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ABSTRACT

We propose a new audio fingerprinting method that adapts findings
from the field of blind astrometry to define simple, efficiently rep-
resentable characteristic feature combinations called quads. Based
on these, an audio identification algorithm is described that is ro-
bust to large amounts of noise and speed, tempo and pitch-shifting
distortions. In addition to reliably identifying audio queries that
are modified in this way, it also accurately estimates the scaling
factors of the applied time/frequency distortions. We experimen-
tally evaluate the performance of the method for a diverse set of
noise, speed and tempo modifications, and identify a number of
advantages of the new method over a recently published distortion-
invariant audio copy detection algorithm.

1. INTRODUCTION

The typical use of an audio fingerprinting system is to precisely
identify a piece of audio from a large collection, given a short
query. This is typically done by extracting highly discriminative
content features, a “fingerprint”, from the collection of audio files
as well as the query piece, and subsequently comparing these fea-
tures. The focus in fingerprinting systems is on being able to
discriminate between non-identical pieces of audio, even if they
sound very similar to a listener, as in the case of different versions
of the same song (e.g., “Album Version” vs. “Radio Version”).

There are numerous application scenarios for audio finger-
printing. A well established one is to enable curious users to learn
the name of the song they are currently listening to [1]. Other ap-
plications, mainly used by industry, include the large-scale tasks
of media monitoring and audio copy/plagiarism detection [2].

Depending on the application, audio fingerprinting systems
should be robust to different kinds of distortions of query audio
material. The minimum requirement would seem to be robustness
to various types of lossy audio compression and a certain amount
of noise. Application domains such as DJ set track identification,
media monitoring, audio copy detection and plagiarism detection,
pose additional requirements. There, it is also necessary to rec-
ognize audio material that was modified in tempo and/or in pitch,
and perhaps also tolerate nonlinear noise encountered when a DJ
blends two songs in order to achieve a perceptually smooth transi-
tion. In the latter case, the time and frequency scale changes may
not even be constant over the duration of a song. All these are
significant challenges to automatic audio identification systems.

In this work we propose an efficient audio fingerprinting method
that meets the above robustness requirements. It is not only robust
to noise and audio quality degradation, but also to large amounts

of speed, tempo or frequency scaling.1 In addition, it can accu-
rately estimate the scaling factors of applied time/frequency dis-
tortions. The key technique that makes this possible was found
by researchers working on blind astrometry, who use a simple and
fast geometric hashing approach to solve a generalization of the
“lost in space” problem [3]. The specific task is to determine the
pointing, scale and orientation of an astronomical image (a picture
of a part of the sky), without any additional information beyond
the pixel values of the image. We adapt this method to the needs
of audio fingerprinting and based on this, develop an extremely ef-
ficient and robust audio identification algorithm. The central com-
ponents in this are compact hash representations of audio that are
invariant to translation and scaling, and thereby overcome the in-
herent robustness limitations of systems that depend on equal rel-
ative distances of reference and query features to find matches,
such as the well-known Shazam algorithm [1]. More precisely,
our algorithm uses a compact four-dimensional, continuous hash
representation of quadruples of points, henceforth referred to as
“quads”. The quad descriptor [3] has also recently been adopted
in the field of computer vision, for the task of accurate alignment
of video streams [4, 5].

The system we propose can be used for DJ set monitoring
and original track identification, audio copy detection, audio align-
ment, as well as other tasks that demand robustness to certain lev-
els of noise and scale changes.

The paper is organized as follows. Section 2 discusses rel-
evant related work and, in particular, focuses on a very recently
published state-of-the art method [2] that will act as our main ref-
erence here. Section 3 gives a brief overview of the main points of
our new method, in order to set the context for the precise method
description, which comes in two parts: Section 4 describes the pro-
cess of constructing audio fingerprints – the extraction of special
features from audio, how to obtain hash representations from these
features, and how to store these in special data structures for effi-
cient retrieval. The actual identification method, i.e. the process of
matching query audio with reference data by using the extracted
features and their hash representations, is then explained in Sec-
tion 5. Section 6 systematically evaluates the performance of our

1 To clarify our terminology: if both scales are changed proportionally,
we call this a change in “speed”: the song is played faster and at the same
time at a higher pitch. This can be achieved by simply changing the rota-
tional speed of the turntable, or by modifying the sampling rate of a digital
media player – while keeping the sampling rate of the audio encoding un-
changed. Changing the time scale only will be referred to as a “tempo”
change: here, the audio is sped up or slowed down without observable
changes in pitch. Vice versa, if only the frequency scale is modified, this
will be called pitch shifting.
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method in two experiments. The first experiment considers song
identification on a database consisting of one thousand full length
songs of different musical genres. For the second experiment we
extend the database to 20,000 full length songs.

