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5.1 Introduction

Research in intelligent music processing is experiencing an enormous boost these days due to
the emergence of the new application and research field of Music Information Retrieval (MIR). The
rapid growth of digital music collections and the concomitant shift of the music market towards
digital music distribution urgently call for intelligent computational support in the automated
handling of large amounts of digital music. Ideas for a large variety of content-based music
services are currently being developed in music industry and in the research community. They
range from content-based music search engines to automatic music recommendation services,
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from intuitive interfaces on portable music players to methods for the automatic structuring and
visualisation of large digital music collections, and from personalised radio stations to tools that
permit the listener to actively modify and ‘play with’ the music as it is being played.

What all of these content-based services have in common is that they require the computer
to be able to ‘make sense of’ and ‘understand’ the actual content of the music, in the sense of being
able to recognise and extract musically, perceptually and contextually meaningful (‘semantic’)
patterns from recordings, and to associate descriptors with the music that make sense to human
listeners.

There is a large variety of musical descriptors that are potentially of interest. They range
from low-level features of the sound, such as its bass content or its harmonic richness, to high-
level concepts such as “hip hop” or “sad music”. Also, semantic descriptors may come in the
form of atomic, discrete labels like “rhythmic” or “waltz”, or they may be complex, structured
entities such as harmony and rhythmic structure. As it is impossible to cover all of these in one
coherent chapter, we will have to limit ourselves to a particular class of semantic desciptors.

This chapter, then, focuses on methods for automatically extracting high-level atomic
descriptors for the characterisation of music. It will be shown how high-level terms can be
inferred via a combination of bottom-up audio descriptor extraction and the application of
machine learning algorithms. Also, it will be shown that meaningful descriptors can be extracted
not just from an analysis of the music (audio) itself, but also from extra-musical sources, such as
the internet (via ‘web mining’).

Systems that learn to assign labels must be evaluated in systematic, controlled experiments.
The most obvious and direct way is via classification experiments, where the labels to be assigned
are interpreted as distinct classes. In particular, genre classification, i.e., the automatic assignment
of an appropriate style label to a piece of music, has become a popular benchmark task in the MIR
community (for many reasons, not the least of them being the fact that genre labels are generally
much easier to obtain than other, more intuitive or personal descriptors). Accordingly, the
current chapter will very much focus on genre classification as the kind of benchmark problem
that measures the efficacy of machine learning (and the underlying descriptors) in assigning
meaningful terms to music. However, in principle, one can try to predict any other high-level
labels from low-level features, as long as there is a sufficient number of training examples
with given labels. Some experiments regarding non-genre concepts will be briefly described in
section 5.3.4, and in section 5.4.2 we will show how textual characterisations of music artists can
be automatically derived from the Web.
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The chapter is structured as follows. Section 5.2 deals with the extraction of music de-
scriptors (both very basic ones like timbre and more abstract ones like melody or rhythm) from
recordings via audio analysis. It focuses in particular on features that have been used in recent
genre classification research. Section 5.3 shows how the gap between what can be extracted
bottom-up and more abstract, human-centered concepts can be partly closed with the help of
inductive machine learning. New approaches to infer additional high-level knowledge about
music from extra-musical sources (the Internet) are presented in section 5.4. Section 5.5, finally,
discusses current research and application perspectives and identifies important questions that
will have to be addressed in the future.

5.2 Bottom-up Extraction of Descriptors from Audio

Extracting descriptors from audio recordings to characterise aspects of the audio content is not
a new area of research. Much effort has been spent on feature extraction in areas like speech
processing or audio signal analysis. It is impossible to give a comprehensive overview of all the
audio descriptors developed over the past decades. Instead, this chapter will focus solely on
descriptors that are useful for, or have been evaluated in, music classification tasks, in the context
of newer work in Music Information Retrieval. The real focus of this chapter is on extracting or
predicting higher-level descriptors via machine learning. Besides, a more in-depth presentation
of audio and music descriptors is offered in another chapter of this book (Chapter 4), so the
following sections only briefly recapitulate those audio features that have played a major role in
recent music classification work.

Connected to the concept of classification is the notion of music or generally sound sim-
ilarity. Obviously, operational similarity metrics can be used directly for audio and music clas-
sification (e.g., via nearest-neighbour algorithms), but also for a wide variety of other tasks.
In fact, some of the music description schemes presented in the following do not produce fea-
tures or descriptors at all, but directly compute similarities; they will also be mentioned, where
appropriate.
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5.2.1 Simple Audio Descriptors for Music
Classification

This section describes some common simple approaches to describe properties of audio (music)
signals. For all algorithms discussed here, the continuous stream of audio information is cut
into small, possibly overlapping fragments of equal length, called frames. The typical length of a
frame is about 20 ms. Usually, for each frame one scalar value per descriptor is calculated, which
can be done either on the time-domain or the frequency-domain representation of the signal. To
obtain a (scalar) descriptor that pertains to an entire audio track, the values of all frames can be
combined by, for example, applying simple statistics such as mean and standard deviation of all
individual values.

