
Submitted by
Reinhard Sonnleitner

Submitted at
Department of

Computational

Perception

Supervisor and
First Examiner
Gerhard Widmer

Second Examiner
Meinard Müller

April, 2017

JOHANNES KEPLER

UNIVERSITY LINZ

Altenbergerstraÿe 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

Audio Identi�cation
via Fingerprinting
Achieving Robustness to

Severe Signal Modi�cations

Doctoral Thesis

to obtain the academic degree of

Doktor der technischen Wissenschaften

in the Doctoral Program

Technische Wissenschaften

S TAT U T O RY D E C L A R AT I O N

I hereby declare that the thesis submitted is my own unaided work,
that I have not used other than the sources indicated, and that all direct
and indirect sources are acknowledged as references. This printed
thesis is identical with the electronic version submitted.

Linz, April 2017

Reinhard Sonnleitner

A B S T R A C T

In this thesis we approach the task of audio identification via audio
fingerprinting, with the special emphasis on the complex task of
designing a system that is highly robust to various signal modifications.
We build a system that can account for linear and non-linear time-
stretching, pitch-shifting and speed changes of query audio excerpts,
as well as for severe noise distortions. We motivate the design of yet
another fingerprinting method to complement the rich number of
proposed methods and research in this field.

In this thesis we propose a novel, efficient, highly accurate and
precise fingerprinting method that works on geometric hashes of
local maxima of the spectrogram representation of audio signals. We
propose to perform the matching of features using efficient range-
search, and to subsequently integrate a verification stage for match
hypotheses to maintain high precision and specificity on challenging
datasets. We gradually refine this method from its early concept to
a practically applicable system that is evaluated on queries against a
database of 430,000 tracks, with a total duration of 3.37 years of audio
content.

Our proposed method is the first in the academic literature that
is shown to be able to cope with severe signal modifications while
being applicable to large reference collections. This claim is supported
via rich evaluation on manually crafted data that is modified in the
range of ±30% in speed, time-stretching and pitch scale modifications.
We further evaluate the system on noise-distorted queries, and show
the influence of various parameters on the resulting identification
performance and processing run times.

We identify the task of DJ mix monitoring to be one of the most
challenging application areas for audio fingerprinting, due to the vast
amount of signal modifications that can be introduced by performers.
We observe that the identification performance of systems can suffer
tremendously when applied to DJ mixes, much more so than on
manually crafted evaluation datasets, since it is hard to create test
cases that cover the variety of modifications that can be encountered
in DJ-mixes. To close this gap in evaluation methodology, we manually
compile and annotate a free dataset of DJ mixes to support the research
community in investigating and evaluating particular strengths and
weaknesses of proposed systems. In this thesis we make use of this
dataset for extensive evaluation of our method. Finally, we show the
possibility of building a sequence detection program on top of the
fingerprinter, to enable the monitoring of long query recordings for
either interactive analysis or fully automated result reporting.

iii

Z U S A M M E N FA S S U N G

Diese Dissertation befasst sich mit dem Thema Audioidentifikati-
on mittels Audio-Fingerprinting. Im Zuge dieser Arbeit wird der
Stand der Forschung durch ein effizientes- und höchst präzises Sys-
tem mit starker Robustheit gegenüber Signalmodifikationen erwei-
tert. Dieses System ist unter anderem robust gegenüber linearen und
nicht-linearen Modifikationen der Zeit- und Frequenzdimension von
Audiosignalen.

Die Funktionsweise basiert auf skalierungsinvarianten Darstellun-
gen lokaler Maxima im Audiospektrogramm, die mittels Bereichssu-
che in einem vierdimensionalen Merkmalsraum verglichen werden.
Ermittelte Übereinstimmungen werden einer Verifikationsmethode
unterzogen, die es ermöglicht Abfragen höchst präzise und spezifisch
zu beantworten. Durch schrittweise Verfeinerung wird ein praktisch
anwendbares System realisiert, dessen Eigenschaften auf einer Re-
ferenzsammlung von 430.000 Audiotracks mit einer Spieldauer von
insgesamt etwa 3, 37 Jahren untersucht und evaluiert werden.

Diese Arbeit beschreibt das erste System in der wissenschaftlichen
Literatur, das robust gegenüber starken Signalmodifikationen ist und
gleichzeitig effizientes Suchen in großen Datensammlungen ermög-
licht. Das System wird anhand von Experimenten mit manuell erstell-
ten Testfällen ausgewertet, in denen die Zeit- und Frequenzdimension
im Audiosignal Modifikationen von bis zu ±30% unterliegt. Weiters
werden Parameterstudien und Laufzeitmessungen präsentiert.

Eine der größten Herausforderungen für automatisiertes Audio-
Fingerprinting ist die Track-Identifikation in DJ-Mixes, da ein DJ
das Audiosignal nahezu uneingeschränkt modifizieren kann. Die Ge-
nauigkeit von Fingerprinting-Systemen kann auf DJ-Mixes weitaus
geringer ausfallen als auf manuell modifizierten Testsignalen. Der
Grund hierfür liegt in der Schwierigkeit, die Menge der in DJ-Mixes
potentiell auftretenden Signalmodifikationen durch manuell erzeugte
Testfälle abzudecken. Um diese Diskrepanz zu überbrücken erstellen
und veröffentlichen wir einen für Forschungszwecke frei verfügbaren
DJ-Mix-Datensatz samt Annotationen, und werten das vorgestellte
System mit zahlreichen Experimenten auf diesem Datensatz aus. Wei-
ters wird ein Sequenzdetektor für Media-Monitoring beschrieben, der
als Erweiterung des Fingerprinters dazu dient, Abfragen von langer
Spieldauer zu analysieren und zu segmentieren.

v

A C K N O W L E D G M E N T S

Thank you, Lisa, for your support and patience.
Many thanks to my family and friends for all their support.

I want to express my sincere gratitude to my supervisor and em-
ployer, Prof. Gerhard Widmer, who gave me the opportunity to work
at this department, where I could pursue my research interests within
a group of profoundly knowledgeable, helpful and friendly colleagues.
At the department I enjoyed more than six years in a highly productive
and familiar environment, where I could study diverse fields of my
own interest. I want to thank Gerhard for his ongoing encouragement
and supervision, and for always happily providing insight, advice and
immense expertise.

I want to thank Meinard Müller for his efforts spent on reviewing
my thesis. This really means a lot to me.

I also want to thank all my colleagues (which are in fact good
friends) for the endless and fruitful discussions and their distinguished
humour. You all are the reason that working here does not feel like
work, but rather like meeting friends to together solve challenging
problems and keep each other updated on a vast variety of interesting
research topics.

For the work presented in this thesis, I make use of exactly two rou-
tines that are created by colleagues rather than by myself. For the first
of these, I want to thank Jan Schlüter for supplying his Python-script
that wraps ffmpeg decoding to RAM. For the second, I want to thank
Rainer Kelz for the high-performing peak-extractor that is used from
Chapter 4, onwards. Rainer took the time to translate my Python STFT
routine together with my original max-min filter based peak-extractor
into a C-extension. On top of that, Rainer extended it to guarantee
at most one peak per window, perform parabolic interpolation of
peak coordinates, and most time-consuming, he carefully refined the
memory access patterns for quicker run times in the presence of
multi-threading.

The research presented in this thesis was supported by the Austrian
Science Fund FWF under projects TRP307 and Z159 (Wittgenstein
Award), and by the European Research Council (ERC Grant Agreement
670035, project CON ESPRESSIONE).

vii

C O N T E N T S

1 introduction 1

1.1 Motivation . 1

1.2 Challenges . 2

1.3 Contributions . 6

1.4 Audio Retrieval and Identification 8

1.5 Audio Fingerprinting . 9

1.6 Fingerprinter System Architecture 11

1.7 Evaluation and Performance Measures 12

1.8 Organisation of this Thesis 14

1.9 Dataset Availability . 16

2 literature overview 17

2.1 Literature not Considering Scale Change Robustness . 17

2.2 Methods that are Robust to Specific Types of Scale
Changes . 22

2.3 Methods that are Robust to Combinations of Scale Mod-
ification Types . 26

2.4 The Quad-Descriptor . 29

3 quad-based audio fingerprinting: concept 31

3.1 Introduction . 32

3.2 Method Overview . 33

3.3 Feature Extraction . 33

3.4 Recognition Algorithm 39

3.5 Evaluation . 43

3.6 Conclusions . 50

4 large-scale quad-based audio fingerprinting 51

4.1 Noteworthy Refinements 52

4.2 Method Overview . 53

4.3 Feature Extraction . 54

4.4 Fingerprints: Storing Hashes for Efficient Retrieval . . 61

4.5 Identification Algorithm 63

4.6 Experiments and Results 69

4.7 Discussion . 79

5 search algorithm 83

5.1 Overview . 83

5.2 Bounding Volume Hierarchies 85

5.3 Data Layout . 85

5.4 Tree Construction . 86

5.5 Traversal . 88

5.6 Construction and Traversal Parameters 89

6 extended experiments 93

6.1 Reference Database and Parameterization 94

6.2 Scalability: Method Evaluation on 430,000 Tracks . . . 96

ix

x contents

7 dj mix monitoring : method comparison 113

7.1 Data Sets . 113

7.2 Overview of Methods: Audfprint and Panako 116

7.3 Experiment Setup . 117

7.4 Discussion of Results . 119

8 interactive and automatic monitoring of long record-
ings 127

8.1 Sequence Detection on Global Results 129

8.2 Sequence Detection Algorithm for the Segmentation of
Query Recordings . 132

8.3 Automatic Sequence Detection 136

8.4 Case Study: Analysis of the Mixotic Dataset 140

8.5 Discussion . 164

9 conclusion 165

List of Figures 169

List of Tables 176

Bibliography 179

1
I N T R O D U C T I O N

This thesis presents the results of our research on automated audio
identification via fingerprinting, and reports detailed experiments,
descriptions and evaluations. The work describes our initial attempts
to solve open challenges, which we subsequently refine to realize a
practical, efficient system that can meet robustness demands that are
imposed by various application scenarios.

1.1 motivation

Audio is an omnipresent type of media. Popular audio streaming
services host millions of audio files, and at every point in time thou-
sands of broadcast stations transmit audio content. The ever increasing
volume of audio data, whether online or on personal devices, creates
huge interest in the ability to identify audio content. This can be done
via “audio fingerprinting”, which is an identification technology that
aims at operating at highest precision and specificity.

The industry uses audio fingerprinting systems to monitor radio
and TV broadcast channels, in order to create detailed lists of the
specific content that was played at any given time. In addition to
radio and TV broadcast monitoring, performance rights organizations
show interest in monitoring music events, for example in discotheques.
Without using automated fingerprinting systems, royalty collection
depends on the broadcasters who are expected to create detailed lists
of played content.

Fingerprinting systems used for media monitoring usually analyse
audio streams of a large number of broadcast channels or recordings
from various events. As these systems operate on huge amounts of
data, the involved data structures should be as compact as possible
while the systems must efficiently operate on large, and ever-growing
reference databases. In addition, the application to media monitoring
dictates strong robustness demands. While for this use case the sen-
sitivity to noise may not be the main concern, the systems need to
recognize audio material that might have been modified by various
effects.

In this thesis, we address this open research problem1 and propose
a viable and practically applicable solution.

1 See Section 1.2, where we support this claim.

1

2 introduction

1.2 challenges

Audio identification systems usually operate on huge amounts of data,
and are expected to meet several robustness requirements depending
on the actual use case.

The minimum requirement would seem to be robustness to various
types of lossy audio compression and a certain degree of noise.

Systems that aim to identify microphone recordings of short audio
pieces require strong robustness to background noise, as for example
speech and natural sounds, or even different songs played at the same
time that are audible in the near vicinity.

The identification capabilities of fingerprinting systems are com-
monly used for detection tasks, as for example the detection of song
duplicates in private collections, or large scale copy or plagiarism
detection systems that aim to report copyright infringements. For copy
detection, the National Institute of Standards and Technology (NIST)
aims to test systems with heavily modified audio/video content. The
TRECVID 2010 copy detection dataset (Smeaton, Over, and Kraaij,
2006) includes several severely distorted files: according to an investi-
gation mentioned by Ouali, Dumouchel, and Gupta (2014), this dataset
contains files that are altered in speed from −180% up to +23%.

The most challenging application area seems to be the monitoring
of DJ sets and DJ (live) performances. This is due to the large degree
of freedom to introduce signal modifications. DJ mixes incorporate a
wide variety of signal modifications, e.g. pitch shifting, tempo modifi-
cations, loops, cross-fading and beat-matching, to name a few. These
modifications can occur in combination and over arbitrary time-spans.
Each individual modification is expected to be more severe than what
is usually encountered (and tested for) in the monitoring of audio
content in radio and TV broadcasts.

Due to the individual artistic style of performers it is hard to quan-
tify the type and severity of signal manipulations that can possibly be
encountered. For the same reason we believe it is hard to manually
create representative test cases that reflect the possible modifications
for system evaluation.

In addition to robustness demands, we have to consider the use-case-
dependent severity, or impact, of incorrect results, and have to take
into account the required identification performance characteristics of
fingerprinting systems.

For example, if a fingerprinting system is used as duplicate song
detector and it misses a match, the user might waste a few megabytes
of hard disk storage space since it will not get removed. However, if it
reports a false match, this could cause a user to delete a unique song.
Likewise, copy detection systems that miss occurrences of copyright
infringement are not effective, however it is worse if such systems
report false positives, i.e. claim a song to be protected even it is not,

1.2 challenges 3

because this could lead to expensive lawsuits. Most importantly, for
large scale media monitoring, false positives are costly – revenue
might be assigned to the wrong artist. Another type of mistake, false
negatives, can lead to hours of unidentified content that will have to
be investigated with manual effort. Either type of error will increase
the maintenance cost of a system.

Track identification in DJ mixes presents an exceptionally hard
challenge for automated systems, as it demands high robustness to
various signal modifications while at the same time requiring the
system to maintain a high level of specificity to avoid false revenue
assignment.

We became involved in the topic of audio fingerprinting when we
were asked to perform a feasibility study. One goal of this study was
to quantify, in an automated fashion, the extent of time and pitch scale
modifications 2 that were introduced by DJs in their performances.
Using manual techniques, we could show for parts of the performances
that these types of modifications frequently occur in combination,
but at that time (the year 2013) we could not find a reliable way to
show the extent of these modifications in an automated and efficient
fashion. In fact, we could not even answer the question whether some
of the tracks within the performances were actually present in our
reference database. The dilemma was that to answer this question, one
would need a robust and reliable fingerprinting system to identify the
content.

When designing a system for the monitoring of DJ performances it is
advantageous to first establish lower and upper bounds of the extents
of scale modifications that are likely to be encountered. Investigating
our dataset of recorded DJ performances, via manual spectrogram
comparisons we found indications of scale modifications in the range
of roughly ±5%. This estimate will serve as the required lower bound of
scale robustness throughout this thesis, i.e. a system should be robust
to at least this range of scale modifications, but may be required to
cope with even more severe alterations. For an estimate of a reasonable
upper bound – a range where larger extents of modifications are intro-
duced very rarely – one would need a reliable automated approach
to quantify encountered scale modifications on a large, representative
dataset. Alternatively, one could design a questionnaire for DJs to
establish an upper bound. Currently, we do not know of an upper
bound and have to leave this question open. In Chapter 8 we propose
an automated method to reliably analyse scale modifications in long
recordings, which seems to be a promising way to establish an upper
bound of scale modifications in the light of a representative dataset.
However, this is only valid if the robustness of our method exceeds
this hypothetical upper bound.

2 We will clarify our terminology for scale modifications (e.g. speed, tempo, pitch) in
Section 1.2.1, below.

4 introduction

1.2.1 Terminology on Robustness Criteria

Some important terms on robustness criteria will be used extensively
throughout this thesis. Here, we clarify our terminology and will
define abbreviations, or short-cut notations, that we will then use to
refer to these terms.

For a robust identification of audio signals we have to consider mod-
ifications in the time dimension as well as the frequency dimension.
Some effects will affect exactly one of these two dimensions, others
affect both at the same time. When we talk about the application of
an effect, we will use the words modification, change and alteration
synonymously.

0

100

200

300

400

500

Fr
e
q
u
e
n
cy

 b
in

s

Original Speed +30%

0 500 1000 1500 2000 2500 3000 3500
Time frames

0

100

200

300

400

500

Fr
e
q
u
e
n
cy

 b
in

s

Pitch +30%

0 500 1000 1500 2000 2500 3000 3500
Time frames

Tempo +30%

Figure 1.1: The three basic types of time and frequency scale modifica-
tions, compared to the original (top left).

Changing the time dimension only is commonly known as a “tempo”
change: here, the audio is sped up or slowed down without observable
changes in pitch. We refer to the tempo-effect as T-modifications.

Vice versa, if only the frequency dimension is modified, with-
out alterations of the time dimension, we call this pitch-effect P-
modifications.

If a song is played faster, resulting in a higher pitch, this is called
a change in speed. Compared to T- and P-modifications, speedup or
slowdown is the simplest effect, which can be achieved for example
by simply changing the rotational speed of the turntable. Speeding
up, or slowing down a recording proportionally affects the time (T)
and the frequency (or pitch) scale (P). Throughout this document we

1.2 challenges 5

will refer to this effect as a modification or change in TP. Note that a
system which is robust to TP-modifications, is not necessarily robust
to P-modifications or T-modifications.

In Figure 1.1 we visualize the effect of audio that is played at higher
pitch and changed in tempo and speed.

1.2.2 The Open Research Problem

For media monitoring, fingerprinting systems must be robust to scale
modifications. For example, Cano, Batlle, Mayer, et al. (2002) observe
that broadcasters may speed up audio. Likewise, the broadcasters
sometimes apply P-modification effects (Fenet, Richard, and Grenier,
2011). From initial experiments on DJ performances we learned that in
addition to that, DJs frequently apply T-modifications (see Chapter 8).
(Malekesmaeili and Ward, 2014) note the need for T-modification
robustness for copy-detection systems.

From this we conclude that in order to build reliable and applicable
audio fingerprinting systems, especially for the use in media monitor-
ing and copy detection, at least the following requirements must be
met:

• Robustness to background noise and compression

• Robustness to at least ±5% (lower bound) of

– T-modifications

– P-modifications

– TP-modifications

– Ideally even to non-linear scale alterations (e.g. acceleration
and deceleration of audio content).

• Efficient operation on large reference databases: this is dictated
by the typical use of media monitoring and copy detection sys-
tems.

• High identification performance with the ability to avoid false
positive detections.

At the time we started working on this topic (the year 2013), no
system had been described in the academic literature that was shown
and evaluated to meet this set of requirements. Building a reliable
system that is efficiently applicable to these use cases indeed was
an open problem – sufficient robustness to the mentioned signal
modifications, in combination with high identification performance
and efficient operation on large audio collections seem to be substantial
challenges for automated audio identification systems. We elaborate
on that in Chapter 2, where we give an overview of the literature.

6 introduction

To solve these challenges we propose to adapt an elegant method
from the field of astronomy (Lang et al., 2010) for the use of audio
fingerprinting. Said method is the most important building block of
the method that we propose.

Having stated the task as an open research problem, it is important
to discern the academic world from the industry. Audio fingerprinting
systems are claimed to be massively used in the industry, apparently
with great success. We do not know what algorithms are in use, and
to which degree they have been evaluated. For us, it is impossible to
falsify the claims made by the industry, therefore we are forced to
conclude that the industry has discovered solutions to the challenges,
and in this regard seems to be many years ahead of the advances in
the academic world.

1.3 contributions

We propose and contribute a robust, high-performing and practical
audio fingerprinting system, along with a free dataset of DJ mixes for
experimental research purposes.

Our contribution is the first method in the academic literature that
meets all of the robustness and performance requirements we men-
tioned above. Its basic concept is to extract local maxima from the
spectrogram, and to group these into four-dimensional feature com-
binations called “quads”, which can be represented in a way that is
invariant to translation and non-isotropic scaling (i.e. different scale
factors can be applied to either dimension). A query is then answered
by comparing the query feature combinations with a collection of refer-
ence feature combinations. As an integral part of the matching process,
the system uncovers and quantifies potential scale modifications in
the query audio.

We show that our method is efficient despite our large reference
collections3, and the large search problem that is caused by scale
invariances of hashes and their robustness to signal modifications.
Specifically, we designed the proposed system for inexpensive hard-
ware, show its capabilities on a standard desktop computer, and inten-
tionally avoid to make use of expensive and power-hungry GPUs.

The robustness of our method is not limited to linear or non-linear
time-scale and frequency-scale modifications of query audio. In addi-
tion, the method retains strong robustness to noise distortions, which
we demonstrate to be on-par with the Audfprint system’s noise robust-
ness (Audfprint implements an algorithm similar to that described by
Wang (2003)).

3 Large in the context of the database sizes used for evaluation in the academic literature.
We evaluate our system on reference collections of the size of 20,000 full-length songs
in Sonnleitner and Widmer (2014), 100,000 in Sonnleitner and Widmer (2016) and
430,000 full-length tracks in Sonnleitner, Arzt, and Widmer (2016), while the industry
apparently works on data volumes of tens of millions of reference songs.

1.3 contributions 7

According to our experiments and performance evaluations, the
system is directly usable for various fingerprinting application areas.
Next to typical fingerprinting use cases these are for example audio
copy detection, media monitoring, song duplicate detection and the
analysis of scale modifications in (long) recordings.

We evaluate our work on a free, Creative-Commons licensed ref-
erence collection of 430,000 full-length songs for T-, P-, and TP-
alterations of up to ±30%. To put this into perspective, listening
to the entire reference collection would take over three years and four
months (more than 29,500 hours of audio content). The reader might
raise the question of whether scale modification robustness to ±30%
or more is necessary, or even reasonable. We aim for our system to be
able to reliably monitor DJ performances. As we are not aware of a
study of typically encountered scale modifications, and we assume
that these may likely change due to trends or individual artistic ex-
pression, we cannot tell which degree of robustness is necessary. In
general, we argue that for a system to work reliably, it should not be
operated near its limits.

To show the applicability of our method to the monitoring of DJ
mixes, we also evaluate the work on two different DJ mix datasets.
One contains real-world data – DJ mixes recorded in discotheques and
clubs. This data set is proprietary and cannot be made public. The
second data set is a contribution of ours to the research community:
We create and release a creative-commons licensed dataset (the second
dataset) of free DJ mixes along with reference tracks and song-border
annotations, and show an evaluation with baseline results of our
proposed method on this dataset. We hope that this dataset will be of
use to the community and helps to further deepen the research and
advances in this field.

