i-vectors. Also, to extract bottleneck
features used for i-vector extraction, DNNs are utilized in [18].
And in [19], DNNs are employed to manipulate post-processed
i-vectors for speaker recognition.

In [20] DBNs are used with raw3 i-vector features to model
discriminatively the target and impostor i-vectors in a speaker ver-
ification scenario and in [21], DBNs and DNNs are combined to-
gether for single and multi-session speaker recognition.

The methods mentioned above that use raw i-vectors with
DNNs, pursue adaptation purposes or have used DBNs which are
trained in an unsupervised manner. Others, use the processed i-
vectors as an input.

3. I-VECTOR FEATURES

3.1. Theoretical background

An i-vector refers to vectors in a low-dimensional space called To-
tal Variability Space (TVS). The TVS models variabilities encoun-
tered with both the artist and song [7] where, the song variability
defines as the variability exhibited by a given artist from one song
to another.

TVS is created using a matrixT known asTVS matrix. This
matrix is obtained by applying Factor Analysis (FA) on the adapted
means of a Gaussian Mixture Model (GMM) known as Universal
Background Model (UBM). This UBM is trained on the acoustic
features of a sufficient amount of data. The means of UBM are
then adapted to each song and then are used for the FA procedure
explained in [1].

In the TVS, a given song is represented by ani-vector which
indicates the directions that best separate different artists.

3I-vectors that are not encountered with post-processing methods such
as LDA or WCCN.

A GMM mean supervectorM adapted to a song from artistα
can be decomposed as follows:

M = m+Ty (1)

wherem is the GMM mean supervector andTy is an offset.y
is a latent variable with the standard normal prior. The i-vector is
defined as the MAP estimate ofyM is assumed to be normally dis-
tributed with mean vectorm. The obtained i-vector is an artist and
song dependent vector. The matrixT is used to extract i-vectors
from statistical supervectors (known asNs andFs) of songs which
are computed using UBM.

We calculate statistical supervectors for a specific songs using
UBM. These supervectors areNs andFs of songs:

Ns

c =

L∑

t=1

γt(c), Fs

c =

L∑

t=1

γt(c)Yt (2)

whereγt(c) is the posterior probability of Gaussian componentc

of UBM for framet andYt is the MFCC feature vector at framet.
After calculatingNs andFs, using the statistical supervectors

of songs in training set we learn theT matrix via an Expectation
Maximization (EM) algorithm as follows: E-step, computes the
probability of P (w|X) whereX is the given song andw is its
i-vector. M-step, optimizesT by updating the following equation:

w = (I+T
t
Σ

−1
N(s)T)−1

T
t
Σ

−1
F(s) (3)

whereN(s) andF(s) are diagonal matrices withNs

cI andFs

cI

on diameter. I is the identity matrix andΣ is the diagonal co-
variance matrix. The actual computation of an i-vectorw for a
given songs can be done using (3) after trainingT. The curious
reader is referred to [1, 22] for more information about the training
procedure ofT.

3.2. I-vector post-processing and scoring

As explained before, i-vectors contain both artist and song vari-
ability. The song variability can be reduced by applying post-
processing techniques such as LDA [23] and WCCN [24]. These
techniques project i-vectors into a space which minimizes the
song variability and maximizes the artist variability. In this sec-
tion, we describe three techniques (LDA, WCCN and Length Nor-
malization) that are frequently used in i-vector pipeline for post-
processing. Also we describe a scoring method for classifying the
i-vectors.

WCCN: provides a linear projection with an effective com-
pensation. WCCN scales the i-vector space in the opposite di-
rection of its inter-class covariance matrix, so that directions of
intra-artist variability are improved for i-vector scoring.

LDA : yields a linear projection that tries to find a orthogonal
basis with a better discrimination between different classes. LDA
projection maximizes the between-class and minimize the within-
class covariance of the data.

Length Normalization: Length (amplitude) of i-vectors are
in correlation with negative effects such as song variability. For
this reason, an iterative length-normalization for i-vectors is pro-
posed in [25] where suggest to divide each i-vector by its length
(norm). It is suggested to apply length-normalization before each
post processing, also before feeding to the classifier/scoring step.

