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ABSTRACT

We present MATCH, a toolkit for aligning audio record-
ings of different renditions of the same piece of music,
based on an efficient implementation of a dynamic time
warping algorithm. A forward path estimation algorithm
constrains the alignment path so that dynamic time warp-
ing can be performed with time and space costs that are
linear in the size of the audio files. Frames of audio are
represented by a positive spectral difference vector, which
emphasises note onsets in the alignment process. MATCH
was tested on several hundred test cases and had a median
error of 20 ms, with less than 1% of test cases failing to
align at all. The software is useful for content-based in-
dexing of audio files and for the study of performance in-
terpretation; it can also be used in real-time for tracking
live performances. Another possible application is in an
intelligent audio recording and editing system for aligning
splice points. The toolkit also provides functions for dis-
playing the cost matrix, the forward and backward paths,
and any metadata associated with the recordings, which
can be shown in real time as the alignment is computed.

Keywords: audio alignment, content-based indexing,
dynamic time warping, music performance analysis

1 INTRODUCTION

The use of random access media for audio data, making it
possible to jump immediately to any point in the data, is
advantageous only to the extent that the data is indexed.
For example, content-based indexing of CDs is typically
limited to the level of tracks (songs or movements), the
information provided by the manufacturer. The indexing
cannot be determined by the user, who might be interested
in a more fine-grained or special purpose index. For ex-
ample, a piano student might want to compare how several
different pianists play a particular phrase, which would
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involve a manual linear search for the relevant phrase in
each recording. Or alternatively, a musicologist study-
ing the relationship between tempo and phrase structure
painstakingly marks the times of beats in each rendition
of a work, not having any way of transferring the meta-
data from one version to the next, since the beats occur at
different times in each performance.

To address these and similar needs, we developed
MATCH, a system for accurate automatic alignment of
multiple renditions of the same piece of music. This tool
can be used in musicology and music practice, to compare
different interpretations of a work, or for annotation of
music with content-based metadata (e.g. section, phrase,
beat or note indexes), which could then be transferred au-
tomatically from one recording to the corresponding posi-
tions in another recording. It could also be used in an au-
dio recording system to provide intelligent editing opera-
tions such as aligning splice points in corresponding files.
The toolkit also provides for visualisation of the alignment
as it is computed.

MATCH is based on an efficient dynamic time warp-
ing algorithm which has time and space costs that are lin-
ear in the lengths of the performances. This effectively
allows arbitrarily long pieces to be processed faster than
real time, that is, in less time than the duration of the au-
dio files. The audio data is represented by positive spec-
tral difference vectors. Frames of audio input are con-
verted to a frequency domain representation using a short
time Fourier transform, and then mapped to a non-linear
frequency scale (linear at low frequencies and logarith-
mic at high frequencies). The time derivative of this spec-
trum is then half-wave rectified and the resulting vector is
employed in the dynamic time warping algorithm’s match
cost function, using a Euclidean metric.

In the next section, we review the standard dynamic
time warping algorithm and decribe the modifications nec-
essary for an efficient implementation. We also present the
cost function used to evaluate the similarity of frames of
audio data. Section 3 contains a description of the user
interface and implementation details of MATCH. We then
report on the results of testing with three different data
sets, which indicate that the current audio alignment al-
gorithm works well for a range of music. The final sec-
tion provides a discussion of the work, a comparison with
other audio alignment methods, and an outline of planned
future work.



2 DYNAMIC TIME WARPING

Dynamic time warping (DTW) is a technique for align-
ing time series which has been well known in the speech
recognition community since the 1970’s (Itakura, 1975).
In this section we briefly review the DTW algorithm and
describe how we apply it to the problem of audio align-
ment. A tutorial presentation of DTW can be found in
(Rabiner and Juang, 1993).