Parts of the work presented here have been published in three
papers:

• Chapter 3:
R. Sonnleitner and G. Widmer (2014). “Quad-Based Audio Fin-
gerprinting Robust to Time and Frequency Scaling”. In: Proceed-
ings of the International Conference on Digital Audio Effects (DAFX
2014). Erlangen, Germany, pp. 173–180

• Chapter 4:
R. Sonnleitner and G. Widmer (2016). “Robust Quad-Based Au-
dio Fingerprinting”. In: IEEE/ACM Trans. Audio, Speech & Lan-
guage Processing 24.3, pp. 409–421

• Chapter 7:
R. Sonnleitner, A. Arzt, and G. Widmer (2016). “Landmark-Based
Audio Fingerprinting for DJ Mix Monitoring”. In: 17th Interna-
tional Society for Music Information Retrieval Conference (ISMIR
2016)

8 introduction

Other parts of this thesis – notably, Chapters 5, 6 and 8 are unpublished
and appear here for the first time.

1.4 audio retrieval and identification

Due to the large amount of audio data, there is notable interest in
technologies that allow to search for audio content and support the
organisation of multimedia data. Multimedia search can be coarsely
categorized into content-based, metadata-based, and multi-modal
approaches. We will only consider content-based approaches. These
operate solely on a representation derived from the underlying signal.
An excellent overview of content-based retrieval and identification is
given in Grosche, Müller, and Serrà (2012).

The field of audio identification encompasses topics such as finger-
printing, watermarking, live-song identification, cover-song identifica-
tion and audio-matching. These pursue different goals, and therefore
also use different approaches. However, there exist some common
requirements, as for example the requirements for efficient process-
ing and robustness to distortions (see for example Casey, Rhodes,
and Slaney (2008), Kurth and Müller (2008), and Grosche and Müller
(2012)). Retrieval systems such as cover-song detection (see for ex-
ample Serrà and Gómez (2008) and Ellis and Poliner (2007)) and
audio-matching aim at retrieving lists or sets of audio pieces (or their
associated metadata) from known collections via the design and ex-
traction of content-based features, and subsequent similarity search
in large reference collections. However, their use-cases, applied algo-
rithms, and evaluation methodologies are very different from those
that are commonly used in audio fingerprinting. The most apparent
differences are that cover-song retrieval, live-song identification and
audio-matching have to consider some measure of similarity rather
than identity. For similarity-based retrieval it is not always decidable
which result is the correct one, and typically these tasks are formulated
as ranking-problems. Further, the methods used in cover-song detec-
tion and audio-matching aim to retrieve pieces that musically corre-
spond to each other. This motivates the design and use of features and
feature-combinations that can capture and describe musical properties.
For the complex task of cover-song detection for example, the features
need to capture the key, beats and downbeats, structure and maybe
even the lyrics of a song, while at the same time representing the
features in a way that is robust to modifications thereof. Such feature
combinations are in general of high dimensionality. A standard feature
that is successfully used in these fields is the “chroma”-feature (a spe-
cific type of “pitch class profiles”) (Fujishima, 1999; Wakefield, 1999).
The most common western music tuning system is the 12 equal tem-
perament (12-TET) system, and can be made robust to P-modifications
in the context of western tonal music. However, different scales need

1.5 audio fingerprinting 9

to be processed with a suitable number of band-subdivisions. Work
that makes use of chroma-shifting is described for example by Goto
(2003) and Müller, Kurth, and Clausen (2005).

Audio identification and fingerprinting, as well as live-song identifi-
cation (for live-song identification see for example Rafii, Coover, and
Han (2014) and Tsai, Prätzlich, and Müller (2016)), are not formulated
as retrieval tasks. Rather, these methods make use of exact search
strategies. To give an intuitive example, let us compare this to text
search. If we search for the next occurrence of a word, we expect to
either see that word highlighted, or to be informed that this word
does not exist in the text document. We do not expect to get a list of
e.g. synonyms of that word that appear in the text. In the case of exact
identification there is at most one correct result (given a duplicate-free
reference collection). Therefore, automated audio fingerprinting is not
formulated as a ranking-problem.

1.5 audio fingerprinting

Audio fingerprinting, the topic of this thesis, is a technology for the
exact identification of audio content. Its typical use is to precisely
identify a piece of audio from a large collection, given a (short) query
– where a query is an audio excerpt that is potentially distorted or
modified. Audio fingerprinting is of interest to the industry and also
is a well established tool in everyday life – millions of users utilize this
technology, e.g. via their mobile phones, to learn about a song that is
currently played. The media industry uses automated audio finger-
printing systems to collect information of what content was played
at which point in time, for various TV and radio broadcast channels
all over the world. In addition to that, several media events and dis-
cotheques are monitored in order to assist the revenue management
of played content.

Historically, audio fingerprinting emerged from watermarking tech-
nology. Here, audio signals are modified to carry additional informa-
tion in a way that does not alter the perceptual quality. In order to
identify signals that are augmented in this way, the injected informa-
tion (the watermark) is extracted and investigated. The disadvantage
of watermarking is that it can only be used for identification if the
signal was processed with a watermarking system beforehand. In this
regard, an advantage of audio fingerprinting is its non-invasive nature,
as signals do not need to be actively modified beforehand.

In contrast to e.g. cover-song detection (see Section 1.4), for audio
fingerprinting we do not need to extract musical information of any
kind. We argue that feature combinations that capture a notion of
musical similarity might even be detrimental to the goal of high
precision and specificity, especially when large audio collections are
used such that there are many songs for each given genre. In this work,

10 introduction

in line with the majority of all described fingerprinting systems, we
design a system that is completely agnostic to what “music” is. Rather,
we simply treat our input as acoustic signals without any assumptions
on their content.

In the context of this work we define the term audio fingerprinting as
follows:

An audio fingerprinting system is an identification system that
aims to robustly identify “identical” pieces of audio, where the
query originates from the reference, but may have been altered by
background noise, compression, scale modifications and effects.

A piece of audio that is distorted by noise or modified by effects
is still considered identical to the original. However, a live version of
a song is not identical to e.g. the studio version, because it does not
originate from the same signal. Thus, for audio fingerprinting it is
important to extract highly discriminative content features, so-called
“fingerprints”, from the collection of audio files as well as the query
piece.

In the following we define a list of feature properties which need to
be investigated in detail. For this we want to point out the similarity
of audio fingerprinting to biometric systems, which are also required
to operate at highest precision and specificity, extract robust features,
and to search for matches in exceptionally large databases. In the
field of biometry, these properties are referred to as “biometric traits”
(Jain, A. Ross, and Nandakumar, 2011). Let us transport these traits
to the topic of audio fingerprinting (we exclude “measurability” and
“acceptability” which are not of relevance to our scenario):

• Universality: All pieces of audio should carry the feature. To give
a counter-example let us consider audio features that represent
tonality, which are not always decidable in the context of mostly
percussive audio content. In general, audio fingerprinting is
not limited to musical content. We argue that features that try
to capture higher-level musical information may violate the
“principle of universality” and are not of advantage to audio
fingerprinting.

• Uniqueness: The features should be of sufficient discriminability.

• Robustness/Permanence: The feature should be sufficiently in-
variant (i.e. robust) to various distortions, e.g. encoding, noise,
compression artefacts and audio effects such as time and fre-
quency scale modifications.

• Performance: The features should allow for high identification
performance as well as low computational costs of the extraction
routine and the matching process.

1.6 fingerprinter system architecture 11

• Circumvention: It should be hard to imitate or remove the feature.
While this property is regarded to be of high importance to
watermarking systems, it seems that the literature on audio
fingerprinting does not consider the problem of circumvention
as relevant.

We design our system in the light of the traits of universality, unique-
ness, robustness and performance. In the course of this thesis we
implicitly show the “universality” by working on large and diverse
datasets, including DJ performances. For “uniqueness”, we perform
an experiment in Chapter 7 to demonstrate the specificity and pre-
cision of the method without taking advantage of the verification
process (see Section 4.5.3). The key points of “robustness” and “per-
formance” are shown to be satisfied in various experiments for which
we give evaluation results and run times (see Section 6.2). Robustness
to compression and resulting artefacts is implicitly tested in all the
experiments that are presented in this thesis, with the exception of
the experiments shown in Chapter 8. We do this by taking the already
compressed audio data which typically are in the mp3-format, and
convert all queries to the ogg-format, again with compression. Experi-
ments on “circumvention” are not part of this thesis, but we assume
that it would be a worthwhile topic of future work, especially for copy
detection systems and automated systems that are used as a basis for
the distribution of revenue.

1.6 fingerprinter system architecture

The abstract overall architecture of a fingerprinting system is based
on the building blocks as depicted in Figure 1.2.

Figure 1.2: Abstract system modules

The systems basically operate in two modi: reference database con-
struction and query processing. The database is usually constructed

12 introduction

from whole tracks or songs, while query audio pieces typically are
short excerpts. In both cases, the input is processed by a feature
extraction stage, where the audio is decoded, transformed into a suit-
able representation, and subsequently processed to obtain feature
descriptions (i.e. the fingerprints). Ideally, the extracted fingerprints
are universal, highly discriminative, robust, cheap to compute and of
low storage demands.

For reference database construction, the extracted fingerprints are
stored in a way that supports efficient search. After its construction,
the reference database comprises all the content that can possibly be
identified by the system.

To answer queries, a search method compares the extracted finger-
prints from the query excerpt to the fingerprints stored in the reference
database. The reporting module then returns the result, with any kind
of associated additional information and meta-data.

In the course of this thesis, we will part for part refine this general
architecture to the specific method that we propose, and focus on
details of each component. In the end, we arrive at descriptions of
all components and subcomponents. The result is a complete audio
fingerprinting system capable of dealing with noise, effects, and severe
linear and non-linear scale modifications. The final architecture of our
specific method is depicted in Figure 1.3. Where appropriate, we will
use these figures with highlighted components for a quick cue of what
the following sections are about.

Figure 1.3: Detailed system architecture

1.7 evaluation and performance measures

In this thesis, the performance of our method is evaluated for various
distorted queries and long recordings of DJ mixes.

The following terms are used in defining our performance measures:

1.7 evaluation and performance measures 13

• tp: true positives is the number of cases in which the correct
reference is identified from the query.

• fp: false positives is the number of cases in which the system
predicts the wrong reference.

• fps: false positives in the context of specificity are the cases where
the system reports a match despite the fact that the query is
not identifiable because there is no reference. Thus, we have
two types of false positives (fp and fps), depending on the
case whether the reference is present (identifiable) or not (non-
identifiable).

• fn: false negatives is the number of cases in which the system fails
to return the result, i.e. instead of reporting the correct match
the system returns an empty result.

• tn: true negatives is the number of cases where the system cor-
rectly abstains from identifying a reference because there is no
correct reference.

Based on these, we define three performance measures:

• Recognition Accuracy is the proportion of queries whose reference
is correctly identified:

Accuracy =
tp

tp + fp + fn
=

tp
N

(1.1)

where N is the sum of all possible outcomes, i.e. true positives,
false positives and false negatives. We report the accuracy for
cases where the correct reference is represented in the database.
In this case the query is identifiable and there are no true nega-
tives.

• Precision is the proportion of cases, out of all cases where the sys-
tem claimed to have identified the reference, where its prediction
is correct:

Precision =
tp

tp + fp
(1.2)

Thus, high precision means a low number of false positives. It is
important to assess the precision of fingerprinting systems, as in
many applications a false positive is regarded more expensive
than a false negative. In media monitoring and revenue distri-
bution, a false positive may lead to revenue attribution to the
wrong artist, and in copy detection, to false accusations.

• Specificity is the proportion of non-identifiable cases where the
system correctly abstains from reporting a result (because the
query is not present in the reference database).

Specificity =
tn

tn + fps
(1.3)

14 introduction

High specificity quantifies the capability of the system to avoid
false positives by correctly abstaining from reporting a match.
We will use this performance measure in cases where we know
that certain queries are not represented in the database.

In this thesis we show query-based, and recording-based experi-
ments. Query-based experiments consider independent short queries
in the range of 3 to 20 seconds. These are explained and evaluated
in Chapters 3, 4, 6. For these experiments the performance measures
tp, fp, fn are counted based on the number of queries, i.e. one correctly
identified query is one true positive. For recording-based experiments,
where the query content consists of long audio recordings, the mea-
sures tp, fp, fn, tn, fps reflect the number of seconds that are correctly
or falsely claimed by the system. Recording-based experiments are
shown in Chapters 7, 8.

1.8 organisation of this thesis

This document is organised as follows. In this present chapter we
have introduced the concepts and the terminology for the subsequent
chapters of this thesis. Next, in Chapter 2 we discuss the literature on
audio fingerprinting.

We describe our initial research on the topic of robust audio finger-
printing in Chapter 3. It is included in this thesis in order to demon-
strate the chronological advancements of our proposed “quad-based”
audio fingerprinting method that we call “Qfp”. To obtain fingerprints,
we construct quadruples of local maxima in the spectrogram, and sub-
sequently represent these as translation invariant hashes, that are also
invariant to non-isotropic scaling. The matching of fingerprints is done
via range search in tree data structures. To make the system operate
with high precision, we integrate a powerful verification process that
effectively discards false positive candidates. The method is robust
to scale modifications of query audio, and quantifies the scale modi-
fication factors that are encountered when processing a query. This
chapter is heavily based on the following publication:

R. Sonnleitner and G. Widmer (2014). “Quad-Based Audio Fin-
gerprinting Robust to Time and Frequency Scaling”. In: Proceed-
ings of the International Conference on Digital Audio Effects (DAFX
2014). Erlangen, Germany, pp. 173–180

This chapter is intended to describe the early concept of the method,
and since its publication we have managed to considerably improve
and refine almost all of its aspects. The chapter might be of interest
if a reader is working towards an implementation of our method,
without wanting to directly integrate the more complex routines for
increased efficiency of the method. The experiments and results in

1.8 organisation of this thesis 15

the chapter allow for comparison on smaller datasets using a non-
optimized implementation. A reader who directly wants to learn about
the current state of the method with all the refinements is invited to
skip Chapter 3, and to proceed with Chapter 4. There, our method
“Qfp” is described in its entirety.

In Chapter 4 we refine the initial method and achieve a high-
performing and scalable system that is evaluated to be robust to
various effects and severe scale modifications in the range of ±30%,
while operating on a reference collection of 100,000 full-length audio
files. To do so, we refine the quad grouping process to extract the
fingerprints in an almost uniform distribution over time. Then, quads
are filtered to keep only the “strong” ones. Query quad extraction
is extended to adapt to tolerance bounds, and we further introduce
a subspace constraint in order to dismiss query quad candidates if
they originate from an invalid hash-subspace. The search algorithm is
replaced, such that we now use a so-called shallow “bounding volume
hierarchy” (a 4-ary “BVH”) that enables us to perform range search
in an efficient way. The chapter is heavily based on the following
publication:

R. Sonnleitner and G. Widmer (2016). “Robust Quad-Based Au-
dio Fingerprinting”. In: IEEE/ACM Trans. Audio, Speech & Lan-
guage Processing 24.3, pp. 409–421

Chapter 5 elaborates on the core element of the fingerprinting
system: the tree-based search algorithm, the tree construction and its
traversal. We refine the internal data organisation and switch to a
compressed representation of reference records. This paves the way
to lower storage demands and more efficient processing, and allows
the system to operate on large reference databases. We here use the
largest free and reproducible dataset that we know of: it consists of
almost 430,000 full-length audio pieces. These refinements allow us to
process queries against the large reference database with even lower
run times than what we achieved on the smaller reference database of
just 100,000 tracks. Even on this large database, the search algorithm
allows us to answer a 20 second long query that may be scale-modified
in the range of ±30%, within one second.

In Chapter 6 we present more extended and systematic experiments
on the large reference database of 430,000 tracks. We show the perfor-
mance of the algorithm on scale-modified queries in our typical range
of ±30%, include tests for varying lengths of query snippets, varied
numbers of query-quads per second, and non-linear scale modifica-
tions as well as noise robustness. Then, we show the runtime that is
spent in various stages of our system.

Chapter 7 focuses on our initial research question: Can we apply our
proposed system to monitor DJ performances, despite the challenges
given by the strong robustness demands? The chapter is heavily based
on our third publication in the field:

16 introduction

R. Sonnleitner, A. Arzt, and G. Widmer (2016). “Landmark-Based
Audio Fingerprinting for DJ Mix Monitoring”. In: 17th Interna-
tional Society for Music Information Retrieval Conference (ISMIR
2016)

We discuss the applicability of peak-based methods on DJ perfor-
mances, and compare the identification performance of our method
to two fingerprinting systems that are freely available for research
purposes. The comparisons and evaluations are based on two datasets:
live DJ mixes that were recorded in discotheques, and a freely available
dataset of DJ mixes that we create and publish along with song-border
annotations and reference tracks.

In Chapter 8 we give a case study for the application of our system
to the task of media monitoring, where we show how to use our
proposed system to work on entire hours of media content instead of
on successive short and local queries. For this, we build a sequence
detector on top of the proposed fingerprinting system, and give an
in-depth discussion of the results obtained on the free DJ dataset, and
a summarization of results for the non-free and unpublished disco-
dataset. The system is directly applicable to fully automated media
monitoring tasks, but could also be used to generate reports that
visualise the content in an intuitive way that might help in supervised
use cases where system results need to be refined by human inspection.

Finally, in Chapter 9 we conclude our work.

1.9 dataset availability

Information on how to obtain and reconstruct our reference collection
that consists of almost 430,000 tracks, and the “mixotic”-set, can be
found online on the department’s web-page: http://www.cp.jku.at/
datasets/fingerprinting/

http://www.cp.jku.at/datasets/fingerprinting/
http://www.cp.jku.at/datasets/fingerprinting/

2
L I T E R AT U R E O V E RV I E W

In the previous introductory chapter we described the topic of audio
fingerprinting, and discussed the requirements and challenges to
build an efficient and robust automated system. The field of audio
fingerprinting is an established research topic and also of interest
to the industry, with a rich variety of contributions described in the
literature.

In this chapter we discuss previous work and work that is more
directly related to the focus of this thesis, which is to build a system
that can efficiently and robustly operate on large collections of data.

We organize the literature review according to the robustness re-
quirements that we defined earlier in Section 1.2.2. To do so we cate-
gorize the literature as follows.

• Work that does not consider robustness to time or frequency
modifications. This category contains the majority of the litera-
ture (see Section 2.1).

• Work that proposes solutions for robustness to some types of
scale modifications, but not to each of the types (P-, T-, TP–
alterations) at the same time (see Section 2.2).

• Work that proposes solutions for robustness to scale modifica-
tions in general, i.e. any combination of P-, T-, TP–modifications.
This category is of interest for copy-detection and media moni-
toring use-cases, and our main focus (see Section 2.3).

In Figure 2.1 we visualize the publications by year, and highlight
those that aim to achieve robustness to changes in pitch or time-scale.
The highlighted publications are categorized as described in the list
above.

In Table 2.1 we show the sizes of reference collections (in hours
of audio) and the reported evaluation measures of the highlighted
methods.

The last section in this chapter is devoted to the work that inspired
our fingerprinting method.

2.1 literature not considering scale change robustness

In this section we give an overview of previous work in the field of
audio fingerprinting, that does not consider robustness to effects that
arise from time or frequency scaling of query audio.

17

18 literature overview

2000 2002 2004 2006 2008 2010 2012 2013 2014 2016
Year of publication

[30][1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
 S

[13]

[0] [21]

[22]

[23]
 T

[24]

[25]

[26]

[27]
 T

[14]
 S

[15]

[16]

[17]

[18]

[19]

[20]

[48]
SPT

[42]
SPT

[43]
SPT

[44]
 S

[45]

[46]

[47]
SPT

[28]
P

[29]
 T

[49]
SPT

[50]
SPT

[34]
P

[35]

[36]

[31]
 S

[32]

[33]
SPT

[40]
P

[41]

[37]

[38]

[39]

- not robust to pitch or time scale changes

P Speed change robust

 S Pitch change robust

 T Tempo change robust

SPT Speed, Tempo, Pitch change robust

(a) Literature by year of publication

Idx Literature Idx Literature Idx Literature

0 Haitsma, Kalker, and Oostveen (2001) 17 Ke, Hoiem, and Sukthankar (2005) 34 Fenet, Richard, and Grenier (2011)

1 Kurth, Ribbrock, and Clausen (2002) 18 Seo et al. (2005) 35 Chandrasekhar, Sharifi, and D. A. Ross (2011)

2 Sukittanon and Atlas (2002) 19 C. J. C. Burges et al. (2005) 36 Ramona and Peeters (2011)

3 Haitsma and Kalker (2002) 20 Cano et al. (2005) 37 Porter (2012)

4 Batlle, Masip, and Guaus (2002) 21 Smeaton, Over, and Kraaij (2006) 38 Six and Cornelis (2012)

5 Miller, Rodriguez, and Cox (2002) 22 Ramalingam and Krishnan (2006) 39 Anguera, Garzon, and Adamek (2012)

6 Cano, Batlle, Mayer, et al. (2002) 23 Kurth, Gehrmann, and Müller (2006) 40 Ramona and Peeters (2013)

7 Cano et al. (2002) 24 Betser, Collen, and Rault (2007) 41 Fenet (2013)

8 C. J. Burges, Platt, and Jana (2002) 25 Cano Vila and Serra (2007) 42 Sonnleitner and Widmer (2014)

9 Lu (2002) 26 Ogle and Ellis (2007) 43 Malekesmaeili and Ward (2014)

10 Herre, Hellmuth, and Cremer (2002) 27 Baluja and Covell (2007) 44 Ouali, Dumouchel, and Gupta (2014)

11 C. J. Burges, Platt, and Jana (2003) 28 Bellettini and Mazzini (2008) 45 Yu et al. (2014)

12 Haitsma and Kalker (2003) 29 Baluja and Covell (2008) 46 Schreiber and Müller (2014)

13 Wang (2003) 30 Liu, Yun, and Kim (2009) 47 Six and Leman (2014)

14 Bardeli and Kurth (2004) 31 Dupraz and Richard (2010) 48 Zhang et al. (2015)

15 Batlle et al. (2004) 32 Lang et al. (2010) 49 Sonnleitner and Widmer (2016)

16 Goldstein, Plat, and C. J. Burges (2005) 33 Zhu et al. (2010) 50 Sonnleitner, Arzt, and Widmer (2016)

(b) Resolving the citation indices to the bibliography

Figure 2.1: Literature by year of publication (Figure 2.1a), annotated
with the type of scale change robustness. Publications of
the same year are stacked vertically, without specific order.
Grey colored citation indices denote literature that does
not consider robustness to any kind of scale modifications.
Black citation indices represent work that is robust to at
least one kind of scale modifications, where “S” is short-
hand for what we defined as TP-modification, and “T” and
“P” denote T- and P-modifications. “STP” denotes P-, T-,
TP–modification robustness. Table 2.1b resolves the citation
indices given in Figure 2.1a.