5.2.1.1 Time-Domain Descriptors

On the time-domain representation of the audio signal, several descriptors can be calculated.
An algorithm that mainly describes the power envelope of the audio signal is Root Mean Square
(RMS): The individual values appearing in each frame are squared, and the root of the mean of
these values is calculated. These values might be combined as described above, or by calculating
which fraction of all RMS values is below (e.g.) the average RMS value of a piece (Low Energy
Rate). Comparable to the RMS values are the Amplitude Envelope values, which are the maximum
absolute values of each frame. The amplitude envelope and RMS descriptors are commonly used
as a first step in algorithms that detect rhythmic structure.

The time-domain representation might also be used to construct measures that model the
concept of Loudness (i.e. the perceived “volume”). For example, a simple and effective way is to
take the 0.23th power of the RMS values.

Another possibility is to approximately measure the perceived brightness with the Zero
Crossing Rate. This descriptor simply counts how often the signal passes zero-level.

Also, the time-domain representation can be used to extract periodicity information from
it. Common methods are autocorrelation and comb filterbanks. Autocorrelation gives for each
given time lag the amount of self-similarity of the time domain samples by multiplying the
signal with a time-lagged version of itself. In the comb filterbank approach, for each periodicity
of interest, there is a comb filter with the appropriate resonance frequency.
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5.2.1.2 Frequency-Domain Descriptors

A number of simple measures are commonly applied to describe properties of the frequency
distribution of a frame:

• The Band Energy Ratio is the relation between the energy in the low frequency bands
and the energy of the high frequency bands. This descriptor is vulnerable to producing
unexpectedly high values when the energy in the low energy bands is close to zero.

• The Spectral Centroid is the center of gravity of the frequency distribution. Like the zero
crossing rate, it can be regarded as a measure of perceived brightness or sharpness.

• The Spectral Rolloff frequency is the frequency below which a certain amount (e.g. 95%) of
the frequency power distribution is concentrated.

These descriptors are calculated individually for each frame. The Spectral Flux is modeled
to describe the temporal change of the spectrum. It is the Euclidean distance between the
(normalised) frequency distributions of two consecutive frames, and can be regarded as a measure
of the rate at which the spectrum changes locally.

The descriptors mentioned so far represent rather simple concepts. A more sophisticated
approach are the Mel Frequency Cepstral Coefficients (MFCCs), which model the shape of the
spectrum in a compressed form. They are calculated by representing the spectrum on the
perceptually motivated Mel-Scale, and taking the logarithms of the amplitudes to simulate
loudness perception. Afterwards, the discrete cosine transformation is applied, which results in
a number of coefficients (MFCCs). Lower coefficients describe the coarse envelope of the frame’s
spectrum, and higher coefficients describe more detailed properties of the spectrum envelope.
Usually, the higher-order MFCCs are discarded, and only the lower MFCCs are used to describe
the music.

A popular way to compare two recorded pieces of music using MFCCs is to discard the
temporal order of the frames, and to summarise them by clustering (e.g., Logan and Salomon
[2001], Aucouturier and Pachet [2002a]). In the case of Aucouturier and Pachet [2002a], for
instance, the clustered MFCC representations of the frames are described by Gaussian Mixture
Models (GMMs), which are the features for the piece of music. A way to compare GMMs is
sampling: one GMM is used to produce random points with the distribution of this GMM, and
the likelihood that the other GMM produces these points is checked.
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It might seem that discarding the temporal order information altogether ignores highly
important information. But recent research Flexer et al. [2005] has shown that MFCC-based
description models using Hidden Markov Models (which explicitly model the temporal structure
of the data) do not improve classification accuracy (as already noted in Aucouturier and Pachet
[2004]), though they do seem to better capture details of the sound of musical recordings (at least
in terms of statistical likelihoods). Whether this really makes a difference in actual applications
remains still to be shown.

The interested reader is referred to Chapter 4 of this book for a much more comprehensive
review of audio descriptors and music description schemes.

5.2.2 Extracting Higher-level Musical Patterns

The basic intuition behind research on classification by higher-level descriptors is that many
musical categories can be defined in terms of high-level musical concepts. To some extent it is
possible to define musical genre, for example, in terms of the melody, rhythm, harmony and
instrumentation which are typical of each genre. Thus genre classification can be reduced to a set
of subproblems: recognising particular types of melodies, rhythms, harmonies and instruments.
Each of these subproblems is interesting in itself, and has attracted considerable research interest,
which we review here.

Early work on music signal analysis is reviewed by Roads Roads [1996]. The problems
that received the most attention were pitch detection, rhythm recognition and spectral analysis,
corresponding respectively to the most important features of music: melody, rhythm and timbre
(harmony and instrumentation).

Pitch detection is the estimation of the fundamental frequency of a signal, usually assuming
it to be monophonic. Common methods include: time domain algorithms such as counting of
zero-crossings and autocorrelation; frequency domain methods such as Fourier analysis and the
phase vocoder; and auditory models which combine time and frequency domain information
based on an understanding of human auditory processing. Recent work extends these methods to
find the predominant pitch (usually the melody note) in polyphonic mixtures Goto and Hayamizu
[1999], Gómez et al. [2003].