Cosine Scoring (CS): In the TVS, a simple cosine scoring
has been successfully used to compare two i-vectors, as described
in [26]. To predict the artist label for an i-vector, the artist with

DAFX-62



Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

the highest cosine score is chosen as the label where the score is
defined as the cosine score of the given i-vector and class-averaged
i-vectors4.

3.3. I-vector pipeline

In Figure 1 (top), a diagram of an i-vector based system is shown.
As you can see, first the frame-level features are extracted and then
the i-vector models (such as UBM andT matrix) are trained and
then i-vectors are computed. Further, these raw i-vectors are en-
countered with post-processing methods. First LDA is applied and
the resulting i-vectors are projected using WCCN. Finally, LDA-
WCCN projected i-vectors are used for scoring via Cosine Scor-
ing.

4. THE PROPOSED NETWORK

In this section, we introduce our proposed NN for music artist
recognition using i-vector features. As we show in Figure 1 (bot-
tom), instead of using post-processing methods such as LDA and
WCCN, and scoring methods such as cosine-scoring, our network
is able to use raw i-vectors directly as an input.

Our experiments show that linear projections such as LDA
and WCCN play a significant role in the performance of i-vector
pipeline. Hence, we would like to replace such linear projections
with a NN. We use linear activation function (LIN) in our NN. The
reason to choose LIN is that other layer activation functions such
as rectify units discard all the negative values by replacing them
with zero Because i-vectors have a mean value close to zero, by
using a rectified activation function [27], the layer’s output activa-
tions that still have negative values, might be forced to throw away
the information related to negative values of i-vector features.

Instead of the common loss functions used with NNs such
as Mean Squared Error (MSE) and Categorical Cross-Entropy
(CCE), we introduce a novel Cosine-distance based loss function
for multi-class classification tasks using i-vector features. Our
Cosine-Distance Based Neural Network (CDB-Net) is described
in details in the following.

Architecture : Our CDB-Net consists of 4 layers with 1 hid-
den layer. The first hidden layer is a dense (fully connected)
layer with linear activation function. It is followed by a batch-
normalization layer [28] then a drop-out layer [29] and finally
a dense output layer with linear activation function. Using the
drop-out, prevents the network from over-fitting and let each fea-
ture to be learned, without relying on other dimensions. During
training a NN the parameters of a layer change, and consequently
the distribution of each layer’s outputs changes as well. Batch-
normalization layer normalizes each layer output for each training
mini-batch. This allows us to use higher learning rates and be less
careful about initialization. The aim of the first hidden layer is
to learn a linear projection that improves the i-vector representa-
tion. We expect that since the i-vector pipeline benefits from LDA
and WCCN linear projections, our CDB-Net also should be able
to learn a projection with similar characteristics. Our first hidden
layer has 400 hidden neurons (the same as the i-vectors dimension-
ality).

The output activations of this layer and one-hot encoding of
the correct class are used to calculate a cosine loss. In the output

4class-averaged i-vectors are defined as the average of i-vectors in each
class, in training set.

layer, we use the same number of hidden neurons as our classes to
produce a score for each class given an i-vector.

Cosine loss function: For the loss optimization, we use a
novel Cosine-distance based loss. This loss is the cosine distance
of the activations of the output layer with one-hot encoding of the
correct class. The calculation of our proposed loss is as follows.

For aC classes problem, a one-hot encoding of classi (i =
1, . . . , C) is one at the indexi and zero otherwise. The cosine loss
of the network for a batch size ofb is defined as follows:

losscos = 1−
1

b

b∑

n=1

cos(outn, ln) (4)

whereoutn is the output activation of the output layer andln is
the one-hot encoding for the correct class. Also,cos is a standard
cosine similarity [26]. Then maximum of the cosine loss is equal
to 1. Also, each one-hot encoding is orthogonal to the others. So
the labels have the maximum distance from each other. Hence,
minimizing the cosine loss of the output activations to the correct
one-hot encoding, will increase the discrimination power of the
network. The network tries to minimize this loss by using stochas-
tic gradient descent. Then it back-propagates the error through the
previous layers to update the weight of the layers.