2.1 literature not considering scale change robustness 19

Idx Literature DB size [h] Eval. measures

12 Haitsma and Kalker (2003) ? A

14 Bardeli and Kurth (2004) 40 A

23 Kurth, Gehrmann, and Müller (2006) 7 A

27 Baluja and Covell (2007) 667 A

28 Bellettini and Mazzini (2008) 1000 A

29 Baluja and Covell (2007) 667 A

31 Dupraz and Richard (2010) 5 A, P

33 Zhu et al. (2010) 21 A

34 Fenet, Richard, and Grenier (2011) 583 A, P

40 Ramona and Peeters (2013) 8.34 P, R

42 Sonnleitner and Widmer (2014) 1333 A, P

43 Malekesmaeili and Ward (2014) 16.67 A, P

44 Ouali, Dumouchel, and Gupta (2014) 400 P, R (F-measure)

47 Six and Leman (2014) 2000 A, P, S

48 Zhang et al. (2015) 169 A

49 Sonnleitner and Widmer (2016) 6666 A, P, S

50 Sonnleitner, Arzt, and Widmer (2016) 29,500 A, P, S

Table 2.1: Size of reference collections (in hours) and reported eval-
uation measures for methods robust to time or frequency
modifications. For evaluation measures, “A”, “P” and “S”
denote accuracy, precision and specificity. “R” denotes recall
(tp/(tp + fn)).

Haitsma, Kalker, and Oostveen (2001) propose to create robust
hashes which are represented as bit-strings and allow for subsequent
identification of audio by comparing query hashes to reference hashes.
This work has become a classic and influential method.

The work of C. J. Burges, Platt, and Jana (2002) investigates means
of applying dimensionality reduction on fingerprint hashes, and evalu-
ates the identification performance of the system on 36 hours of audio
data.

Cano, Batlle, Mayer, et al. (2002) observe that for the application of
audio identification systems to broadcast data, additional robustness
demands must be fulfilled. Broadcasters might speed up the audio
to play more songs per hour, or to get more attraction to listeners. In
this work, TP-changes of up to 2.5% are observed in radio broadcasts.
Speeding up the audio not only modifies the time scale, but also
influences the pitch, and thus can negatively impact the identification
performance. The evaluation contains experiments on radio broadcasts
with high performance, but the extents of TP-modifications in the
broadcast dataset are not known.

The work of Miller, Rodriguez, and Cox (2002) explores ways to
make computationally expensive nearest neighbour search in high di-
mensional binary spaces applicable to the task of audio fingerprinting.

20 literature overview

A system that operates on features from MPEG-7 content descriptors
is given by Herre, Hellmuth, and Cremer (2002).

Kurth, Ribbrock, and Clausen (2002) propose a system for identi-
fication of distorted audio, to leverage fingerprinting technology for
content that was recorded via mobile phones. The work gives insight
in the feature extraction and representation from the view point of
coding theory, and highlights the challenges of identifying distorted
audio in a highly elaborate way. The description of the feature ex-
traction process mentions an example of the extraction of local signal
minima and maxima. Local maxima will later become the base feature
representation for an influential identification method, also targeted
at the identification of mobile phone recordings (Wang, 2003).

Lu (2002) analyse time-frequency variations in audio signals using
the one-dimensional wavelet transform. It seems that at this time, the
term fingerprinting gains momentum in the research field, discerning
itself from watermarking, and is described as a non-invasive non-
watermarking technique. The robustness of watermarking methods
is frequently investigated in the context of attack scenarios. Initially,
creating different encodings of audio is viewed as a possible attack
against fingerprinting systems.

Sukittanon and Atlas (2002) highlight the importance of extracting
fingerprints that are invariant to time and frequency distortions, and
propose two dimensional modulation frequency features. The eval-
uation takes into account linear time shifts as well as dynamic time
normalization (AGC), and includes tests for misaligned audio of up
to five seconds.

An early review of different algorithms for audio fingerprinting is
given by Cano et al. (2002). Typical building blocks of fingerprinting
system architecture are mapped to a proposed unified framework.

The application of automated audio identification systems to noisy
broadcast data is investigated in the work of Batlle, Masip, and Guaus
(2002), using an HMM audio model with Viterbi decoding.

C. J. Burges, Platt, and Jana (2003) apply distortion discriminant
analysis to achieve robust feature extraction and dimensionality re-
duction.

Wang (2003) describe a system that creates geometric hashes from lo-
cal spectrogram maxima. While individual hashes are of low specificity,
sequences of matches over time show high specificity. The proposed
method of searching for sequences of matched hashes constitutes a
very efficient algorithm. This has become a classic and influential
method, generally known as “Shazam”. The hashing model, however,
does not exhibit robustness to any type of scale modifications. The
system is considered to be highly robust to additive noise.

Batlle et al. (2004) present a HMM based fingerprinting method,
and discuss scalability issues. Discussing the scalability, the authors
split the “cost” of the system in two parts. The first part considers

2.1 literature not considering scale change robustness 21

the feature extraction, and is said to be constant. The other part
considers the cost depending on the number of reference pieces, which
is described to have linear behaviour. We assume that this property
prevents its application to large databases.

C. J. C. Burges et al. (2005) show the applicability of a previously
described method (C. J. Burges, Platt, and Jana, 2003) to duplicate
song detection and, notably, to audio thumbnailing (i.e., creating a
short and representative audio excerpt from the given recording).

Cano et al. (2005) give a review of audio identification methods.
The work elaborates on watermarking, fingerprinting and proposes a
unified framework for fingerprinting systems. Interestingly, the review
does not mention work related to peak-based fingerprinting methods.

Seo et al. (2005) present a system that offers robustness to small
linear time scale changes, as well as equalization and mp3 compression.
Here, the fingerprints are represented by normalized spectral sub-band
centroids.

Goldstein, Plat, and C. J. Burges (2005) develop a way to efficiently
search large amounts of fingerprints using tightly bound hyperrect-
angles that represent high dimensional space, along with redundant
bit-vectors to store the index.

Ke, Hoiem, and Sukthankar (2005) show that audio fingerprinting
can be approached via computer vision techniques. The system can
identify query pieces that are severely distorted by noise.

Ramalingam and Krishnan (2006) represent audio using Gaussian
mixture models (GMMs), based on various spectral features, and
compare the performance of their method to several different finger-
printing schemes.

The thesis by Cano Vila and Serra (2007) includes a thorough de-
scription of audio fingerprinting, along with the description of a
general framework.

The application of fingerprinting to detect repeating audio events of
personal recordings is investigated by Ogle and Ellis (2007). It success-
fully retrieves sound events of almost exact identity, like telephone
rings. As fingerprinting operates at high discriminativity, it is not
applicable to events that are similar rather than identical, like garage
door opening sounds and natural sounds.

Betser, Collen, and Rault (2007) present a sinusoidal-component-
selection based audio identification system for jingle detection. It
proposes sinusoidal fingerprints that are obtained from a four-stage
extraction process that first applies a low-pass filter, then peaks are
extracted using a Discrete Fourier Interpolator using phases. The third
step is to select dominant peaks from the output of the previous
stage, and finally performing frequency compression to a 16bit data
type. The system is tested on a corpus of 18 hours of French radio
broadcast data, and the results are compared to the results obtained
by the method of Haitsma, Kalker, and Oostveen (2001) (we assume a

22 literature overview

reimplementation of said method was used in the experiments). The
proposed method performs better in terms of recall (8 percentage
points), and could cover a larger fraction of the duration of played
pieces (+19 percentage points). It is reported that both algorithms
operate with perfect precision on the test collection.

Liu, Yun, and Kim (2009) propose a multiple-hashing approach via
computing the discrete cosine transform (DCT) on sub-bands, and
report higher performance compared to the system of Haitsma and
Kalker (2002).

A survey of algorithms and methods for mobile query by example
applications is given by Chandrasekhar, Sharifi, and D. A. Ross (2011).
The work compares three algorithms (Ke, Hoiem, and Sukthankar,
2005; Wang, 2003; Baluja and Covell, 2008) via ROC performance and
storage demands. The work discusses the reduction of latency for
mobile audio fingerprinting applications.

Anguera, Garzon, and Adamek (2012) propose to compute masks
near the spectral peaks in the spectrogram, and use those for robust
audio fingerprinting.

Porter (2012) creates and discusses an evaluation framework for
audio fingerprinting.

Six and Cornelis (2012) propose a global-feature based identifica-
tion system via the comparison of pitch class histograms to assist in
the cataloguing of ethnic music archives. The system creates similar
features for similar-sounding tracks.

The doctoral thesis by Fenet (2013) explores various fingerprinting
schemes and the applicability to large-scale search.

Schreiber and Müller (2014) investigate modifications to the method
of Haitsma and Kalker (2002) in order to accelerate the lookup and
matching process.

Yu et al. (2014) propose hybrid high performance data structures for
indexing massive amounts of audio fingerprinting data for efficient
search.

2.2 methods that are robust to specific types of scale

changes

Here, we introduce related work that focuses on methods that are
robust to specific types of scale modifications. Some of these provide
solutions for robustness along one dimension, e.g. either time or fre-
quency. These will be introduced first. Next, we describe related work
that tries to solve the complex task of building a systems that is robust
to modifications in both dimensions at the same time. We observe
that this task is rarely addressed, even though it is a requirement for
reliable media monitoring and copy detection systems.

2.2 methods that are robust to specific types of scale changes 23

2.2.1 Robustness to P-modifications

Literature in this category is not robust to T- or TP-changes, but
achieves robustness to P-modifications. Work of this category is de-
scribed by Bellettini and Mazzini (2008), Fenet, Richard, and Grenier
(2011), and Ramona and Peeters (2013).

Bellettini and Mazzini (2008) note that robustness to P-changes can
be commercially relevant for the monitoring of ambient content where
pitch shifting might be used to achieve a homogeneous transition
of two tracks. The proposed system extends the work of Haitsma,
Kalker, and Oostveen (2001) to pitch scale robustness. To do so they
propose to exhaustively search for query representations that are P-
modified within a predefined range. The evaluation considers pitch
shifting up to ±8 semitones, which is in the range of approximately
[−37%,+59%]. The dataset for the experiments consists of 15,000
pieces, and is split in two sets: 4500 Italian pieces, and 10500 pieces
of non-Italian, western music. We do not know the length of the
pieces and the amount of hours of audio content in this dataset.
The evaluation is shown separately for both datasets, and for two
versions of the algorithm. Two versions of the proposed method are
described, where the considerably higher-performing one applies
a 12-TET (12 pitch classes of equal tempered scales. This is often
also referred as “chroma”) band subdivision. On the (smaller) Italian
dataset, the method achieves perfect detection success rates for queries
that are pitched in the range of roughly [−21%,+33%]. Outside of this
interval the success rate steeply drops below 40%. On the non-Italian
dataset, a perfect success rate is achieved in the range of approximately
[−16%,+19%] pitch shifted content. For severely pitch shifted audio
in the range of roughly [−25%,+41%], the success rate is still ≥ 50%.

Fenet, Richard, and Grenier (2011) achieve P-modification robust-
ness by extending the hashing model of Wang (2003) to include a
representation of quantized pitch offsets. The method is evaluated on
an audio stream of 7 hours, recorded from a French radio station. For
experiments, a small and a large reference database are used, to show
the scalability of the method. The small reference database contains
roughly 122 hours of audio created from 1 minute long excerpts of
a total number of 7309 songs. The query stream contains 459 of the
reference pieces. The evaluation follows a comparative setup, where
the proposed method with P-robustness is compared to the baseline
method of Wang (2003), which is not robust to scale modifications,
at all. The proposed method achieves to detect 447 of the 459 occur-
rences (97.4%), while the baseline method detects a lower number of
381 occurrences (83%). From this difference it is concluded that radio
stations make considerable use of pitch shifting effects, and that the
proposed method effectively manages to achieve P-alteration robust-
ness. The large reference database consists of 30,000 song excerpts (500

24 literature overview

hours), and the query streams used in this experiment are recordings
of 5 days of radio broadcast content. Here, the method achieves to
detect 496 out of 506 occurrences. The ground-truth for the evaluation
is obtained via manual annotation, and contains the reference track
ID together with its time segment within the broadcast. The extents
of scale modification that actually occur in the test dataset are un-
known. The experiments do not investigate or quantify the extents of
P-change robustness of the algorithm, and do not report precision and
specificity.

Ramona and Peeters (2013) propose to apply cosine filters to the
audio spectrum to compute short-term band energies, which makes it
robust to moderate frequency distortions. The method is applicable
to large collections of audio and is robust to audio degradations
and to small amounts of P-distortions. According to the evaluation
of broadcast data against 8.3 hours of reference audio, the system
outperforms the re-implementation of the system by Haitsma and
Kalker (2002) by 8.5 percentage points, and the reimplementation of
the system by (Wang, 2003) by 13.4 percentage points.

2.2.2 Robustness to T-modifications

Methods that incorporate robustness to T-modifications, but not to P-
or TP-changes are described by Kurth, Gehrmann, and Müller (2006),
Baluja and Covell (2007), and Baluja and Covell (2008). The work
proposed by Kurth, Gehrmann, and Müller (2006) strictly speaking is
not a fingerprinting method as it aims to identify audio using a higher
degree of similarity in order to detect versions or live performances of
music pieces. We consider this work in this thesis because the proposed
features allow for considerably strong T-modification robustness. This
is achieved by introducing musically informed, tempo related audio
features. Evaluated on 7 hours of audio, the system achieves high
identification performance on queries that are time-scaled from 79%
to 126% relative to the reference piece.

Baluja and Covell (2008) propose a method commonly known as
“Waveprint”. The STFT representation of audio is processed in over-
lapping slices along time. From these slices, wavelets are computed
and compared by their magnitude, and the top-200 wavelets are com-
pressed based on individual sign bits. Using Min-Hash, the resulting
bit vectors of a spectrogram slice are represented as 200 byte values,
which are indexed for nearest neighbour lookup via LSH. The method
is robust to T-changes in the tested range of ±10%, but sensitive to
moderate TP-changes in the range of ±2%. The identification per-
formance is evaluated on a reference database of roughly 583 hours,
created from 10,000 songs. The evaluation presents accuracy as the
measure for audio identification, and does not report specificity and
precision.

2.2 methods that are robust to specific types of scale changes 25

2.2.3 Robustness to TP-modifications

Methods robust to TP-changes, but not to P- or T-modifications of
query audio are described by Haitsma and Kalker (2003), Bardeli and
Kurth (2004), Dupraz and Richard (2010), and Ouali, Dumouchel, and
Gupta (2014).

Haitsma and Kalker (2003) refine their previous method (Haitsma
and Kalker, 2002) to be robust to linear time scale changes of up to 6%.
The evaluation is based on within-system measures, i.e. on bit error
rates (BER) of the proposed hashes. The experiments are performed on
four audio clips, and compared to their previously published method
(Haitsma and Kalker, 2002).

The system proposed by Bardeli and Kurth (2004) operates on fea-
tures that are extracted from segmented audio spectrograms, and
then translated into codes. The resulting codes are learned from split
datasets. For the proposed algorithm, the identification runtime de-
pends on the signal complexity of the query piece. The method can
identify time scaled query audio, and achieves recognition rates of
around 85% for audio that was modified in time-scale by ±10%. In
addition it reports estimates of the underlying time-scale factor with
respect to the reference. The evaluation is performed on 600 songs.

The work presented by Dupraz and Richard (2010) extends and
optimizes the approach of Betser, Collen, and Rault (2007). The ro-
bustness is achieved by an exhaustive preprocessing step that searches
for common pitch offsets of query fingerprints against the reference
database. If a subset of reference fingerprints exhibit a constant pitch
offset to the query, this offset is used to rescale the query for subse-
quent fingerprinting. The method is robust to TP-changes of up to
±5%, which is what we defined as lower bound for reliable media
monitoring methods in Section 1.2.2. The exhaustive query process
may be a limiting factor for its applicability. Two databases are used
for evaluation, where the smaller one serves the purpose to assess
the scale robustness of the method, and the larger one is used to
show the overall system performance for two modes of operation.
The smaller database consists of 50 minutes of audio, created from
303 files, each of 10 seconds length. The larger database contains just
under 5 hours of audio, created from 1772 files. The evaluation for the
robustness to TP-changes considers TP-modifications for ±1% and
±5%, where the results are as follows: 96% true positives, 4% false
positives for ±1%, and 89% true positives, 11% false positives for ±5%
in TP-modification. The false positive rate for un-altered queries is 2%.

An audio identification system for copy detection is presented
by Ouali, Dumouchel, and Gupta (2014). Quantized spectrogram re-
gions are transformed to a series of horizontal and vertical slices,
which are then represented as 48 dimensional fingerprints. Match
candidates are determined in an exhaustive fashion, and robustness

26 literature overview

to TP-changes is achieved by additional search with rescaled versions
of the query snippet. While this approach to achieve scale robustness
is effective, its exhaustive nature prevents it from being applicable to
larger reference collections. The system is evaluated on the TRECVID
2010 dataset (Smeaton, Over, and Kraaij, 2006). The work adds robust-
ness to TP-modifications, but not to T- or P-modifications.

2.3 methods that are robust to combinations of scale

modification types

Regarding the main focus of our work – building a system that meets
typical robustness requirements, and on top of that extends the ro-
bustness properties to both time and frequency scale modification,
i.e. P-, T-, and TP-modifications – at the time we started working on
the topic we could identify two publications that suggest promising
features (Zhu et al., 2010; Malekesmaeili and Ward, 2014). However,
these publications do not propose a way to make use of the features in
a complete system, i.e. the matching process is left open. The reference
collections that are used to evaluate the feature robustness consist
of 21 and roughly 17 hours of audio, and thus are too small to gain
insight on how the precision and specificity might be impacted in the
presence of larger reference collections.

Zhu et al. (2010) propose to use 128-dimensional SIFT features, and
seem to be the first to utilize a feature extraction process that is robust
to severe changes in both, time- as well as frequency-scale. The work
focuses on the evaluation of robustness of the representations, and
uses exhaustive search for the matching of candidates. The paper does
not propose a way to build a full system for the SIFT features, and
focuses on testing the feature applicability, leaving the issue of testing
a suited search algorithm unanswered. The identification performance
is evaluated on a database that consists of roughly 20.7 hours of audio
content, created from 1241 excerpts of 1 minute length, each. The work
is reported to achieve near-perfect results for T- and P-modifications
(but not for TP-modifications) in the ranges of 65% to 150%, and −50%
to +100%, respectively. The work reports the accuracy as evaluation
measure.

Malekesmaeili and Ward (2014) propose to compute scale invariant
features from two-dimensional time-chroma representations of spec-
trogram patches. To our knowledge this is the second work in the field
of audio fingerprinting that manages to achieve strong robustness to
time and frequency scale modifications. In line with the first of such
methods (Zhu et al., 2010), the focus is put on the feature extraction,
but does not show and evaluate a suited search algorithm to be used
with the features, thus the evaluation is performed via exhaustive
search. To compute the features, first a set of candidate feature points
is selected, which are then purified by extracting and comparing up to

2.3 methods that are robust to combinations of scale modification types 27

30 two-dimensional image patches of different width, centered around
the candidate feature point. A candidate point is selected as feature
point if most of the (up to 30) extracted image patches fulfill a similar-
ity criterion. This is determined via k-means clustering, which assigns
the extracted patches to a number of c classes. Similarity is calculated
by computing low frequency discrete cosine transformation (DCT)
coefficients which represent the actual similarity metric. The proposed
method performs feature point selection for an average of 20 candi-
date points per second of audio, of which approximately 40% pass
the similarity constraints and are used for fingerprint computation.
The actual fingerprints are generated from a number of low frequency
DCT coefficients of the extracted image patches, and are scaled and
translated to result in vectors of zero mean and unit variance. Accord-
ing to the explanation given in the work, such a fingerprint should
result in a vector of 143 floating point values. Fingerprint matching is
done by nearest neighbor lookups, with distance defined as the angle
of two fingerprint vectors. The work reports near perfect percentages
of correct song association, though on a rather small database of only
250 songs.

In the master’s thesis by Rotteker (2016), the method (Malekesmaeili
and Ward, 2014) is implemented and investigated via experimentation.
The identification experiments are performed on a database of 8.3
hours of audio content. It is concluded that the method seems to be
prohibitively runtime demanding, such that the extraction of features,
together with the stability analysis of time-chroma patches, requires
the computation of over 6000 two-dimensional DCTs per second of
audio. Altogether, answering a query of 30 seconds in length is re-
ported to take roughly 3.85 minutes. While we assume that this is
implemented as so-called “research-code”, rather than being a highly
optimized system, this report leads us to assume that the method of
Malekesmaeili and Ward (2014) might not be directly applicable to
large-scale use cases.

In publications that we mentioned here, and in Section 2.2, we
can find solutions to some or most of our defined criteria, however
scattered among different works. In our research we did not find
a promising way to combine some of the promising algorithms to
achieve robustness to T-, P-, and TP-modifications. Thus, there remain
challenges to build automated systems that exhibit strong robustness
and at the same time can be applied in the presence of large ref-
erence collections. The features proposed by Zhu et al. (2010) and
Malekesmaeili and Ward (2014) are used in combination with ex-
haustive search, thus, the question on how to build scalable, efficient
systems for the specific features is left unanswered. The feature di-
mensionality of 128 (as used by Zhu et al. (2010)) and 143 (as used
by Malekesmaeili and Ward (2014)) implies relatively large reference
databases, as for each feature, this number of floating-point values

28 literature overview

(we assume single-precision floating point representation with a size
of 32 bit) needs to be stored.

At this point in time, from the information given in the literature, we
are not aware of a readily applicable or convincingly reliable system
for the complex task of media monitoring, including DJ music events.

Chronologically, our initial work on this topic (Sonnleitner and Wid-
mer, 2014) is to be placed here in our list of scale modification robust
methods. We propose to group four-dimensional continuous hashes
(i.e. real-valued hash representations, rather than using quantisation)
from local maxima in the spectrogram. These hashes allow for a sim-
ple representation that is invariant to translation and non-isotropic1

scaling, and enable us to build a high-performing scale modification
robust method, evaluated on a dataset of roughly 1333 hours of audio.
System performance is evaluated on queries that are scale-modified in
the range of ±30%. The proposed algorithm achieves near perfect over-
all performance within scale modification ranges of −10% to +15%
for TP-modifications, and ±20% for T-modifications. The reported
evaluation measures are accuracy and precision, and we further report
the run-times of query processing. With the exception of one point,
our proposed method meets all the criteria that we defined for robust
systems: the shortcoming at this point in time was that we could not
convincingly show its scalability to large databases, due to the runtime
demands of our unoptimized implementation.

Six and Leman (2014) investigate the use of spectral peak triples
for quantised hashes that enable quick search via table lookups, and
achieve moderate robustness to any kind of scale modifications. The
method can quantify the extents of scale modifications in query con-
tent. The system is evaluated on queries against a database of 30 000
full-length songs. The identification performance is highly sensitive
to the extent of scale modification in query audio. For P-, and T-
modifications of more than ±2% the accuracy drops below 80%, and
to roughly 50% if queries are subjected to more than about 7% of scale
modification. Queries that are TP-modified in the range of roughly
±5% can be detected with an accuracy of approximately 60%. On the
test database, perfect identification specificity is reported. In Chap-
ter 7, we compare our proposed system against this method for their
applicability to DJ set monitoring.