The problem of extracting rhythmic content from a musical performance, and in particular
finding the rate and temporal location of musical beats, has attracted considerable interest. A
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review of this work is found in Gouyon and Dixon [2005]. Initial attempts focussed on rhythmic
parsing of musical scores, that is without the tempo and timing variations that characterise
performed music, but recent tempo and beat tracking systems work quite successfully on a wide
range of performed music. The use of rhythm for classification of dance music was explored in
Dixon et al. [2003, 2004].

Spectral analysis examines the time-frequency content of a signal, which is essential for
extracting information about instruments and harmony. Short time Fourier analysis is the most
widely used technique, but many others are available for analysing specific types of signals,
most of which are built upon the Fourier transform. MFCCs, already mentioned in section 5.2.1.2
above, model the spectral contour rather than examining spectral content in detail, and thus can
be seen as implicitly capturing the instruments playing (rather than the notes that were played).
Specific work on instrument identification can be found in Herrera et al. [2003].

Regarding harmony, extensive research has been performed on the extraction of multiple
simulateous notes in the context of automatic transcription systems, which are reviewed by
Klapuri Klapuri [2004]. Transcription typically involves the follow steps: producing a time-
frequency representation of the signal, finding peaks in the frequency dimension, tracking these
peaks over the time dimension to produce a set of partials, and combining the partials to produce
a set of notes. The differences between systems are usually related to the assumptions made
about the input signal (for example the number of simultaneous notes, types of instruments,
fastest notes, or musical style), and the means of decision making (for example using heuristics,
neural nets or probabilistic reasoning).

Despite considerable successes, the research described above makes it increasingly clear
that precise, correct, and general solutions to problems like automatic rhythm identification or
harmonic structure analysis are not to be expected in the near future — the problems are simply
too hard and would require the computer to possess the kind of broad musical experience and
‘knowledge’ that human listeners seem to apply so effortlessly when listening to music. Recent
work in the field of Music Information Retrieval has thus started to focus more on approximate
solutions to problems like melody extraction Eggink and Brown [2004] or chord transcription
Yoshioka et al. [2004], or on more specialised problems, like the estimation of global tempo Alonso
et al. [2004] or tonality Gómez and Herrera [2004], or the identification of drum patterns Yoshii
et al. [2004].

Each of these areas provides a limited high level musical description of an audio signal.
Systems have yet to be defined which combine all of these aspects, but this is likely to be seen in
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the near future.

5.3 Closing the Gap: Prediction of High-level Descriptors via
Machine Learning

While the bottom-up extraction of features and patterns from audio continues to be a very active
research area, it is also clear that there are strict limits as to the kinds of music descriptions that
can be directly extracted from the audio signal. When it comes to intuitive, human-centered
characterisations such as ‘peaceful’ or ‘aggressive music’ or highly personal categorisations such
as ‘music I like to listen to while working’, there is little hope of analytically defining audio
features that unequivocally and universally define these concepts. Yet such concepts play a
central role in the way people organise and interact with and ‘use’ their music.

That is where automatic learning comes in. The only way one can hope to build a machine
that can associate such high-level concepts with music items is by having the machine learn the
correct associations between low-level audio features and high-level concepts, from examples
of music items that have been labeled with the appropriate concepts. In this section, we give
a very brief introduction to the basic concepts of machine learning and pattern classification, and
review some typical results with machine learning algorithms in musical classification tasks. In
particular, the automatic labeling of music pieces with genres has received a lot of interest lately,
and section 5.3.3 focuses specifically on genre classification. Section 5.3.4 then reports on recent
experiments with more subjective concepts, which clearly show that a lot of improvement is still
needed. One possible avenue towards achieving this improvement will then be discussed in
section 5.4.

5.3.1 Classification via Machine Learning

Inductive learning as the automatic construction of classifiers from pre-classified training exam-
ples has a long tradition in several sub-fields of computer science. The field of statistical pattern
classification Duda et al. [2001], Hastie et al. [2001] has developed a multitude of methods for
deriving classifiers from examples, where a ‘classifier’, for the purposes of this chapter, can be
regarded as a black box that takes as input a new object to be classified (described via a set of
features) and outputs a prediction regarding the most likely class the object belongs to. Classifiers
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are automatically constructed via learning algorithms that take as input a set of example objects
labeled with the correct class, and construct a classifier from these that is (more or less) consistent
with the given training examples, but also makes predictions on new, unseen objects — that is,
the classifier is a generalisation of the training examples.

In the context of this chapter, training examples would be music items (e.g., songs) charac-
terised by a list of audio features and labeled with the appropriate high-level concept (e.g., “this
is a piece I like to listen to while working”), and the task of the learning algorithm is to produce
a classifier that can predict the appropriate high-level concept for new songs (again represented
by their audio features).

Common training and classification algorithms in statistical pattern classification Duda
et al. [2001] include nearest neighbour classifiers (k-NN), Gaussian Mixture Models, neural net-
works (mostly multi-layer feed-forward perceptrons), and support vector machines Cristianini
and Shawe-Taylor [2000].

The field of Machine Learning Mitchell [1997] is particularly concerned with algorithms
that induce classifiers that are interpretable, i.e., that explicitly describe the criteria that are asso-
ciated with or define a given class. Typical examples of machine learning algorithms that are
also used in music classification are decision trees Quinlan [1986] and rule learning algorithms
Fürnkranz [1999].