DTW aligns two time seriesU = u1, ..., um and
V = v1, ..., vn by finding a minimum cost pathW =
W1, ...,Wl, where eachWk is an ordered pair(ik, jk),
such that(i, j) ∈ W means that the pointsui andvj are
aligned. The alignment is assessed with respect to a local
cost functiondU,V (i, j), usually represented as anm× n
matrix, which assigns a match cost for aligning each pair
(ui, vj). The cost is 0 for a perfect match, and is other-
wise positive. The path costD(W ) is the sum of the local
match costs along the path:

D(W ) =
l∑

k=1

dU,V (ik, jk)

Several constraints are placed onW , namely that the
path is bounded by the ends of both sequences, and it is
monotonic and continuous. Formally:

Bounds: W1 = (1, 1)
Wl = (m,n)

Monotonicity: ik+1 ≥ ik for all k ∈ [1,m− 1]
jk+1 ≥ jk for all k ∈ [1, n− 1]

Continuity: ik+1 ≤ ik + 1 for all k ∈ [1,m− 1]
jk+1 ≤ jk + 1 for all k ∈ [1, n− 1]

Other local path constraints are also common, which
alter the monotonicity and continuity constraints to allow
increments of up to two or three steps in either direction
and/or require a minimum of at least one step in each di-
rection. Additionally, global path constraints are often
used, such as the Sakoe-Chiba bound (Sakoe and Chiba,
1978), which constrains the path to lie within a fixed dis-
tance of the diagonal (typically 10% of the total length
of the time series), or the Itakura parallelogram (Itakura,
1975), which bounds the path with a parallelogram whose
long diagonal coincides with the diagonal of the cost ma-
trix. By limiting the slope of the path, either globally or lo-
cally, these constraints prevent pathological solutions and
reduce the search space.

The minimum cost path can be calculated in quadratic
time by dynamic programming, using the recursion:

D(i, j) = d(i, j) + min

 D(i, j − 1)
D(i− 1, j)
D(i− 1, j − 1)


whereD(i, j) is the cost of the minimum cost path from
(1, 1) to (i, j), andD(1, 1) = d(1, 1). (The subscripts
on d(., .) have been omitted for convenience.) The path
itself is obtained by tracing the recursion backwards from
D(m,n).

Some formulations of DTW introduce various biases
in addition to the slope constraints, by multiplyingd(i, j)
by a weight which is dependent on the direction of the

movement. In fact, the above formulation is biased to-
wards diagonal steps: the greater the number of diago-
nal steps, the shorter the total path length (Sankoff and
Kruskal, 1983, p.177). We follow Sakoe and Chiba (1978)
in using a weight of 2 for diagonal steps so that there is no
bias for any particular direction.

2.1 An Efficient Implementation of DTW

The quadratic time and space cost is often cited as a limit-
ing factor for the use of DTW with long sequences. How-
ever the widely used global path constraints can be triv-
ially modified to create a linear time and space algorithm.
For instance, if the width of the Sakoe-Chiba bound is set
to a constant rather than a fraction of the total length, the
number of calculations becomes linear in the length of the
sequences. The danger with this approach is that it is not
known how close to the diagonal the optimal solution is,
so the desired solution is easily excluded by a band around
the diagonal which is too narrow.

To avoid missing the optimal path, we use a forward
path estimation algorithm to calculate the centre of the
band of the cost matrix which is to be calculated. This
is based on the on-line time warping algorithm presented
in (Dixon, 2005). The DTW path is then constrained to lie
within a fixed distance of the forward path, which ensures
that the computation is bounded by linear time and space
costs. If we had used standard global path constraints, a
wider band would have been required, in order to cater
for the estimated maximum possible deviation from the
diagonal. With an “adaptive diagonal”, it is safe to use a
narrower band without risk of missing the optimal solu-
tion. This enables the system to perform with greater ef-
ficiency and accuracy than a system based on global path
constraints.

The calculation of the forward path is illustrated in
Figure 1, using a band width ofw = 4 for illustrative
purposes. (In practice, a band width ofw = 500 is used.)
After an initial square matrix (of sizew) is computed, the
calculated area is expanded by evaluating rows or columns
of lengthw. The direction of expansion (i.e. whether a
new row or a new column is calculated) is determined by
the location of the cell with minimum path cost out of all
the cells in the last row or column of the calculated area.
If this cell is in the last row, a new row is calculated, and if
it is in the last column, a new column is calculated. Limits
are placed on the number of successive row (respectively
column) computations. The band widthw limits the num-
ber of cells in the row or column computation to the last
w cells. A complete description of the forward path al-
gorithm can be found in (Dixon, 2005). When the ends
of both files are reached, the optimal path is traced back-
wards using the standard DTW algorithm, constrained by
the fact that only the cells calculated previously during the
forward path calculation can be used.