This is not the first time that cosine-distance is used as loss
in a NN. In [30], a NN optimized with a similar cosine distance-
based loss function is used for the task of signature verification.
Although the cosine loss function in [30] is used to process both
imposter and target signature features. Some of the differences be-
tween our CDB-Net loss and loss used in [30] can be explained
as: 1) the loss definitions are different. The loss in [30] is de-
fined for a special NN called “Siamese” containing two identical
sub-networks with a special training procedure. This network is
designed to compare two signatures for signature verification. The
loss defined in our CDB-Net can be used in any multi-class clas-
sification task. 2) The Siamese network training tries to minimize
the cosine distance of two output activations from two different
signatures. CDB-Net minimizes the cosine distance of the output
activations of a given i-vector with its correct one-hot encoding
label in a discriminative manner.

Network distance metric: The proposed network is forced
to use the cosine distance metric in its optimization because of
two reasons: 1) the input raw i-vectors are length-normalized. So
the network can not distinguish between different classes using a
distance metric such as Euclidean distance that relies on the am-
plitude of the output activations. 2) The loss function is a cosine
distance between output layer activation and their respective one-
hot encoding class label. So the network’s objective function is
defined by a cosine metric.

5. EXPERIMENTS

5.1. Data

Similar to the data used in [12] for music artist recognition, we
used a subset of Million Song Dataset [31] (MSD) in the artist
recognition experiments. We follow a similar procedure as used
in [12]. We first removed the duplications from MSD by using the
official duplication list provided in MSD website which reduced
the number of songs from one million to around 900,000. Then
we selected all the artists with more than 100 songs. From these
artists, we selected top 50 artists with more songs and further se-
lected 100 random songs from each artist (in sum, 5,000 songs)
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Figure 1: The block-diagram of i-vector based artist recognition system. On the top, classic state-of-the-art i-vector pipeline. On the
bottom, the proposed artist recognition method using a deep network.IL: input layer. DL: dense layer.BN: batch-normalization layer.
DO: dropout layer.OL: output layer.

as our dataset for the experiments in this paper. 80% of the songs
are used for training and the rest are used for validation (10%) and
testing (10%). We trained our models on training set, optimized
using validation set and reported the results on the testing set.

The results reported in [12] (35.74% accuracy) can not be
compared with the performance of our network because of two
reasons:

1) in [12] both timbre and chroma features are used together.
and 2) the performance reported in [12] is in a bar level (which is
smaller than a song), but i-vectors are song-level features and our
performance is reported in the song level.

5.2. Features

Using the features available through The Echo Nest API5, we ex-
tracted i-vectors from Echo Nest Analyzer’s timbre feature. Each
Echo Nest Analyzer’s timbre feature consists of a vector that in-
cludes 12 unbounded values roughly centered around 0. Those val-
ues are high level abstractions of the spectral surface, ordered by
degree of importance such as the average loudness of the segment,
brightness, the flatness of a sound and attack [32]. As meta-data,
we used the artist ids provided in MSD in our artist recognition ex-
periments. To extract i-vectors, all the Echo Nest timbre features
for each song are used.

5.3. Setup

I-vector extraction: For i-vector extraction, a 1024 components
GMM is trained as UBM on Echo Nest timbre features. Then,
T matrix with 400 dimensions is learned using the statistics com-
puted from Echo Nest timbre features and UBM. The training set
is used to train UBM andT. Further i-vectors are extracted using
UBM andT for both training and testing sets. All the i-vectors are
length normalized.

The T matrix is trained using matlab MSR identity tool-
box [33].

CDB-Net: We used 400 neurons in our hidden layer and 50
neurons in the output layer with 50. The hidden layer is followed
by batch normalization and 50% droup-out.

We apply learning-rate schedule during training and decrease
the learning rate by its half after each 10 epochs. The initial learn-
ing rate is 1.0 the learning-rate starts to decrease at the100th epoch
out of 200 epochs used for training.

5http://the.echonest.com/

A stochastic gradient descent (SGD) with back-propagation
algorithm and a momentom of 0.9 is used with the batch size of
500 samples. The one-hot coding of the labels are computed to be
used in the cosine-loss calculation.

For all of our experiments with NNs, the open-source python
library Lasagne[34] is used. Our network is implemented in
Python usingTheano[35].

We used a PC running on Linux with a NVIDIA Titan X GPU
card, an Intel Core i7 CPU and 16 GB of RAM for our experi-
ments. All the NN experiments are optimized on GPU.

We use the averaged F-measure to compare the performance
of different methods. This measurement is calculated by averaging
the F-measures of all the classes in each experiment.

