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Abstract. It is well known that many hard tasks considered in machine learning
and data mining can be solved in a rather simple and robust way with an instance-
and distance-based approach. In this work we present another difficult task: learning,
from large numbers of complex performances by concert pianists, to play music
expressively. We model the problem as a multi-level decomposition and prediction
task. We show that this is a fundamentally relational learning problem and propose
a new similarity measure for structured objects, which is built into a relational
instance-based learning algorithm named DISTALL. Experiments with data derived
from a substantial number of Mozart piano sonata recordings by a skilled concert
pianist demonstrate that the approach is viable. We show that the instance-based
learner operating on structured, relational data outperforms a propositional k-NN
algorithm. In qualitative terms, some of the piano performances produced by DIS-
TALL after learning from the human artist are of substantial musical quality; one
even won a prize in an international ‘computer music performance’ contest. The
experiments thus provide evidence of the capabilities of ILP in a highly complex
domain such as music.

Keywords: Relational instance-based learning, music

1. Introduction

Instance-based learning has always been very popular within machine
learning and data mining. During the long research history on IBL,
countless studies have stressed its strong aspects: algorithmic simplic-
ity, incrementality, almost obvious extensions for handling noisy ex-
amples and/or attributes, the ability to deal with discrete as well as
with continuous attributes, and often surprisingly good performance.
Although most research on IBL has been done in a propositional set-
ting, recently there has been a growing interest in transferring the
successful IBL framework to the richer first-order logic (FOL) repre-
sentation. A number of instance-based learners operating in the FOL
framework have already been developed — e.g. KBG (Bisson, 1992),
RIBL (Emde,Wettscherek, 1996), STILL (Sebag,Rouveirol, 1997) —
and shown to work well on a number of tasks.

This paper introduces another difficult task for relational IBL, from
the area of music research. We would like to automatically build, via in-
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ductive learning from ‘real-world’ data (i.e., real performances by highly
skilled musicians), predictive models of certain aspects of performance
(e.g. expressive tempo, timing, dynamics, etc). Previous research has
shown that computers can indeed find and describe interesting and
useful regularities at the level of individual notes. Using a new machine
learning algorithm (Widmer, 2003), we succeeded in discovering a small
set of simple, robust and highly general rules that predict a substantial
part of the note-level choices of a performer (e.g., whether (s)he will
shorten or lengthen a particular note) with high precision (Widmer,
2002). However, music performance is a highly complex activity, and
the note level is far from sufficient as a basis for a complete model
of expressive performance. The goal of our ongoing work is to build
quantitative models of musical expression at different levels of abstrac-
tion: we would like to learn tempo and dynamics strategies at levels of
hierarchically nested phrases.

In this paper we show how relational IBL can be applied to learn
expressive tempo and dynamics patterns at different phrase levels.
We also propose a new similarity measure for structured objects de-
scribed in FOL, which is a fairly straightforward modification of exist-
ing measures and can be regarded as a combination of two techniques:
(1) RIBL’s (Emde,Wettscherek, 1996) strategy for assessing similarity
between FOL objects by computing the similarity between objects’
properties and the similarity of the objects related to them, and (2) a
definition of distance between two sets based on the notion of transport
networks, as proposed in (Ramon,Bruynooghe, 1998).

Our similarity measure has been built into a relational instance-
based learner named DISTALL and applied to our music task. DIS-
TALL predicts timing and dynamics patterns for phrases in a new piece
by analogy to the most similar phrases in the training set. Empirical
evaluation shows that the relational IBL approach is viable in the
complex real-world domain – the pieces learned by DISTALL are of
substantial musical quality; one even won a prize in an international
‘computer music performance’ contest. Experiments also show that
DISTALL produces clearly better results than both the related algo-
rithm RIBL and a propositional k-NN. The latter provides additional
evidence for the benefits of relational instance-based learning.

The paper is organized as follows: Section 2 introduces the notion of
expressive music performance and its representation via performance
curves. We also show how hierarchically nested musical phrases are rep-
resented in FOL, and how complex tempo and dynamics curves can be
decomposed into well-defined training instances for the instance-based
learning algorithm. In Section 3 we describe our distance measure in
detail. Section 4 gives empirical results on DISTALL’s performance and
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a comparison with both, RIBL, and a propositional k-NN algorithm.
In Section 5 we show two ways of improving the learning performance.
Section 6 talks about the qualitative, musical side of the results. Future
research plans are then discussed in the final Section 7.

2. Real-World Task: Learning To Play Music Expressively

The work presented here is part of a large research project that stud-
ies the fundamentals of expressive music performance via AI and, in
particular, machine learning (Widmer et al., 2003). Expressive mu-
sic performance is the art of shaping a musical piece by continuously
varying important parameters like tempo, loudness, etc. while playing
a piece. Instead of playing a piece of music with constant tempo or
loudness, (skilled) performers rather speed up at some places, slow
down at others, stress certain notes or passages etc. The way this
‘should be’ done is not specified precisely in the written score1, but
at the same time it is absolutely essential for the music to sound
alive. The aim of this work is learning predictive models of two of
the most important expressive parameters: timing (tempo variations)
and dynamics (loudness variations).

The tempo and loudness variations can be represented as curves
which quantify the variations of these parameters for each note relative
to some reference value (e.g. average loudness or tempo of the same
piece). Figure 1 shows a dynamics curve of a small part of the Mozart
piano Sonata K.279 (C major), 1st movement, as played by a Viennese
concert pianist (computed from recordings on a Bösendorfer SE290
computer-monitored grand piano2). Each point represents the relative
loudness with which a particular melody note was played (relative to
an average loudness of the piece); a purely mechanical (unexpressive)
rendition of the piece would correspond to a flat horizontal line at
y = 1.0. Tempo variations can be represented in an analogous way.