Learned classifiers must be evaluated empirically, in order to assess the kind of prediction
accuracy that may be expected on new, unseen cases. This is essentially done by testing the
classifier on new (labeled) examples which have not been used in any way in learning, and
recording the rate of prediction errors made by the classifier. There is a multitude of procedures
for doing this, and a lot of scientific literature on advantages and shortcomings of the various
methods. The basic idea is to set aside a part of the available examples for testing (the ‘test
set’), then inducing the classifier from the remaining data (the ‘training set’), and then testing
the classifier on the test set. A systematic method most commonly used is known as n-fold cross-
validation, where the available data set is randomly split into n subsets (‘folds’), and the above
procedure is carried out n times, each time using one of the n folds for testing, and the remaining
n−1 folds for training. The error (or conversely, accuracy) rates reported in most learning papers
are based on experiments of this type.

A central issue that deserves some discussion is the training data required for learning.
Attractive as the machine learning approach may be, it does require (large) collections of rep-
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resentative labeled training examples, e.g., music recordings with the correct categorisation
attached. Manually labeling music examples is a very laborious and time-consuming process,
especially when it involves listening to the pieces before deciding on the category. Additionally,
there is the copyright issue. Ideally, the research community would like to be able to share com-
mon training corpora. If a researcher wants to test her own features in classification experiment,
she needs access to the actual audio files.

There are some efforts currently being undertaken in the Music Information Retrieval com-
munity to compile large repositories of labeled music that can be made available to all interested
researchers without copyright problems. Noteworthy examples of this are Masataka Goto’s
RWC Music Database (http://staff.aist.go.jp/m.goto/RWC-MDB), the IMIRSEL (International Mu-
sic Information Retrieval System Evaluation Laboratory) project at the University of Illinois at
Urbana-Champaign (http://www.music-ir.org/evaluation — see also Downie et al. [2004]), and
the new FreeSound Initiative (http://freesound.iua.upf.edu).

5.3.2 Learning Algorithms Commonly Used in Music Classification

In this section, we briefly review some of the most common learning algorithms that are used in
music classification and learning tasks.

Decision trees Quinlan [1986] are probably the most popular class of classification models
in machine learning, and they are widely used also in Music Information Retrieval. In West and
Cox [2004], for instance, decision tree learning algorithms have been used to build a model of the
distribution of frame values.

Because of its known merits, k-NN classification is widely used. Sometimes, the feature
values – possibly after feature selection – of each piece are regarded as a vector, and the distance
used for k-NN classifier is the euclidean distance between individual pieces (e.g. Costa et al.
[2004], Gouyon et al. [2004]) or to representative reference vectors (e.g. Hellmuth et al. [2004],
Kastner et al. [2004]).

Support Vector Machines (SVMs) are also applied to music classification: e.g. Xu et al.
[2003] use them for genre classification, and Li and Ogihara [2003] train several SVMs to recognise
mood labels, where each SVM decides if one specific label is present in the music.

Gaussian Mixture Models (GMMs) are useful for estimating the distribution of feature
values. They can be used as a classifier by modeling each class as a GMM; an instance is then
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classified by calculating, for each class (GMM), the likelihood that the instance was produced by
the respective GMM, and predicting the class with the maximum likelihood. In Liu et al. [2003],
mood detection in classical music is done based on this approach. GMM classifiers have also
been used in Burred and Lerch [2003], Tzanetakis and Cook [2002] for genre classification.

Neural Networks have also been applied to music classification: Costa et al. [2004] use a
multilayer perceptron to determine the class of a piece given its feature vector. Hellmuth et al.
[2004] use a more elaborate approach by training a separate neural network for each class, and
an additional one that combines the outputs of these networks.

5.3.3 Genre Classification:
Typical Experimental Results

The experimental results found in the literature on genre classification are not easy to compare,
as researchers use many different music collections to evaluate their methods. Also, the ways
of annotating the collections vary: some researchers label the pieces according to their own
judgment, while others use online databases for the assignment of genre labels. Additionally,
different authors often tackle slightly different problems (such as categorical vs. probabilistic
classification), which makes a comparison of the results even more difficult. These facts should
be kept in mind when assessing the examples given in this section.

Generally, when trying to separate the classes Pop and Classical, very high accuracies are
reached, suggesting that this task is not too difficult. E.g., Costa et al. [2004] achieve up to 90.3%
classification accuracy, and Mierswa and Morik [2005] report even 100% on 200 pieces. In both
cases, the baseline is one half. Although Xu et al. [2003] report a classification accuracy of 93% for
four genres, in general the classification accuracy decreases when the number of genres grows.

For classification into dance music genres, Gouyon et al. [2004] obtain up to 78,9% accuracy
(15.9% baseline) when classifying 698 pieces of music into eight classes. This classification is based
on a number of rhythmic descriptors and a rule-based classifier whose rules were designed
manually. For a wider range of musical contents, divided into eleven genres, Uhle and Dittmar
[2004] report a classification accuracy of 67.6%, also based on rhythm features.