2. RELATED WORK

Numerous fingerprinting algorithms have been described in the lit-
erature (e.g., [1, 6, 7, 8, 9]), not all of which are applicable to
the tasks described in the introduction. Some algorithms extract
global fingerprints for entire songs, and are not suitable for our
given tasks because identifying snippets or excerpts of songs in the
reference database requires local fingerprints. In [9], a fingerprint-
ing approach is proposed that computes the scale invariant feature
transform (SIFT) [10] on the audio spectrograms with logarithmi-
cally scaled frequencies. While good results are shown, SIFT is
not invariant to scale changes if only one of the two dimensions is
scaled. Therefore, the algorithm proposed in [9] is not robust to
what we call tempo changes.

A tempo- and speed-invariant audio fingerprinting algorithm
has recently been proposed in [11]. By using pitch class his-
tograms as fingerprint features, it tends to compute similar finger-
prints for similar content, which is an interesting property on its
own. The algorithm has a certain robustness to tempo and speed
changes, but its performance degrades considerably for noisy queries.
Also, the performance degrades when the query audio is shorter
than the specific references, which is why the method is not well
suited for the tasks we described above.

A very recent publication proposing a fingerprinting algorithm
for audio copy detection, that also meets the demands of robust-
ness against speedup, tempo changes and pitch-shifting of query
audio is [2]. The work reports near perfect percentages of correct
song association. The described method performs feature extrac-
tion on a two-dimensional time-chroma representation of the au-
dio. First a set of candidate feature points is selected, which are
then purified by extracting and comparing up to 30 two-dimensional
image patches of different width, centered around the candidate
feature point. A candidate point is selected as feature point if most
of the (up to 30) extracted image patches fulfill a similarity crite-
rion. This is determined via k-means clustering, which assigns the
extracted patches to a number of c classes. Similarity is calculated
by computing low frequency discrete cosine transformation (DCT)
coefficients which represent the actual similarity metric. The pro-
posed method performs feature point selection for an average of 20
candidate points per second of audio, of which approximately 40%
pass the similarity constraints and are used for fingerprint compu-
tation. The actual fingerprints are generated from a number of low
frequency DCT coefficients of the extracted image patches, and
are scaled and translated to result in vectors of zero mean and unit
variance. According to the explanation given in the work, such a
fingerprint should result in a vector of 143 floating point values.
Fingerprint matching is done by nearest neighbor lookups, with
distance defined as the angle of two fingerprint vectors.

We will take this as our reference method in the present paper,
because it is the latest publication on this topic, and it reports ex-
tremely high robustness and performance results for a large range
of tempo and speed modifications (though based on experiments
with a rather small reference database – see Section 6 below).

3. METHOD OVERVIEW

The basic idea of our proposed method is to extract spectral peaks
from the two-dimensional time-frequency representation of refer-
ence audio material, then group quadruples of peaks into quads,
and create a compact translation- and scale-invariant hash for each
quad (a single hash is a point in a four-dimensional vector space).
Quads and their corresponding hashes are stored in different data
structures, i.e. quads are appended to a global index, and an in-
verse index is created to assign the corresponding audio file-id to
its quad indices. The continuous hashes are stored, together with
the index of their quad, in a spatial data structure, such that the
index that is associated with the hash corresponds to the index of
the quad that forms the hash.

For querying we extract quads and their hashes from the query
audio excerpt. For each query hash we perform a range search in
the spatial data structure and collect the indices of search results,
which in turn give the indices of matching reference quads in the
global index. The time and frequency scaling factor can be found
by comparing a query quad to its matching reference quad. To pre-
dict the match file ID for a query snippet, we adapt the histogram
method from [1].

