
Expressive Performance with Bayesian Networks and Linear Basis Models

1. BACKGROUND

Expressive music performance is a complex task that ap-
pears to require heterogeneous information, varying from
one expressive dimension to another. For example, loud-
ness is guided to a considerable extent by annotations in
the score, whereas overall performance tempo is more re-
lated to phrasing [1]. Timing and articulation on the other
hand may depend more on local score information. The
system we present takes a modular approach that treats dy-
namics, articulation, timing and global tempo in different
ways.

2. SYSTEM OVERVIEW

Figure 1 shows an overview of the complete system. From
a set of performed pieces (the training data), score fea-
tures and targets (loudness, IOI, articulation) are extracted,
and used to train the different components of the system.
In order to render a new piece, features, tempo and dy-
namic annotations are extracted from the MusicXML data.
The features are used to calculate articulation and tempo
predictions, the latter of which is then combined with the
tempo annotations to form the tempo of the rendered per-
formance. The dynamic annotations, together with a sub-
set of the features, are used to calculate the loudness of the
performance.

3. RENDERING METHOD

In the following we describe the different components of
the system and how they are used to form an expressive
performance from a score specification.

3.1 Tempo and Articulation Prediction

Tempo and articulation are predicted by a Bayesian Net-
work modeling dependencies between score and perfor-
mance as conditional probability distributions. The score
model comprises simple score descriptors (rhythmic, melo-
dic and harmonic) and higher-level features from the Im-
plication-Realization (I-R) model of melodic expectation
by E. Narmour [2] (I-R-labels and a derivation of I-R-closure).

The tempo prediction is consists of three components:
1). local tempo, a per-note prediction of long-term tempo
changes; 2). note timing, note-to-note deviations from lo-
cal tempo, and 3). global tempo, extracted from tempo
annotations in the score (e.g. andante, a tempo). For the
prediction of the local tempo, the Bayesian network is un-
folded in time and an adapted version of the Viterbi Al-
gorithm for Hidden Markov Models is used to predict a
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Figure 1. An Overview of the System

series of tempo changes that is optimal with respect to the
complete piece. This results in predictions that take the
surrounding performance context into account, instead of
predictions based only on the local score context. The note
timing is predicted using only the immediate score context
and the value predicted for the previous note. The two se-
ries are then combined to form the tempo prediction. In
combination with the global tempo, the expressive anno-
tations from the score (initial tempo markings, ritardandi,
and accelerandi), this constitutes the final tempo of the per-
formance.

Articulation, a very localized aspect of performance, is
predicted using only the immediate score context and no
previously predicted articulation values. The sets of fea-
tures used for the three different predictions (local tempo,
note timing, and articulation) are specifically tailored to the
respective target.

3.2 Note Level Rules

In 2003, Widmer developed a rule extraction algorithm for
musical expression [3]. Applied to a collection of Mozart
piano sonatas, this resulted in a number of simple rules
suggesting expressive change under certain melodic or rhyth-
mic circumstances. We use two of the rules to further en-
hance the aesthetic qualities of the rendered performances.
The staccato rule prescribes, that, if two successive notes
have the same pitch, and the second of the two is longer,
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then the first note is played staccato. The delay-next rule
states, that, if two notes of the same length are followed by
a longer note, the last note is played with a slight delay.

Professional musicians tend to emphasize the melody by
playing the melody notes slightly ahead of time, a phe-
nomenon called melody lead [4]. To simulate this, we im-
plemented a lead of 13 milliseconds for all melody notes.

3.3 Loudness Prediction

The algorithm used for predicting loudness is based on lin-
ear regression. It composes loudness curves by mixing ba-
sis functions according to weights learned from musical
performances. The basis functions represent musical fea-
tures as a function of the notes in the score. The fact that
the basis functions are functions of the notes rather than
functions of time, allows for separate predictions per note,
rather than one prediction per time position. The primary
benefit of this is that it enables prediction of different loud-
ness values for simultaneous notes. This in turn allows for
modeling phenomena like voice leading by increased loud-
ness of the melody, and coloring of chords by varying the
loudness of the constituent pitches.

To describe the algorithm, we first define a score x =
(x1, · · · , xn). An element xi (1 ≤ i ≤ n) is a vector
containing the score onset and pitch of the i-th note, and
an indicator value for each dynamic marking. For instance,
the indicator for crescendo has a value of one for all notes
spanned by crescendos, and zero for all other notes.

We then define a basis function as a function ϕk(x) that
takes the n elements of x as arguments to produce a real
valued vector of size n. Once a set ϕ1(x), · · · , ϕm(x) of
m basis functions is fixed, it can be applied to a musical
score x to yield a matrix ϕ(x) = (ϕ1(x), · · · , ϕm(x)) of
size n×m, where n is the number of notes in x.

Finally, we define a loudness function y of the score x
and a vector of weights w = (w1, · · · , wm), such that the
loudness is a linear combination of the basis functions:

y(x,w) = wTϕ(x) (1)

For the purpose of loudness prediction, a performance of
a score x (of size n) is regarded as a vector of loudness
values y = (y1, · · · , yn), where yi (1 ≤ i ≤ n) is the
loudness of the i-th note. In this way, if we have a score
x and an example performance y, we can adapt the model
(eq. (1)) to those data by finding appropriate weights w.
This problem is known as linear regression, and we will
choose w here as the the least squares solution:

wx,y = argminw

n∑
i

(yi − y(xi,w))2, (2)

3.3.1 Basis Functions

We use the basis functions to represent the following fea-
tures of the score:

• Dynamic annotations in the score (ff, crescendo, etc)

• Note features: pitch, decorative role, emphasis

• Implication-Realization closure

Within the dynamic annotations we distinguish between
three types of dynamics: impulsive (e.g. sf ), incremen-
tal (e.g. crescendo), and constant (e.g. mf ), represented
by impulse, ramp, and step functions respectively. These
functions are local in the sense that they are non-zero only
over a limited range. The ramp and step functions drop to
zero at the next annotation of type constant. The pitch se-
quence is taken as a basis function to allow for melody lead
by loudness (assuming the melody is typically in higher
pitch ranges). The indicator for decorative role and anno-
tated emphasis are included to be able to play grace notes
in a different way, and to play emphasized notes louder. Fi-
nally, we include a feature indicating closure in the sense of
the I-R model [2], which reflects mainly rhythmic, metrical
and motivic boundaries. The basis functions representing
note features and I-R features are global in the sense that
they are non-zero throughout the pieces.

3.3.2 Prediction of w for new pieces

The first step in prediction is finding a solution wx,y for
each piece-performance pair (x,y) (according to eq. (2)).
We use separate prediction methods to estimate the coeffi-
cients of local and global basis functions for a new piece.
For global bases we take the median coefficients over the
training data. Local bases can vary in number across pieces
(depending on the number of dynamic annotations). We
predict local coefficients by training an SVM on learned
coefficients and n-grams of dynamic annotations.

3.4 Training Data

The system is trained using two corpora of real perfor-
mance data: 13 complete Mozart piano sonatas, performed
by R. Batik and the complete works for solo piano by Chopin,
performed by N. Magaloff. All pieces were performed on a
Bösendorfer computer-controlled grand piano, in total over
400.000 performed notes, and matched to symbolic repre-
sentations of the scores.

Training the components and rendering the performance
of a new piece is done autonomously without relying on
human feedback. The complete process takes a couple of
minutes.
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