Baselines: Four baseline methods are used in this work. We
use the i-vector pipeline method and three NNs similar to our
CDB-Net as baselines. The difference between our CDB-Net and
other NN baselines is the loss function and the activation functions
of the hidden layer. Our first baseline is the Cosine Scoring (CS)
used in i-vector pipeline. CS first projects i-vectors using LDA and
then by WCCN. Further, it uses the cosine distance to calculate a
score for each given testing i-vector and class-averaged i-vectors
from training set. Finally, it classifies testing i-vectors by mini-
mizing the cosine score. Similar to the architecture of CDB-Net,
our second baseline (CCE-REC-Net) is a 4 layers feed-forward
network with 1 hidden layer of 400 neurons which uses recti-
fied activation function. The hidden layer is followed by batch-
normalization layer and a drop-out layer with 50% drop outs. At
the output layer, CCE-REC-Net uses a soft-max activation func-
tion. CCE-REC-Net is optimized using a CCE loss function.

Our third baseline (CCE-TAN-Net) is a a 4 layers feed-
forward network with 1 hidden layer of 400 neurons. CCE-TAN-
Net has exactly the same architecture as CCE-REC-Net, only uses
tanh activation function instead of rectified activation function.
Our fourth baseline (CCE-LIN-Net) is also a a 4 layers feed-
forward network with 1 hidden layer of 400 neurons. CCE-LIN-
Net has exactly the same architecture as CCE-REC-Net, only uses
linear activation function instead of rectified activation function.

Experiment design: We examine the performance of our
CDB-Net in three different experiments: 1) dealing with LDA-
WCCN projected i-vectors, 2) dealing with raw i-vectors and 3)
The effect of weight initialization in NNs.

In our first experiment, we compare the performance of
CDB-Net and our baselines on processed i-vectors. Since the i-
vector pipeline uses LDA and then WCCN projections for post-
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processing, we use the LDA, then WCCN projected i-vectors in
our first experiment. Our first experiment reveals how different
networks–as well as the i-vector pipeline–deal with processed i-
vectors. The results of this experiment are provided in Table 1

Our second experiment compares the CDB-Net with the base-
lines encountering raw i-vectors. This experiment is the core of
this paper and shows how our CDB-Net performs compared to all
the other baselines.

Finally, in our third experiment, we study the effect of weight
initialization in the hidden layer of the baseline NNs as well as our
CDB-Net. In [36] the importance of layer’s weight initialization
in feed-forward NNs is discussed in details. In the experiments
1 and 2, we initialize the weight of our hidden layer from a uniform
distribution as explained in [36]. In experiment 3, we would like
to compare this initialization with an initialization using the LDA-
WCCN projection matrix which is used in the i-vector pipeline for
i-vector post-processing.

Even though we are aware that initializing the hidden layer
with LDA-WCCN projection matrix is similar to use processed i-
vectors, we would like to provide proof that our CDB-Net is able
to find an optimum point that other NNs are unable to find using
SGD without a proper initialization. If we initialize the hidden
layer’s weight, or use processed i-vectors, other netowrks are able
to reach that optimum point.

Using a LDA-WCCN projection matrix, we initialize the hid-
den layer’s weight matrix in all of our baseline NNs as well as our
CDB-Net. Then we feed all the networks with raw i-vectors. The
LDA-WCCN projection matrix is computed by multiplying LDA
and WCCN projection matrices. In [26] a procedure is described
about how to combine LDA and WCCN projection matrix to be
used with i-vector features and cosine scoring in an efficient way.
We follow the same procedure to compute our LDA-WCCN pro-
jection matrix.

5.4. Results

The performance of NNs with LDA-WCCN projected i-vectors
can be found in Table 1. Also, the performance of the i-vector
pipeline can be found under (CS) name.

It can be seen that using LDA-WCCN projected i-vectors,
all the networks achieved similar performances to the i-vector
pipeline. Also, it can be observed that CCE-LIN-Net and CDB-
Net achieved better performances than CCE-REC-Net and CCE-
TAN-Net. It shows that rectified andtanh activation functions
were not useful, as expected.