At the ISMIR 2004 conference, a comparison of different audio description algorithms was
conducted in the form of a contest1. For the section of genre classification, the winning algorithm

1http://ismir2004.ismir.net/ISMIR Contest.html
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achieved a classification accuracy of 84.07% correct answers. The test collection consisted of 729
pieces, divided into six classes, with a baseline of 43.9%.

5.3.4 Trying to Predict Labels Other Than Genre

Genre or style is a descriptor that is useful for many applications, especially in commercial
settings. Even though the concept of ‘genre’ is not well defined (see, e.g., Aucouturier and Pachet
[2003]), it is still much more ‘objective’ than the kinds of personal characterisations human
listeners attach to their music. But it is precisely these personal, subjective categorisations
(“happy music”, “aggressive music”, “music I like whan I am sad”, “music that one can dance
to”) that, if learnable by computers, would open new possibilities for intelligent and rewarding
musical interactions between humans and machines.

A small preliminary experiment on the learnability of subjective, non-genre categorisations
is reported in this section. As will be seen, the results are rather poor, and a lot of improvement
is still needed. Web-based learning about music is a promising alternative that might help
overcome the current limitations; that is the topic of the next section (Section 5.4).

The experiment presented here aimed to investigate the learnability of the categorisations
mood (happy / neutral / sad), perceived tempo (very slow / slow / medium / fast / very fast /

varying), complexity (low / medium / high), emotion (soft / neutral / aggressive), focus (vocal / both
/ instruments), and genre (blues / classical / electronica / folk / jazz / new age / noise / rock / world).
To this end, each piece in a music collection of 729 pieces was labeled with the according value.

This data basis was used to examine the discriminative power of several descriptor sets in
combination with a number of machine learning algorithms. The descriptor sets consisted mainly
of descriptors that are widely used for music classification tasks (see section 5.2.1 above). Three
different descriptor sets were tested: The set that was also used in Tzanetakis and Cook [2002],
a set made from some Mpeg7 Low Level Descriptors, and a set that contained all descriptors of
the above sets, together with some additional ones for rhythm and melody description.

To train the machine learning algorithms, mean and variance of the descriptors’ values for
a 30-second excerpt of the piece of music were taken as attributes. Table 5.1 shows the highest
classification accuracies that were achieved with different learning algorithms; accuracy was
estimated via stratified tenfold cross validation. The evaluated learning algorithms were J48 (a
decision tree learner, available — like all the other learning algorithms mentioned here — in the
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machine learning toolkit WEKA2), SMO (a support vector machine), Naive Bayes, Naive Bayes
with Kernel estimation, Boosting, Boosting with J48, Regression with MP5, Linear Regression,
and k-NN with k = 1, 3, 5, 10. The table also lists the results obtained when applying the algorithm
from Aucouturier and Pachet [2004] with to the same categorisations. For this algorithm, the
best values obtained for k-NN classification with k = 1, 3, 5, 10 are shown. The other learning
algorithms were not applicable to its feature data. Also, the baseline is given (i.e. the classification
accuracy achieved when always guessing the most frequent class).

mood perceived tempo complexity emotion focus genre
Baseline 50.00 % 42.53 % 75.66 % 44.46 % 68.92 % 60.48 %
Set from Tzanetakis and Cook [2002] 50.00 % 42.53 % 76.63 % 45.06 % 71.08 % 65.66 %
Some Mpeg7 LLDs 50.00 % 43.13 % 76.14 % 46.75 % 70.00 % 64.94 %
“Large” Set 51.08 % 44.70 % 76.87 % 47.47 % 71.20 % 69.52 %
Best from Aucouturier and Pachet [2004] 50.24 % 48.67 % 78.55 % 57.95 % 75.18 % 70.84 %

Table 5.1: Best classification accuracies for the different categorisations in the small preliminary
experiment.

These results show that with the examined techniques, in some cases it is even not possible
to get classification accuracies higher than the baseline. For all categorisations except mood,
the algorithm from Aucouturier and Pachet [2004] performed better than the other approaches.
There is a number of ways in which this experiment could be improved, e.g., by the application of
feature selection algorithms or the development of dedicated descriptors for each different task.
Still, the results point to some fundamental limitations of the feature-based learning approach;
concepts like the emotional quality of a piece of music seem to elude a purely audio-based
approach.

5.4 A New Direction: Inferring High-level Descriptors from
Extra-Musical Information

Listening to and ‘making sense of’ music is much more than decoding and parsing an incoming
stream of sound waves into higher-level objects such as onsets, notes, melodies, harmonies, etc.

2Software freely available from http://www.cs.waikato.ac.nz/ml/
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Music is embedded in a rich web of cultural, historical, cultural, and social (and marketing)
contexts that influence how music is heard, interpreted, and categorised. That is, many qualities
or categorisations attributed to a piece of music by listeners cannot solely be explained by the
content of the audio signal itself.

Also, recent research on genre classification is showing clearly that purely audio-based
approaches to music classification may be hitting a kind of ‘glass ceiling’ Aucouturier and Pachet
[2004]: there seem to be strict limits to the level of classification accuracy that can be obtained
with purely audio-based features, no matter how sophisticated the audio descriptors. From a
pragmatic point of view, then, it is clear that, if at all, high-quality automatic music annotation
and classification can only be achieved by also taking into account and exploiting information
sources that are external to the music itself.