A careful examination of the figure reveals some trends in the dy-
namics curve. For instance, one can notice an up-down, crescendo-
decrescendo tendency over the presented part of the piece and relatively
consistent smaller up-down patterns embedded in it. This is not an
accident since we chose to show a part of the piece which is a musically

1 The score is the music as actually printed.
2 The SE290 is a full concert grand piano with a special mechanism that measures

every key and pedal movement with high precision and stores this information in
a format similar to MIDI. From these measurements, and from a comparison with
the notes in the written score, the tempo and dynamics curves corresponding to the
performances can be computed.
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Figure 1. Dynamics curve (relating to melody notes) of performance of Mozart
Sonata KV.279, 1st movement, mm. 31–38, by a Viennese concert pianist.

meaningful unit: a high-level phrase. This phrase contains a number
of lower-level phrases, which are apparently also ‘shaped’ by the per-
former. The hierarchical, four-level phrase structure of this passage is
indicated by four levels of brackets at the bottom of the figure. The
aim of our work is the automatic induction of tempo and dynamics
strategies, at different levels of the phrase structure, from large amounts
of real performances by concert pianists. The heart of our system, the
relational instance-based learning algorithm described below, recog-
nizes similar phrases from the training set and applies their expressive
patterns to a new (test) piece. In this section we will describe the steps
which precede and succeed the actual learning: First we show how
hierarchically nested phrases are represented in first-order logic. We
then show how complex tempo and dynamics curves as measured in real
performances can be decomposed into well-defined training instances
for the learner. Finally, we discuss the last step: at prediction time, the
shapes predicted by the learner for nested phrases at different levels
must be combined into a final performance curve that can be used to
produce a computer-generated ‘expressive’ performance.

2.1. Representing Musical Phrases in FOL

Phrases are segments of music heard and interpreted as coherent units;
they are important structural building blocks of music. Phrases are
organized hierarchically: smaller phrases are grouped into higher-level
phrases, which are in turn grouped together, constituting a musical
context at a higher level of abstraction etc. The phrases and relations
between them can be naturally represented in first-order logic.

Consider Figure 2. It shows the dynamics curve corresponding to a
small portion (2.5 bars) of a Mozart sonata performance, along with
the piece’s underlying phrase structure. For all scores in our data set
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Figure 2. Phrase representation used by our relational instance-based learning
algorithm.

phrases are organized at three hierarchical levels, based on a manual
phrase structure analysis. The musical content of each phrase is en-
coded in the predicate phrCont/11. It has the form phrCont(Id,A1,A2,...),
where Id encodes the phrase identifier and A1,A2,... are attributes that
describe very basic phrase properties. The first seven of the ten at-
tributes are numeric: the length of a phrase, the relative position of the
highest melodic point (the ‘apex’) within a phrase, the melodic interval
between starting note and apex, the melodic interval between apex
and ending note, metrical strengths of starting note, apex, and ending
note. The last three attributes are symbolic: the harmonic progression
between start, apex, and end, and two boolean attributes which state
whether the phrase ends with a ‘cumulative rhythm’, and whether it
ends with a cadential chord sequence.

Relations between phrases are specified via the predicate contains(Id1,Id2),
which states that the bigger phrase Id1 contains the smaller one Id2.
Note that smaller phrases (consisting only of a few melody notes)
are described in detail by the predicate phrCont/11. For the bigger
phrases — containing maybe several bars — the high-level attributes
in phrCont/11 are not sufficient for a full description. But having links
to the lower-lever phrases through the contains/2 predicate and their
detailed description in terms of phrCont/11, we can also obtain detailed
insight into the contents of bigger phrases.

In ILP terms, the description of the musical scores through the pred-
icates phrCont/11 and contains/2 defines the background knowledge
of the domain. What is still needed in order to learn are the training
examples, i.e. for each phrase in the training set, we need to know how
it was played by a musician. This information is given in the predicate
phrShape(Id,Coeffs), where Coeffs encode information about the way
the phrase was played by a pianist. This is computed from the tempo
and dynamics curves, as described in the following section.
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2.2. Deriving the Training Instances: Multilevel

Decomposition of Performance Curves

Given a complex tempo or dynamics curve (see Figure 1) and the under-
lying phrase structure, we need to calculate the most likely contribution
of each phrase to the overall observed expression curve, i.e., we need
to decompose the complex curve into basic expressive phrase ‘shapes’.
As approximation functions to represent these shapes we decided to
use the class of second-degree polynomials (i.e., functions of the form
y = ax2 + bx + c), because there is ample evidence from research in
musicology that high-level tempo and dynamics are well characterized
by quadratic or parabolic functions (Todd, 1992). Decomposing a given
expression curve is an iterative process, where each step deals with a
specific level of the phrase structure: for each phrase at a given level,
we compute the polynomial that best fits the part of the curve that
corresponds to this phrase, and ‘subtract’ the tempo or dynamics devi-
ations ‘explained’ by the approximation. The curve that remains after
this subtraction is then used in the next level of the process. We start
with the highest given level of phrasing and move to the lowest. As
tempo and dynamics curves are lists of multiplicative factors (relative
to a default tempo), ‘subtracting’ the effects predicted by a fitted curve
from an existing curve simply means dividing the y values on the curve
by the respective values of the approximation curve.

More formally, let Np = {n1, ..., nk} be the sequence of melody notes
spanned by a phrase p, Op = {onsetp(ni) : ni ∈ Np} the set (sequence)
of relative note positions of these notes within phrase p (on a normalized
scale from 0 to 1), and Ep = {expr(ni) : ni ∈ Np} the part of the
expression curve (i.e., tempo or dynamics values) associated with these
notes. Fitting a second-order polynomial onto Ep then means finding a
function fp(x) = a2x + bx + c such that

D(fp(x), Np) =
∑

ni∈Np

[fp(onsetp(ni))− expr(ni)]
2

is minimal.
Given an expression curve (i.e., sequence of tempo or dynamics

values) Ep = {expr(n1), ..., expr(nk)} over a phrase p, and an approx-
imation polynomial fp(x), ‘subtracting’ the shape predicted by fp(x)
from Ep then means computing the new curve

E′p = {expr(ni)/fp(onsetp(ni)) : i = 1...k}.