As the main experiment of this paper, in Table 2 we com-
pare the CDB-Net with other baselines using raw i-vectors. As
can be seen, the performance of the i-vector pipeline is very poor
without LDA-WCCN projection step. This shows the importance
of the post-processing for i-vector features. Also, looking at the
other baseline NNs, it can be seen that all the other baseline net-
works also could not achieve a F-measure of more than 41.46%.
This show that similar to i-vector pipeline, post-processing is very
effective to process i-vector features using NNs optimized with
CCE loss function. The proposed CDB-Net could achieve the
performance of57.86% and outperformed all the baselines. The
good performance of CDB-Net reveals that even though no weight
initialization using LDA-WCCN projections were used, also i-
vectors were not processed with such linear projections, using
cosine loss function was very effective to optimize the network.
From the second experiment, we can observe that changing the

loss function from CCE to cosine, the NN’s behavior changes and
it can find much better optimum points which leads to achieving
much higher performances.

In our final complimentary experiment (exp. 3) we studied the
effect of weight initialization with LDA-WCCN projection matrix
in the hidden layer. In Table 3 it can be seen that as expected, by
initializing the weight of the hidden layer with the projection ma-
trices of LDA-WCCN, all the baseline methods and the proposed
method achieved similar performances to exp. 1 that processed i-
vectors were used.

By looking at 3 baselines used in experiment 3, it can be seen
that the networks which previously did not perform well with raw
i-vectors, now can perform much better if the hidden layer’s weight
matrix initializes with the LDA-WCCN projection matrix. Even
though the results are not surprising as we observed from the per-
formance of our baseline NNs in experiment 1, we learned that it
is not necessary to only use processed i-vectors to achieve good
performances with NNs. By a right initialization, the performance
of a CCE-optimized NN can be significantly improved.

Table 1: Experiment 1- Artist recognition F-measure usingpro-
cessed (LDA-WCCN projected) i-vector features and different
methods. The method marked with an asterisk (∗) is the i-vector
pipeline.

method in. dim. hid. neu. out. layer F1 (%)
*CS 49 – – 56.17

CCE-REC-Net 49 49 SM 54.12
CCE-TAN-Net 49 49 SM 57.45
CCE-LIN-Net 49 49 SM 59.77

CDB-Net 49 49 LIN 58.24

Table 2: Experiment 2- Artist recognition F-measure usingraw
i-vector features and different methods.

method in. dim. hid. neu. out. layer F1 (%)
CS 400 – – 26.99

CCE-REC-Net 400 400 SM 37.10
CCE-TAN-Net 400 400 SM 40.26
CCE-LIN-Net 400 400 SM 41.46

CDB-Net 400 400 LIN 57.86

Table 3: Experiment 3- Artist recognition F-measure usingraw
i-vector features with LDA-WCCN weight initialization for dif-
ferent methods.

method in. dim. hid. neu. out. layer F1 (%)
CCE-REC-Net 400 49 SM 53.33
CCE-TAN-Net 400 49 SM 57.14
CCE-LIN-Net 400 49 SM 58.41

CDB-Net 400 49 LIN 56.89

6. CONCLUSION

Our experiment results (exp. 1) suggest that feed-forward NNs can
be used as a classifier with processed i-vectors and achieve the per-
formance of i-vector pipeline. Also in exp. 2 we showed that the
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same NNs that performed well with processed i-vectors, are unable
to achieve good performances with raw i-vectors and the perfor-
mance of these NNs drops significantly when the post-processing
step is removed.

To tackle this problem, we introduced a NN with a cosine-
distance loss function and linear dense layers. We showed that this
network can achieve the performance of the NNs that used pro-
cessed i-vectors. It demonstrate that our network has the ability to
learn similar projections to LDA-WCCN which significantly im-
prove the i-vector representation for music artist recognition.

Our complimentary experiment results (exp. 3) suggest we can
improve the performance of the feed-forward NNs by initializing
their hidden layer’s weights using LDA-WCCN projection matrix.

7. ACKNOWLEDGMENTS

This work was supported by the Austrian Science Fund (FWF)
under grant no. Z159 (Wittgenstein Award) and by the Austrian
Ministry for Transport, Innovation and Technology, the Ministry
of Science, Research and Economy, and the Province of Upper
Austria in the frame of the COMET center SCCH. We also grate-
fully acknowledge the support of NVIDIA Corporation with the
donation of a Titan X GPU used for this research.