4. FEATURE EXTRACTION

In this section we describe the extraction of audio features to be
used for audio identification, how to obtain hashable representa-
tions from these features, and how to finally store these for efficient
retrieval. The same feature extraction process is applied to the ref-
erence recordings that are used to build the fingerprint database,
and the query audio that is to be identified in the recognition phase.

To begin with, all audio files are downmixed to one-channel
monaural representations and processed with a sampling rate of
16 kHz. We compute the STFT magnitude spectrogram using a
Hann-window of size 1024 samples (64 ms) and a hopsize of 128
samples (8 ms), discarding the phases.

4.1. Constructing Quads

The fingerprinting algorithm works on translation- and scale-invariant
hashes of combinations of spectral peaks. Spectral peaks are lo-
cal maxima in an STFT magnitude spectrogram, and identified by
their coordinates in the spectrogram. Since the notion of a peak P
as a point in 2D spectrogram space will be used extensively in the
following, let us formally introduce the notation:

P = (Px, Py)

where Px is the peak’s time position (STFT frame index), and Py

is the peak’s frequency (index of STFT frequency bin).
The extraction of spectral peaks is implemented via a pair of

two-dimensional filters, a max filter and a min filter, where the
neighbourhood size is given by the filter window size. We use a
max filter to find the coordinates of spectral peak candidates in
the spectrogram, and use a min filter with a smaller window size
to reject peaks that were extracted from uniform regions in the
spectrogram, e.g., silence. In the following we explain how quads
are created from spectral peaks, and how compact hash values are
computed from quads.

To create translation- and scale-invariant hashes from spectral
peaks, we first have to group peaks into quads [3]. A quad consists
of four spectral peaks A,B,C,D, where we define A to be the
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root point of the quad, which is the peak with the smallest frame
index (i.e. the first of the four peaks in time) and B is the most
distant point in time from A (thus C,D lie somewhere between
the STFT frames of A,B). The quad is valid if B > A and C,D
lie within the axis-parallel rectangle defined by A,B:

Ax < Bx (1)
Ay < By (2)

Ax < Cx, Dx ≤ Bx (3)
Ay < Cy, Dy ≤ By (4)

At the top level, the quad grouping process proceeds through
an audio file from left to right, trying each spectral peak as a po-
tential root point A of a set of quads, with the goal of creating up
to a number of q quads for each peak.

For a given root point A, the process of constructing up to
q quads by selecting appropriate sets of B,C,D points is as fol-
lows.2 We construct a region of width r, spanning r STFT frames,
such that the region is centered k STFT-frames from A and A is
outside of the region (earlier in time, i.e., the region is located to
the right of A), as shown in Figure 1. We then sort the peaks that
are contained in the region, by time. We let t = 0 and pick the first
n peaks pt, pt+1, . . . pt+n−1 in the region and try all

(
n
3

)
combi-

nations of 3 peak indices in order to construct a valid quad with
root point A and the points from the current combination. If a
valid quad can be constructed we append it to a list of quads and
proceed until q quads are created. If no valid quad could be con-
structed, we increase t by one and try again until there are no more
peaks in the region.

The total number of resulting valid quads for a given root point
A depends not only on the parameter values, but is fundamentally
dependent on the specific layout of spectral peaks, and thus on
the signal itself. As already mentioned, for creating the reference
database we want to create a small number of quads. We therefore
choose a small n and a region of small width r. For queries we
create an extensive set of quads by choosing a larger n, rquery �
rref, and qquery � qref. k is the same in both cases.

The reason for different parameterization for query quad con-
struction is as follows: When the time scale of a query audio is
modified, this affects not only the density of peaks in the given au-
dio snippet, but also their relative positions. An example is given
in Figure 1, which shows the grouping for a quad for a given root
point A. In 1a a reference quad is created for a region of width
r that is centered k frames from A. The analogous example for
grouping a query quad for the same audio, but increased in tempo,
or decreased in tempo, is given in 1b and 1c, respectively. We see
that the green points, which are points B,C,D for the reference
quad, may happen to move outside of the grouping region of width
r if the time scale of the audio is modified. By choosing a larger
region width r and a larger number q of quads that may be created
for a root pointA, we can ensure to obtain a quad that corresponds
to the reference quad.