Figure 3 illustrates the result of the decomposition process on the
last part (mm.31–38) of the Mozart Sonata K.279, 1st movement, 1st
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Figure 3. Multilevel decomposition of dynamics curve of performance of Mozart
Sonata K.279:1:1, mm.31-38.: original dynamics curve plus the second-order poly-
nomial shapes giving the best fit at four levels of phrase structure. The hierarchical
phrase structure of this passage is indicated by four levels of brackets at the bottom
of the figure.

section. The four-level phrase structure our music analyst assigned to
the piece is indicated by the four levels of brackets at the bottom of
the plot. The elementary phrase shapes (at four levels of hierarchy)
obtained after decomposition are plotted in gray.

We end up with a training example for each phrase in the training
set — a predicate phrShape(Id ,Coeff ), where Coeff = {a, b, c} are the
coefficients of the polynomial fitted to the part of the performance curve
associated with the phrase.

2.3. Combining Multi-level Phrase Predictions

Input to the learning algorithm are the (relational) representation of
the musical scores plus the training examples (i.e. timing and dynamics
polynomials), for each phrase in the training set. Given a test piece the
learner assigns the shape of the most similar phrase from the training
set to each phrase in the test piece. In order to produce final tempo
and dynamics curves, the shapes predicted for phrases at different levels
must be combined. This is simply the inverse of the curve decomposition
problem. Given a new piece to produce a performance for, the system
starts with an initial ‘flat’ expression curve (i.e., a list of 1.0 values)
and then successively multiplies the current values by the multi-level
phrase predictions.

3. Instance-based Learning in FOL

This section presents the relational IBL learner DISTALL and briefly
contrasts it with its ancestor RIBL (Emde,Wettscherek, 1996), by show-
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ing via an example how they implement different notions of structural
similarity.

3.1. A Structural Similarity Measure

Before explaining DISTALL in detail, we recall some definitions con-
cerning first order logic and inductive logic programming from (Helft,
1989; Muggleton,De Raedt, 1994).

DEFINITION 1 (Linked Clause). A clause is linked if all of its vari-
ables are linked. A variable v is linked in a clause c if and only if v
occurs in the head of c, or there is a literal l in c that contains the
variables v and w (v 6= w) and w is linked in c.

Example 1. Clause p(A)← r(B) is not linked, while p(A)← q(A, B), r(B, C), u(D, C)
is.

DEFINITION 2 (Level of Term). The level l(t) of a term t in a linked
clause c is 0 if t occurs as an argument in the head of c; and 1+min
l(s) where s and t occur as arguments in the same literal of c.

Example 2. The variable F in father(F, C)← male(F ), parent(F, C)
has level 0, the variable G in grandfather(F )← male(F ), parent(F, C), parent(C, G)
has level 2.

The algorithm to be presented here can be regarded as a general-
ization of the propositional k-NN for examples described in first-order
logic. In FOL, examples are usually represented as sets of ground facts.
The heart of a relational IBL algorithm is thus a distance function be-
tween sets of elements. A number of distances on sets already exist, e.g.
the Hausdorff metric, symmetric difference distances, distances based
on relations between sets, etc. For our algorithm, we adopt the distance
proposed in (Ramon,Bruynooghe, 1998; Ramon,Bruynooghe, 2000),
which is defined via transport networks. The concept of transport net-
works is used in order to efficiently compute the distance between two
sets of elements based on maximal matching. In the following we briefly
recapitulate the transport network set distance. For a more formal
description see (Ramon,Bruynooghe, 1998).

First, the appropriate transport network is constructed. The network
has two groups of vertices {ai} and {bi} corresponding to the elements
of the two sets A and B; a starting and an ending vertex (source s
and sink t); and two additional vertices, let us call them a− and b−.
For all edges in the network, capacities and weights are defined, where
capacities represent the maximal amount of ‘units’ which can ‘flow’
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Figure 4. A distance network (see (Ramon,Bruynooghe, 2000))

through a connection and the weights are the distances (transport
costs) between particular vertices.

The distance between two sets of elements is then defined as the
solution of the maximum flow minimal weight problem: one would like
to transport as much as possible from s to t with minimal costs. In
other words, one wants to maximally match elements from one set with
the elements of the other and achieve the minimal possible distance.
By setting the weights of the edges between set elements and the two
additional vertices a− and b− to a big constant (e.g. bigger than all
other edge weights), a ‘penalty’ is modeled: all elements of one set
which do not match with any element of the other cause big costs.
By associating appropriate capacities with the edges in the network
one can generalize the notion of cardinality in such a way that sets
of different cardinality can be scaled appropriately (e.g. allowing the
elements of the smaller set to match up more than one element of the
other and avoiding that the distance of two sets with vastly different
cardinalities is expressed mainly through penalty). An example of a
distance network is given in Figure 4.

Although the maximal matching distance defined via transport net-
works can be calculated in polynomial time, applying it directly on
examples described in FOL (containing maybe hundreds of ground
facts) would cause impractically high computational costs. Another
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problem is that given an example described by many facts, the rel-
evance of particular facts is hard to tune (e.g. by weighting them
differently). We avoid these problems by collecting the facts derived
from background knowledge into hierarchical subsets. By doing so we
develop a context-sensitive similarity measure where terms with a lower
linkage level to the objects whose distance we are interested in can be
made to influence the distance more. In the following we describe our
algorithm in more detail. The difference between our approach and the
RIBL algorithm, which uses a similar strategy for grouping facts, is
illustrated on an example from our learning problem in subsection 3.3.