Zhang et al. (2015) propose to use locality sensitive hashing (LSH) to
overcome the exhaustive search of a previously described system (Zhu
et al., 2010). The system is tested on roughly 169 hours of reference
audio. The evaluation measure is accuracy. In terms of accuracy, the
system is highly robust to T-changes in the range of [−20%;+40%],
but for slow audio (−30%) its performance drops to roughly 79%,

1 Non-isotropic scaling is also referred to as non-uniform-scaling and anisotropic-
scaling. It means that different scale factors are applied to either dimension. An
object that is non-isotropically scaled will change its shape. In our context, P-, T-,
TP–modifications correspond to non-isotropic scaling.

2.4 the quad-descriptor 29

while it has an accuracy of roughly 97% for a tempo change of −20%.
The sytem accuracy is quite sensitive to pitch changes, where accu-
racies of at most 90% are reached for pitch changes of more than
±2%. The robustness to TP-changes is high: here, the accuracy is be-
tween roughly 92% and 100% for TP-modifications in the range of
[−20%;+30%], but the accuracy for TP-modifications drops to roughly
68% in the presence of −30% of TP-alteration.

In our work (Sonnleitner and Widmer, 2016) we build a complete
system by refining the previously published method (Sonnleitner and
Widmer, 2014). We considerably reduce the run times of query process-
ing, and achieve higher identification performance. We evaluate this
state-of-the-art method in detail and give various parameter studies.
Identification performance is reported in terms of accuracy, preci-
sion and specificity, on a free and reproducible reference database of
100,000 tracks. This work is described in detail in Chapter 4 of this
thesis.

To analyse the capabilities of our method in its target domain we
investigate the applicability of spectral-peak-based methods to the
task of DJ mix monitoring (Sonnleitner and Widmer, 2016), where we
compare the latest modified version of our method to two reference
methods: Audfprint, which is a free implementation of the algorithm
by Wang (2003), and the method described by Six and Leman (2014).
The comparisons are performed on two datasets of DJ mixes, and
we then show an evaluation of our method on a large database that
consists of roughly 29,500 hours of creative-commons licensed audio
content. The database is created from approximately 430,000 tracks,
and is extended with the DJ datasets to perform the evaluation. This
setting tries to reflect a more realistic scenario in terms of database size,
in order to show the applicability of our method to media monitoring.
A detailed description is given in Chapter 7. The work contains a free
dataset for research purposes to evaluate system performance on DJ
mixes.

2.4 the quad-descriptor

We kept the most important related work for the end of this chapter: a
method from the field of astronomy, described by Lang et al. (2010).
It is the foundation that our contributions are built upon. Lang et
al. (2010) discover a way to solve a generalisation of the so-called
“lost-in-space problem”. The task is to identify stars only from the
pixel values of input pictures, without knowledge of position and
orientation of the camera. To do so, the location of stars is extracted
from the input image to obtain a list of two-dimensional points. These
are then grouped to a set of n-tuples, which are transformed to a local
coordinate system to form the actual feature combinations that we
call hashes (or, in our context, fingerprints). The work investigates

30 literature overview

3-tuples, 4-tuples and 5-tuples, and convincingly argues for the use of
4-tuples being most advantageous, hence, the name “quads”, or “quad-
descriptor”. The work elaborates on a simple, efficiently computable
geometric hash representation of the tuples, which makes the hashes
invariant to rotation, translation and to isotropic angle-preserving
scaling. These hashes are then associated with their point locations
in the input image, and compared against massive databases and
sky catalogues for which the features were computed beforehand.
For us, a crucial point in their work is the application of range search
techniques to search for matching hashes. It enables highly robust
retrieval, and further, the use of quads with their dimensionality of
4 still is feasible for efficient application of search trees. The second
crucial point is the idea of verifying a match hypothesis. Simple and
effective, it states that if stars are found near a matching feature in the
reference, these should also be present in the input image. We make
use of this verification process in our method, to build a fingerprinting
system that is highly precise and specific.

For our own fingerprinting method we adapt the hashes, and mod-
ify the hashing principle to create invariances to translation and non-
isotropic scaling (where the dimensions can be modified with different
scaling factors), and dismiss the property of rotational invariance. This
way we achieve a method for doing translation- and scale-invariant
(but not rotation-invariant) two-dimensional point-cloud-matching. In
the context of their work, one could say we obtain an audio signal,
compute the spectrogram, and treat it as a picture of the night sky:
local maxima will serve as stars and their locations are used to com-
pute the hashes. Our reference collection of audio pieces would be
the sky-catalogue to compare the features to. This is the concept of
our proposed audio fingerprinting method, which we will refer to as
simply “Qfp” – quad-based audio fingerprinter.

3
Q U A D - B A S E D A U D I O F I N G E R P R I N T I N G :
C O N C E P T

In previous chapters we introduced the topic and the literature, and
from here on we will focus on our proposed method and its imple-
mentation. This chapter introduces our initial work on the topic, and
while parts of it are superseded by findings that we describe in later
chapters, we include this work for completeness. In this thesis we
want to describe and document our research on the topic, and our
starting point is an important part thereof. That said, readers who are
interested in the technical details of the refined version of our method,
are invited to skip this chapter and to directly proceed with Chapter 4.
To support this, we decided to describe the method in Chapter 4 in its
entirety, and do not require the reader to be familiar with this present
chapter.

This present chapter is based on the following publication:

• R. Sonnleitner and G. Widmer (2014). “Quad-Based Audio Fin-
gerprinting Robust to Time and Frequency Scaling”. In: Proceed-
ings of the International Conference on Digital Audio Effects (DAFX
2014). Erlangen, Germany, pp. 173–180

The content in this description is heavily based on the publication,
and contains identical passages. For prototyping, rapid experimen-
tation and evaluation the described system is implemented in the
Python programming language, and evaluated on a reference collec-
tion consisting of 20,000 tracks.

The paper was well accepted and was granted the “Best Student
Paper Award”. The evaluation shows state-of-the art results, and the
work proposes what seem to be viable solutions for achieving strong
robustness. However, at that point in time we could not answer the
important question whether the system can scale to a more realistic,
far larger number of reference audio pieces. To do this we were still
missing results on larger datasets, a fast implementation of the system
core, and solutions to challenges that came up during the design and
development process. We try to answer these questions in subsequent
chapters.

The following sections in this chapter explain the system in detail,
where we organise the content as follows: Section 3.2 gives a brief
overview of the main points of our proposed method (we simply
call it “Qfp”), in order to set the context for the precise method
description, which comes in two parts: Section 3.3 describes the process
of constructing audio fingerprints – the extraction of features from
audio that allow for precise identification. We describe how to obtain

31

32 quad-based audio fingerprinting: concept

hash representations from these features, and how to store these in
data structures for efficient retrieval. The actual identification method,
i.e. the process of matching query audio with reference data by using
the extracted features and their hash representations, is then explained
in Section 3.4. Section 3.5 systematically evaluates the performance
of our method in two experiments. The first experiment considers
song identification on a database consisting of one thousand full
length songs of different musical genres. For the second experiment
we extend the database to 20,000 full length songs to investigate the
scalability of the method in terms of run times and identification
performance.

3.1 introduction

We propose an efficient audio fingerprinting method that meets the
discussed robustness requirements. It is not only robust to noise and
audio quality degradation, but also to large amounts of speed, tempo
or frequency and pitch scaling. In addition, it can accurately determine
the scaling factors of applied time/frequency distortions. The key tech-
nique that makes this possible was found by researchers working on
blind astrometry, who use a simple and fast geometric hashing ap-
proach to solve a generalization of the “lost in space” problem (Lang
et al., 2010) (see Section 2.4). We adapt the algorithm to our needs such
that we achieve a representations of fingerprints that are invariant
to translation and scaling, and thereby overcome the inherent robust-
ness limitations of systems that depend on equal relative distances of
reference and query features to find matches, such as the seminal algo-
rithm by Wang (2003). More precisely, our algorithm uses a compact
four-dimensional continuous hash representation of quadruples of
points, henceforth referred to as “quads”. The quad-descriptor (Lang
et al., 2010) has also been adopted to the field of computer vision,
for the task of accurate alignment of video streams (Evangelidis and
Bauckhage, 2011; Evangelidis and Bauckhage, 2013).

The system we propose can be used for DJ set monitoring and
original track identification, audio copy detection, audio alignment, as
well as other tasks that demand robustness to certain levels of noise
and scale changes.

From the related and previous work, the method described by
Malekesmaeili and Ward (2014) will act as our reference method. The
work shows extremely high robustness and performance results for
a large range of tempo and speed modifications (though based on
experiments with a rather small reference database – see Section 3.5
below).

3.2 method overview 33

3.2 method overview

The basic idea of our proposed method is to extract spectral peaks
from the two-dimensional time-frequency representation of reference
audio material, then group quadruples of peaks into quads, and create
a compact translation- and scale-invariant hash for each quad such
that a single hash is a point in a four-dimensional continuous vector
space. Quads and their corresponding hashes are stored in different
data structures, i.e. quads are appended to a global index, and an
inverse index is created to assign the corresponding audio file ID to
its quad indices. The continuous hashes are stored, together with the
index of their quad, in a spatial data structure, such that the index
that is associated with the hash corresponds to the index of the quad
that forms the hash.

For querying we extract quads and their hashes from the query
audio excerpt. For each query hash we perform a range search in the
spatial data structure and collect the indices of search results, which
in turn give the indices of matching reference quads in the global
index. The time and frequency scaling factor can be determined by
comparing a query quad to its matching reference quad. To predict
the match file ID for a query snippet, we compare relative distances
of matches in the reference and query time series.

3.3 feature extraction

Figure 3.1: Feature extraction components

In this section we describe the extraction of audio features to be used
for audio identification, how to obtain hashable representations from
these features, and how to finally store these for efficient retrieval. The
same feature extraction process is applied to the reference recordings

34 quad-based audio fingerprinting: concept

that are used to build the fingerprint database, and the query audio
that is to be identified in the recognition phase.

To begin with, all audio files are downmixed to one-channel monau-
ral representations and processed with a sampling rate of 16 kHz. We
compute the STFT magnitude spectrogram using a Hann-window of
size 1024 samples (64ms) and a hopsize of 128 samples (8ms), discard-
ing the phases.

3.3.1 Constructing Quads

The fingerprinting algorithm works on translation- and scale-invariant
hashes of combinations of spectral peaks. Spectral peaks are local
maxima in an STFT magnitude spectrogram, and identified by their
coordinates in the spectrogram. Since the notion of a peak P as a point
in the two-dimensional spectrogram space will be used extensively in
the following, let us formally introduce the notation:

P = (Px, Py) (3.1)

where Px is the peak’s time position (STFT frame index), and Py is the
peak’s frequency (index of STFT frequency bin).

The extraction of spectral peaks is implemented via a pair of two-
dimensional filters, a max filter and a min filter, where the neighbour-
hood size is given by the filter window size.

We use the max filter to find the coordinates of spectral peak can-
didates in the spectrogram, and the min filter with a smaller filter
window size to reject peaks that were extracted from uniform re-
gions in the spectrogram, e.g., digital silence. We first explain the
algorithms, and then give information on the actual parameterization
in Section 3.3.4.

In the following we explain how quads are created from spectral
peaks, and how compact hash values are computed from quads.

To create translation- and scale-invariant hashes from spectral peaks,
we first have to group peaks into quads (Lang et al., 2010). A quad
consists of four spectral peaks A, B, C, D, where we define A to be the
root point of the quad, which is the peak with the smallest frame index
(i.e. the first of the four peaks in time) and B is the most distant point
in time from A (thus C, D lie somewhere between the STFT frames of
A, B). The quad is valid if B > A and C, D lie within the axis-parallel
rectangle defined by A, B:

Ax < Bx (3.2)

Ay < By (3.3)

Ax < Cx, Dx ≤ Bx (3.4)

Ay < Cy, Dy ≤ By (3.5)

At the top level, the quad grouping process proceeds through an
audio file advancing in time, trying each spectral peak as a potential

3.3 feature extraction 35

root point A of a set of quads, with the goal of creating up to a number
of q quads for each peak.

For a given root point A, the process of constructing up to q quads
by selecting appropriate sets of B, C, D points is as follows. 1

We construct a region of width r, spanning r STFT frames, such
that the region is centered c STFT-frames from A and A is outside
of the region (earlier in time, i.e., the region is located to the right
of A), as shown in Figure 3.2. We then sort the peaks that are con-
tained in the region, by time. We let t = 0 and pick the first m peaks
pt, pt+1, . . . pt+m−1 in the region and try all (m

3) combinations of 3 peak
indices in order to construct a valid quad with root point A and the
points from the current combination. If a valid quad can be constructed
we append it to a list of quads and proceed until q quads are created.

If no valid quad could be constructed, we increase t by one and try
again until there are no more peaks in the region.

The total number of resulting valid quads for a given root point
A depends not only on the parameter values, but is fundamentally
dependent on the specific layout of spectral peaks, and thus on the
signal itself. As already mentioned, for creating the reference database
we want to create a small number of quads. We therefore choose
a small n and a region of small width r. For queries we create an
extensive set of quads by choosing a larger n, rquery � rref, and
qquery � qref. The center c is the same in both cases.

The reason for different parameterization for query quad construc-
tion is as follows: When the time scale of a query audio is modified,
this affects not only the density of peaks in the given audio snippet,
but also their relative positions. An example is given in Figure 3.2,
which shows the grouping for a quad for a given root point A. In 3.2a
a reference quad is created for a region of width r that is centered c
frames from A. The analogous example for grouping a query quad
for the same audio, but increased in tempo, or decreased in tempo,
is given in 3.2b and 3.2c, respectively. We see that the green points,
which are points B, C, D for the reference quad, may happen to move
outside of the grouping region of width r if the time scale of the audio
is modified. By choosing a larger region width r and a larger number
q of quads that may be created for a root point A, we can ensure to
obtain a quad that corresponds to the reference quad.

Note that when we consider audio queries of a fixed, limited du-
ration d (e.g., 15 seconds), there is an important difference between
increased speed/tempo and decreased speed/tempo. Increasing the
tempo of the query audio excerpt relative to the reference leads to

1 We will parametrize this process differently, depending on whether we compute
quads for the reference database, or for a piece of query audio. For reference database
creation, we choose parameters in such a way that we only create a small number
of reference quads to keep the resulting reference database as small as possible. For
a query snippet, we will choose parameters to create a large amount of quads. The
explanation for this will be given later in this section.

36 quad-based audio fingerprinting: concept

A

r

c

(a) Reference quad grouping

r

c

A

(b) Query quad grouping. Query audio was increased in tempo. New peaks are shown
in white facecolor.

r

c

A

(c) Query quad grouping. Query audio was decreased in tempo.

Figure 3.2: Reference quad grouping (3.2a) and query quad grouping with
increased tempo (3.2b), and decreased tempo (3.2c).

a higher density of relevant audio content; all the content that was
used during the phase of reference quad creation is also present when
creating the quads for the query. However, decreasing the tempo of the
query, i.e., stretching the time scale, may cause some of the relevant
spectral peaks to fall out of the 15 second excerpt (i.e. not be part of
the query any more), so some important quads do not emerge in the
query. This problem arises when tempo or speed are decreased by
large amounts.

3.3 feature extraction 37

This difference in increasing vs. decreasing the time scale is actually
reflected in the evaluation results (see Section 3.5). To summarize,
if the same parameters are used for both reference and query quad
grouping, and the time scale changes, it is very likely that no matching
quads will be found in subsequent queries.

3.3.2 From Quads to Translation- and Scale-invariant Hashes

We now have created quads from spectral peaks in audio, but these
quads are not the actual summarizing representation that we later
use to find match candidates between a query audio and the refer-
ence database. To achieve a suited representation that also is quickly
retrievable, we compute translation- and scale-invariant hashes from
the quads. For a given quad (A, B, C, D), the constellation of spectral
peaks is translated to the origin and normalized to the unit square,
resulting in the four points A′, B′, C′, D′ such that A′ = (0, 0) and
B′ = (1, 1), as shown in Figure 4.3 (Section 4.3.3, page 60). The actual
continuous hash of the quad is now given by C′, D′, and is stored
as a four-dimensional point (C′x, C′y, D′x, D′y) in a spatial data struc-
ture. Essentially, C′, D′ are the relative distances of C, D to A, B in
time and frequency, respectively. Thus, the hash C′, D′ is not only

Figure 3.3: Extracted spectral peaks and grouped quads on a 15 seconds
excerpt of “Radiohead - Exit Music (For a Film)“.

translation-invariant (A′ is always (0, 0)), but also scale-invariant. A
feature extraction example showing spectral peaks and resulting quads
is shown in Figure 3.3

38 quad-based audio fingerprinting: concept

3.3.3 Fingerprints: Storing Hashes for Efficient Recognition

This section is about the database component of the fingerprinting
system (see Figure 3.4). Here, we explain how the individual results
of the feature extraction process are stored by the reference database.

Figure 3.4: Database components

Once peaks, quads and their hashes are computed, we store these
in data structures that allow for efficient selection of match candidates
and subsequent verification of match hypotheses from query audio.
The reference data consist of four data structures:

• quadDB: A file that contains all reference quads (the original,
unnormalized ones).

• fidindex: An index file that stores file-id, quad index range (into
quadDB) and filename for each reference audio file.

• reftree: A spatial data structure containing all reference quad
hashes.

• refpeaktrees: Two dimensional search trees for the spectral peaks
that are extracted from reference audio files.

The quadDB is a binary file that stores the sequence of quads for
all reference files, and the fidindex is an index file which maps each
reference file to a unique file-id and also stores the index range (i.e.
startindex, number of quads in quadDB) for the sequence of quads that
was extracted from the reference files. For the spatial data structure
(reftree) we use an R-Tree (Guttman, 1984) with an R* split-heuristic
that stores all quad hashes, together with their positional index in
the quadDB. R-Rrees are tree data structures that are used in spatial
databases to support querying spatial data. R-Trees can be considered
as a special instance of so-called bounding volume hierarchies, where

3.4 recognition algorithm 39

the type of bounding volume is a hyper-rectangle. The difference to
a bounding volume hierarchy with rectangular bounding volumes is
that R-Trees are usually balanced trees, which are constructed bottom-
up rather than top-down. In general, R-Trees are well suited for large
out-of-memory databases.

In addition, the R-Tree is well suited for large out-of-memory
databases.

The refpeaktrees are used for the verification of match candidates,
which will be explained later.

3.3.4 Chosen Parameter Values

As mentioned in Section 3.3, the parameters for the STFT are given
with a sampling rate of 16kHz, a Hann-window of size 1024 samples
(64ms) and a hopsize of 128 samples (8ms). The specific set of param-
eter values that we chose for our implementation and that are used in
the evaluation in Section 3.5, is as follows: The extraction of spectral
peaks is performed with a max-filter width of 91 STFT-frames (728ms),
and a filter height of 65 frequency bins (1015.625Hz). The min-filter,
used to reject maxima that resulted from uniform magnitude regions,
has a width of 3 STFT-frames (24ms) and a height of 3 frequency
bins (46.875Hz). For reference quad grouping we choose the center
of the grouping window c to be four seconds from each root point
A. The width r of the region window for reference quad extraction is
two seconds. We group q = 2 reference quads for each root point A
along with a group size of n = 5. This results in an average number
of roughly 8.7 reference quads per second of audio. For query quad
extraction we choose the same c of four seconds, and a large grouping
window width r that spans 7.9 seconds. A number of up to q = 500
query quads are extracted from a group size of n = 8.

3.4 recognition algorithm

The method for identifying the correct reference recording, given a
query audio excerpt, consists of several stages (see Figure 3.5): the
selection of match candidates, a filtering stage in which we try to
discard false positive candidates, and a verification step adapted from
the findings in (Lang et al., 2010). After the verification stage we
efficiently estimate a match sequence with the histogram binning
algorithm proposed by Wang (2003). In the following the selection of
match candidates is explained.

3.4.1 Match Candidate Selection and Filtering

For each quad hash that was extracted from a query snippet, a range-
search in the reftree is performed. This lookup returns a set of raw

40 quad-based audio fingerprinting: concept

Figure 3.5: Subcomponents of the search module

match candidate indices: the indices of those quads in the quadDB
whose quad-hashes are similar (i.e. if C′, D′ are identical up to epsilon:
C′query

x − ε ≤ C′ref
x ≤ C′query

x + ε etc.) to the query quad-hashes. We
call this the set of raw candidates, as it will most likely be a mixture
of true positives and a (large) number of false positive matches. The
raw candidates are used to obtain estimates of the time/frequency
scale modification of the query audio, by looking at the spatial extents
of the original (non-normalized) quads corresponding to the query
(q) and reference (r) hash, giving us the scaling factors for time and
frequency:

stime = (Bq
x − Aq

x)/(Br
x − Ar

x) (3.6)

sfreq = (Bq
y − Aq

y)/(Br
y − Ar

y) (3.7)

It makes sense to parametrize the system with scale tolerance bounds
as, depending on the application, one might not be interested in trying
to identify audio that is played at, e.g., half the speed or double
the tempo, or has undergone extreme pitch-shifting modifications.
Such constrained tolerances considerably speed up the subsequent
hypothesis testing by rejecting raw match candidates that lie outside
the specified bounds.

Instead of directly starting with hypothesis tests on the raw candi-
date set we first apply filters in order to clean up the match candidates.
This filtering process aims at discarding false positive matches while
keeping a large number of true positives. In addition to the previously
mentioned scale tolerances, we perform a spectral coherence check
similar to the spatio-temporal coherence check described by Evange-
lidis and Bauckhage (2013). Here we reject match candidate quads
whose root point A is far away in the frequency domain compared to
root point A of the query quad.

3.4 recognition algorithm 41

We now consult the fidindex to sort the remaining match candidates
by file-id, and enter the verification step (Section 3.4.2) – those candi-
dates that pass the following step are considered true matches and are
passed to the match-sequence estimation.

3.4.2 Match Verification and Sequence Estimation

Match verification is performed once all match candidates for all query
quads are collected and filtered as described above. Most likely, the
remaining match candidates correspond to a large number of file-ids
that are referenced in the database. Since our goal is to identify the
correct file-id, we perform this stage of match candidate verification
on a per-file-id basis. To do this we consult the fidindex file (cf. Sec-
tion 3.3.3) and look up the file-ids for all match candidates, and sort
the match candidates by file-id.

Verification is based on the insight that spectral peaks that are nearby
a reference quad in the reference audio, should also be present in the
query audio (Lang et al., 2010). Naturally, depending on the audio
compression, the amount of noise or other distortions, there might be
a larger or smaller number of nearby peaks in the query. We define the
nearby peaks as the set of N peaks closest to the match candidate’s
root point A (for some fixed N), and retrieve those by performing a
k-nearest-neighbor search in the refpeaktrees (cf. Section 3.3.3) for the
given file-id. We define a threshold tmin, the minimal number of nearby
peaks that have to be present in the query in order to consider the
candidate an actual match. Note that in order to find relevant nearby
peaks in the query, we have to align the query- and reference-peaks
by transforming the query peak locations according to the previously
estimated time/frequency scale (cf. Section 3.4.1). The candidates that
pass the verification step are considered true matches, and they are
annotated with the number v ≤ N of correctly aligned spectral peaks,
and the scale transformation estimates. This number v will be used
for an optimization described below.