Note that when we consider audio queries of a fixed, limited
duration d (e.g., 15sec), there is an important difference between

2 We will parametrize this process differently, depending on whether
we compute quads for the reference database, or for a piece of query audio.
For reference database creation, we choose parameters in such a way that
we only create a small number of reference quads to keep the resulting
reference database as small as possible. For a query snippet, we will choose
parameters to create a large amount of quads. The explanation for this will
be given later in this section.

r

k

A

(a) Reference quad grouping

r

k

A

(b) Query quad grouping. Query audio was increased in tempo. New
peaks are shown in white facecolor.

r

k

A

(c) Query quad grouping. Query audio was decreased in tempo.

Figure 1: Reference quad grouping (1a) and query quad grouping
with increased tempo (1b), and decreased tempo (1c).

increased speed/tempo and decreased speed/tempo. Increasing the
tempo of the query audio excerpt relative to the reference leads to
a higher density of relevant audio content; all the content that was
used during the phase of reference quad creation is also present
when creating the quads for the query. However, decreasing the
tempo of the query, i.e., stretching the time scale, may cause some
of the relevant spectral peaks to fall out of the 15sec (i.e., not
be part of the query any more), so some important quads do not
emerge in the query. This problem arises when tempo or speed are
decreased by large amounts. This difference in increasing vs. de-
creasing the time scale is actually reflected in the evaluation results
(see Section 6). To summarize, if the same parameters are used
for both reference and query quad grouping, and the time scale
changes, it is very likely that no matching quads will be found in
subsequent queries.

4.2. From Quads to Translation- and Scale-invariant Hashes

We now have created quads from spectral peaks in audio, but these
quads are not the actual summarizing representation that we later
use to find match candidates between a query audio and the ref-
erence database. That representation should be translation- and
scale-invariant, and quickly retrievable. To achieve this, we com-
pute translation- and scale-invariant hashes from the quads. For
a given quad (A,B,C,D), the constellation of spectral peaks is
translated to the origin and normalized to the unit square, resulting
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Figure 2: Example of a quad hash computed from an arbitrary
quad A,B,C,D.

in the four points A′, B′, C′, D′ such that A′ = (0, 0) and B′ =
(1, 1), as shown in Figure 2. The actual continuous hash of the
quad is now given by C′, D′, and is stored as a four-dimensional
point (C′x, C′y, D′x, D′y) in a spatial data structure. Essentially,
C′, D′ are the relative distances of C,D to A,B in time and fre-
quency, respectively. Thus, the hash C′, D′ is not only translation
invariant (A′ is always (0, 0)), but also scale invariant. A feature
extraction example showing spectral peaks and resulting quads is
shown in Figure 3
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Spectral peaks and quads

Figure 3: Extracted spectral peaks and grouped quads on a
15 seconds excerpt of “Radiohead - Exit Music (For a Film)“.

4.3. Fingerprints: Storing Hashes for Efficient Recognition

Once peaks, quads and their hashes are computed, we store these
in data structures that allow for efficient selection of match candi-
dates and subsequent verification of match hypotheses from query
audio. The reference data consist of four data structures:

• quadDB: A file that contains all reference quads (the origi-
nal, unnormalized ones).

• fidindex: An index file that stores file-id, quad index range
(into quadDB) and filename for each reference audio file.

• reftree: A spatial data structure containing all reference
quad hashes.

• refpeaktrees: Two dimensional search trees for the spectral
peaks that are extracted from reference audio files.

The quadDB is a binary file that stores the sequence of quads for all
reference files, and the fidindex is an index file which maps each

reference file to a unique file-id and also stores the index range
(i.e. startindex, number of quads in quadDB) for the sequence of
quads that was extracted from the reference files. For the spatial
data structure (reftree) we use an R-Tree [12] with an R* split-
heuristic that stores all quad hashes, together with their positional
index in the quadDB. The R-Tree enables us to add songs the ref-
erence database without the need of rebuilding the tree in order to
maintain high query performance. In addition, the R-Tree is well
suited for large out-of-memory databases.