2.2 A Cost Function for Comparing Audio Frames

The alignment of audio files is based on a cost function
which assesses the similarity of frames of audio data. We
use a low level spectral representation of the audio data,
generated from a windowed FFT of the signal. A Ham-
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Figure 1: An example of the on-line time warping algo-
rithm with band widthw = 4, showing the order of eval-
uation for a particular sequence of row and column in-
crements. The axes represent time in the two files. All
calculated cells are framed in bold, and the optimal path
is coloured grey.

ming window with a default size of 46 ms (2048 points)
is used, with a default hop size of 20 ms. The spectral
representation was chosen over a higher level symbolic
representation of the music in order to avoid a pitch recog-
nition step, which is notoriously unreliable in the case of
polyphonic music. The frequency axis was mapped to a
scale which is linear at low frequencies and logarithmic
at high frequencies. This achieved a significant data re-
duction without loss of useful information, at the same
time mimicking the linear-log frequency sensitivity of the
human auditory system. The lowest 34 FFT bins (up to
370Hz, or F]4) were mapped linearly to the first 34 ele-
ments of the new scale. The bins from 370Hz – 12.5kHz
were mapped onto a logarithmic scale with semitone spac-
ing by summing energy in each bin into the nearest semi-
tone element. Finally, the remaining bins above 12.5kHz
(G9) were summed into the last element of the new scale.
The resulting vector contained a total of 84 points instead
of the original 2048.

The most important factor for alignment is the tim-
ing of the onsets of tones. The subsequent evolution of
the tone gives little information about the timing and is
difficult to align using energy features, which change rel-
atively slowly over time within a note. Therefore the final
audio frame representation uses a half-wave rectified first
order difference, so that only the increases in energy in
each frequency bin are taken into account, and these pos-
itive spectral difference vectors are compared using the
Euclidean distance:

d(i, j) =

√√√√ 84∑
b=1

(E′
u(b, i)− E′

v(b, j))2

whereE′
x(f, t) represents the increase in energyEx(f, t)

of the signalx(t) in frequency binf at time framet:

E′
x(f, t) = max(Ex(f, t)− Ex(f, t− 1), 0)

2.3 Interpretation of the DTW Path

The path returned by the DTW alignment algorithm is
used as a lookup table between the two audio files to find
the location in the second file corresponding to a selected
location in the first file. Since the path is continuous and
covers the full extent of both files, there is for each time
index in one file at least one corresponding time point in
the other. If there is more than one corresponding point,
an average is taken. This defines a one to one mapping
between the time variables in the two files, with the reso-
lution of the frame hop size.

3 USER INTERFACE AND
IMPLEMENTATION

The system operates as follows: the user starts up the pro-
gram and loads the files to be aligned. The first file to be
loaded is used as the reference file, and as more files are
loaded, each is aligned to the reference file. Correspond-
ing time points between arbitrary pairs of files can then be
computed via the reference file, using composition of the
respective time maps.

MATCH has a familiar graphical user interface which
is similar to most media players, having buttons to play,
stop, pause, skip forward, skip backward, load, show help
information and quit, as well as a slider for setting and
displaying the present playback position. A screen shot
of the program is shown in Figure 2. One unfamiliar
function (the “*” button) is to mark a position in a piece,
which may be done while the piece is playing or when
it is stopped. Any number of marks can be inserted into
the piece; the skip buttons allow the user to move quickly
between marks. Marks can be used to select interesting
phrases in a piece of music, or to test the operation of the
alignment algorithm. When the user switches to a differ-
ent file, the marks are mapped to the corresponding loca-
tions in the new file, so that the user can compare how the
section of interest was played in each version.

If the user changes files while playing, the system’s
response depends on the play mode which was selected,
which is eithercontinueor repeat. In the repeatmode,
play continues from the first mark before the current posi-
tion (mapped onto the new file). In this mode the user can
listen to the same phrase in different versions simply by
clicking on the file name. In thecontinuemode, the piece
continues at the corresponding position in the new file, al-
lowing the user to combine different interpretations. This
mode is most useful for testing and demonstrations of the
system.