8. REFERENCES

[1] Najim Dehak, Patrick Kenny, Réda Dehak, Pierre Du-
mouchel, and Pierre Ouellet, “Front-end factor analysis for
speaker verification,”Audio, Speech, and Language Process-
ing, IEEE Transactions on, 2011.

[2] Rui Xia and Yang Liu, “Using i-vector space model for emo-
tion recognition.,” inINTERSPEECH, 2012.

[3] Najim Dehak, Pedro A Torres-Carrasquillo, Douglas A
Reynolds, and Reda Dehak, “Language recognition via i-
vectors and dimensionality reduction.,” inINTERSPEECH.
Citeseer, 2011.

[4] Benjamin Elizalde, Howard Lei, and Gerald Friedland, “An
i-vector representation of acoustic environments for audio-
based video event detection on user generated content,” in
ISM. IEEE, 2013.

[5] Anna M Kruspe, “Improving singing language identification
through i-vector extraction,” inDAFx, 2011.

[6] Hamid Eghbal-Zadeh, Markus Schedl, and Gerhard Wid-
mer, “Timbral modeling for music artist recognition using
i-vectors,” inEUSIPCO, 2015.

[7] Hamid Eghbal-zadeh, Bernhard Lehner, Markus Schedl, and
Gerhard Widmer, “I-vectors for timbre-based music similar-
ity and music artist classification,” inISMIR, 2015.

[8] Daniel PW Ellis, “Classifying music audio with timbral and
chroma features,” inISMIR, 2007.

[9] James Bergstra, Norman Casagrande, Dumitru Erhan, Dou-
glas Eck, and Balázs Kégl, “Aggregate features and adaboost
for music classification,”Machine learning, 2006.

[10] Pavel P. Kuksa, “Efficient multivariate kernels for sequence
classification,”CoRR, 2014.

[11] Honglak Lee, Peter Pham, Yan Largman, and Andrew Y Ng,
“Unsupervised feature learning for audio classification using

convolutional deep belief networks,” inAdvances in neural
information processing systems, 2009, pp. 1096–1104.

[12] Sander Dieleman, Philémon Brakel, and Benjamin
Schrauwen, “Audio-based music classification with a
pretrained convolutional network,” inISMIR, 2011.

[13] Philippe Hamel and Douglas Eck, “Learning features from
music audio with deep belief networks.,” inISMIR. Utrecht,
The Netherlands, 2010.

[14] Hamid Eghbal-Zadeh and Gerhard Widmer, “Noise robust
music artist recognition using i-vector features,” inISMIR,
2016.

[15] Yun Lei, Luciana Ferrer, Moray McLaren, et al., “A novel
scheme for speaker recognition using a phonetically-aware
deep neural network,” inAcoustics, Speech and Signal Pro-
cessing (ICASSP), 2014 IEEE International Conference on.
IEEE, 2014.

[16] Patrick Kenny, Vishwa Gupta, Themos Stafylakis, P Ouellet,
and J Alam, “Deep neural networks for extracting baum-
welch statistics for speaker recognition,” inProc. Odyssey,
2014.

[17] Ehsan Variani, Xin Lei, Erik McDermott, Ignacio
Lopez Moreno, and Jorge Gonzalez-Dominguez, “Deep
neural networks for small footprint text-dependent speaker
verification,” in Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on. IEEE,
2014.

[18] Pavel Matejka, Le Zhang, Tim Ng, HS Mallidi, Ondrej
Glembek, Jeff Ma, and Bing Zhang, “Neural network bot-
tleneck features for language identification,”Proc. of IEEE
Odyssey, 2014.

[19] Albert Jiménez Sanfiz, “Deep neural networks for channel
compensated i-vectors in speaker recognition,”BA Thesis,
Universitat Politécnica De Catalunya, 2014.

[20] Omid Ghahabi and Juan Hernando, “Deep belief networks
for i-vector based speaker recognition,” inAcoustics, Speech
and Signal Processing (ICASSP), 2014 IEEE International
Conference on. IEEE, 2014.

[21] Omid Ghahabi and Javier Hernando, “Deep learning for sin-
gle and multi-session i-vector speaker recognition,”arXiv
preprint arXiv:1512.02560, 2015.

[22] Patrick Kenny, “Joint factor analysis of speaker and ses-
sion variability: Theory and algorithms,” CRIM, Mon-
treal,(Report) CRIM-06/08-13, 2005.