The refpeaktrees are used for the verification of match candi-
dates, which will be explained later.

4.4. Chosen Parameter Values

The specific set of parameter values that we chose for our im-
plementation and that are used in the evaluation in Section 6, is
as follows: The extraction of spectral peaks is performed with a
max-filter width of 91 STFT-frames, and a filter height of 65 fre-
quency bins. The min-filter, used to reject maxima that resulted
from uniform magnitude regions, has a width of 3 STFT-frames
and a height of 3 frequency bins. For reference quad grouping we
choose the center of the grouping window k to be four seconds
from each root pointA. The width r of this region window for ref-
erence quad extraction is two seconds. We group q = 2 quads for
each root pointA along with a group size of n = 5. This results in
an average number of roughly 8.7 quads per second of audio. For
query quad extraction we choose the same k of four seconds, and a
large grouping window width r that spans 7.9 seconds. A number
of up to q = 500 quads are extracted from a group size of n = 8.

5. RECOGNITION ALGORITHM

The method for identifying the correct reference recording, given
a query audio excerpt, consists of several stages: the selection of
match candidates, a filtering stage in which we try to discard false
positive candidates, and a verification step adapted from the find-
ings in [3]. After the verification stage we efficiently estimate a
match sequence with the histogram binning approach that is used
in algorithm [1]. In the following the selection of match candidates
is explained.

5.1. Match Candidate Selection and Filtering

For each quad hash that was extracted from a query audio, an ep-
silon search in the reftree is performed. This lookup returns a set
of raw match candidate indices: the indices of those quads in the
quadDB whose quad-hashes are similar (identical up to epsilon:
Bq

x − ε ≤ Br
x ≤ Bq

x + ε etc.) to the query quad-hashes. We call
this the set of raw candidates, as it will most likely be a mixture of
true positives and a (large) number of false positive matches. The
raw candidates are used to obtain estimates of the time/frequency
scale modification of the query audio, by looking at the different
orientation of the original (non-normalized) quads corresponding
to the query (q) and reference (r) hash, giving us the scaling factors
for time and frequency:

stime = (Bq
x −Aq

x)/(B
r
x −Ar

x) (5)
sfreq = (Bq

y −Aq
y)/(B

r
y −Ar

y) (6)

It makes sense to parametrize the system with scale tolerance bounds
as, depending on the application, one might not be interested in
trying to identify audio that is played at, e.g., half the speed or
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double the tempo, or has undergone extreme pitch-shifting modi-
fications. Such constrained tolerances considerably speed up the
subsequent hypothesis testing by rejecting raw match candidates
that lie outside the specified bounds.

Instead of directly starting with hypothesis tests on the raw
candidate set we first apply filters in order to clean up the match
candidates. This filtering process aims at discarding false posi-
tive matches while keeping a large number of true positives. In
addition to the previously mentioned scale tolerances we perform
a spectral coherence check, similar to the spatio-temporal coher-
ence check described in [5]. Here we reject match candidate quads
whose root point A is far away in the frequency domain compared
to root point A of the query quad.

We now consult the fidindex to sort the remaining match can-
didates by file-id, and enter the verification step (Section 5.2) –
those candidates that pass the following step are considered true
matches and are passed to the match-sequence estimation.

5.2. Match Verification and Sequence Estimation

Match verification is performed once all match candidates for all
query quads are collected and filtered as described above. Most
likely, the remaining match candidates correspond to a large num-
ber of file-ids that are referenced in the database. Since our goal is
to identify the correct file-id, we perform this stage of match can-
didate verification on a per-file-id basis. To do this we consult the
fidindex file (cf. Section 4.3) and look up the file-ids for all match
candidates, and sort the match candidates by file-id.