3.2. Computation of Similarity in DISTALL

The first step of the algorithm is building so-called starting clauses.
The building of starting clauses is a well known method in ILP em-
ployed for reasons of computational complexity and implemented in
many systems (CLINT (De Raedt, 1992), GOLEM (Muggleton,Feng,
1990), ITOU (Rouveirol, 1992), RIBL (Emde,Wettscherek, 1996)). For
each (training and test) example we collect literals that contain terms
linked to the example and group them into subsets according to linkage
levels. The building of starting clauses is in our case guided by types
and modes of literals. Types and modes are used in ILP to restrict
the search space. The distance between a test and training example
is computed as the set distance between all literals found in the test
and training starting clause at linkage level 1 . In other words, we
find the solution of the maximal flow minimal weight problem, where
the transport network vertices are literals containing terms which are
directly linked to the examples. The weights of the edges (i.e. distances
between individual literals) are computed as the Manhattan distance
defined over the literals’ arguments (or set to 1 if the literals have
different functors). If the arguments are object identifiers, the distance
between them is computed by expanding them into a new transport
network where the vertices are literals also containing these objects,
found one linkage level deeper in the starting clauses. At the lowest
level, the distance between objects is calculated as the distance between
discrete values.

The capacities associated with the edges in the network can be used
to control the ‘virtual’ cardinalities of sets (and, accordingly, the in-
fluence of penalty on the set distance). They can also be used to give
different importance to the predicates in sets.

The basic principle of the algorithm, let us call it DISTALL (DIs-
tance on SeTs of Appropriate Linkage Level), is illustrated in Figure 5.
In the example, the distance between objects Ob1 and Ob2 is calculated
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Figure 5. Basic principle of DISTALL’s similarity measure

as the solution of the maximal flow minimal weight problem on the sets
of literals found at LinkLevel = 1 in the starting clauses built for Ob1

and Ob2 . The weights d(ai, bj) of edges connecting literals containing
no object identifiers are computed directly (via Manhattan distance,
see above). In the example, the literals a01 and b01 as well as a02 and
b03 have same functors and object identifiers as arguments. The weights
of edges between them are thus defined as distance network problems
involving the literals containing these objects, found one linkage level
deeper in the starting clause. The procedure continues recursively, until
the depth of the starting clauses is reached. The computational cost
is kept small, since the algorithm solves many hierarchically nested
transport network problems with a small number of vertices in each
network.

3.3. DISTALL vs. RIBL

DISTALL can be regarded as a continuation of the line of research
initiated in (Bisson, 1992), where a clustering algorithm together with
its similarity measure was presented. This work was later improved in
(Emde,Wettscherek, 1996), in the context of the relational instance-
based learning algorithm RIBL. The main idea behind RIBL’s similar-
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phrCont(p1,Attrs...) 

phrCont(p11,Attrs...) 
phrCont(p12,Attrs...) 

phrCont(p13,Attrs...) 

phrCont(p2,Attrs...) 

phrCont(p21,Attrs...) 
phrCont(p22,Attrs...) 

phrCont(p23,Attrs...) 

contains(p1,p11) contains(p1,p12) contains(p1,p13) contains(p2,p21) contains(p2,p22) contains(p2,p23) 

phrShape(p1,Coeffs) phrShape(p2,???) 

Figure 6. An example of relational learning situation: training example (left)
and new test case (right)

ity measure is that the similarity between two objects is determined
by the similarity of their attributes and the similarity of the objects
related to them. The similarity of the related objects depends in turn
on their attributes and related objects.

DISTALL combines this idea with a set distance function based on
the notion of transport networks, which was proposed in (Ramon,Bruynooghe,
1998). While RIBL’s similarity measure permits several literals in one
example to match the same literal in the other example, DISTALL’s
netflow distance strongly favors matchings that are as complete as
possible and penalizes literals left unmatched. We argue that the so
defined distance is more natural in structured domains and works better
in practice. First we show the main difference between RIBL’s and
DISTALL’s behavior in one constructed situation from our musical ap-
plication domain. In the next section we present DISTALL’s empirical
results and provide a direct comparison with RIBL.

Consider the situation given in Figure 6. We are interested in pre-
dicting the ‘expressive shape’ of the high-level phrase p2 and thus want
to calculate the distance between phrases p1 and p2. Each of the two
phrases is described via the attributes stored in the phrase-content
predicate phrCont. They also contain lower-level phrases (predicate
contains), which are in turn described with their phrase-content pred-
icates. RIBL would compute the similarity between p1 and p2 as a
(weighted) sum of the similarities between the phrCont and contains
predicates, where for each contains predicate of p2, the most simi-
lar contains(p1, X) predicate is found (by finding the most similar
phrCont and contains predicate at the lower level). Imagine the sit-
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uation where the short lower-level phrase p13 is a prototype of all
lower-level phrases of p2 (i.e. the sum of the distances between p13
and all p2x phrases is minimal) and the other two lower-level phrases
p11 and p12 are completely different from all phrases p2x. By matching
all p2x phrases to p13 RIBL would obtain a relatively high similarity
between p1 and p2. This is not what we want, as the internal details of
the whole high-level phrase p1 are ‘responsible’ for the expressive shape
and not just a small fraction. In DISTALL, on the other hand, such a
matching that leaves two of three subphrases unmatched would receive
a high penalty and thus result in a low similarity rating.

4. Experiments

In the following we present detailed empirical results achieved with
DISTALL on a complex real-world dataset derived from piano per-
formances of classical music. We also provide a comparison with the
results achieved by RIBL as well as with a simple propositional k-NN.

4.1. The Data

The data used for the experiments was derived from performances of
Mozart piano sonatas by a Viennese concert pianist on a Bösendorfer
SE 290 computer-controlled grand piano. A multi-level phrase structure
analysis of the musical score was carried out manually by a musicolo-
gist. Phrase structure was marked at four hierarchical levels; three of
these were finally used in the experiments. The sonatas are divided into
sections, which can be regarded as coherent pieces. The resulting set of
annotated pieces is summarized in Table I. The pieces and performances
are quite complex and different in character; automatically learning
expressive strategies from them is a challenging task.

4.2. A Quantitative Evaluation of DISTALL

A systematic leave-one-piece-out cross-validation experiment was car-
ried out. Each of the 16 sections was once set aside as a test piece,
while the remaining 15 pieces were used for learning. DISTALL uses
one nearest neighbor for prediction, with the starting clause depth set
to 2 (i.e. just those phrases whose relationship order to the phrase in
question is ≤ 2 can influence the distance measure).