After match candidates for a given file-id are verified, we try to
find a sequence of matches for this file-id by processing the matches
with a histogram method similar to the one used in the Shazam algo-
rithm (Wang, 2003), with the difference that the query time (the time
value of root point A of each query quad in the sequence) is scaled
according to the estimated time scale factor. Finally, the file-id for the
largest histogram bin (the longest match sequence) is returned, to-
gether with the match position that is given by the minimal time value
of the points in the histogram bin. We now know the reference file
that identifies the query audio, the position of the query audio in the
reference track, and the associated time/frequency scale modification
estimates. Note that the reported scale transformation estimates are
expected to be quite accurate, because with these estimates, for each

42 quad-based audio fingerprinting: concept

“surviving” match candidate at least tmin nearby spectral query peaks
could be correctly aligned to corresponding reference peaks during
the verification phase. A lookup in the fidindex now gives us the
filename of the reference audio and optionally any kind of previously
associated meta-data.

To speed up the verification process, we define a threshold for the
number of correctly aligned nearby peaks tv > tmin. When the v value
of a match reaches or exceeds this threshold, we allow a so-called
“early exit” for this file-id. Once all match candidates of an early exit
file-id are verified, we directly enter the match sequence estimation
for this file-id, without subsequent verification of any other file-id.

3.4.3 Runtime and Data Size Considerations

Our system operates on a number of data structures (cf. Section 3.3.3)
that together constitute what we call the reference database; the largest
components are the reftree and the refpeak trees.

The quadDB linearly stores binary records of quads. A quad consists
of four two-dimensional discrete points (coordinates in the STFT
spectrogram) and can be represented and stored as 8 ∗ 32bit integers,
which amounts to 32 byte per quad. It is not necessary to keep this
file in-memory, as the proposed method is designed to operate on big
out-of-memory reference data.

There exists exactly one quad hash per quad. A quad hash is a
four-dimensional point that is stored as an array of four float32 values
by the reftree. The actual number of quads in the quadDB depends on
the filter size parameters of the spectral peak extraction and the quad
grouping parameters. For an example reference database consisting of
20,000 full length songs we choose the parameters such that we create
an average of approximately 8.74 quads per second of audio, with
a median of roughly 8.68 and a standard deviation of σ ≈ 1.19. The
histogram of the number of quads per second is shown in Figure 3.6.
This specific database consists of roughly 4.29 ∗ 107 quads (≈ 1.3GB).
The reftree, a four-dimensional R-Tree, consumes approximately 4.8GB.
To speed up the verification process we also store trees of the two-
dimensional spectral peaks for each file-id, which consume roughly
3GB for 20,000 songs. We currently store the fidindex file as text, along
with some meta-data. In this example the size of the fidindex amounts
to 2.3MB.

Depending on application scenarios and hardware constraints, it is
possible to trade runtime for storage space and vice versa. If minimal
space consumption is of priority, one can pack the binary quad records
of the quadDB to 16 bytes by exploiting the limited number of STFT
frequency bins (i.e. 512), and storing the time values of points B, C, D
as offsets from point A. This saves 50% per quad, reducing the size of
the quadDB file to roughly 650MB.

3.5 evaluation 43

2 4 6 8 10 12 14
Quads per second

0

500

1000

1500

2000

2500

3000

Nu
m

be
r o

f o
cc

ur
re

nc
es

Figure 3.6: Histogram of the average number of quads per second for all
files in a reference database of 20,000 songs.

Regarding the runtime, using our unoptimized pure Python imple-
mentation of the method, feature extraction and quad creation for the
database of 20,000 songs took approximately 24h utilizing seven out
of eight logical cores of an Intel Core i7 860 (2.8GHz) Processor.

The runtime for a query is made up of audio decoding, feature
extraction, querying the database and filtering the results, match
candidate verification and match sequence binning. For a 15 seconds
long query against a reference database of 1000 songs, this takes
approximately 4 to 12 seconds. Here, half of the time is taken by the
preprocessing (decoding, quad extraction).

Querying a larger database of 20,000 songs takes considerably
(though, of course, not proportionally) longer. The main reason is
the higher number of match candidates that have to be processed.
The same query excerpt as used above is processed in approximately
14 to 60 seconds. Here, at least half of the time is consumed by the
reftree range queries. Again, this is based on an unoptimized, experi-
mental Python implementation; there is ample room for improvement.
Section 3.5.3 gives more detail.

3.5 evaluation

We systematically evaluate the performance of the system for different
speed, tempo and noise modifications of 15 seconds query audio
snippets. The reference database for the first experiment is constructed
from 1000 full length songs in “mp3” format.

To create test queries, we randomly choose 100 reference songs and
subject these to different speed, tempo, and noise level modifications.
We then randomly select a starting position for each selected song,
and cut out 15 seconds from the audio, such that we end up with
100 audio queries of 15 seconds, each. The evaluation considers speed
and tempo ranges from 70% to 130% in steps of 5%. To evaluate the
noise robustness of our system we mix each query snippet with white
noise to create noisy audio in SNR level ranges from 0 dB to +50

44 quad-based audio fingerprinting: concept

dB in steps of 5 dB. Furthermore, we create all query audio snippets
from .mp3 encoded data, and encode the modified snippets in the
Ogg Vorbis format (“Ogg Vorbis” n.d.), using the default compression
rate (cr = 3). We do this to show that the system is robust to effects
that result from a different lossy audio encoding. All modifications
are realized with the free SoX audio toolkit (“SoX - Sound eXchange”
n.d.).

3.5.1 Detailed Results on the Small Reference-DB (1000 Songs)

Each data point in the visualisation shows one of the aforementioned
quality measures for 100 queries. The overall system performance
for speed, tempo, and SNR changes is shown in Figure 3.7. For this
experiment a total of 5900 queries of length 15 seconds were run
against the database consisting of thousand songs.

Figures 3.8 and 3.9 show the performance for the tested SNR levels
for speed and tempo modifications of 95% and 105%.

Concerning the noise robustness of the proposed method, the re-
sults show that a stable performance of > 95% for the tested quality
measures is achieved for SNR levels down to +15dB. According to
these results the proposed quad-based hashes seem to be sufficiently
robust for queries of various noise levels that may be encountered in
real application scenarios.

3.5.2 Extending the Reference-DB to 20, 000 Songs

In the previous experiment on a database of thousand songs we reach
a very high precision. To further investigate the precision of our pro-
posed algorithm we extend the reference database to 20,000 songs,
and query the same audio excerpts that we created for the previous
experiment, with the same modifications, against this large database.
Figure 3.10 shows that the performance of our approach does not
degrade even if there are 20 times as many songs in the reference.
Note that we parametrized our system to discard match candidates if
their transformation estimates are outside the scale tolerance bounds
of ±32% for either frequency and time scale. The performance is com-
parable to that of the first experiment, resulting in more false positives
only for the larger speed modifications. For tempo modifications the
system gives basically the same performance as in the first experiment.

3.5.3 Runtimes

In Table 3.1 we give information about the runtimes observed in the
two above experiments. We randomly pick one of the generated audio
query excerpts, and compare the query runtime for the small and the
large databases for different scale modifications. The increased runtime

3.5 evaluation 45

70 75 80 85 90 95 100 105 110 115 120 125 130
SPEED %

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Pe
rfo

rm
an

ce

accuracy
precision

(a) Speed variations

70 75 80 85 90 95 100 105 110 115 120 125 130
TEMPO %

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Pe
rfo

rm
an

ce

accuracy
precision

(b) Tempo variations

0 5 10 15 20 25 30 35 40 45 50
SNR [dB]

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Pe
rfo

rm
an

ce

accuracy
precision

(c) SNR variations

Figure 3.7: Precision and accuracy for speed (3.7a), tempo (3.7b) and SNR
(3.7c) modifications, on a database of 1000 songs.

46 quad-based audio fingerprinting: concept

0 5 10 15 20 25 30 35 40 45 50
SNR [dB]

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Pe
rfo

rm
an

ce

accuracy
precision

(a) SNR variations for speed 95%

0 5 10 15 20 25 30 35 40 45 50
SNR [dB]

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Pe
rfo

rm
an

ce

accuracy
precision

(b) SNR variations for speed 105%

Figure 3.8: SNR variations for 95% and 105% speed on a database of 1000
songs.

3.5 evaluation 47

0 5 10 15 20 25 30 35 40 45 50
SNR [dB]

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Pe
rfo

rm
an

ce

accuracy
precision

(a) SNR variations for tempo 95%

0 5 10 15 20 25 30 35 40 45 50
SNR [dB]

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Pe
rfo

rm
an

ce

accuracy
precision

(b) SNR variations for tempo 105%

Figure 3.9: SNR variations for 95% and 105% tempo on a database of 1000
songs.

48 quad-based audio fingerprinting: concept

70 75 80 85 90 95 100 105 110 115 120 125 130
SPEED %

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Pe
rfo

rm
an

ce

accuracy
precision

(a) Speed variations

70 75 80 85 90 95 100 105 110 115 120 125 130
TEMPO %

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Pe
rfo

rm
an

ce

accuracy
precision

(b) Tempo variations

Figure 3.10: Precision and accuracy for speed (3.10a) and tempo modifica-
tions (3.10b) on a database of 20,000 songs.

3.5 evaluation 49

db 1000 songs db 20,000 songs

Speed tot. tree feat. match tot. tree feat. match

130% 12 1 6 5 60 31 7 22

110% 11 2 6 3 52 28 6 18

100% 9 1 6 2 35 20 6 9

90% 9 1 5 2 37 22 5 10

70% 4 0 3 1 14 7 3 1

Table 3.1: Query runtimes in seconds. “tot” is the total time, “tree”
is the time taken by tree intersection, “feat.” is the feature
extraction time for spectral peaks and quad grouping and
“match” is the matching and verification time.

for faster speed and tempo is a result of the higher number of quads
in the audio excerpt, for which a larger number of tree-intersections
and raw match candidates have to be processed.

3.5.4 Comparison with a Reference Method

In this section, we compare our proposed system to the method
described by Malekesmaeili and Ward (2014). While it is not possible
to directly compare our results to the reference method (because we
do not have access to their test data), from the published figures it
seems fair to say that in terms of recognition accuracy and robustness,
both approaches seem comparable, and both are at the upper end
of what can be expected of an audio identification algorithm – for
tempo and pitch distortion ranges that are larger than what we expect
to encounter in real applications. It should be noted that the results
reported in the reference method are based on a small reference
collection of approximately 250 songs only and that, unfortunately, no
information is given about either the size of the resulting database, or
about runtimes.

The advantage of our proposed method is its efficiency in terms
of data size and fingerprint computation. In contrast to the reference
method, where log-spaced filter banks have to be applied to the
spectrogram in order to compute the time-chroma representation,
the selection of spectral peaks for quad grouping is done directly on
the STFT magnitude spectrogram of the audio, and the quads can
be grouped in linear time. Our proposed method chooses spectral
peaks that are local maxima of the magnitudes in the spectrogram,
in contrast to the compared method, where 600 DCT computations
per second of audio have to be performed (similarity computations
for 30 rectangular image patches for each of approximately 20 feature
candidates per second) in order to find stable feature points. The hash

50 quad-based audio fingerprinting: concept

representation we propose is very compact and can be stored as four
float32 values, while the reference algorithm uses fingerprints that are
represented by 143-dimensional vectors.

Our match candidates are retrieved via an efficient range search
in a spatial data structure, for which we use an R-Tree. The distance
of hashes is the euclidean distance between four-dimensional points,
while the distance measure used in the reference is the measure of the
angles of the 143-dimensional fingerprint vectors.

3.6 conclusions

The system we propose seems to be a viable and promising method
to approach the task of identifying scale modified audio. While there
is a lot of potential for false positive matches in a database of this
size (in this chapter our database is an index to roughly 43 million
quads) in combination with the rather large tolerated scaling ranges,
the method’s filtering stage and the subsequent verification process
enable the system to maintain high precision and accuracy. The results
show a stable high performance for a large range of scale changes,
with as few as approximately 9 compact fingerprints per second of
audio.

Our proposed method achieves near perfect overall performance
within scale modification ranges of 90% to 115% for speed, and 80%
to 120% for tempo scale modifications.

4
L A R G E - S C A L E Q U A D - B A S E D A U D I O
F I N G E R P R I N T I N G

In the previous chapter we introduced the early and basic variant of
our proposed robust audio fingerprinter. In this chapter, we refine the
system that we presented previously, and introduce and apply insights
that lead to increased efficiency in query processing, and to higher
identification performance in terms of accuracy and precision. The
chapter is based on the following article (The final version of record is
available at http://dx.doi.org/10.1109/TASLP.2015.2509248:

R. Sonnleitner and G. Widmer (2016). “Robust Quad-Based Au-
dio Fingerprinting”. In: IEEE/ACM Trans. Audio, Speech & Lan-
guage Processing 24.3, pp. 409–421

Copyright (c) 2016 IEEE. Personal use is permitted. For any
other purposes, permission must be obtained from the IEEE by
emailing pubs-permissions@ieee.org.

This chapter describes the latest version of Qfp in detail, and builds
the foundation for extensions and further improvements that we de-
scribe in Chapter 5 and Chapter 7.

The system we present in the following is, to our knowledge, the
first audio fingerprinting method described in the academic literature
that meets all of the robustness requirements we listed in Chapter 2,
including the important aspect of demonstrating that the method
indeed scales to larger reference collections. The proposed method is
robust to noise and audio quality degradation, as well as to severe
distortions of the time-scale and frequency-scale. Moreover, the identi-
fication method uncovers and accurately quantifies the scale transform
factors of distorted audio queries as an integral part of its matching
process.

The chapter is organized as follows. Section 4.1 briefly introduces
the refinements of the method with respect to the previous chapter.
Section 4.2 then gives a brief overview to recall the main points of
our method, in order to set the context for the precise method de-
scription, which comes in three parts: Section 4.3 describes the feature
extraction process and how to obtain hash representations from these
features, which then together constitute the fingerprints. Section 4.4
describes the data structures that are used for the audio identification
method. Section 4.5 details the identification method, i.e. the process
of matching query audio with reference data by comparing the fin-
gerprints. Section 4.6 systematically evaluates the performance of our
method on roughly 430,000 queries with various properties against a

51

http://dx.doi.org/10.1109/TASLP.2015.2509248

52 large-scale quad-based audio fingerprinting

reproducible reference collection of 100,000 tracks. To demonstrate the
noise robustness of the method we perform experiments on queries
with signal to noise ratios (SNR) in the range of −10dB to +50dB, and
also test the robustness on various other effects.

In the following we give an overview of the refinements with repsect
to Chapter 3.

4.1 noteworthy refinements

We use a lower audio sampling rate of 8kHz instead of 16kHz, and
reduce the STFT hop size from 128 samples to 32 samples (4ms).
This results in an increased time resolution of hashes and contributes
to higher identification performance. The decreased sampling rate
reduces memory requirements and allows to compute the STFT in less
time.

The peak extractor is refined to apply parabolic interpolation (gener-
ating a quadratic function through neighbouring points and assigning
the maximum of this function to the corresponding peak position
dimension) of peaks and incorporates post processing to guarantee
that there exists at most one peak per filter window. This turns out to
be necessary in some cases when digitally created tracks are ingested
in the reference database or used as query excerpts.

On top of the refined peak extraction, we improve the quad grouping
algorithm. We describe a way to create quads in an almost uniform
distribution over time, for both reference database creation and query
quad extraction. In addition, we pick strong quads based on their
respective peak magnitudes and refine the quad grouping routine
to automatically adapt the grouping window to the given tolerance
parameters. We observe that we can considerably reduce the number
or query quads by enforcing a so-called “relevant subspace constraint”.
These changes allow for higher identification performance and lower
query run times.

For lookup, we use a different spatial datastructure that in our
experiments results in lower run times than libspatialindex’s R-tree
(“libspatialindex” n.d.). Next, we reduce the storage demands of quad
records by overwriting the inner points C, D with the computed quad
hashes C′, D′. Instead of quad point B of a reference quad, the quad’s
height and width is stored, which reduces work in the filtering stage.
To reduce the level of indirection during the matching stage, we
incorporate the file ID of quads into their quad records.

Further, we change the workflow of the last stages, where we change
the algorithm to perform match sequence detection prior to match
verification, which considerably decreases computational costs. The
sequence detection is refined to use a simple outlier detection on
candidate sequence members to further reduce the computational

4.2 method overview 53

load of the subsequent verification stage. Also, the order of filters in
the filter chain is changed for increased efficiency.

The verification stage is changed to bisect into relevant time slices
of the peakfile, and no longer depends on storage intensive peak
trees. Instead of the more expensive nearest neighbour peak search
for alignment, we simply check for a non-zero count of peaks in a
parameterizable rectangular region. This allows us to perform the ver-
ification without the need of precomputed peak-trees, which demand
several gigabytes of memory.

To summarise, while the general concept of the method is the
same as described in the previous chapter, the whole implementa-
tion and parameterization changed and different data structures are
used. Altogether, the novel aspects of the proposed work and their
interdependent parameter modifications increase the identification
performance while considerably decreasing the query run times.

4.2 method overview

To set the stage, we here present a short, three paragraph introduction
to the main concepts of Qfp, and then proceed to explain the modified
algorithms in the section below.

Our identification method operates on compact four-dimensional,
continuous geometric hash representations of quadruples of points,
henceforth referred to as “quads” (Lang et al., 2010). The points are
local maxima in the two-dimensional time-frequency representation of
reference audio material, and are referred to as “spectral peaks”. For
each quad we create a compact translation- and scale-invariant hash
which is represented as a point in a four-dimensional vector space.
Section 4.3 describes the feature extraction process in detail.

Quads, along with their hashes and respective source file-IDs of
reference audio are the so-called fingerprints that we use for audio
identification. The fingerprints are stored as records in a binary file,
which is indexed by a data structure for subsequent efficient range-
search queries. This stage of the method is described in Section 4.4.

For audio identification, i.e. processing and answering queries, we
first extract quads and their hashes from the query audio excerpt.
For each query hash we then perform a range-query in the reference
data structure. The obtained result sets are filtered and sorted into
sequences of match hypotheses for each potentially matching file-ID.
Finally, the individual sequences are processed by an effective verifica-
tion method, which is the key technique that makes the identification
algorithm perform with high precision and specificity. These steps are
described in Section 4.5.

54 large-scale quad-based audio fingerprinting

4.3 feature extraction

In this section we describe the extraction of audio features and com-
putation of their geometric hash representations.

Figure 4.1: Feature extraction components

To begin with, in the decoding stage all audio files are downmixed
to one-channel monaural representations sampled at 8 kHz. We then
compute the STFT magnitude spectrogram using a Hann-window
of size 1024 samples (128 ms) and a hop size of 32 samples (4 ms),
discarding the phases. Peak extraction, quad grouping and hashing,
as highlighted in Figure 4.1, are explained below.

4.3.1 Constructing Quads

This section presents the refined quad construction in detail. In order
to explain the methods in their entirety, this section contains some
level of redundancy to the explanations given in the previous chapter.

The extraction of peaks is implemented via a pair of two-dimensional
filters, a max-filter and a min-filter, which are implemented as two-
dimensional sliding window filters, and a post processing step to
guarantee that there is at most one peak per window. We first apply
the max-filter to the spectrogram. Locations of the spectrogram that
are identical to the respective max-filter values are peaks. However,
this does not guarantee that there is exactly one peak per window, as
a spectrogram might contain regions of uniform magnitude. Exam-
ples of such cases would be silence, clicks, or (digitally created) tones
with identical magnitudes. According to the max-filter result, each
coordinate in such regions is reported as a peak. To clean this up, we
use a second sliding window filter, a min-filter of size 3× 3, compare
the result to the spectrogram, and discard peak candidates if they are
detected by both, the min and the max-filter. To give an example, we

4.3 feature extraction 55

assume absolute silence in a region of the spectrogram. Each magni-
tude within this region is both a maximum and a minimum, therefore
each peak in that region will be discarded.

Next, we clean up cases of clicks or tones with a succession of
identical magnitude values, since such cases will not be detected by
the min-filter if their uniform regions contain parts that are smaller
than 3× 3. We group all peaks by magnitude, and search for adjacent
peaks in each group. If adjacent peaks are found, we keep the first
peak in time and frequency and delete all other peaks in the current
filter window. This way we ensure to report exactly one peak per max-
filter window. In the current implementation the cleanup procedure
has a quadratic time complexity in size of peak magnitude groups, but
in practice it turns out to be well applicable to audio spectrograms.

The resulting peak coordinates are now processed by parabolic in-
terpolation based on their neighbourhood of 3× 3 in time-frequency
space. If the interpolated value lies outside the neighbourhood in
any dimension, the original non-interpolated value is kept. The in-
terpolation is applied in order to obtain a higher resolution of peak
coordinates, in contrast to representing the peak position by the frame-
index and frequency-bin index. The advantage of the higher resolution
is explained after we introduce the hashing of quads in Section 4.3.3.
From this point onwards, peaks are represented as single precision
floating point values.

To create translation- and scale-invariant hashes from quadruples
of peaks, we first have to group peaks into quads (Lang et al., 2010),
where a quad consists of four spectral peaks A, B, C, D.

Ay < By (4.1a)

Ax < Cx ≤ Dx ≤ Bx (4.1b)

Ay < Cy, Dy ≤ By (4.1c)

Thus, we define a quad to be valid if the points C, D reside in the
axis-parallel rectangle that is spanned by the points A, B. These valid-
ity constraints restrict the number and shapes of quads that can be
grouped from arbitrary peak constellations. Naturally, there are nu-
merous ways to achieve constrained constellations. We chose the above
mainly because of two reasons: it can be efficiently computed and
effectively limits the number of possible constellations. The algorithm
subsequently strictly operates on valid quads only.

At the top level, the quad grouping process proceeds through an
audio file from left to right, trying each spectral peak as a potential
root point A of a set of quads, and aims to create up to a number of q
quads for each second of audio.

The process of constructing quads by selecting appropriate sets of
B, C, D points is as follows 1 : we construct a quad grouping region of

1 See Footnote 1 in Section 3.3.1 on Page 35.

56 large-scale quad-based audio fingerprinting

width r, spanning r STFT frames ranging from rstart to rend, such that
the region is centered c STFT-frames from A and A is outside of the
region (earlier in time, i.e. the region is located to the right of A).
This is depicted in Figure 4.2a. For the reference database we want to
create a small number of quads. We therefore choose a region of small
width r and the center c in near proximity to A. We take all m peaks
residing in this region and try all (m

3) combinations of 3 peak indices
in order to construct all valid quads for root point A. Resulting quads
are appended to a result list.

In many cases, creating all (m
3) quads for a given region results

in large amounts of quads. To restrict the total number, we pick
“strong” quads from the set of valid quads, based on selecting, for
each candidate point B, only a subset of C, D points based on their
magnitude. We pick as many of the strongest quads, such that we get
close to a maximum of q quads per second of audio. We do this by
first creating all valid quads for each root point A. Then we bin the
quads into groups according to the time values of their root points
A, and select the strong ones for each root point in the binned group
until we reach the number q quads per second.