MATCH also has functions for displaying the cost ma-
trix, the forward and backward paths, and any other meta-
data associated with the files (see Figure 3). Since the
complete matrix does not fit on the screen, scroll func-
tions are provided. The audio from one file can be played
as matching is performed, with the matrix scrolling in real
time and displaying the alignment as it is being estimated.



Figure 2: Screenshot of MATCH showing the user inter-
face.

MATCH is implemented in Java, so it runs on most
operating systems. On a 3GHz Linux PC, alignment of
two audio files takes approximately 10% of the sum of the
durations of the files, where a time resolution of 20 ms is
used. For slower computers a lower time resolution could
be used without significant degradation of precision. It is
also possible to save and load alignment and mark infor-
mation, so the user can restore a session without having
to wait for any alignment computations. MATCH will be
made available for download before the conference.

4 TESTING AND RESULTS

We report the results from 3 sets of test data: a pre-
cise quantitative evaluation using data recorded on a
Bösendorfer computer-monitored piano; a quantitative
evaluation based on semi-automatic annotation of vari-
ous CD recordings; and a qualitative evaluation based on
unannotated CD recordings.

Figure 3: Screenshot of the initial 16 seconds of the cost
matrix for two renditions of a Chopin Etude, showing the
forward path used for determining the expansion direction
(black), the optimal path (white), and the correct event
onset times (metadata) as grey crosses.

4.1 Bösendorfer Data

The Bösendorfer SE290 is a grand piano with sensors on
the keys and hammers which unintrusively measure the
precise timing and dynamics of every note. The time res-
olution of 1.25 ms allows for extremely accurate evalua-
tion of audio analysis algorithms. The only disadvantage
is that the available data is restricted to solo piano music
which was recorded on this instrument. In other words,
this test set is the highest quality but also the most limited
in scope.

We used a set of recordings of 22 pianists playing 2
excerpts of solo piano music by Chopin (Etude in E Ma-
jor, Op.10, no.3, bars 1–21; and Ballade Op.38, bars 1–
45) (Goebl, 2001). The Etude performances ranged from
70.1 to 94.4 seconds duration, and the Ballade ranged
from 112.2 to 151.5 seconds, so the differences in exe-
cution speeds were by no means trivial. Alignment was
performed on all pairs of performances of each piece (a
total of 22×21

2 ∗ 2 = 462 test cases).
In order to estimate the correctness of the alignment,

we compared it with the onset times of the corresponding
notes in each interpretation. If we consider the alignment
as a mapping from time in one interpretation to time in
the other interpretation, a correct alignment should map
the onset time of each note in the first interpretation to the
onset time of the same note in the second interpretation.
There are several reasons why this is not always possible.

First, it is clear that the mapping should be monotonic,
but the correct mapping as we just defined it could not
be guaranteed to be monotonic, except for monophonic
music. The reason for this is that chords (sets of simul-
taneous notes according to the musical notation) are not
played perfectly synchronously, but are spread over time,
typically around 30 ms, but sometimes as much as 150



ms. Further, the order of notes in the chord is not fixed,
although some regularities (such as the melody note lead-
ing the accompaniment notes) have been observed (Goebl,
2001).

The second issue is that there are occasional differ-
ences in the notes played between different interpreta-
tions, either due to one musician making a mistake, or
due to the interpretative freedom given by a composer. A
typical case is that of a trill (a rapid alternation of two
notes), where the total musical time is specified, but not
the number of alternations to be performed in this time.
In this case there is no unique “correct” alignment of the
notes involved. Other types of ornamentation provide fur-
ther examples where the number or order of notes might
differ between interpretations.

Third, a problem arises from our representation of
alignments, that the paths are not functions but relations,
and thus the mapping is not necessarily unique. A num-
ber of solutions to this problem are possible, for example
averaging or smoothing the path to create a one-to-one
mapping, but these turned out to be unnecessary, as the
evaluation method we define below circumvents the prob-
lem.