Verification is based on the insight that spectral peaks that are
nearby a reference quad in the reference audio, should also be
present in the query audio [3]. Naturally, depending on the au-
dio compression, the amount of noise or other distortions, there
might be a larger or smaller number of nearby peaks in the query.
We define the nearby peaks as the set of N peaks closest to the
match candidate’s root point A (for some fixed N ), and retrieve
those by performing a k-nearest-neighbor search in the refpeak-
trees (cf. Section 4.3) for the given file-id. We define a threshold
tmin, the minimal number of nearby peaks that have to be present in
the query in order to consider the candidate an actual match. Note
that in order to find relevant nearby peaks in the query, we have
to align the query- and reference-peaks by transforming the query
peak locations according to the previously estimated time/frequency
scale (cf. Section 5.1). The candidates that pass the verification
step are considered true matches, and they are annotated with the
number v ≤ N of correctly aligned spectral peaks, and the scale
transformation estimates. This number v will be used for an opti-
mization described below.

After match candidates for a given file-id are verified, we try
to find a sequence of matches for this file-id by processing the
matches with a histogram method similar to the one used in the
Shazam algorithm [1], with the difference that the query time (the
time value of root point A of each query quad in the sequence)
is scaled according to the estimated time scale factor. Finally, the
file-id for the largest histogram bin (the longest match sequence)
is returned, together with the match position that is given by the
minimal time value of the points in the histogram bin. We now
know the reference file that identifies the query audio, the po-
sition of the query audio in the reference track, and the associ-
ated time/frequency scale modification estimates. Note that the re-
ported scale transformation estimates are expected to be quite ac-
curate, because with these estimates, for each “surviving” match

candidate at least tmin nearby spectral query peaks could be cor-
rectly aligned to corresponding reference peaks during the verifi-
cation phase. A lookup in the fidindex now gives us the filename
of the reference audio as well as any kind of optional meta data.

To speed up the verification process, we define a threshold for
the number of correctly aligned nearby peaks tv > tmin. When the
v value of a match reaches or exceeds this threshold, we allow a so-
called “early exit” for this file-id. Once all match candidates of an
early exit file-id are verified, we directly enter the match sequence
estimation for this file-id, without subsequent verification of any
other file-id.

5.3. Runtime and Data Size Considerations

Our system operates on a number of data structures (cf. Section 4.3)
that together constitute what we call the reference database; the
largest components are the reftree and the refpeak trees.

The quadDB linearly stores binary records of quads. A quad
consists of four two-dimensional discrete points (coordinates in the
STFT spectrogram) and can be represented and stored as 8 ∗ 32bit
integers, which amounts to 32 byte per quad. It is not necessary
to keep this file in-memory, as the proposed method is designed to
operate on big out-of-memory reference data.

There exists exactly one quad hash per quad. A quad hash is a
continuous four-dimensional point that is stored as an array of four
float32 values by the reftree. The actual number of quads in the
quadDB depends on the filter size parameters of the spectral peak
extraction and the quad grouping parameters. For an example ref-
erence database consisting of 20,000 full length songs we choose
the parameters such that we create an average of approximately
8.74 quads per second of audio, with a median of ≈ 8.68 and a
standard deviation of σ ≈ 1.19. The histogram of the number
of quads per second is shown in Figure 4. This specific database
consists of ≈ 4.29 ∗ 107 quads, or roughly 1.3GB. The reftree,
a four-dimensional R-Tree, consumes approximately 4.8GB. To
speed up the verification process we also store two dimensional
trees of spectral peaks for each file-id, which consume roughly
3GB for 20, 000 songs. We currently store the fidindex file as text,
along with some meta data. In this example the size of the fidindex
amounts to 2.3MB.
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Figure 4: Histogram of the average number of quads per second
for all files in a reference database of 20,000 songs.

Naturally, depending on application scenarios and hardware
constraints, it is possible to trade runtime for storage space and
vice versa. If minimal space consumption is of priority, one can
pack the binary quad records of the quadDB to 16 bytes by ex-
ploiting the limited number of STFT frequency bins (i.e. 512), and
storing the time values of points B,C,D as offsets from point A.
This saves 50% per quad, reducing the size of the quadDB file to
≈ 650MB.
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Regarding the runtime, using our unoptimized pure Python
implementation of the method, feature extraction and quad cre-
ation for the database of 20, 000 songs took approximately 24h
utilizing seven out of eight logical cores of an Intel Core i7 860
(2.8GHz) Processor.