The Internet is a rich, albeit unstructured, source of potential information, where millions
of music lovers and experts discuss, describe, and exchange music. Possible information sources
include personal web pages, music and concert reviews published on the Web, newspaper articles,
discussion forums, chat rooms, playlists exchanged through peer-to-peer networks, and many
more. A common term for denoting all the musically relevant information that is potentially
“out there” is ‘community metadata’ Whitman and Lawrence [2002]. Recent approaches to high-
level music characterisation try to automatically extract relevant descriptors from the Internet
— mostly from general, unstructured web pages —, via the use of information retrieval, text
mining, and information extraction techniques (e.g., Baumann and Hummel [2003], Whitman
and Ellis [2004], Whitman and Lawrence [2002], Whitman and Smaragdis [2002]). In a sense, this
is like learning about music without ever listening to it, by analysing the way people talk about
and describe music, rather than what the music actually sounds like.

In the following, two research projects are briefly presented that show in a prototypical
way how the Internet can be exploited as a source of information about – in this case – music
artists. Section 5.4.1 shows how artists can be probabilistically related to genres via web mining,
and section 5.4.2 presents an approach to the hierarchical clustering of music artists, and the
automatic labeling of the individual clusters with descriptive terms gleaned from the Web.

5.4.1 Assigning Artists to Genres via Web Mining

In this section we will explain how to extract features (words) related to artists from web pages
and how to use these features to construct a probabilistic genre classifier. This permits the
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computer to classify new artists present on the web using the Internet community’s ‘collective
knowledge’. To learn the concept of a genre the method requires a set of typical artists for each
genre in advance. Based on these artists and a set of web pages that talk about these artists, a
characteristic profile is created for each genre. Using this profile (i.e. a weighted list of typical
keywords) any artist can be classified by simple evaluation of word occurrences on related web
pages. The following is a simplified account of the basic method; the details can be found in
Knees et al. [2004].

To obtain useful data for genre profile generation, Internet search engines like Google are
queried with artist names, along with some constraints (e.g., +music +review) that should filter
out non-musical pages, and the top ranked pages are retrieved. (Without these constraints, a
search for groups such as Kiss would result in many unrelated pages). The retrieved pages tend
to be common web pages such as fan pages, reviews from online music magazines, or music
retailers. The first N available top-ranked webpages for each query are retrieved, all HTML
markup tags are removed, so that only the plain text content is left, and common English stop
word lists are used to remove frequent terms (e.g. a, and, or, the).

The features by which artists are characterised are the individual words that occur in any
of the pages. In order to identify those words that may indicate what genre an artist belongs
to, the next important step is feature weighting. A common method for this comes from the
field of Information Retrieval and is known as term frequency × inverse document frequency
(tf × id f ) Salton and Buckley [1988]. For each artist a and each term t appearing in the retrieved
pages, we count the number of occurrences tfta (term frequency) of term t in documents related to
a, and d ft, the number of pages the term occurred in (document frequency). These are combined
by multiplying the term frequency with the inverse document frequency. Basically, the intention
of the tf × id f function is to assign a high score to terms that occur frequently, but also to reduce
the score if these terms occur on many different pages and thus do not contain useful information.

In the approach described in Knees et al. [2004], an additional step is performed to find
those terms that are most discriminative for each genre: a χ2 test is used to select those terms
that are least independent of (i.e., are likely to be predictive of) the classes. Selecting the top
N terms for each category and scaling all χ2 values per category such that the score for the top
ranked term equals 1.0, gives a list of terms that seem to be typical of a given genre. An example
of such a list for the genre heavy metal/hard rock is shown in Table 5.2. Note that neither of the
constraint words (music and review) are included (they occur in all the pages, but they do not
help in discriminating the genres).
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The top 4 words are all (part of) artist names which were queried. However, many
artists which are not part of the queries are also in the list, such as Phil Anselmo (Pantera),
Hetfield, Hammett, Trujillo (Metallica), and Ozzy Osbourne. Furthermore, related groups such
as Slayer, Megadeth, Iron Maiden, and Judas Priest are found as well as album names (Hysteria,
Pyromania, ...) and song names (Paranoid, Unforgiven, Snowblind, St. Anger, ...) and other
descriptive words such as evil, loud, hard, aggression, and heavy metal.

To classify previously unseen artists we simply query Google with the artist name, count
the occurrences of the characteristic genre terms on the retrieved web pages, and multiply these
numbers with their respective scores for each genre. The scores in each genre are summed up,
and the probability of membership of an artist to a genre is then computed as the fraction of the
achieved score of each genre over the sum of scores over all genres.

In Knees et al. [2004], this procedure was tested using a genre taxonomy of 14 genres,
and it was shown that correct genre recognition rates of 80% and better are achievable with this
purely web-based approach, which compares very favourably with audio-based classification
(see section 5.3.3 above).