The expressive shapes for each phrase in a test piece were predicted
by DISTALL and then combined into a final tempo and dynamics
curve, as described in section 2.3. The curves predicted by the sys-
tem were then compared to the approximation curves – i.e., the curves
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Table I. Mozart sonata sections
used in experiments (to be read as
<sonataName>:<movement>:<section>); notes
refers to ‘melody’ notes. The number of phrases at
each level for a section is also shown.

phr. at level

sonata section notes 1 2 3

kv279:1:1 fast 4/4 391 50 19 9

kv279:1:2 fast 4/4 638 79 36 14

kv280:1:1 fast 3/4 406 42 19 12

kv280:1:2 fast 3/4 590 65 34 17

kv280:2:1 slow 6/8 94 23 12 6

kv280:2:2 slow 6/8 154 37 18 8

kv280:3:1 fast 3/8 277 28 19 8

kv280:3:2 fast 3/8 379 40 29 13

kv282:1:1 slow 4/4 165 24 10 5

kv282:1:2 slow 4/4 213 29 12 6

kv282:1:3 slow 4/4 31 4 2 1

kv283:1:1 fast 3/4 379 53 23 10

kv283:1:2 fast 3/4 428 59 32 13

kv283:3:1 fast 3/8 326 52 30 12

kv283:3:2 fast 3/8 558 78 47 19

kv332:2 slow 4/4 477 49 23 12

Total: 5506 712 365 165

implied by the three levels of quadratic functions – of the actual ex-
pression curves produced by the pianist. The following performance
measures were computed: the mean squared error of the system’s pre-
diction on the piece relative to the approximation curve (MSE =∑n

i=1 (pred(ni)− expr(ni))
2/n), themean absolute error (MAE =

∑n
i=1 |pred(ni)−

expr(ni)|/n), and the correlation between predicted and approximated
curve.3 MSE and MAE were also computed for a default curve that
would correspond to a purely mechanical, unexpressive performance
(i.e., an expression curve consisting of all 1’s). That allows us to judge
if learning is really better than just doing nothing. The results of the

3 We could have computed the error of the system’s prediction on the piece
relative to the curve corresponding to the pianist’s actual performance. However, this
would be somewhat unfair, since the learner was given not the actual performance
curves but an approximation, namely the polynomials fitted to the curve at various
phrase levels. Correctly predicting these is the best the learner could hope to achieve.
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Table II. Results, by sonata sections, of cross-validation experiment with DISTALL
(depth=2, k=1). Measures subscripted with D refer to the ‘default’ (mechanical, inex-
pressive) performance, those with L to the performance produced by the learner. The
cases where DISTALL is better than the default are printed in bold.

dynamics tempo

MSED MSEL MAED MAEL CorrL MSED MSEL MAED MAEL CorrL

kv279:1:1 .0341 .0193 .1571 .0959 .7055 .0161 .0223 .0879 .0894 .3147

kv279:1:2 .0282 .0254 .1394 .1168 .6587 .0106 .0168 .0720 .0796 .4226

kv280:1:1 .0264 .0117 .1332 .0842 .7704 .0136 .0066 .0802 .0552 .7730

kv280:1:2 .0240 .0328 .1259 .1238 .5285 .0125 .0126 .0793 .0705 .5536

kv280:2:1 .1534 .1227 .3493 .2660 .5308 .0310 .0082 .1128 .0693 .8685

kv280:2:2 .1405 .0596 .3170 .1892 .7731 .0323 .0360 .1269 .1220 .5383

kv280:3:1 .0293 .0083 .1452 .0705 .8516 .0188 .0070 .0953 .0558 .7969

kv280:3:2 .0187 .0224 .1124 .1057 .5785 .0196 .0151 .1033 .0822 .6423

kv282:1:1 .0956 .0317 .2519 .1304 .8298 .0151 .0187 .0905 .0724 .4583

kv282:1:2 .0781 .0391 .2277 .1425 .7858 .0090 .0246 .0741 .0877 .3981

kv282:1:3 .1047 .0408 .2496 .1624 .7846 .0938 .0376 .2236 .1337 .8287

kv283:1:1 .0255 .0184 .1379 .0909 .7866 .0094 .0090 .0664 .0668 .4998

kv283:1:2 .0333 .0151 .1560 .0901 .7705 .0097 .0095 .0691 .0661 .5675

kv283:3:1 .0345 .0092 .1482 .0695 .8883 .0116 .0076 .0696 .0533 .6857

kv283:3:2 .0371 .0189 .1572 .0951 .7461 .0100 .0134 .0745 .0727 .4700

kv332:2 .0845 .0674 .2476 .2118 .5119 .0146 .0536 .0718 .1524 .2269

WMean .0437 .0279 .1664 .1163 .7001 .0141 .0175 .0811 .0800 .5215

experiment are summarized in table II, where each row gives the results
obtained on the respective test piece when all others were used for
training. The last row (WMean) shows the weighted mean performance
over all pieces (individual results weighted by the relative length of the
pieces).

We are interested in cases where the relative errors (i.e., MSEL/MSED

and MAEL/MAED) are less than 1.0, that is, where the curves pre-
dicted by the learner are closer to the approximation of the pianist’s
performance than a purely mechanical rendition. In the dynamics di-
mension, this is the case in 14 out of 16 cases for MSE, and in 16 out
of 16 for MAE. The results for tempo are worse: in 8 cases for MSE
and 11 for MAE is learning better than no learning.