There are notable advantages of this method over the method we
proposed in the previous Chapter 3: we attain an almost uniform
distribution of quads over time (i.e. per bin). Most importantly, this
grouping method extracts the most robust quads from the set of all
possible quads. Indeed, if the reference database is guaranteed to
consist of only strong quads (i.e. quads that are grouped from peaks
with large magnitudes), we can simply discard weak quads from
query audio to considerably reduce the necessary amount of work
for the identification task. Applying this proposed grouping method,
we achieve increased identification performance, reduced reference
database sizes, and faster query processing.

4.3.2 Query Quad Construction

The parameters for quad extraction in queries are computed from
the reference quad extraction parameters and the specified tolerance
bounds for pitch (p) and time (t) scale distortions εp, εt, that we are
interested in detecting. For example, to detect query snippets such
that the reference audio is in the range of ±30% with respect to the
query, we let the tolerance bounds εp = εt = 0.3.

The length or duration of an audio piece with altered time scale
is the inverse of the time scale factor. Thus, to identify query audio
increased in tempo or speed, the algorithm has to account for the
fact that the relevant peaks from the query will be closer to each
other than the corresponding peaks from the slower reference. There-
fore, we extract peaks from query audio at higher density, by using
smaller max-filter sizes: the width (w) of the query max-filter mquery

w

4.3 feature extraction 57

(a) Reference quad grouping

(b) Query snippet with tempo 130%

(c) Query snippet with tempo 70%

Figure 4.2: Reference quad grouping (4.2a) and adaptive query quad
grouping with increased tempo (4.2b), and decreased
tempo (4.2c). 4.2a shows a root point A and the hollow
circles B, C, D to group a reference quad. Figures 4.2b,
4.2c show the regions for the tolerance of ±30% in the
queries, and the different peak densities. Note the impor-
tant difference to Figure 3.2: rquery is scaled according to
Equations 4.4, rather than proportionally to the tolerance
bounds of ±30%.

58 large-scale quad-based audio fingerprinting

is computed from the reference max-filter width mref
w and εt using

Equation 4.2:

mquery
w = mref

w /(1 + εt) (4.2)

The height (h) of the max-filter is computed as

mquery
h = mref

h · (1− εp) (4.3)

The borders of the query quad grouping region rquery, and the center
c (c.f. Figure 4.2) are then obtained in dependency of εt ∈ [0; 1] by:

rquery
start = rref

start/(1 + εt) (4.4a)

rquery
end = rref

end/(1− εt) (4.4b)

cquery = (rquery
start + rquery

end)/2 (4.4c)

The resulting peaks for a piece of reference and query audio for
tolerances εp = εt = 0.3 are depicted in Figure 4.6. Note that the query
peaks (shown as dots) are extracted at a higher density, as given in
Equations 4.2, 4.3. The other aspects of Figure 4.6 become relevant in
Section 4.5.3.

To summarize, the reason for different parameterization for query
quad construction is as follows: when the time or frequency scale of
query audio is modified, this affects not only the density of relevant
peaks in the given audio snippet, but also their relative positions. An
example is given in Figure 4.2, which shows the grouping for a quad
for a given root point A. In 4.2a a reference quad is created for a
region of width r that is centered c frames from A. The analogous
example for grouping a query quad for the same audio, but increased
in tempo, or decreased in tempo, is given in Figure 4.2b and Figure 4.2c,
respectively. We see that the hollow circles, which represent the points
C, D, B for the reference quad, may happen to move outside of the
grouping region of width r if the time scale of the audio is modified.
By choosing a larger region width r (see Equations 4.4) and a larger
number q of quads per second of audio (qps), in combination with a
higher density of extracted peaks, we try to ensure to obtain a quad
that corresponds to the reference quad. Note that Figures 4.2b and 4.2c
show the locations of reference peaks after altering the time scale, but
do not show additional peaks that would emerge due to the higher
peak density (i.e. smaller max-filter sizes).

Note that when we consider audio queries of a fixed, limited dura-
tion d (e.g., 15s), there is an important difference between increased
speed/tempo and decreased speed/tempo. Increasing the tempo of
the query audio excerpt relative to the reference leads to a higher
density of relevant audio content; all the content that was used during
the phase of reference quad grouping is also present when extracting

4.3 feature extraction 59

the quads for the query. However, decreasing the tempo, i.e. stretching
the time scale, may cause some of the relevant spectral peaks to fall
out of the 15s (i.e. not be part of the query any more), so some impor-
tant quads do not emerge in the query. This difference in increasing
vs. decreasing the time scale was actually reflected in the evaluation
results of our previous work (see Section 3.5). We now alleviate this
effect to a great extent by choosing smaller values for the parameters
c, r. This has the effect that query quads of shorter time-spans are
created, and thus more query quads can be extracted towards the end
of a short audio snippet. Very similar to the above, severe frequency
scale changes (i.e. P- or TP-modifications, but not T-modifications) can
cause relevant peaks to leave the observed bandwidth of the audio
signal.

4.3.3 From Quads to Translation- and Scale-Invariant Hashes

We now have created quads from spectral peaks in audio, but these
quads are not the actual summarizing representation that we later use
to find match candidates between a query audio and the reference
database. We derive a scale-invariant and translation-invariant repre-
sentation that is quickly retrievable by adapting the hashing model
shown by Lang et al. (2010), and instead of exploiting invariance to
angle-preserving transformations and rotation, we change the hash
model to be invariant to non-isotropic transformations, i.e. different
scale factors of either dimension. For our hashes, we deliberately dis-
card the property of rotational invariance, and the resulting model
enables us to compute translation- and scale-invariant hashes from the
quads. This operation normalizes quads from time-frequency space,
with spectral peaks A, B representing a rectangular patch with sides
always parallel to the axes of the Cartesian coordinate system, into
the two-dimensional unit square: For a given quad A, B, C, D, the con-
stellation of spectral peaks is translated to the origin and normalized
to the unit square, resulting in the four points A′, B′, C′, D′ such that
A′ = (0, 0) and B′ = (1, 1), as shown in Figure 4.3. The actual con-
tinuous hash of the quad is now given by C′, D′, and is stored as
a four-dimensional point (C′x, C′y, D′x, D′y) in a spatial data structure.
Essentially, C′, D′ are the relative distances of C, D to A, B in time
and frequency, respectively. Thus, the hash C′, D′ is not only transla-
tion invariant (A′ is always (0, 0)), but also invariant to non-isotropic
scaling.

Figure 4.3 shows the hash space for general quads, but the hash
values C′x, D′x in fact are constrained to a subspace of this hash space.
This “relevant subspace” constraint implicitly originates from the
reference (ref) quad grouping stage, and depends on the parameters

60 large-scale quad-based audio fingerprinting

Figure 4.3: Example of a valid quad A, B, C, D and its corresponding
hash.

cref , rref , which are the distance of the grouping window center from a
root point Ax and the width of the grouping window:

C′ref
x min = D′ref

x min =
cref − rref /2
cref + rref /2

(4.5)

Therefore, all query quads where C′query
x < C′ref

x min − εL can be dis-
carded – no equivalent quads exist in a reference database, and no
range query lookup (L) with radius εL in the spatial data structure
will contain a near neighbour. It is sufficient to only compare against
C′x, because C′x ≤ D′x. The relevant subspace is depicted in Figure 4.4.

Figure 4.4: Example of a valid quad A, B, C, D that depicts cre f , rre f ,
and its corresponding hash. The hash space that is not
greyed out is the relevant subspace.

An intuitive explanation of what it means when a quad does not
originate from the relevant hash subspace is the following: a peak of
the query quad moves closer to the root point, while at the same time
another one retains its position or even moves farther away, which is of
course not what we wish to detect since it is impossible that the signal
was simultaneously increased and decreased in tempo or speed. Note

4.4 fingerprints : storing hashes for efficient retrieval 61

that we exclude such irrelevant quads from the set of query quads
before we start picking strong quads based on peak magnitude values
(see Subsection 4.3.1). To convey the effectiveness of enforcing that
constraint, we measured the number of possible quads and the size of
their relevant subsets: averaged over 11,700 queries, 44.7% of possible
quads could be rejected. Selecting a number of q strong quads strictly
from the remaining subsets considerably reduces the number of false
negatives in the identification process.

Having introduced the hashing approach, we can now reason about
the use of interpolated peak positions. Let us assume we are given
a reference quad of a short timespan, e.g. one second between the
root point A and the quad’s point B. This amounts to 250 time frames.
The corresponding general hash space therefore covers 250 frame
positions, which would be quantized along the time dimension in
steps of 0.004 if non-interpolated peak positions are used. In the case
of non-scale-modified query audio, if for example the peak C migrates
to a neighbouring STFT-frame, its hash value C′x has a distance of
0.004 to the original reference hash time value. However, if the query
is sped up by TP- or T-modifications, the query quad will cover an
even shorter time-span. Considering a speed up of +20%, the quad
will span around 208 time frames. If the position of C′query

x migrates to
a neighbouring bin, the absolute distance of C′query

x with respect to C′ref
x

in hash space will grow to 0.0048, and to 0.0052 for +30% speed-up.
Note that both of the peaks C, D are likely to move when the query
audio is distorted, so the distance of query-hashes to reference-hashes
is non-zero in the majority of the cases. The interpolation of peak
coordinates allows us to use a smaller search range in hash-space
when searching for matching quads. A smaller search range leads to
faster search and to a lower number of false-positives that are present
in a given search region.

4.4 fingerprints : storing hashes for efficient retrieval

Once peaks, quads and their hashes are computed from a piece of
reference audio, we store the data in four data structures that together
constitute what we call the reference database, which allows for ef-
ficient selection of match candidates and subsequent verification of
match hypotheses from query audio. We refer to the four individual
data structures as peakfile, refrecords, fidindex and searchtree.

The peakfile contains the continuous (interpolated) two-dimensional
coordinates of all spectral peaks that were extracted for each piece of
reference audio. Note that we do not store the peak magnitudes, as
they are only used for the quad grouping to pick strong quads, and
are not needed during the processing stages of audio identification.
Each peak is represented by two single precision floats, and consumes

62 large-scale quad-based audio fingerprinting

8 bytes. The peakfile stores peaks for each audio file as a contiguous
sequence of records.

The refrecords file stores all quad records (quads and quad hashes,
along with their audio file-ID) of all audio data in the reference col-
lection. A quad record consist of spectral peak A and W, where W
denotes the spatial extents (height and width) of the quad in time-
frequency space (i.e. Wx = Bx − Ax and Wy = By − Ay), the quad
hash C′, D′, and the file-ID. Spectral peaks C, D are omitted, they are
needed only for computing the quad hash.

The data for A, W and the quad hash are represented as four float32

values each, and the file-ID as unsigned int32. In total, a record in this
data structure has a size of 36 bytes.

The fidindex maps each reference audio file to a unique file-ID and
also stores the number of extracted peaks and quads, along with other
meta-data. Given a specific audio file-ID, the fidindex is used to find
the corresponding record range in the peakfile.

The searchtree is used to perform efficient range-search on quad
hashes. We use a variant of what is called a shallow bounding-volume
hierarchy (Dammertz, Hanika, and Keller, 2008) that stores and refer-
ences nodes of quad hash ranges. Using this tree variant, it is simple
to establish a memory-bounded tree construction. The tree does not
create special leaf nodes – instead it marks inner nodes as leaves if
they cannot be partitioned any further (e.g. because of the memory
bound, or geometric constraints for the bounding volumes) and uses
the pointers in the node structure to reference record ranges within our
refrecords file. Each node in the hierarchy references a range of records
which are stored contiguously in the refrecords file. On a high level,
the tree construction can be understood as a kind of quicksort applied
to the refrecords data structure, where the pivot-based array parti-
tioning is guided by a binned approximation of the four-dimensional
equivalent of the surface area heuristic (Wald, 2007). For each split, the
coordinate values of the currently widest axis of the bounding volume
are used. In our implementation, the tree construction is guided by
a memory bound of 2048MB, and nodes are split as long as their
bounding volumes are not too small. We also prohibit node splitting
if the number of referenced primitives (i.e. refrecord entries) in a node
is lower than a threshold value of 5 hashes. We revisit the search-tree
algorithm and explain it in detail in Chapter 5. We also would like
to point the reader to the highly optimized kD-tree implementation
of Lang et al. (2010), but we did not yet test that implementation in
our system.

The extraction of reference peaks is performed with a max-filter
width of 151 STFT-frames (604ms), and a filter height of 75 frequency
bins (585.9375Hz). The corresponding min-filter has a width of 3 STFT-
frames and a height of 3 frequency bins. For reference quad grouping
we choose the center of the grouping window cref to be 1.3 seconds

4.5 identification algorithm 63

from each root point A. The width rref is 0.8 seconds. We group a
maximum of q = 9 quads per second of reference audio.

The reference database we use for the experiments in Section 4.6
consists of 100,011 full length songs with a total duration of 6899 hours
of music, with an average song duration of 248.33s. The indexed audio
files altogether consume 550.4GB of disk space. Using the parameters
as above, 216,429,829 peaks were extracted and stored in the peak-
file which consumes 1.65GB. The peaks were grouped to 209,855,025
quads, thus the refrecords file consumes about 7.2GB of disk space.
The nodes of the search tree consume 1068MB, and the fidindex file
has a size of 6.7MB. Altogether, our reference database has a size
of 9.85GB, which is roughly 1.8% of the size of the audio collection.
Creating the reference database, using our Python implementation,
took 24.8h (around 67 files per minute), utilizing seven out of eight
logical cores of an Intel Core i7-4770 (3.4GHz) Processor.

The largest data structure we use is the refrecords file. While we do
not experiment with compressed representations in this work, we want
to point out that the refrecords file can be compressed from 36 bytes
to 24 bytes per record, by utilizing scaled floating point representation.
Hash values are in the range of [0..1] (in fact, time values C′x, D′x reside
in the smaller range of [C′ref

x min..1] as described in Section 4.3.3) and
could be scaled and stored as unsigned short16 values. Likewise, the
width and height of quads (W as above) could be represented in this
format.

4.5 identification algorithm

Figure 4.5: Search components

This section describes the algorithm that tries to identify a poten-
tially severely distorted piece of query audio. If a matching audio
is found within the reference database, the algorithm reports the

64 large-scale quad-based audio fingerprinting

match file-ID, the position of the query piece within the reference
audio, the underlying time and frequency scale modifications, and a
verification-score.

The method of answering a query consists of three stages (see
Figure 4.5): the first processing stage performs the selection of match
candidates, followed by a filtering stage in which we try to discard
false positive candidates. This is explained in Section 4.5.1.

Results are then passed to a match sequence estimation stage, in
which we efficiently search for sequences within the set of matched
candidates. This is done by comparing the offsets of match-times in
the reference match-time-series, and the query match-time-series. Any
line search algorithm can be applied here, but because of its trivial
implementation, we adapt and extend the histogram binning approach
that is proposed by Wang (2003). We also add an outlier removal step
that discards individual match candidates within sequences based
on statistics of the respective underlying scale transforms. This is
explained in Section 4.5.2.

Finally, for each match candidate within the filtered sequences we
apply a verification step, adapted from the findings in Lang et al.
(2010). This step is essential to maintain high identification precision
on large reference audio collections, especially in the presence of highly
repetitive audio material. The verification is explained in Section 4.5.3.

4.5.1 Match Candidate Selection and Filtering

For each query quad hash a range-search in the searchtree is performed.
This lookup returns a set of raw match candidates, which consists of
those quad records with hashes that are similar (identical up to the
search radius εL: C′query

x − εL ≤ C′ref
x ≤ C′query

x + εL etc.) to the query
quad-hashes. We call this the set of raw candidates, as it will most
likely be a mixture of true positives and a (large) number of false
positive matches. From this point onwards, this stage and subsequent
stages operate on the quads (i.e. the points in time-frequency space)
rather than on their hashes, thus we can now discard the hashes from
the result sets.

The raw candidates are processed by a series of three filters that
reject false positives. This considerably reduces the number of raw can-
didates and therefore reduces the computational load of subsequent
steps. Conceptually, if these filters are not applied here, the same effect
of candidate rejection takes place in the verification stage (see 4.5.3),
although in a less efficient manner.

The first filter tests the query quad and each of its match candidates
(cand) based on coarse pitch coherence, similar to the spatio-temporal
coherence check described by Evangelidis and Bauckhage (2013). This
filter has the purpose of constraining the pitch translation invariance
of our hash model. It discards raw candidates if these are farther away

4.5 identification algorithm 65

along the frequency axis than our tolerance bounds account for. The
filter routine accepts candidates if the following holds:

Aquery
y /Acand

y ≥ 1/(1 + εp) (4.6a)

Aquery
y /Acand

y ≤ 1/(1− εp) (4.6b)

The next filter tests whether accepted candidates adhere to the
previously introduced transform tolerance bounds εp, εt for pitch and
time (see Subsection 4.3.2). This is achieved by looking at the different
spatial extents of the query quads and their candidates and computing
the scaling factors for time and frequency as follows:

stime = (Bquery
x − Aquery

x)/(Bref
x − Aref

x) (4.7a)

sfreq = (Bquery
y − Aquery

y)/(Bref
y − Aref

y) (4.7b)

Quad candidates are accepted if the following holds:

spitch ≥ 1/(1 + εp)∧spitch ≤ 1/(1− εp) (4.8a)

stime ≥ 1/(1 + εt) ∧stime ≤ 1/(1− εt) (4.8b)

The scale factors are stored with the accepted candidates and will be
used in the verification stage to align reference peaks to query space
(see Section 4.5.3).

The last filter is similar to the coarse pitch coherence filter, but now
that we know the scaling factors of the candidates with respect to
their reference quads, we can perform a fine pitch coherence filter as
follows:

|Aquery
p − Aref

p sfreq| ≤ εpfine (4.9)

where εpfine is the fine pitch coherence threshold. We set this threshold
to the empirically determined value of 1.8. Ideally, we would expect
Aquery

p = Aref
p sfreq, however, using εpfine we allow small positional inac-

curacies along the frequency dimension. This is necessary to account
for the fact that the locations of spectral query peaks are not invariant
to signal distortions. Rather, locations of spectral peaks are of limited
robustness to signal distortions.

After all three filters are applied to the set of raw match candidates,
we now have obtained a set of match candidates which adhere to
given constraints. We now sort the remaining accepted candidates by
file-ID, and enter the sequence estimation step.

4.5.2 Match-Sequence Estimation

We perform this stage and the next stage of match candidate verifica-
tion on a per-file-ID basis. Therefore we group the match candidates
by file-ID, and sort the groups by the number of match candidates, in
decreasing order.

66 large-scale quad-based audio fingerprinting

Per file-ID, we try to find a sequence of candidates by processing
the matches with a histogram method similar to the one described
in Wang (2003). We adapt the method such that the query time Ax

(the time value of root point A of each query quad in the sequence) is
scaled according to the uncovered time scale factor stime. The file-ID
for the largest histogram bin (the longest match sequence) is returned,
together with the match position, which is the minimal time value Ax

of the peaks in the histogram bin. This time value localizes the query
snippet within the reference audio.

Resulting sequences with a variance of scale transforms larger than
a threshold value are cleaned up using a simple variance based outlier
detection method.

Finally, if match sequences are found for a given file-ID, and their
number of matched candidates is larger than a threshold value ts, we
try to verify these sequences match-by-match.

4.5.3 Match Verification

Verification of match hypotheses is based on the insight that spectral
peaks that were extracted nearby a matching reference quad in the
reference audio should also be present in the query audio, analogous
to what is described by Lang et al. (2010). For this verification process
we have to align the peaks of the relevant part of reference audio with
the corresponding part of query audio, by aligning regions around
the respective locations of the match hypothesis. In order to do so we
use the previously computed scale transformation factors (cf. Equa-
tions 4.7a, 4.7b) for the current match candidate and then count the
number of peaks that match in aligned space. We first describe the
verification process and then show a visualization of the method.

Naturally, the number of peaks in proximity of the reference quad
will differ from the number of peaks near the matched query quad.
This depends on the query peak extraction density, and therefore on
the scale tolerance parameters εp, εt, but also on the encoding, noise,
and other distortions. Thus, the verification process must be robust to
the existence of additional and missing peaks, so called distractors and
dropouts. Because we search for the existence of reference peaks in the
query audio, and not vice versa, distractors tend to get problematic
only if the query peaks are extracted at very high densities – in this
case the probability for false verifications increases. Dropouts on the
other hand, may lead to false rejections. Therefore, we try not to find
all, but just a percentage of tmin of the nearby reference peaks within
the local query excerpt.

We define the nearby reference peaks as the set of N spectral peaks
in the reference audio that exist within a timespan around the match
candidate’s root point A (for some fixed timespan), and retrieve those
via a lookup for the peaks of the file-ID in the peakfile of our reference

4.5 identification algorithm 67

database, and then bisecting the time values. In our initial work as
described in Chapter 3, we proposed to search for nearby peaks in
peak trees that are part of the reference database. These peak trees
consume more than 13GB for the audio collection we use in this
present chapter. Using the variant we propose here enables us to
perform the verification without the need for these data structures,
and consequently reduce the total disk space requirements of the
reference data structures by more than 50%.

The transformation to align a reference peak Pref with a query peak
Pquery in query space uses the scale transformation estimate S, with its
two components Spitch and Stime (cf. Equations 4.7a, 4.7b):

Pquery = Aquery + off (4.10)

off = (Pref − Aref) · S (4.11)

where Aquery is the root point of a query quad and Aref the root
point of an associated reference match candidate. The vector off is the
transformed offset (i.e. the relative position) in pitch and time from
Aref to a nearby peak Pref . Pquery is the location estimate in query space
where we expect to find a query peak that corresponds to the reference
peak Pref . Note that we search for Pref in a small rectangular region
which is centered at the location estimate Pquery. In this specific im-
plementation with εp = εt = ±30%, we parameterize the rectangular
region to span 12 frequency bins and 18 STFT frames (0.072s), i.e. we
allow larger tolerances to align nearby peaks than during the match
candidate filtering stage, where we aligned Aref

p , Aquery
p according to

Equation 4.9. Here, we are less strict, to allow miniscule inaccuracies in
the obtained scale factors, but most importantly to tolerate deviations
from expected locations of spectral peaks that can occur due to audio
signal distortions.

An example verification is depicted in Figure 4.6: here, the query au-
dio was P-modified, such that the query has a pitch of 120% relative to
the reference song. The upper figure shows an excerpt of the reference
audio around the reference match candidate’s root point A. The plus
symbols and crosses represent the locations of the spectral peaks from
this reference audio excerpt. The lower figure shows the query audio
excerpt, where the dots represent the spectral peaks extracted for this
query snippet. The plus symbols and crosses in the lower figure show
the estimated locations of reference peaks in the query audio, and
the rectangles depict the tolerance regions in which we search for
the existence of a query peak. Crosses represent successfully aligned
peaks and therefore always coincide with a dot. Plus symbols show
failed alignments, respectively. In this example, 75% of the nearby
reference peaks could be aligned.