For these reasons, we define ascore eventto be a set
of simultaneous notes according to the score, and for each
interpretationi we calculate the average onset timet(i, e)
of the performed notes in each score evente. The cor-
rect alignment is then defined in terms of the accuracy of
the mapping of score events from one interpretation to the
other, ignoring the time points between score events. For
each score evente, the alignment path should pass through
the point(t(i1, e), t(i2, e)), and the error is calculated as
the Manhattan distance of this point from the nearest point
on the alignment path. The total error of an alignment path
is then the average of the pointwise errors over all score
events.

Table 1 shows the distribution of pointwise errors less
than or equal to 0,1,2,3,5,10,25 and 50 frames, where a
frame size of 20 ms was used. The average and worst
case errors are also shown. From the point of view of
human perception, the average error is almost impercepti-
ble, since the human temporal order threshold (the ability
to distinguish the order of two sounds occurring closely in
time) is approximately 40 ms, and can be much worse in
the context of annotating musical recordings (Dixon et al.,
2005). The success of the system with this data was aided
by the fact that the audio recordings were all made under
identical conditions (same piano, microphone, room and
settings). In the following subsections we describe tests
using data with a large variety of recording conditions.

4.2 BeatRoot Data

The second set of test data involved musical pieces where
the beat had been annotated using the interactive beat
tracking system BeatRoot (Dixon, 2001a,b). The data set
available to us is considerably larger than the Bösendorfer
data set, containing a range of Classical and Roman-
tic Period piano music recorded over the second half of
the twentieth century, including several complete piano
sonatas. These works include more complex pieces than

Error≤ Cumulative %age
Frames Seconds Etude Ballade

0 0.00 46.5% 36.6%
1 0.02 84.5% 77.1%
2 0.04 91.1% 88.9%
3 0.06 93.4% 92.5%
5 0.10 96.0% 95.1%
10 0.20 98.8% 97.4%
25 0.50 99.8% 99.1%
50 1.00 100.0% 99.8%
Average Error 23 ms 35 ms
Worst Error 2340 ms 3640 ms

Table 1: Alignment results shown as cumulative percent-
ages of score events with an error up to the given value
(see text).

the Chopin excerpts mentioned above. The disadvantage
with this data is that the measurements of beat times are
much less precise, as they are generated by the beat track-
ing system using a simple onset detection algorithm and
then (optionally) corrected manually. The error in mea-
surement is probably of the order of 30 ms resolution (but
this would be difficult to verify). Further, the annotations
contain the beat times, not the times of note onsets, so
measurements do not exist for every note and conversely
some beats are interpolated in the cases where there is no
note on the beat.

The data was taken from CD recordings of great
pianists. For example, for the Chopin piece we
used the following recordings: Argerich (1965), Ar-
rau (1978), Ashkenazy (1985), Barenboim (1981), Ha-
rasiewicz (1961), Horowitz (1957), Leonskaja (1992),
Maisenberg (1995), Perahia (1994), Pires (1996), Pollini
(1968), Richter (1968) and Rubinstein (1965). This en-
abled the system to be tested with a large range of record-
ing conditions, pianos, pieces and interpretations.

The results are summarised in Table 2. It is difficult
to reduce any set of results to a single numerical value,
and these results illustrate this point well. Three different
measures of error are shown: maximum, mean and me-
dian. The maximum error indicates whether or not at least
one of the alignments failed at some point, but gives no in-
dication of overall performance. The mean error is more
useful, but it is strongly biased by large errors. (In order to
demonstrate the amount of this bias, the lower half of the
table contains the same results with the worst aligning pair
of performances excluded, or in the case of the Schumann
excerpt, the two worst pairs. Some of the average errors
were reduced by more than 80%.) The median error is a
less biased measure of central tendency, but it gives no in-
dication of the spread of the errors. Figures 4 and 5 show
histograms of the errors respectively for the complete test
set and the test set with the 5 worst alignments removed,
where the rightmost bin represents all errors greater than
one second.