On some pieces DISTALL is able to predict expressive curves which
are surprisingly close to the approximations of the pianist’s ones —
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16 A. Tobudic and G. Widmer

Table III. Comparison between propositional k-NN, RIBL and DISTALL. The table
shows weighted mean errors over all test pieces. Measures subscripted with D refer to
the ‘default’ (mechanical, inexpressive) performance, those with L to the performance
produced by the learner. All learners use one nearest neighbor for prediction. RIBL’s and
DISTALL’s depth parameter is set to depth = 2. All attribute and predicate weights used
by the learners (and especially capacities of the distance networks used by DISTALL)
are set to 1. The results for DISTALL are repeated from table II (last row). The cases
where a learner is better than default are printed in bold.

dynamics tempo

MSED MSEL MAED MAEL CorrL MSED MSEL MAED MAEL CorrL

prop. k-NN .0437 .0335 .1664 .1309 .6369 .0141 .0177 .0811 .0878 .4628

RIBL .0437 .0303 .1664 .1241 .6866 .0141 .0215 .0811 .0888 .4765

DISTALL .0437 .0279 .1664 .1163 .7001 .0141 .0175 .0811 .0800 .5215

Table IV. Summary of wins vs. losses, over all test
pieces, between learning and no learning for the propo-
sitional k-NN, RIBL and DISTALL.

dynamics tempo

MSE MAE MSE MAE

prop. k-NN 12+/4- 14+/2- 6+/10- 7+/9-

RIBL 14+/2- 15+/1- 7+/9- 8+/8-

DISTALL 14+/2- 16+/0- 8+/8- 11+/5-

witness, e.g., the correlation of 0.89 in kv283:3:1 for dynamics.4 On the
other hand, DISTALL performs poorly on some pieces, especially on
those that are rather different in character from all other pieces in the
training set (e.g. correlation of 0.23 for kv332:2, tempo).

4.3. DISTALL vs. RIBL and Propositional k-NN

In order to put these results into context, we present a comparison with
RIBL (Emde,Wettscherek, 1996). Since RIBL is not publicly available,
in the experiments of this section we used a self-implemented version.
We also compare DISTALL and RIBL, which operate on relational data
representation, with the performance of the standard propositional k-

4 Such a high correlation between predicted and observed curves is even more
surprising taking into account that kv283:3:1 is a fairly long piece with over 90
hierarchically nested phrases containing over 320 melody notes.
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Relational IBL in Classical Music 17

NN,5 since it has been shown that a richer relational representation
need not always be a guarantee for better generalization performance
(Dzeroski et al., 1998). We can represent phrases in propositional logic
by describing each phrase in the data set with the attributes A1, A2, ...
from the predicate phrCont(Id, A1, A2, ...) together with the ‘target’
polynomial coefficients Coeffs from the predicate phrShape(Id ,Coeffs).
By doing so we lose information about hierarchical relations between
phrases and obtain an attribute-value representation which can be used
by the k-NN algorithm.

The experimental setup and the error measures stayed the same
as in the previous section. All learners use one nearest neighbor for
prediction. RIBL’s and DISTALL’s depth parameter is set to depth = 2.
All attribute and predicate weights used by the learners, and especially
capacities of the distance networks used by DISTALL are set to 1. Table
III shows the results in terms of weighted mean errors over all test
pieces. The equivalent results for DISTALL are repeated from Table II
(last row). A summary of wins/losses between learning and no learning
for all learners is given in Table IV.

Both tables provide evidence of the capabilities of ILP in our do-
main: Generally, both relational learners outperform the propositional
k-NN, having lower errors, higher correlations and higher numbers of
wins of learning vs. no learning (the only exception being RIBL’s MSE
and MAE for tempo, which are higher than those of the propositional
k-NN). Additionally, DISTALL outperforms RIBL in terms of all per-
formance measures, being the only learner which has a lower mean
MAE for tempo than the mechanical performance. Since DISTALL
solves the maximal flow minimal weight problem hierarchically, ex-
panding unknown weights into transport network problems at a lower
level, the number of elements in each network — and accordingly, the
computational complexity of solving the network distance problem —
is kept low, making DISTALL’s runtimes only slightly higher than
RIBL’s (for the presented experiment involving 16 pieces containing
about 1240 phrases – about 30 minutes of music – and 16-fold cross-
validation, the approximate runtimes on our system are 4h and 5h for
RIBL and DISTALL, respectively). Certainly, the performance mea-
sures expressed in terms of weighted mean numbers given in Table III
do not imply that DISTALL outperforms RIBL on all pieces in the
dataset. It turns out that DISTALL-predicted curves are closer to the
pianist approximations (in terms of MSE and correlation) than those
predicted by RIBL in 9 cases for dynamics and 11 cases for tempo

5 For a detailed study on the performance that can be achieved by fine-
tuning the straightforward propositional k-NN on the same learning problem see
(Tobudic,Widmer, 2003a).
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18 A. Tobudic and G. Widmer

Table V. Comparison between propositional k-NN, RIBL and DISTALL. All three learn-
ers have access to the extended set of phrase features (see text). The table shows weighted
mean errors over all test pieces. The cases where a learner is better than default are
printed in bold.

dynamics tempo

MSED MSEL MAED MAEL CorrL MSED MSEL MAED MAEL CorrL

prop. k-NN .0437 .0279 .1664 .1210 .6742 .0141 .0185 .0811 .0870 .4806

RIBL .0437 .0289 .1664 .1222 .6740 .0141 .0239 .0811 .0920 .5349

DISTALL .0437 .0248 .1664 .1116 .7302 .0141 .0248 .0811 .0891 .5786

(meaning RIBL outperforms DISTALL on 7 pieces for dynamics and 5
for tempo).

5. Two Ways of Improving Learning Performance

Although some aspects of the above results were encouraging, e.g. in the
dynamics domain, the results for tempo are rather disappointing. Even
keeping in mind that artistic performance of difficult music like Mozart
piano sonatas is a complex and certainly not entirely predictable phe-
nomenon, DISTALL’s inability to learn tempo expression curves which
are closer to the performer’s in more cases than the mechanical per-
formance in terms of MSE (Table IV) is rather discouraging. In the
following sections we explore two ways in which the results can be
improved, one of them nicely demonstrating the power of ILP.