The candidates that pass the verification step are considered true
matches, and are associated with two measures, a verification score,
and the uncovered scale transforms S. The verification score is the

68 large-scale quad-based audio fingerprinting

Figure 4.6: Verification of a match candidate for a query snippet of
+120% pitch (i.e. the query audio has higher pitch than the
unmodified reference audio). The two black squares are the
root points Aref , Aquery. The plus symbols and crosses in the
upper figure show all reference peaks in proximity of Aref .
The lower figure shows the location estimates of peaks in
query space. The plus symbol means “not verified”, the
cross means “verified”. The dots in the lower figure show
all additional peaks which are extracted due to smaller
peak filter sizes. Note that crosses always coincide with a
dot, while this is never the case for the plus symbols. The
rectangles show the tolerance regions for the alignments.
The figure allows to observe that the high frequency refer-
ence peaks were shifted out of the query content. Note that
this shows an example using a sampling rate of 16kHz,
window size of 2048 samples and a hop size of 64 samples.

proportion v/N (with v ≤ N) of correctly aligned spectral peaks in the
set of nearby peaks (which in this example amounts to 0.75). Finally,
if the sequence of verified matches for the given file-ID covers at least
15% of the query snippet length, we report the match. Note that this
test should already be applied in the sequence estimation stage to
achieve an rejection of candidate sequences as soon as these turn out
to be too short.

At this point, we finally know the reference file-ID that identifies
the query audio, the position of the query audio in the reference track,
and the associated time-frequency scale modification S.

As we are interested in the best matching file-ID only, we can
return the best verified sequence of the current file-ID as soon as it
becomes evident that the next file-ID to process has a smaller number
of associated match candidates than the number of verified matches in
the current file-ID’s best sequence (for this, the file-IDs are sorted by

4.6 experiments and results 69

Figure 4.7: Histogram of the percentage of candidate file-IDs from the
retrieved set of potential file-IDs that had to be processed
in order to answer a query, computed from 11,700 queries.
Note the bin at x = 100%: here, the contributors are false
negatives, and weakly matched file-IDs with exactly ts

matches (either true or false positives).

the number of match candidates in decreasing order before entering
the sequence estimation step).

This early exit considerably reduces the amount of work to be done
in this processing stage, and its effectivity is shown in Figure 4.7. In
most of the cases the method identifies the correct file-ID, transfor-
mation and reference position for a query after processing the first
few candidate file-IDs. Weak matches (with a low number of quads in
a verified match sequence approaching the match threshold ts) and
false negatives make it necessary to process all candidate file-IDs, i.e.
it is not possible to take the early exit.

4.6 experiments and results

The basis for all the experiments in this chapter is the reference
database consisting of 100,011 as described in Section 4.4. The dataset2

is freely available and we publish information that allows to recreate
the reference collections, along with all queries that are performed in
the experiments.

The performance of the method is evaluated using the measures
that we defined in Section 1.7.

To create test queries, we randomly choose and fix a set of 300
reference songs and alter these with different P-, T-, TP–modifications
as well as noise level modifications. We then randomly select a starting

2 The dataset consists of freely available creative commons licensed music pieces,
hosted by the jamendo service (“Jamendo Service” n.d.). Information to recreate the
dataset is published with IEEE and can be downloaded from the media section at
http://dx.doi.org/10.1109/TASLP.2015.2509248

http://dx.doi.org/10.1109/TASLP.2015.2509248

70 large-scale quad-based audio fingerprinting

(a) Speed variations

(b) Tempo variations

(c) Pitch variations

Figure 4.8: Precision and accuracy for TP- (4.8a), T- (4.8b) and P-
modifications (4.8c) of 20s queries with a near-neighbour
search radius εL = 0.01 on a database of 100,000 songs. The
figures show results of a total of 11,700 queries (3 kinds of
distortions for 13 values over 300 queries), where each pair
of data points shows the result of 300 queries. The boxplot
pairs show the average verification scores of tp (left) and
fp (right) sequences. In cases with perfect precision, no fp
boxplots are shown.

4.6 experiments and results 71

(a) Speed and qps variations

(b) Tempo and qps variations

(c) Pitch and qps variations

Figure 4.9: Precision and accuracy for TP-, T- and P-modifications
(from top to bottom) on our reference database of 100,000
songs. Figures 4.9a to 4.9c (note the y-axis range) show
results for a total of 117,000 queries, for various values of
quads per second (qps, parameter q) and a query snippet
length of 20s and εL = 0.01. Each pair of data points shows
the average precision and accuracy of 3900 queries for scale
modifications in the range of ±30% of the individual type,
as in the experiment shown in Figure 4.8.

72 large-scale quad-based audio fingerprinting

(a) Speed and SNR variations

(b) Tempo and SNR variations

(c) Pitch and SNR variations

Figure 4.10: TP-, T- and P-modifications (from top to bottom) for
varying SNRs. The figures show results for a total of
152,100 queries of various SNR, snippet length of 15s and
εL = 0.01, where each pair of data points is the aver-
age over 3900 queries using our reference collection of
100,000 tracks. Figure 4.10a shows TP-modified queries
for 13 TP-modification values in the range of ±30%. Fig-
ure 4.10b and Figure 4.10c show T- and P-modifications,
respectively, such that each pair of datapoints is one single
experiment as depicted in Figure 4.8.

4.6 experiments and results 73

position for each selected song, and cut out 20 seconds from the audio,
such that we end up with 300 query snippets with a duration of 20
seconds. These query snippets are used for all experiments.

We create the snippets from mp3 encoded data, and encode the
distorted versions in the Ogg Vorbis format (“Ogg Vorbis” n.d.), using
the default compression rate (cr = 3). We do this to demonstrate
that the system is robust to effects that result from a lossy audio
compression. All modifications are realized with the free SoX audio
toolkit (“SoX - Sound eXchange” n.d.).

For all experiments in this work, the fingerprinter is configured with
scale transform tolerances εq = εt = 0.31. Query peak extraction is per-
formed with max-filter sizes of 51 frequency bins and 113 frames. The
radius for range-search queries is εL = 0.01. Sequences must contain
at least ts = 4 matches, and the threshold for the average verification
score of sequences is set to 0.53. The verification stage considers peaks
in the range of ±1.8s near the reference candidate rootpoint, and
uses rectangular alignment regions of height 12 frequency bins and
18 time frames. For the experiments we use a preliminary parallel
implementation of our method, utilizing 7 workers and one master
process on a Intel Core i7-4770 (3.4GHz) machine. All building blocks
of the method are implemented in Python, except the peak extractor
and the searchtree, which are implemented as C extensions.

We now explain the specificity tests and, for convenience, report the
results in the following paragraph. The run times for the specificity
experiments are documented in the last two rows of Table 4.1.

To test the specificity of the method, we prepare a second set of
20,000 query files from the jamendo service (“Jamendo Service” n.d.).
We tried to ensure that the files contained in this set are disjoint with
the set of referenced files, by inspecting the available meta-data. We
found it is difficult to correctly clean up duplicates, because often the
same song is present in another album of the same artist, referenced
with another track ID, and inconsistent meta-data. We reject music
pieces that appear to be duplicates according to the meta-data, and
finally keep a subset of 18,229 files. The system’s specificity on this
set is 0.9617. Inspecting the results leads us to believe that there are
still duplicates present. The meta-data of some of the high scoring
matched files are very similar, but not equal to meta-data of the query
audio piece. To work around the problem of duplicates, we perform
a second experiment, on yet another dataset that we prepared to test
the specificity of our system. This dataset consists 50,000 non-free
songs from a different collection that we cannot make available. This
experiment results in a higher specificity of 0.9726, but even in this
experiment the top matching query audio seems to be a duplicate of a
song that is present in our reference database. Because the meta-data
are inconsistent, and we do not have a ground truth reference, we
cannot be sure if some of these cases are duplicates or versions of the

74 large-scale quad-based audio fingerprinting

Speed (TP) Tempo (T) Pitch (P) mean median

l [s] prec. acc. prec. acc. prec. acc. t [s] t [s]

20.0 .994 .984 .994 .980 .992 .944 1.69 1.65

17.5 .993 .981 .992 .976 .991 .929 1.49 1.45

15.0 .991 .976 .991 .969 .992 .905 1.29 1.26

12.5 .990 .964 .990 .955 .990 .873 1.06 1.03

10.0 .990 .948 .989 .929 .987 .833 0.83 0.80

7.5 .987 .908 .988 .865 .979 .735 0.59 0.57

5.0 .980 .770 .978 .709 .953 .563 0.37 0.35

2.5 .798 .293 .777 .281 .668 .184 0.19 0.16

l [s] tn dataset No. queries Specificity mean median

20.0 jamendo 18,229 .9617 1.96 1.77

20.0 non-free 50,000 .9726 1.89 1.67

Table 4.1: Average performance and run times (qps = 1500).

matched song, and therefore have to treat such cases as false positives.
For both experiments the queries are of length 20s, starting at position
40s of the query audio piece.

All experiments presented in the following regard identifiable
queries, and show individual results for P-, T-, TP–modifications.
Note that in the vast majority of experiments, the reported precision
is impacted by a set of three songs which we believe to be duplicates,
but without the corresponding ground truth we cannot be sure, so we
strictly count these cases as false positives.

4.6.1 Results on Scale-Modified Queries

We consider scale distortions in the range from 70% to 130% in steps
of 5 percentage points, and extract a number of q ≈ 1500 quads
per second of query audio of length 20s. The results are shown in
Figures 4.8, and are annotated with box plots of the average scores
of matched sequences, which are shown for true positives and false
positives if such sequences were predicted. Increasing the verification
threshold (cf. Section 4.5.3) reduces the number of false positives, at
the cost of introducing a number of false negatives for larger scale
transform modifications. For industrial applications, this threshold
should be optimized via large-scale experiments.

Results for the same kind of experiment, for various lengths of query
snippets are given in Table 4.1, where we show the average performance
of the individual types of distortions. Each row of Table 4.1 shows
results of 11,700 queries (300 queries are tested for 3 types of scale
distortion, over a range of 13 different scale factors), except for the
last three rows, which show the system’s specificity and run times for
queries that are not present in the reference database.

4.6 experiments and results 75

We observe that false positives with high verification scores tend to
be cases where the fingerprinter confuses different versions of a song.
Specifically, the high-scoring false positives are due to the fact that
it is hard for the fingerprinter to distinguish scale modified and highly
repetitive short snippets of long remixes of electronic music from the
original version, a problem which is equally hard for human listeners
(especially if the major difference of the segment of the remix is the
altered tempo or pitch). Depending on the application it might be
advantageous to maintain a dictionary that relates versions of a song
to a reference version. We currently do not have such a dictionary for
our data set, so we strictly treat those cases strictly as false positives.

4.6.2 Results on qps Values

Identification results for various values of the number of extracted
query quads per second (qps, parameter q) are shown in Figures 4.9a
to 4.9c. For each value of q an experiment as in Figure 4.8 is per-
formed, and the averaged results over the total of 117,000 queries
(11,700 queries for 10 values of q) are shown in the first row of Fig-
ure 4.10. Decreasing the number of query quads negatively affects the
identification performance for the most severe transformations only,
while greatly reducing the run time of query processing: The mean
query run times for the qps range from 250 to 2500 in steps of 250 are:
0.74s, 0.94s, 1.14s, 1.34s, 1.51s, 1.69s, 1.86s, 2.02s, 2.17s and 2.33s.

Thus, the proposed method of picking strong quads seems indeed to
be effective in discarding irrelevant quads. Note that without imposing
a limit of q quads per second, in many cases more than 4500 quads
would be extracted per second of query audio.

4.6.3 Results on Effects and Noisy Queries

The impact of various effects on the performance of the presented
method is evaluated and summarized in Table 4.2. For comparability
we chose the same effects with identical parameterization as described
by Six and Leman (2014). In total, a number of 6 effects is used, which
are processed using the “SoX“ toolkit (“SoX - Sound eXchange” n.d.).
To describe the effects we take the liberty of showing excerpts from
the man-page of ”SOX” for information on chorus, echo, flanger and
GSM effects:

• Bandpass: A two-pole Butterworth band pass filter.

• Chorus: The chorus effect has its name because it will often
be used to make a single vocal sound like a chorus. But it can
be applied to other instrument samples too. It works like the
echo effect with a short delay, but the delay isn’t constant. The
delay is varied using a sinusoidal or triangular modulation. The

76 large-scale quad-based audio fingerprinting

Qfp Panako

effect type prec. acc. prec. acc.

Bandpass .997 .993 - .876

Chorus .986 .687 - .33

Echo .993 .980 - .686

Flanger .984 .827 - .573

Gsm .978 .440 - .364

Tremolo .990 .977 - .673

Table 4.2: Performance on 20s-queries without scale modifications,
that are distorted by various effects. Column “Qfp” shows
the results using our method (with qps = 1500). Column
“Panako” shows the transcribed results for the same effects
as presented by Six and Leman (2014), on their smaller refer-
ence collection of 30,000 tracks. A visualisation of example
spectrograms for the effects is given in Figure 6.4

modulation depth defines the range the modulated delay is
played before or after the delay. Hence the delayed sound will
sound slower or faster, that is the delayed sound tuned around
the original one, like in a chorus where some vocals are a bit out
of tune.

• Echo: An echo effect can be naturally found in the mountains,
standing somewhere on a mountain and shouting a single word
will result in one or more repetitions of the word (if not, turn a bit
around and try again, or climb to the next mountain). However,
the time difference between shouting and repeating is the delay
(time), its loudness is the decay. Multiple echos can have different
delays and decays. It is very popular to use echos to play an
instrument with itself together, like some guitar players (Brain
May from Queen) or vocalists are doing. For music samples of
more than one instrument, echo can be used to add a second
sample shortly after the original one.

• Flanger: The flanger effect is like the chorus effect, but the delay
varies between 0ms and maximal 5ms. It sound like wind blow-
ing, sometimes faster or slower including changes of the speed.
The flanger effect is widely used in funk and soul music, where
the guitar sound varies frequently slow or a bit faster.

• GSM: The GSM audio file format. SoX has support for GSM’s
original 13kbps ‘Full Rate’ audio format.

• Tremolo: Low frequency amplitude modulation effect.

The most challenging distortions are the gsm codec and the chorus
effect, and to a certain extent the flanger effect. For the effects bandpass,

4.6 experiments and results 77

Figure 4.11: Fraction of time spent in the processing stages by the av-
erage query, averaged over the 11,700 queries performed
for Figure 4.8 (l = 20s, εL = 0.01, qps = 1500). This figure
represents a median query processing time of 1.65s.

echo and tremolo, the system maintains high performance with more
than 97% accuracy and precision.

To evaluate the performance on white noise, we modify each query
snippet of the individual scale transforms and create noisy versions
in SNR ranges from −10dB to +50dB in steps of 5dB. The results
are visualized in Figure 4.10. For this experiment, a total of 152,100
queries were processed (11,700 queries for each of the 13 SNR values).

The results show a stable and high performance for SNR down to
+15dB (with P-, T-, TP–modifications in the range of ±30%), which is
a lower SNR value than what we expect to encounter in application
scenarios.

4.6.4 Run Times

We identify five building blocks in our method, and take note of the
time spent in these stages over the 11,700 queries performed for the
experiment shown in Figure 4.8, using query snippet lengths of 20s
and a search radius of εL = 0.01. The stages are audio decoding (tdec),
peak extraction (tpex), quad extraction (tqex), tree lookup and filtering
(tlu), as well as match sequence estimation and verification (tver).

Figure 4.11 shows the fraction of time spent for the individual
stages. Time spent on the lookup depends on the number of box-box
intersections during tree traversal, and the size of the result set that is
then filtered for the range constraint εL, pitch coherency and transform
tolerances. The outliers for match sequence estimation and verification
can be explained in context of Figure 4.7: in a great majority of all
queries, the method takes the early exit after the first few candidate
file-IDs, which means that only a small fraction of all potential file-IDs
are processed in this stage. For the case of false negative matches,

78 large-scale quad-based audio fingerprinting

or weak matches (i.e. approaching the matching threshold ts) many
candidates have to be processed.

In the reasonable scenario where a machine is dedicated to finger-
printing (we use 7 worker processes), with the settings as in Figure 4.8,
we can process 213 20s-queries per minute, and 280 15s-queries per
minute. Single-worker run times for various snippet lengths are given
in Table 4.1. We believe the run times are within practical limits, con-
sidering the size of the reference database and the large tolerances of
scale modifications.

4.6.5 Comparison with Reference Methods

While it is not possible to directly compare our results to those
of Zhang et al. (2015) (because we do not have access to their test
data), from the published figures it seems fair to say that in terms
of recognition accuracy and robustness, both methods seem com-
parable, and both seem to approach the upper end of what can be
expected of an automated audio identification system. For T- and
P-modifications, our method seems slightly more robust for the ranges
we evaluated, and it has a noticeably higher performance for queries
that were severely slowed down in speed. Regarding the efficiency
of Zhang et al. (2015), we do not know run times of the reference
implementation, and we do not know how large the data structures
for reference databases will be in practice. We cannot directly answer
if the nearest neighbour search using LSH will still be that effective
in the presence of very large databases, because the chance that the
nearest neighbour constitutes the correct candidate decreases with the
number of referenced fingerprints. However, given that LSH allows
to be tuned in various ways, we assume that the method will be well
applicable in practice.

A direct comparison to the algorithm presented in (Six and Leman,
2014) is possible, because the authors publish code and data. Given the
strong limitations of the system with regard to scale change robustness,
with a true positive rate of roughly 50% for scale distortions in the
range of ±5% for 20s query snippets, we do not evaluate that system
on our large reference database. However, we utilize the information
given in Six and Leman (2014) to recreate the identical distortions
for the robustness experiments, and present the results as part of
our evaluation on our reference database consisting of 100,000 full
length audio pieces. The results on queries that are modified with
effects are given in Table 4.2. We assume that the limited robustness
of Six and Leman (2014) is because of the specific hashing model
used in combination with spectral peaks: it contains absolute values
of quantized frequency components of feature points, and deltas of
the quantized time values as well as frequency values, which are
directly used to create the hash. This resulting representation is prone

4.7 discussion 79

to quantization effects, which occur if one or more peaks of the triple
migrate into a neighbouring bin. Such cases will result in a hash that
is different to the original, even though the triples are highly similar.
This is an inherent property of quantized hash models, and here, its
effect is exposed by the limited location robustness of the spectral
peaks. Quantization effects expected even for hashes that are obtained
from unmodified audio: depending on the start position of query
snippet decoding, query peaks sometimes migrate to a neighbouring
bin with respect to the other query peaks. If just one peak of the triple
moves relative to the other two peaks (e.g. assume it is assigned to
bint−1 instead of bint along the time axis), the time deltas within the
triple change and the triple is likely to be assigned to a different hash.
We assume that this could be the reason for the large number of false
negatives. The reported false negatives that occur even in the case
of unmodified audio queries are an indicator of strong robustness
limitations of quantized hashes for key/value lookup methods.

4.7 discussion

The scale transform tolerances of ±31% used in this thesis do not
reflect the upper bound of what our method can handle. It can detect
more severe scale modifications, but the runtime increases with larger
values of εp, εt, and decreases with lower values. This is because larger
tolerance values demand a higher density of query peaks, and due
to the implicitly increasing size of the grouping window width r, a
greater number of query quads will be grouped before the number
of qps strong peaks will be selected. Also, fewer match candidates
will be rejected due to larger transform tolerances, and therefore more
candidates are passed to the fine pitch coherence filter and possibly
even to the verification stage.

Speaking of the verification, we would like to shortly revisit this
topic. While the verification is a highly effective way to drastically re-
duce false positives, there still is some room for improvement, because
there remain some (rare) cases of correctly verified matches that in
fact are false positives. To give an example, we visualise the correct
verification of an incorrect match candidate in Figure 4.12. In some
cases with mostly percussive content the transformation invariances
of our hashes could cause the verification to match the strong onsets.
However, there seems to be a simple solution to that, by storing a
larger number of reference peaks, but without creating more reference
quads. To do so, after creating the reference quads, one could simply
perform a second pass of peak extraction, with higher density. The
advantage would then be an even more effective verification, and the
downside would be more storage consumption for the pdb and a
small run time penalty for creating the reference database (because of
the second pass of peak extraction).

80 large-scale quad-based audio fingerprinting

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
time [s]

0

100

200

300

400

500

fr
e
q
u
e
n
cy

 b
in

Reference audio excerpt (Verification score: 0.567)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
time [s]

0

100

200

300

400

500

fr
e
q
u
e
n
cy

 b
in

Query audio excerpt

Figure 4.12: Example of an incorrect verification of a single match-
candidate, resulting in a false positive match. Note, to
report a false positive sequence, the verification step has to
fail on several match candidates of the same incorrect file-
ID, and these matches still have to end up in the same bin
during sequence estimation. The meaning of the markers
(cross, plus, circle, box) is described in Section 4.5.3 and
Figure 4.6.

To summarize and conclude, instead of utilizing quantized hashes,
we perform range search in the continuous four-dimensional hash
space to retrieve raw candidates. Thus, quantization effects of hashes,
as they predominantly emerge in combination with lookup tables, are
not of concern. To loosen the strict hash similarity constraints of sys-
tems that use key-value lookup methods, as the work described by Six
and Leman (2014), hash keys for adjacent bins must be computed for
additional queries, which in turn limits the efficiency of such methods.
The system described by Lang et al. (2010), and our proposed system,
allows for intuitive parameterization of the range-search radius εL to
adapt to robustness requirements.

We identify two reasons why our method on the whole exhibits
robustness to scale changes, rather than invariance, despite the invari-
ant hashing model: the very basis of the method are spectral peaks,
and their respective locations are not invariant to scale changes or
introduced digital artifacts. This is predominantly shown by the lower
P-modification robustness of our method, compared to TP- and T-
changes. The second reason is, that under severe scale changes, rel-
evant peaks leave the observable regions of query audio, thus some
important peaks cannot be found. This, however, is a general issue
and not specific to our method.

4.7 discussion 81

Lang et al. (2010) discuss the use of n-tuples rather than strictly
quadruples of points. As suggested in their work we use quad based
hashes and observe that the computational cost and identification
performance are well within reasonable limits. Using triples will in-
evitably result in much larger sets of retrieved match candidates (that
need to be filtered and verified subsequently), because triples have a
lower discriminability than quadruples of points.

5
S E A R C H A L G O R I T H M

Peak
Extraction

Quad
Grouping

Hashing
Decoding

STFT

Results

file-ID
score
transformation
factors
start position

end position

Reference
Collection

Matchsequence
estimation Verification

Scale
Factors

Filtering

Search Tree

Matching

Figure 5.1: System components for searching

This chapter details the search algorithm that we implement to
answer range-search queries. The search algorithm involves the con-
struction of the search tree and its traversal, as sketched in Figure 5.1.