Apart from a small number of cases (5 out of 175)
where alignment fails, the results are very pleasing, al-
though as expected, they are not as good as for the
Bösendorfer data where the controlled recording condi-



Composer Piece Versions Events Error (sec)
(work, section) (total) Maximum Mean Median

Beethoven Op.15, 2, b1–8 4 366 2.46 0.109 0.040
Chopin Op.15, No.1 13 17082 7.28 0.054 0.020
Mozart KV279, 1st movt 5 5510 15.26 0.189 0.020
Schubert D899, No.3 12 22506 59.92 0.584 0.020
Schumann Op.15, No.7 6 3825 20.34 0.427 0.020
Beethoven Op.15, 2, b1–8 4* 305 1.10 0.083 0.040
Mozart KV279, 1st movt 5* 4959 6.56 0.048 0.020
Schubert D899, No.3 12* 22165 12.98 0.086 0.020
Schumann Op.15, No.7 6** 3315 2.06 0.062 0.020

Table 2: Alignment results for CD recordings of the given works. ‘*’ indicates the removal of the worst alignment from
the results. See text for discussion.
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Figure 4: Histogram showing distribution of alignment er-
rors for the complete BeatRoot data set. The rightmost
bin represents the number of errors greater than or equal
to one second.

tions make similarity judgements much easier. The spread
of errors indicates a low probability of large errors for this
data, so that users of MATCH will rarely face serious mis-
alignments. An analysis of the errors and some ideas for
improvements to the system are discussed in the final sec-
tion.

4.3 Further Evaluations

The above tests consisted only of piano music, which is
generally easier to align than other instruments, due to the
sharpness of onsets and the fixed timbre of piano tones.
Although we do not have any annotated non-piano music,
it was possible to perform informal tests with other pieces
of music. In the absence of precise annotations, there are
two ways of determining the correctness of an alignment
using MATCH. The first is to mark various points in one
interpretation and check that the corresponding points in
the other interpretations are correctly aligned, and the sec-
ond method is to skip between interpretations during play-
back, which also gives some indication of the alignment.
Neither method is particularly precise, in that they rely on
human judgement, but since the system is designed to be
used in both of these ways, they are suitable for qualitative
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Figure 5: Histogram showing distribution of alignment er-
rors on the BeatRoot data set, where the five worst align-
ments have been removed. The rightmost bin represents
the number of errors greater than or equal to one second.

testing. A disadvantage of this form of testing is that it is
not thorough, that is, only specific points on the alignment
path are checked, and not the complete path.

Tests with 10 different interpretations of the first
movement of Schumann’s piano concerto revealed no
problems in alignment. Several other works for piano and
orchestra were also tested with good results. A number of
solo classical guitar works were tested, including pieces
by Albeniz (Asturias, Cordoba, Sevilla), Granados (Span-
ish Dance 4 and 5), Tarrega (Capricho Arabe) and Villa
Lobos (Prelude 1). Some of the pieces were successfully
aligned, although errors at the beginnings of a number of
pieces were apparent. Further work is required to investi-
gate the reasons for these errors.

It is much more difficult to find different versions of
popular songs where the structure is identical in all ver-
sions. Two Beatles songs (I Wanna Hold Your Handand
She Loves You) were found in English and German ver-
sions; MATCH successfully aligned the first song entirely,
but the second was partially misaligned, with the initial
section being wrong but the bulk of the song correctly
aligned. These tests suggest that the similarity measure
is not restricted to piano tones, but could be generally ap-
plicable to different instruments.



5 DISCUSSION AND CONCLUSION

This paper presented an audio alignment toolkit which
uses dynamic time warping based on a low-level repre-
sentation of the audio data. A high-level representation
would enable a more efficient DTW computation, but ex-
traction of high level features is less reliable then using
low-level features, and since efficiency is not a problem in
the current approach, we plan to stay with the more robust
approach.

The cost function was based on derivative spectral fea-
tures, in order to emphasise tone onsets. Derivative fea-
tures have been used in speech recognition (Sakoe and
Chiba, 1978), are advocated generally by Keogh and Paz-
zani (2001), and they have been used in score following
(Orio and Schwarz, 2001). A distance measure calculated
directly from the short time spectrum was used for com-
puting audio similarity in (Foote and Uchihashi, 2001).
This used a much smaller window size (11 ms), since it
was focussed on rhythmic analysis, where timing is criti-
cal and pitch not so important. In tests using spectral val-
ues instead of the spectral difference, we found that the
results were clearly better using spectral difference.