5.1. A Richer Representation of Phrases: Statistical

Features

A certain amount of improvement can be achieved by optimising the
feature-based representation of the phrases. The experiments in the
previous section were based on the same simple phrase representation
that was already used in our previous work with propositional and rela-
tional learning algorithms (Tobudic,Widmer, 2003a; Tobudic,Widmer,
2003b), which makes the results directly comparable. But this is by no
means the only possible way of describing musical phrases. More recent
experiments indicated that the results can be improved substantially by
adding various statistical attributes that capture some global musical
characteristics of phrases. Tables V and VI show the results obtained af-
ter adding, in addition to some simple information about global tempo
and the presence of trills, the following numeric attributes: mean and
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Table VI. Summary of wins vs. losses between learn-
ing and no learning for the propositional k-NN, RIBL
and DISTALL. All three learners have access to the
extended set of phrase features (see text).

dynamics tempo

MSE MAE MSE MAE

prop. k-NN 15+/1- 16+/0- 6+/10- 7+/9-

RIBL 15+/1- 15+/1- 8+/8- 9+/7-

DISTALL 15+/1- 15+/1- 12+/4- 13+/3-
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phrCont(p31,A1,A2,...) 
phrCont(p21,A1,A2,...) 

succeeds(p32,p31) 
succeeds(p22,p21) 

Figure 7. New phrase representation with the temporal succeeds/2 predicate.

variance of the durations of the melody notes within a phrase (as rough
indicators of the general ’speed’ of events and of durational variability),
and mean and variance of the sizes of the melodic intervals between
the melody notes (as measures of the ’jumpiness’ of the melodic line).
As can be seen, all learners generally benefit from this richer phrase
representation, but DISTALL achieve the greatest performance gain in
terms of wins/losses in the problematic tempo domain.

5.2. The Power of FOL: Temporal Relationships

The results of predicting performer’s tempo decisions are not satisfying,
even with the extended set of phrase features. Actually, in terms of
weighted mean errors over all test pieces, the learning performances
of both relational learners given the full set of phrase features even
degrade in the tempo domain (compare Tables III and V). With the new
feature set, no learner is able to produce performances which are better
on average than the mechanical one in the tempo domain. We suspect
that the main reason for that is predicting of incoherent successive
phrases. That is, in a lot of cases, for two successive phrases from
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20 A. Tobudic and G. Widmer

the test piece, the learner suggests two phrases from fully different
pieces from the training set as being the most similar. These incoherent
successive shapes cause ‘leaps’ in the resulting expressive curves and
accordingly higher errors.

This is also counterintuitive from a musical point of view, since
it is obvious that the way the performer interprets a phrase strongly
depends of the preceding music. On the other hand, ‘preparation’ for
the succeeding phrase also significantly influences the ‘shaping’ of the
current phrase. In other words, an essential aspect of music is its
temporal nature, which was not presented to the learner so far.

Supplying the propositional k-NN with such temporal information
would be very difficult, if possible at all. On the other hand, FOL allows
us to express the temporal relationship between successive phrases nat-
urally. Figure 7 shows the new relational representation of the phrases.
The predicate contains/2 is replaced with the new temporal predicate
succeeds(Id2,Id1), which simply states that the phrase Id2 succeeds the
same-level phrase Id1. With the new relational predicate, the similarity
of two phrases will strongly depend on the similarities of their same-
level predecessors and successors, which will hopefully produce more
coherent performances.

The experiments from previous sections were rerun with DISTALL
and the new relational representation. Again, DISTALL used one near-
est neighbor for prediction. The starting clause depth was set to 4,
i.e. the distance measure for a phrase can be influenced by its four
predecessors and four successors. The detailed results are given in Table
VII. The experiments with the new representation were also rerun with
RIBL (with the same setting, depth=4, k=1). Table VIII summarizes
the results, in terms of weighted mean errors over all test pieces, of
the propositional approach, DISTALL and RIBL operating on the re-
lational representation given in the previous section, and DISTALL and
RIBL operating on the new temporal phrase representation, denoted
as DISTALLTemp and RIBLTemp, respectively. Table IX summarizes
the results in terms of wins/losses between learning and no learning.

It seems that the temporal predicate succeeds/2 indeed enables both
relational learners to produce accurate results in both domains. How-
ever, DISTALL outperforms RIBL in terms of almost all performance
measures, especially in terms of wins/losses in the tempo domain. For
the first time, DISTALL is able to clearly beat the default performances
in terms of weighted MSE and MAE as well as in terms of piecewise
wins/losses by tempo. We suspect that such a result in a complex
artistic domain would not be possible without the expressive power
of FOL.
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Table VII. Results, by sonata sections, of cross-validation experiment with DISTALL
(depth=4, k=1) and new temporal phrase representation (see Figure 7). The cases
where DISTALL is better than the default are printed in bold.