On top of this classification system, an interactive demo applet (the “GenreCrawler”) was
implemented that permits the user to experiment with the system by typing in arbitrary new
artists. In fact, the words to be typed in need not be artist names at all — they could be anything.
The learned classifier can relate arbitrary words to genres, if that makes sense at all. For example,
a query for “Pathétique” results in an unambiguous answer: Classical Music. A screenshot of the
GenreCrawler at work can be seen in Figure 5.1.

5.4.2 Learning Textual Characterisations

It is easy to convert the linguistic features (words) identified with the above method into a
similarity measure, again using standard methods from information retrieval. Similarity measures
have a wide range of applications, and one is presented in this section: learning to group music
artists into meaningful categories, and describing these categories with characteristic words.
Again, this is exploiting the Internet as an information source and could not be achieved on an
audio basis alone.

More precisely, the goal is to find words to describe what a group of artists has in common,
or what distinguishes it from other groups. Such information can be used for hierarchical user
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1.00 *sabbath 0.26 heavy 0.17 riff 0.12 butler
0.97 *pantera 0.26 ulrich 0.17 leaf 0.12 blackened
0.89 *metallica 0.26 vulgar 0.17 superjoint 0.12 bringin
0.72 *leppard 0.25 megadeth 0.17 maiden 0.12 purple
0.58 metal 0.25 pigs 0.17 armageddon 0.12 foolin
0.56 hetfield 0.24 halford 0.17 gillan 0.12 headless
0.55 hysteria 0.24 dio 0.17 ozzfest 0.12 intensity
0.53 ozzy 0.23 reinventing 0.17 leps 0.12 mob
0.52 iommi 0.23 lange 0.16 slayer 0.12 excitable
0.42 puppets 0.23 newsted 0.15 purify 0.12 ward
0.40 dimebag 0.21 leppards 0.15 judas 0.11 zeppelin
0.40 anselmo 0.21 adrenalize 0.15 hell 0.11 sandman
0.40 pyromania 0.21 mutt 0.15 fairies 0.11 demolition
0.40 paranoid 0.20 kirk 0.15 bands 0.11 sanitarium
0.39 osbourne 0.20 riffs 0.15 iron 0.11 *black
0.37 *def 0.20 s&m 0.14 band 0.11 appice
0.34 euphoria 0.20 trendkill 0.14 reload 0.11 jovi
0.32 geezer 0.20 snowblind 0.14 bassist 0.11 anger
0.29 vinnie 0.19 cowboys 0.14 slang 0.11 rocked
0.28 collen 0.18 darrell 0.13 wizard 0.10 drummer
0.28 hammett 0.18 screams 0.13 vivian 0.10 bass
0.27 bloody 0.18 bites 0.13 elektra 0.09 rocket
0.27 thrash 0.18 unforgiven 0.13 shreds 0.09 evil
0.27 phil 0.18 lars 0.13 aggression 0.09 loud
0.26 lep 0.17 trujillo 0.13 scar 0.09 hard

Table 5.2: The top 100 terms with highest χ2
tc values for genre “heavy metal/hard rock” defined

by 4 artists (Black Sabbath, Pantera, Metallica, Def Leppard). Words marked with * are part of
the search queries. The values are normalised so that the highest score equals 1.0.

interfaces to explore music collections an the artist level Pampalk et al. [2005]. A simple text-based
interface is shown in Figure 5.2 below.

As a first step, artists must be clustered hierarchically, and then appropriate terms (words)
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Figure 5.1: The GenreCrawler (cf. Knees et al. [2004]) trying to classify Elvis Presley.

must be selected to describe these clusters. The basis of clustering is a similarity measure,
which in our case is based on the linguistic features (characteristic words) extracted from Web
pages by the GenreCrawler. There is a multitude of methods for hierarchical clustering. In the
system described here Pampalk et al. [2005], basically, a one-dimensional self organising map
(SOM) Kohonen [2001] is used, with extensions for hierarhical structuring Miikkulainen [1990],
Koikkalainen and E.Oja [1990]. Overlaps between the clusters are permitted, such that an artist
may belong to more than one cluster. To obtain a multi-level hierarchical clustering, for each
cluster found another one-dimensional SOM is trained (on all artists assigned to the cluster) until
the cluster size falls below a certain limit.

The second step is the selection of characteristic terms to describe the individual clusters.
The goal is to select those words that best summarise a group of artists. The assumption
underlying this application is that the artists are mostly unknown to the user (otherwise we
could just label the clusters with the artists’ names).

There are a number of approaches to select characteristic words Pampalk et al. [2005].
One of these was developed by Lagus and Kaski (LK) Lagus and Kaski [1999] for labeling large
document collections organised by SOMs. LK only use the term frequency tfta for each term t
and artist a. The heuristically motivated ranking formula (higher values are better) is,

ftc = (tftc/
∑

t′
tft′c) ·

(tftc/
∑

t′ tft′c)∑
c′(tftc′/

∑
t′ t ft′c′)

, (5.1)

where tftc is the average term frequency in cluster c. The left side of the product is the importance
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Figure 5.2: Screen shot of the HTML user interface to a system that automatically infers textual
characterisations of artist clusters (cf. Pampalk et al. [2005]).

of t in c defined through the frequency of t relative to the frequency of other terms in c. The right
side is the importance of t in c relative to the importance of t in all other clusters.