[23] Bernhard Scholkopft and Klaus-Robert Mullert, “Fisher dis-
criminant analysis with kernels,”Neural networks for signal
processing IX, 1999.

[24] Andrew O Hatch and Andreas Stolcke, “Generalized lin-
ear kernels for one-versus-all classification: application to
speaker recognition,”Proc. Int. Conf. Acoust. Speech and
Signal Process., 2006.

[25] Daniel Garcia-Romero and Carol Y Espy-Wilson, “Analysis
of i-vector length normalization in speaker recognition sys-
tems.,” inINTERSPEECH, 2011.

[26] Najim Dehak, Reda Dehak, James R Glass, Douglas A
Reynolds, and Patrick Kenny, “Cosine similarity scoring
without score normalization techniques.,” inOdyssey, 2010.

DAFX-66



Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

[27] Xavier Glorot, Antoine Bordes, and Yoshua Bengio, “Deep
sparse rectifier neural networks,” inInternational Confer-
ence on Artificial Intelligence and Statistics, 2011.

[28] Sergey Ioffe and Christian Szegedy, “Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift,”arXiv preprint arXiv:1502.03167, 2015.

[29] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov, “Dropout: A simple
way to prevent neural networks from overfitting,”The Jour-
nal of Machine Learning Research, 2014.

[30] Jane Bromley, James W Bentz, Léon Bottou, Isabelle Guyon,
Yann LeCun, Cliff Moore, Eduard Säckinger, and Roopak
Shah, “Signature verification using a siamese time delay neu-
ral network,” International Journal of Pattern Recognition
and Artificial Intelligence, 1993.

[31] Thierry Bertin-Mahieux, Daniel PW Ellis, Brian Whitman,
and Paul Lamere, “The million song dataset,” inISMIR
2011: Proceedings of the 12th International Society for Mu-
sic Information Retrieval Conference, October 24-28, 2011,
Miami, Florida. University of Miami, 2011.

[32] Tristan Jehan and Davis DesRoches, “Analyzer documenta-
tion,” The Echo Nest, 2011.

[33] Seyed Omid Sadjadi, Malcolm Slaney, and Larry Heck, “Msr
identity toolbox-a matlab toolbox for speaker recognition re-
search,”Microsoft CSRC, 2013.

[34] Sander Dieleman, Jan Schlüter, Colin Raffel, Eben Olson,
SK Sønderby, D Nouri, D Maturana, M Thoma, E Batten-
berg, J Kelly, et al., “Lasagne: First release,”Zenodo:
Geneva, Switzerland, 2015.

[35] Theano Development Team, “Theano: A Python framework
for fast computation of mathematical expressions,”arXiv e-
prints, 2016.

[36] Xavier Glorot and Yoshua Bengio, “Understanding the diffi-
culty of training deep feedforward neural networks,” inInter-
national conference on artificial intelligence and statistics,
2010.

[37] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton,
“Imagenet classification with deep convolutional neural net-
works,” in Advances in neural information processing sys-
tems, 2012.

[38] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya
Sutskever, and Ruslan R Salakhutdinov, “Improving neural
networks by preventing co-adaptation of feature detectors,”
arXiv preprint arXiv:1207.0580, 2012.

[39] Ilya Sutskever, James Martens, George Dahl, and Geoffrey
Hinton, “On the importance of initialization and momentum
in deep learning,” inProceedings of the 30th international
conference on machine learning (ICML-13), 2013.

[40] Mohamad Hasan Bahari, Rahim Saeidi, David Van Leeuwen,
et al., “Accent recognition using i-vector, gaussian mean su-
pervector and gaussian posterior probability supervector for
spontaneous telephone speech,” inICASSP. IEEE, 2013.

[41] Andrew O Hatch, Sachin S Kajarekar, and Andreas Stol-
cke, “Within-class covariance normalization for svm-based
speaker recognition.,” inINTERSPEECH, 2006.

DAFX-67


	1  Introduction
	2  Related work
	3  I-vector features
	3.1  Theoretical background
	3.2  I-vector post-processing and scoring
	3.3  I-vector pipeline

	4  The proposed network
	5  Experiments
	5.1  Data
	5.2  Features
	5.3  Setup
	5.4  Results

	6  Conclusion
	7  Acknowledgments
	8  References