dynamics tempo

MSED MSEL MAED MAEL CorrL MSED MSEL MAED MAEL CorrL

kv279:1:1 .0341 .0178 .1571 .0941 .7147 .0161 .0125 .0879 .0707 .5800

kv279:1:2 .0282 .0245 .1394 .1099 .6062 .0106 .0107 .0720 .0647 .5977

kv280:1:1 .0264 .0105 .1332 .0789 .7933 .0136 .0026 .0802 .0418 .8999

kv280:1:2 .0240 .0255 .1259 .1119 .5607 .0125 .0073 .0793 .0609 .7247

kv280:2:1 .1534 .0441 .3493 .1686 .8603 .0310 .0077 .1128 .0707 .8919

kv280:2:2 .1405 .0564 .3170 .1863 .8044 .0323 .0178 .1269 .0988 .7427

kv280:3:1 .0293 .0078 .1452 .0699 .8642 .0188 .0158 .0953 .0724 .7034

kv280:3:2 .0187 .0168 .1124 .0951 .6468 .0196 .0156 .1033 .0828 .6360

kv282:1:1 .0956 .0246 .2519 .1091 .8665 .0151 .0088 .0905 .0561 .6583

kv282:1:2 .0781 .0268 .2277 .1205 .8358 .0090 .0193 .0741 .0829 .4287

kv282:1:3 .1047 .0332 .2496 .1539 .8290 .0938 .0867 .2236 .2138 .3125

kv283:1:1 .0255 .0089 .1379 .0695 .8462 .0094 .0079 .0664 .0590 .5810

kv283:1:2 .0333 .0159 .1560 .0919 .7419 .0097 .0080 .0691 .0633 .5949

kv283:3:1 .0345 .0093 .1482 .0698 .8869 .0116 .0063 .0696 .0477 .7123

kv283:3:2 .0371 .0214 .1572 .1018 .6968 .0100 .0104 .0745 .0632 .5430

kv332:2 .0845 .0612 .2476 .1947 .6403 .0146 .0434 .0718 .1525 .1827

WMean .0437 .0233 .1664 .1075 .7229 .0141 .0135 .0811 .0729 .6066

6. Musical Results

A look at Table VII reveals that a substantial number of pieces pre-
dicted by DISTALLTemp show high correlations with the expression
curves produced by the pianist. Even some predictions of the slow pieces
exhibit astonishingly high correlations in both dimensions (e.g. KV.280,
2nd movement, 1st section, featuring correlations of 0.86 for dynamics
and 0.89 for tempo), although the data set contains only six slow pieces.

On the other hand, high correlations and low errors are not a guar-
antee for good musical quality. Sometimes, relatively small errors at
musically sensitive places can seriously compromise the musical quality
of the whole piece. Nevertheless some of the performances produced
by DISTALL are of substantial musical quality. One of them, Mozart
Sonata KV.280, 1st movement, 1st section is shown in Figure 8. For
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Table VIII. Summary of errors between propositional k-NN, DISTALL and RIBL operating
on the relational representation given in the previous section and DISTALL and RIBL operat-
ing on the new temporal phrase representation, denoted as DISTALLTemp and RIBLTemp,
respectively. The table shows weighted mean errors over all test pieces. The cases where a
learner is better than default are printed in bold.

dynamics tempo

MSED MSEL MAED MAEL CorrL MSED MSEL MAED MAEL CorrL

prop. k-NN .0437 .0279 .1664 .1210 .6742 .0141 .0185 .0811 .0870 .4806

RIBL .0437 .0289 .1664 .1222 .6740 .0141 .0239 .0811 .0920 .5349

DISTALL .0437 .0248 .1664 .1116 .7302 .0141 .0248 .0811 .0891 .5786

RIBLTemp .0437 .0268 .1664 .1177 .6686 .0141 .0123 .0811 .0743 .5615

DISTALLTemp .0437 .0233 .1664 .1075 .7229 .0141 .0135 .0811 .0729 .6066

Table IX. Summary of wins vs. losses between learning and
no learning for the propositional k-NN, DISTALL and RIBL
operating on the relational representation given in the pre-
vious section and DISTALL and RIBL operating on the new
temporal phrase representation, denoted as DISTALLTemp
and RIBLTemp, respectively.

dynamics tempo

MSE MAE MSE MAE

prop. k-NN 15+/1- 16+/0- 6+/10- 7+/9-

RIBL 15+/1- 15+/1- 8+/8- 9+/7-

DISTALL 15+/1- 15+/1- 12+/4- 13+/3-

RIBLTemp 15+/1- 15+/1- 9+/7- 11+/5-

DISTALLTemp 15+/1- 16+/0- 12+/4- 14+/2-

this performance, the correlations between learner and pianist are 0.79
for dynamics and 0.90 for tempo. 6

A recording of this performance was submitted to an International
Computer Piano Performance Rendering Contest (RENCON’02) in
Tokyo in September 2002, where it won second prize behind a rule-
based rendering system that had carefully been tuned by hand. The
rating was done by a jury of human listeners. While these results do
not imply that a machine will ever be able to learn to play music like a
human artist, we do consider it a nice success for a machine learning,
and in particular, ILP.

6 Sound examples are accessible at http://www.oefai.at/∼gerhard/mlj ilp
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Figure 8. Expressive curves for dynamics (a) and tempo (b) of the Mozart Sonata
KV.280, 1st movement, 1st section. Black curves represent approximations of the
actual expression curves produced by the pianist, implied by the three levels of
quadratic functions. DISTALLTemp’s predictions are given in red.

7. Conclusion

We have presented a complex learning task from the domain of classi-
cal music: learning to apply musically ‘sensible’ tempo and dynamics
variations to a piece of music, at different levels of the phrase hierarchy.
The problem was modelled as a multi-level decomposition and predic-
tion task and attacked via relational instance-based learning. A new
structural similarity measure, based on a combination of two existing
techniques, was presented and implemented in a learning algorithm
named DISTALL. An experimental analysis showed that the algorithm
produces better results in this domain than either the related algorithm
RIBL or a propositional k-NN learner.

In addition to such quantitative evaluations, listening to the per-
formances produced by the learner provides additional qualitative in-
sight. Some of DISTALL’s performances — although being the result of
purely automated learning with no additional knowledge about music
— sound indeed musically sensible. On the other hand, the musical
success achieved is certainly affected by the uniformity of the pieces in
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the dataset with respect to music style. All pieces are sonatas written in
the classical period. It is questionable if the basic strategy of phase-level
IBL is appropriate for pieces written in very different styles. In fact,
in that case, the whole notion of phrase similarity would be musically
dubious. The approach also relies on manual phrase structure analysis,
which is still far from being automatically feasible.

In (Emde,Wettscherek, 1996) it was argued that attribute weight-
ing is an important issue in propositional IBL and even more impor-
tant in a relational setting. DISTALL currently lacks a data-driven
predicate/attribute weighting module.

Future work with DISTALL could also have an impact on musicol-
ogy. The consequently worse results in the tempo domain suggest that
other types of approximation functions may be worth trying, which
might lead to better phrase-level tempo models. We also plan to try to
empirically prove that a concert pianist plays similar phrases in similar
ways (by showing a high correlation between expressive shapes for
those phrases for which DISTALL suggests high similarity). One could
also turn the question around and take the high correlation between
expressive shapes attached to phrases which are suggested to have high
similarity as a reliability proof of DISTALL’s similarity measure.
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