Dannenberg and Hu (2003) propose the use of a chro-
mogram, which reduces the frequency scale to twelve
pitch classes, independent of octave. This might be suit-
able for retrieval by similarity, where absolute identity of
matching musical pieces is not assumed, and a large num-
ber of comparisons must be performed in a short time, but
it discards too much information for our purposes. Other
features such as MFCCs are often used in speech and au-
dio research, but they capture the spectral shape (reflecting
the timbre of the instrument) rather than the pitch (reflect-
ing the notes that were played).

DTW has been used for score-performance align-
ment (Orio and Schwarz, 2001; Soulez et al., 2003) and
query by humming applications (Mazzoni and Dannen-
berg, 2001; Zhu and Shasha, 2003). The earliest score
following systems used dynamic programming (Dannen-
berg, 1984), based on a high-level symbolic representation
of the performance which was only usable with mono-
phonic audio. Alternative approaches to music alignment
use hidden Markov models (Cano et al., 1999; Orio and
Déchelle, 2001) and hybrid graphical models (Raphael,
2004), which both require training data for each piece.
The test data used in subsections 4.1 and 4.2 is somewhat
exceptional; in general, we will not have access to multi-
ple labelled performances.

In cases where the tracking was successful, it was also
very accurate, with a median error of 20 ms, and average
errors from 23 ms to 86 ms. For the purposes of the align-
ment tool, this is easily sufficient. For other purposes,
such as audio editors, it is essential that the error be kept
as low as possible.

5.1 Future Work

There are many directions in which this work can be ex-
tended and many improvements which can be made to
the current system, some of which we note here. Exper-
iments with normalisation have proved it to be a double-
edged sword. Since we have no control of recording lev-

els, some form of normalisation between files is essential.
The frame to frame normalisation of energy is however
more problematic, since it is more important that salient
parts of the audio match, and as notes decay to silence, it
is not desirable that they play an equally significant role
as the tone onsets in determining the alignment. The use
of positive spectral difference solves part of this problem,
but further experimentation is required to determine the
best audio representation.

The output from the DTW algorithm is not at all
smooth at the local level, but we perceive most tempo
changes as being smooth. Many irregularities in the path
arise because the cost function is tuned to match note on-
sets, and therefore the frames where no new notes ap-
pear have very little to distinguish them. Some form
of smoothing or interpolation could be performed in or-
der to create a path which is musically plausible. First
attempts at smoothing worsened the results, as outlying
points influenced the matching points more than the con-
verse. Further investigations into smoothing are being
made, for example, considering interpolation to remove
outlying points and replacement of adjacent horizontal
and vertical path segments with diagonal segments. Dis-
continuities in the path could still occur, for example, if
one performer paused and the other did not, but this is the
exception rather than the rule.

Most of the large errors occur at the beginnings and
ends of files; no example has been found where the align-
ment is correct at the beginning and then incorrect for the
bulk of the file. Part of the reason for this is that the off-
set from the first (respectively last) frame to the first (last)
note onset varies greatly between files, and the DTW al-
gorithm is required to find a path from the first to the last
frame. If we specifically detected the first and last note, or
alternatively detected silence in the audio files, many of
these errors could be avoided.

One issue that has not been addressed is the prob-
lem of structural differences between performances. For
example, if one performer repeats the first section of a
movement and another performer does not, there is no
way for the DTW algorithm to recover, since the width
of the search band is only 5 or 10 seconds. In order to
find structural differences and perform partial matches,
the complete similarity matrix would need to be calcu-
lated, which would then limit the size of pieces which
could be matched, due to memory and time limitations.

This work stemmed from a real-time audio alignment
tool for live performance analysis (Dixon, 2005). Since
the current work does not require on-line processing, some
improvements could be made to the off-line system in or-
der to reduce the number of tracking errors. For example,
a default slope (relative tempo) could be computed from
the durations of the audio files, and the forward algorithm
could be biased to tend towards this slope.

We intend to extend MATCH to include score-audio
alignment, so that it can be used as a score-following sys-
tem in real-time, and so that symbolic metadata can be au-
tomatically aligned with performances and audio record-
ings.
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