The runtime for a query is made up of audio decoding, feature
extraction, querying the database and filtering the results, match
candidate verification and match sequence binning. For a query on
a 15 seconds audio excerpt against a reference database of 1000
songs, this takes approximately 4 to 12 seconds. Here, half of the
time is taken by the preprocessing (decoding, quad extraction).

Querying a larger database of 20, 000 songs takes consider-
ably (though, of course, not proportionally) longer. The main rea-
son is the higher number of match candidates that have to be pro-
cessed. The same query excerpt as used above is processed in
approximately 14 to 60 seconds. Here, at least half of the time is
consumed by the reftree range queries. Again, this is based on an
unoptimized, experimental Python implementation; there is ample
room for improvement. Section 6.3 gives more detail.

6. EVALUATION

We systematically evaluate the performance of the system for dif-
ferent speed, tempo and noise modifications of 15 seconds query
audio snippets. The reference database for the first experiment is
constructed from N = 1000 full length songs in .mp3 format.
To create test queries, we randomly choose 100 reference songs
and subject these to different speed, tempo, and noise level mod-
ifications. We then randomly select a starting position for each
selected song, and cut out 15 seconds from the audio, such that
we end up with 100 15sec audio queries. The evaluation consid-
ers speed and tempo ranges from 70% to 130% in steps of 5%.
To evaluate the noise robustness of our system we mix each query
snippet with white noise to create noisy audio in SNR level ranges
from 0 dB to +50 dB in steps of 5 dB. Furthermore, we create
all query audio snippets from .mp3 encoded data, and encode the
modified snippets in the Ogg Vorbis format [13], using the default
compression rate (cr = 3). We do this to show that the system
is also robust to effects that results from a different lossy audio
encoding. All modifications are realized with the free SoX audio
toolkit [14]. The following terms are used in defining our per-
formance measures: tp (true positives) is the number of cases in
which the correct reference is identified from the query. fp (false
positives) is the number of cases in which the system predicts the
wrong reference. fn (false negatives) is the number of cases in
which the system fails to return a reference id at all.3

We define two performance measures: Recognition Accuracy
is the proportion of queries whose reference is correctly identified:

Accuracy =
tp

tp+ fp+ fn
=
tp

N
(7)

Precision is the proportion of cases, out of all cases where the sys-
tem claimed to have identified the reference, where its prediction
is correct:

Precision =
tp

tp+ fp
(8)

Thus, high precision means low number of false positives.

3There are no true negatives (tn) in our scenario (i.e., cases where the
system correctly abstains from identifying a reference because there is no
correct reference) because for all queries, the matching reference is guar-
anteed to be in the DB.

db 1000 songs db 20,000 songs
Speed tot. tree feat. match tot. tree feat. match
130% 12 1 6 5 60 31 7 22
110% 11 2 6 3 52 28 6 18
100% 9 1 6 2 35 20 6 9
90% 9 1 5 2 37 22 5 10
70% 4 0 3 1 14 7 3 1

Table 1: Query runtimes in seconds. “tot” is the total time, “tree”
is the time taken by tree intersection, “feat.” is the feature extrac-
tion time for spectral peaks and quad grouping and “match” is the
matching and verification time.

6.1. Detailed Results on Small Reference-DB (1, 000 Songs)

Each data point in the visualisation shows one of the aforemen-
tioned quality measures for 100 queries. The overall system per-
formance for speed, tempo, and SNR changes is shown in Figure 5.
For this experiment a total of 5900 queries of length 15 seconds
were run against the database consisting of thousand songs.

Figure 6 shows the performance for the tested SNR levels for
speed and tempo modifications of 95% and 105%.

Concerning the noise robustness of the proposed method, the
results show that a stable performance of > 95% for the tested
quality measures is achieved for SNR levels down to +15dB. Ac-
cording to these results the proposed quad-based hashes seem to
be sufficiently robust for queries of various noise levels that may
be encountered in real application scenarios.