To illustrate, Figure 5.2 shows a simple HTML interface that permits a user to explore the
cluster structure learned by the system. There are two main parts to it: the hierarchy of clusters
visualised as a grid of boxed texts and, just to the right of it, a display of a list of artists mapped to
the currently selected cluster. The clusters of the first level in the hierarchy are visualised using
the five boxes in the first (top) row. After the user selects a cluster, a second row appears which
displays the children of the selected cluster. The selected clusters are highlighted in a different
color. The hierarchy is displayed in such a way that the user can always see every previously
made decision on a higher level. The number of artists mapped to a cluster is visualised by a bar
next to the cluster. Inside a text box, at most the top 10 terms are displayed. The value of the
ranking function for each term is coded through the color in which the term is displayed. The
best term is always black and as the values decrease the color fades out. In the screenshot, at the
first level the second node was selected, on the second level the fifth node, and on the third level,
the first node. More details about method and experimental results can be found in Pampalk
et al. [2005].

To summarise, the last two sections were meant to illustrate how the Internet can be used
as a rich source of information about music. These are just simple first steps, and a lot of research
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on extracting richer music-related information from the Web can be expected.

A general problem with web-based approaches is that many new and not so well known
artists or music pieces do not appear on web pages. That limits the approach to yesterday’s
mainstream western culture. Another issue is the dynamics of web contents (e.g. Lawrence and
Giles [1999]). This has been studied in Knees et al. [2004] and the study was continued in Knees
[2004]. The experiments reported there indicate that, while the web may indeed be unstable,
simple approaches like the ones described here may be highly robust to such fluctuations in web
contents. Thus, the web mining approach may turn out to be an important pillar in research on
music categorisation, if not music ‘understanding’.

5.5 Research and Application Perspectives

Building computers that can ‘make sense’ of music has long been a goal topic that inspired
scientists, especially in the field of Artificial Intelligence (AI). For the past 20 or so years, research
in AI and Music has been aiming at creating systems that could in some way mimic human
music perception, or to put it in more technical terms, that could recognise musical structures
like melodies, harmonic structure, rhythm, etc. at the same level of competence as human experts.
While there has been some success in specialised problems such as beat tracking, most of the truly
complex musical capabilities are still outside of the range of computers. For example, no machine
is currently capable of correctly transcribing an audio recording of even modest complexity, or of
understanding the high-level form of music (e.g., recognising whether a classical piece is in sonata
form, identifying a motif and its variations in a Mozart sonata, or unambiguously segmenting a
popular piece into verse and chorus and bridge).

The new application field of Music Information Retrieval has led to, or at least contributed
to, a shift of expectations: from a practical point of view, the real goal is not so much for a
computer to ‘understand’ music in a human-like way, but simply to have enough ‘intelligence’
to support intelligent musical services and applications. Perfect musical understanding may not
be required here. For instance, genre classification need not reach 100% accuracy to be useful
in music recommendation systems. Likewise, a system for quick music browsing (e.g., Goto
[2003]) need not perform a perfect segmentation of the music — if it finds roughly those parts in
a recording where some of the interesting things are going on, that may be perfectly sufficient.
Also, relatively simple capabilities like classifying music recordings into broad categories (genres)
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or assigning other high-level ‘semantic’ labels to pieces can be immensely useful.

As has been indicated in this chapter, some of these capabilities are within reach, and
indeed, some highly interesting real-world applications of this technology are currently emerging
in the music market. ¿From the research point of view, it is quite clear that there is still ample
room for improvement, even within the relatively narrow domain of learning to assign high-level
descriptors and labels to music recordings, which was the topic of this chapter. For instance,
recent work on musical web mining has shown the promise of using extra-musical information
for music classification, but little research has so far been performed on integrating different
information sources — low-level audio features, higher-level structures automatically extracted
from audio, web-based features, and possibly lyrics (which can also be recovered automatically
from the Internet Knees et al. [2005]) — in non-trivial ways.

A concept of central importance to MIR is music similarity measures. These are useful not
only for classification, but for a wide variety of practical application scenarios, e.g., the auto-
matic structuring and visualisation of large digital music collections Pampalk et al. [2002, 2004],
automatic playlist generation (e.g., Aucouturier and Pachet [2002b]), automatic music recom-
mendation, and many more. Current music similarity measures are usually based on lower-level
descriptors which are somehow averaged over a whole piece, so that a Euclidean distance metric
can be applied to them. More complex approaches like clustering and distribution modelling
via mixtures give a slightly more detailed account of the contents of a piece, but still ignore the
temporal aspect of music. While preliminary experiments with Hidden Markov Models Au-
couturier and Pachet [2004], Flexer et al. [2005], which do model temporal dependencies, do not
seem to lead to improvements when based on low-level timbral features (like MFCCs), there is no
reason to assume that the integration of higher-level descriptors (like melody, harmony, etc.) and
temporal modelling will not permit substantial improvement. A lot of research on these issues
is to be expected in the near future, driven by the sheer practical potential of music similarity
measures. To put it simply: computers equipped with good music similarity measures may not
be able to make sense of music in any human-like way, but they will be able to do more and more
sensible things with music.
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