6.2. Extending the Reference-DB to 20, 000 Songs

In the previous experiment on a database of thousand songs we
reach a very high precision. To further investigate the precision
of our proposed algorithm we extend the reference database to
20,000 songs, and query the same audio excerpts that we created
for the previous experiment, with the same modifications, against
this large database. Figure 7 shows that the performance of our ap-
proach does not degrade even if there are many songs in the refer-
ence. Note that we parametrized our system to discard any match
candidates if their transformation estimates are outside the scale
tolerance bounds of ±32% for either frequency and time scale.
The performance is comparable to that of the first experiment, re-
sulting in more false positives only for the larger speed modifica-
tions. For tempo modifications the system gives basically the same
performance as in the first experiment.

6.3. Runtimes

In Table 1 we give information about the runtimes observed in the
two above experiments. We randomly pick one of the generated
audio query excerpts, and compare the query runtime for the small
and the large databases for different scale modifications. The in-
creased runtime for faster speed and tempo is a result of the higher
number of spectral peaks in the audio excerpt, for which a larger
number of tree-intersections and raw match candidates have to be
processed.

6.4. Comparison with Reference Method [2]

While it is not possible to directly compare our results to those
of [2] (because we do not have access to their test data), from the
published figures it seems fair to say that in terms of recognition
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(b) Tempo variations
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Figure 5: Precision and accuracy for speed (5a), tempo (5b) and SNR (5c) modifications, on a database of 1000 songs.
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(a) SNR variations for speed 95%
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(b) SNR variations for speed 105%

0 5 10 15 20 25 30 35 40 45 50
SNR [dB]

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Pe
rfo

rm
an

ce

accuracy
precision

(c) SNR variations for tempo 95%
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(d) SNR variations for tempo 105%

Figure 6: SNR variations for 95% and 105% speed and tempo on a database of 1000 songs.
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Figure 7: Precision and accuracy for speed (7a) and tempo modifications (7b) on a database of 20,000 songs.
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accuracy and robustness, both approaches seem comparable, and
both are at the upper end of what can be expected of an audio iden-
tification algorithm – for tempo and pitch distortion ranges that
are larger than what we expect to encounter in real applications.
It should be noted that the results reported in [2] are based on a
small reference collection of approximately 250 songs only and
that, unfortunately, no information is given about either the size of
the resulting database, or about runtimes.

The advantage of our proposed method is its efficiency in terms
of data size and fingerprint computation. In contrast to [2], where
log-spaced filter banks have to be applied to the spectrogram in or-
der to compute the time-chroma representation, the selection of
spectral peaks for quad grouping is done directly on the STFT
magnitude spectrogram of the audio, and the quads can be grouped
in linear time. Our proposed method chooses spectral peaks that
are local maxima of the magnitudes in the spectrogram, in con-
trast to the method of [2], where 600 DCT computations per sec-
ond of audio have to be performed (similarity computations for
30 rectangular image patches for each of approximately 20 feature
candidates per second) in order to find stable feature points. The
hash representation we propose is very compact and can be stored
as four float32 values, while the algorithm of [2] uses fingerprints
that are represented by 143-dimensional vectors.

Our match candidates are retrieved via an efficient range search
in a spatial data structure, for which we use an R-Tree. The dis-
tance of hashes is the euclidean distance between four-dimensional
points, while the distance measure used in [2] is the measure of the
angles of the 143-dimensional fingerprint vectors.

7. CONCLUSIONS

We have presented a new audio identification method that is highly
robust to noise, tempo and pitch distortions, and verified its ability
to achieve overall high performance on a medium-large database
consisting of 20,000 songs. While there is a lot of potential for
false positive matches in a database of this size (roughly 43 mil-
lion quads) in combination with the rather large tolerated scaling
ranges, the method’s filtering stage and the subsequent verification
process enable the system to maintain high precision and accuracy.
The results show a stable high performance for a large range of
scale changes, with as few as ≈ 9 compact fingerprints per second
of audio.

In preliminary experiments on DJ sets and media broadcast
data we have not yet found any examples that exceeded 7% of
speed or tempo scale modifications. We also assume that scale
modification attacks against audio copy detection algorithms are
usually done with very subtle scale changes, almost imperceptible
to human ears. Our proposed algorithm achieves near perfect over-
all performance within scale modification ranges of 90% to 115%
for speed, and 80% to 120% for tempo scale modifications.
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