5.1 overview

In our specific problem setting, we found via extensive experimenta-
tion that nearest neighbour search, k-NN search, as well as approxi-
mate variations thereof result in poor identification performance. The
search space is densely, but non-uniformly populated by hashes which
are computed from spectral peak coordinates. These coordinates have
limited robustness to signal modifications, distortions and compres-
sion artefacts, but may also depend on the actual starting point in time
(i.e. the signal sample) of the decoding process.

In experiments we learned that it is highly unlikely that the nearest
neighbour of a query point is the correct match. When extending
nearest neighbour search to k nearest neighbour search (k-NN), it is
not readily apparent how to choose k. For less densely populated hash
space regions, the volume spanned by k neighbours might be larger
than we want. Vice versa, densely populated subspaces will return
k candidate points that occupy a small volume of space – possibly
smaller than the tolerances we have to account for.

When refining the search stage, we initially experimented with grid
search, simply because of its trivial implementation. For range-search,

83

84 search algorithm

neighbouring grid cells have to be inspected. In a four dimensional
search space, a grid cell has 34 − 1 = 80 neighbours. In our problem
setting, this turned out to result in prohibitively long run times. While
one can guarantee fewer neighbour lookups by choosing larger cells,
this comes at the cost of each cell containing larger numbers of refer-
ence points. However, by experimenting with (run time intensive) grid
search we could validate our intuition that the identification perfor-
mance greatly benefits from range search (all near neighbour search).
A highly appreciated property is that range-search makes it possible
to intuitively tune the trade-off between identification performance
and runtime performance by experimenting with different sizes of
the neighbourhood radius. To clarify, the term neighbourhood radius
implies a hypersphere as neighbourhood, which makes sense if the
same tolerances must be used for each dimension. However, we found
that we need higher tolerances for the time domain than for the fre-
quency domain. Thus, our search neighbourhood is a hyper-rectangle
instead of a hyper-sphere, and is set to cover wider spatial extents for
the two time-related dimensions in hash space (C′x, D′x) than for the
pitch related dimensions (C′y, D′y).

We want to efficiently retrieve all reference records if their hashes
reside in a given range (a neighbourhood) around the query point. We
visualize the concept in two dimensional space, but these concepts
trivially extend to higher dimensional space. The problem setting can
be depicted as shown in Figure 5.2.

Figure 5.2: Example of range-search. The figure shows the search
space that is populated with reference points (labelled by
their IDs). The circle q is the query point with its search
neighbourhood (grey area). The expected result set consists
of the records 6 and 2.

For lookup (L) tolerances in time (t) and pitch (p), εLt , εLp , the width
of the neighbourhood is 2εLt , and the height is 2εLp . Thus, for the
four-dimensional quad hashes the neighbourhood around a query
hash C′, D′ is parameterized as follows:

εL = C′x ± εLt , C′y ± εLp , D′x ± εLt , D′y ± εLp

.

5.2 bounding volume hierarchies 85

To construct a search tree, we choose a variant of a bounding volume
hierarchy (see Section 5.2 below), and implement the tree construction
and traversal specifically for the AMD64 architecture, with dependen-
cies on the SSE3 instruction set.

5.2 bounding volume hierarchies

A bounding volume hierarchy (BVH, Goldsmith and Salmon (1987))
is an object hierarchy. Rather than subdividing cells of space, it is a
partitioning scheme that recursively splits object lists into disjoint par-
titions. The splits take into account the spatial extents of the primitives
residing in the object lists.

We choose to implement a BVH variant that is called shallow bound-
ing volume hierarchy (Dammertz, Hanika, and Keller, 2008). It is a
4-ary BVH that is designed to exploit the SIMD capabilities of CPUs.

This data structure exhibits a low memory footprint, and can be
restricted to use a predefined amount of memory. Excessive nodes that
do not fit into the allowed memory pool will then simply reference
more hashes. One reason for the low memory footprint is that the
leaves are not explicitly stored (i.e. leaves do not consume memory),
rather the parent nodes are marked as leaves and directly index into
contiguous regions of reference hashes: if a node split results in a
constellation of points with small spatial extent or low number of
points, instead of creating a leaf node, the node is marked as leaf and
its pointers are adjusted to point to the contiguous regions of memory
that hold the primitives.

5.3 data layout

The tree search combined with the filtering stage is the most run time
expensive processing stage in our system. After peak extraction and
quad grouping for a query audio piece, for thousands of query quads
we have to retrieve all nearby reference quads from data structures
that (currently, in our case) exceed 20GB in size. To do this efficiently,
the highest priority is to design a well suited data layout scheme.

Memory and upper cache level accesses are the operations where
most of the time is spent unproductively, i.e. the system processes data
faster than it manages to transfer it to the CPU. The goal is to achieve a
throughput that is limited by the CPU rather than by the memory sub-
systems, which can be a highly challenging task in practice. A general
guideline is to organize the data such that consecutively accessed data
are close together in memory, and algorithms should be implemented
to reduce the need for scattered memory accesses in favour of more
predictable and linear memory access patterns.

Our data layout scheme is as follows: The 4-ary BVH operates on
a memory mapped contiguous region of storage that holds the data

86 search algorithm

of the entire reference database. This storage contains reference quad
records, and in terms of BVH this is the “object list” that will be
partitioned to resemble a hierarchy in the form of a 4-ary search tree.

A reference quad record consists of the coordinates of two spectral
peaks A, B, the quad hash C′, D′, and its file-ID. We compress the
quad hash components to 16bit each, by scaling the floating point
representations. The actual reference quad records thus are as follows:
At, Ap, Bt, Bp are single precision floating point coordinates in 2-D
spectrogram space, C′x, C′y, D′x, D′y are four unsigned int16 values and
the file-ID as 32-bit data type. Instead of actually storing the spectral
peaks Bt, Bp of quads, we store the width and height of the quad:
Wt, Wp with Wt = Bt − At, Wp = Bp − Ap. This will save some compu-
tations later on when the filter chain processes the lookup results. In
total, a single quad record consumes 16+ 8+ 4 = 28bytes In Chapter 4

the reference quad record size was 16 + 16 + 4 = 36bytes.
Both the compressed as well as the uncompressed records lead to

suboptimal data layout, as individual records are not aligned to 16 byte
boundaries in memory. Padding the compressed records to 32bytes
would be a waste of memory. To solve this we reorganize the data
layout. As the range-search algorithm solely operates on the hashes,
and do not need to access A, W and the file-ID, we split the reference
quad records into three separate contiguous regions of memory:

1. hashes: (C′x, C′y, D′x, D′y) in compressed representation

2. qaws1: the quad points A, W, i.e. spectral peak At, Ap and the
width and height Wt, Wp of the quad in spectrogram space.

3. fids: the file-IDs

The order of records is kept, thus the original reference quad record
with index i can be obtained by reading the i-th entries of the hashes,
qaws and fids from their separate storage areas. The storage areas
are aligned to memory regions starting at 16 byte boundaries. The
subsequent filter chain has to access the qaws and fids, which are now
conveniently stored in separate contiguous regions of memory.

5.4 tree construction

The tree is a hierarchy of quad record partitions. The partitions are
created according to the spatial extents of the contained quad records,
which are represented as axis aligned bounding boxes (aabb). A tree
node consists of four aabbs, and indices into the contiguous regions
of the reference records that reside in each box.

To construct the tree, first the aabb of the entire collection of quad
hashes is computed. This box represents the minima and maxima of
C′x, C′y, D′x, D′y of all quad hashes. These extrema are found in a linear

1 For lack of a better short name. Read qaws as “quad point A and width W”

5.4 tree construction 87

pass over all hashes by keeping the running minima and maxima. The
aabb of reference hashes is necessarily smaller or equal in size to the
hash space.

The tree construction is a recursive process to subdivide the ref-
erence records according to the spatial extents of their axis aligned
bounding boxes. A subdivision is performed by splitting the bounding
box into two boxes, which is done by choosing a split axis as well as a
split position along that axis. Then, the quad records array is modified
in-place, such that a split results in two partitions of the array, where
each partition consists of the quad records that lie in the sub-split
child of the parent bounding box. This can be done efficiently with a
pass of swap operations over the data points. We implement this step
using the Hoare partitioning scheme. An example of an arbitrary box
split for a 4-ary BVH is shown in Figure 5.3.

Intuitively, if we think of quicksort, the entire tree construction is
quite similar in that the choice of the split position would resemble
the choice of the pivot element. As in quicksort, the resulting two
partitions are created according to the split position only, but the
elements within either of the two partitions remain unsorted.

To obtain a high quality tree, we construct the tree guided by an
approximation of the surface area heuristic (SAH), as proposed by
Wald (2007).

5.4.1 Surface Area Heuristic (SAH)

The surface area heuristic builds on the fact that the chance for a
random point in the search space to intersect an aabb is proportional
to the surface area of this aabb. To efficiently construct trees in this way,
Wald (2007) proposes an approximation of the surface area heuristic
(SAH), which is computed as follows:

cost = nlal + nrar (5.1)

In Equation (5.1), nl , nr is the number of primitives in the two boxes
that result from the split (with nl + nr = n), and al , ar denote the
surface area of the boxes. The split-candidate with the lowest cost is
then used to perform the split and reorder the contained primitives
into their partitions.

The binned approximation of the SAH avoids computing all possible
split positions in order to determine the lowest cost. Rather, it evaluates
the N − 1 split positions that represent the borders of N uniform bins
over the chosen split-axis.

This process is shown in Figure 5.4. The figure shows an example
(in two dimensions) of the SAH binning of the first split-candidate
positions on the x-axis, using N = 8 bins, resulting in N − 1 = 7 split
positions to evaluate the SAH.

88 search algorithm

The tree is now constructed recursively using SAH guided splits in
a greedy, top-down fashion.

5.5 traversal

For each query point, we aim to efficiently access nearby reference
hashes that are stored in the reference database. Once the tree is
constructed, this is done by traversing the tree structure to its lowest
level, the leaf nodes, where we store the indices of referenced records
that will then be passed to the filter chain, together with the query
quads. Note that there are no actual leaf nodes for this kind of tree
(see Section 5.2), but there exist nodes that are marked as leaves. For
simplicity we will still refer to these nodes as leaf nodes.

As we aim to perform a range-search, we represent the query points
as search ranges simply by constructing an aabb around each query
hash such that the boxes are centered at the query hash (see Figure 5.2).
This query-aabb descends the tree structure during traversal. The
specific path is determined by the results of query-aabb vs treenode-
aabb intersection tests for inner nodes. The aabb intersection tests are
simple and can be implemented efficiently: aabbs store the minimum
and the maximum value for each axis in our four dimensional hash
space. An aabb is intersected by another aabb if their ranges overlap
for all axes. Given two aabbs boxa, boxb, the intersection tests whether
the maxima of boxa are greater or equal to the minima of boxb, and
whether the minima of boxa are smaller or equal to the maxima of boxb.
Upon valid intersections, query aabbs are subsequently tested against
the aabbs in corresponding child nodes.

For the implementation we adapt the method proposed by Tsakok
(2009). Instead of traversing the tree for each query point in isolation,
the idea is to create groups of query points that together traverse
the tree. The purpose is to exploit hidden spatial coherence without
the need to first spatially sort the query points, i.e. query points that
are spatially close will share a common part of the traversal-path
through the tree structure. Even if it turns out that there is no hidden
spatial coherency of query points, the algorithm reduces the number
of scattered memory accesses to the nodes, and amortizes the cost of
node fetching over a larger number of intersection tests. Each group
of query hashes traverses the tree in breadth first fashion, and collects
lookup results. We then have collected the set of all record ranges
whose aabbs are overlapping with the query point aabbs of the current
group.

Query quad records consume 24 bytes. The data structures are
identical to reference quad records, with the exception that there
exist no file-IDs for query points. Query quads are partitioned into
groups of size s quad records, where we separate the hashes from
the points A, W and keep these in individual contiguous regions of

5.6 construction and traversal parameters 89

memory, the hashes and qaws, as described for the tree construction
data layout. Before finally passing the results to the filter-chain, we
have to perform one last cleanup step: the so-called leaf-boxes may
be larger than the query boxes, thus we have to filter the referenced
hashes according to whether these actually lie within the bounds of
the query box. To do so, we iterate over the referenced hashes and
create a dense contiguous memory region of points that lie inside the
query-aabb, while moving invalid points outside of the region, using a
SIMD stream compaction approach. After that, the valid hashes reside
in the region in continuous fashion.

Before we continue to traverse the next query quad group, we pass
the valid reference hashes to the filter stage, which computes the scale
transform factors, and filters the results according to coarse and fine
pitch coherence results. Valid matches are collected in a list, and the
traversal proceeds with the next group. When all groups are processed,
the collected results are passed to the match-sequence estimation stage.

5.6 construction and traversal parameters

Tree construction is guided by parameters for the SAH, and parameters
that constrain the splitting of nodes. We approximate the SAH using
16 bins, i.e. we have to evaluate 15 split-positions. Nodes are split if
the extents of any aabb-dimension is larger than 0.005, and if nodes
contain more than 64 elements. A run time comparison for two trees
that differ in this minimum number of elements is given in Chapter 6,
where we measure the traversal run times for values 32 and 64.

For our implementation, trees with nodes that contain at most 64
elements give the lowest query run times.

Traversal parameters include the search range and the group size.
We set the time and frequency related search distances to 0.0115 and
0.0035, respectively. The group size is set to 32.

90 search algorithm

Figure 5.3: Example of a split operation for a 4-ary BVH. The num-
bered circles represent data points in two dimensional
space. The top box shows the aabb for the collection of
data points, where the widest axis is chosen as split axis.
The split position is shown as a dotted line. The second
box shows the result of the first split, and the third box
shows the results of the second and third split. The cor-
responding partitioned record arrays obtained with the
Hoare partitioning scheme are shown below. This example
shows arbitrary, non-optimal split positions.

5.6 construction and traversal parameters 91

Figure 5.4: Evaluating split positions for the SAH sweep over the
x-axis. The record partitions for each split candidate are
shown in the lower half of the figure. The arrows denote
the start of the record range of the second box.

6
E X T E N D E D E X P E R I M E N T S

In previous chapters we explained the method that we propose in
detail, and gradually refined the internal data representation, the
quad grouping and search algorithm. In this chapter we now show
the scalability and performance of the refined method on a larger
reference database:

In Chapter 4, we tested Qfp on a reference collection of 100,000
tracks, for P-, T-, TP–modifications in the range of ±30% (see Sec-
tion 4.6.1), using 300 tracks that are systematically modified. In addi-
tion we demonstrated the effect of various values of the qps parameter
(see Section 4.6.2). Results on query lengths from 2.5s to 20s, along
with run time measurements, are described in Table 4.1. Noise robust-
ness was tested in the range of −10 to +50dB. The robustness of our
method to various effects is given in Table 4.2. The specificity on the
database we used in Chapter 4 is roughly 0.96%.

To highlight the scalability of Qfp, in this present chapter we re-run
these experiments against our large reference collection of 430,000
tracks. In addition we extend the experiments: We elaborate on the
possibility of tracking duplicate songs. This information may then
be used by the evaluation program. Then, we compare Qfp’s noise
robustness to that of Audfprint, show the capability of Qfp to identify
queries that are scale-modified in a non-linear fashion, e.g. constant
acceleration in time and its equivalent in pitch, and perform run time
measurements using different search-tree parameterizations.

In order to facilitate reproducible research, and to allow interested
parties to compare their methods to Qfp, we publish all information
necessary to recreate the database and the query files from the freely
available tracks. Information on how to recreate the our reference
collection and query audio modifications can be found at http://www.
cp.jku.at/datasets/fingerprinting/.

In this chapter we evaluate the performance using a rich set of ex-
periments that may help to get a deeper understanding of its strengths
and potential weaknesses. However, we cannot exhaustively test all
cases, as for example acceleration of audio that is already P-modified
at +5%, while being subject to an echo effect. The number of queries
for exhaustive experiments grows very large, and the results are hard
to visualize. As we already mentioned in the introductory sections of
this thesis, in the following chapters we will investigate the perfor-
mance of Qfp on actual DJ mixes, rather than using manually crafted
test cases.

93

http://www.cp.jku.at/datasets/fingerprinting/
http://www.cp.jku.at/datasets/fingerprinting/

94 extended experiments

In Section 6.1 and Section 6.1.2 we report the specific parameter
settings used for the experiments in this chapter. In Section 6.2 we
re-run the experiments as shown in Section 4.6 on our large reference
collection. In Section 6.2.1 we test the robustness of Qfp on various
effects, and in Section 6.2.2 we show the robustness to non-linear
modifications of the time and frequency scale. In Section 6.2.4 we
test the performance of Qfp for various query snippet lengths, and
Section 6.2.5 shows an extensive experiment for the effect of choosing
different numbers of query-quads per second on the identification
performance. In Section 6.2.6 we test the specificity of Qfp using
100,000 queries from a different reference collection.

6.1 reference database and parameterization

We extend the previously used reference database of 100,000 freely
available tracks from the Jamendo service to a number of almost
430,000 full-length tracks (to be accurate, the database contains pre-
cisely 429,741 tracks). All the data are freely available, licensed un-
der the Creative-Commons license and are accessible via the Ja-
mendo service. The list of tracks as well as additional information
on how to recreate the reference collection can be found at http:

//www.cp.jku.at/datasets/fingerprinting/.
The total length of the audio files amounts to just over 29,515 hours

of music (or equivalently, 3.37 years worth of non-stop music), with
an average track length of 247.25s and a median track length of 223.3s.

To create the reference database, and to process query data, we
compute the STFT on monaural signals sampled at 8kHz, using an
FFT window size of 1024 samples, and a hopsize of 32 samples.

We try to group 7.5 reference quads per second from extracted
peaks. The bin-size for grouping an almost uniform amount of quads
over time is set to 5 seconds. For comparison, in Chapter 4, where we
evaluate the system on 100,000 tracks, we extract 9 reference quads
per second.

The peak extraction max filter spans 157 time frames, and 81 fre-
quency bins. The min filter sizes remain at 3 time frames and 3 fre-
quency bins. The center of the quad grouping window is located 1
second from a root point, and the quad grouping region spans 0.9
seconds.

The reference database is created from roughly 430,000 tracks, and
results in a collection of 826,107,201 spectral peaks and 757,628,895
quad records. Using the parameter settings that we propose, we real-
ize a hash-to-peak rate of 0.917, which means that we store a lower
number of feature combinations (hashes) than the number of extracted
spectral peaks. The compressed “quadrecords” consume roughly 20GB

http://www.cp.jku.at/datasets/fingerprinting/
http://www.cp.jku.at/datasets/fingerprinting/

6.1 reference database and parameterization 95

of storage space, the tree has a size of 1.4GB1 and the spectral peaks
consume approximately 9.3GB. Altogether the reference data consume
30.7GB. To recall, the quadrecords and the tree are needed to find
matches, while the stored spectral peaks are needed for the verifica-
tion of these matches.

6.1.1 Duplicate Detection

An audio collection of this size likely contains duplicate tracks which
can negatively influence the evaluation results. To cope with this
situation, we extend Qfp with a duplicate detector that automatically
keeps track of encountered duplicates. We are aware that automatically
generated lists of duplicates are risky in the light of fair evaluation,
therefore we present the evaluation results without making use of
this information, i.e. results with a wrong file-ID are strictly treated
as false-positive. However, we also add the results obtained from
considering the information about duplicates, and will mark these
cases with an additional “dup”.

The fingerprinter answers queries by returning result dictionaries
that contain the following information:

• Reference file-ID

• Average verification score

• Number of matches

• Average transformation factors for pitch and time scales

• The matching segment in the reference audio, with its start
position and duration.

• The matching segment in the query audio

In cases of detected duplicates, the fingerprinter will return a list of
results rather than a single result. Here, the average score, the number
of matches, transformation factors and the duration of the reference
segment (but not the start point) are equal up to a float epsilon of
1e−5. These are the trivial cases of encountered duplicates, which are
automatically inserted into a duplicate-dictionary.

In other cases, the result values are not equal, but highly similar.
This may occur if two audio pieces of the same recording are present
with highly different encoding or bit-rates, or if the pieces are very
similar – almost identical – versions of the track. In these cases the
user is informed, and it is suggested to add the given file-IDs to the
duplicates dictionary.

1 The tree consumes 1.4GB if we stop splitting nodes as soon as fewer than 64 hashes
are referenced. If we build a deeper tree, and stop splitting with fewer than 32 hashes,
the tree consumes 2.6GB

96 extended experiments

While the system keeps track of (potential) duplicates, the finger-
printer itself is agnostic to this information. Whether or not to use
information on duplicates is dictated by a parameter for the evaluation
program.

In any case, if duplicates are added or suggested, these were manu-
ally checked by listening to the files and by looking at the spectrograms.
Nevertheless, we cannot be sure that these are duplicates rather than
versions of the original track with just minor differences, therefore we
present the results that are obtained with information on duplicates in
separate columns of Table 6.3 and Table 6.4.

6.1.2 Query Processing Parameters

The query processing parameters are set as follows. As in previous
experiments, we let tolerances εp, εt = 0.31, i.e. we want to identify
audio if the corresponding reference is not farther off than ±31% in the
time and pitch scale. The search-range for the near neighbour search
in the hash space is given by an axis-aligned hyper-rectangle (centered
at the query point) with a width of 0.0115 and a height of 0.0035.
Candidate sequences of at least 4 matches are passed to the verification
stage. In addition, we require the candidate sequence to cover at least
15% of the query audio snippet. This is to avoid sequences that span a
very short segment, and especially in the presence of highly repetitive
and percussive content this constraint helps to reduce the workload in
the subsequent verification stage.

Verification parameter settings use an alignment region that spans
14 time frames, and 3.5 frequency bins. The verification considers
reference peaks in a window of 2.5s around the root point of a match
candidate. A sequence is allowed to consist of matches that have a
verification score of at least 0.53.

In all experiments that we describe in the following sections, if not
stated otherwise, we compute q = 1500 query quads per second (qps),
and operate on query excerpts of 20 seconds in length.

6.2 scalability : method evaluation on 430,000 tracks

In this section we try to investigate the scalability and applicability of
our proposed fingerprinting method to large scale tasks, for which we
make use of our large database.

The first experiment tests all scale modifications between 70% and
130% in steps of 5 percentage points. This will serve as our default
experiment, and consists of 11,700 queries (three types of scale mod-
ification using 13 values thereof for a number of 300 queries). The
result is depicted in Figure 6.2, where we choose to split the results
into three figures for the P-, T-, TP–modification types. To obtain the
overall performance, we accumulate all tp, fp, fn. From these we then

6.2 scalability : method evaluation on 430,000 tracks 97

compute the accuracy and precision. In this experiment, Qfp has an
overall accuracy of 0.959, and an overall precision of 0.984. Note that
this reflects a pessimistic scenario, because in our experiments we as-
sume that all three kinds of scale modifications and all tested extents
thereof are equally likely to be encountered, which is highly unlikely
in actual application scenarios. In the larger experiments shown below,
an experiment like this will serve as one single data-point.

In the subsequent experiments we always test scale modifications
of three types: speed, tempo and pitch. For each of those, we test 13
values, from 70% to 130% in steps of 5 percentage points.

The efficiency of the matching process can be demonstrated by
computing the fraction of candidate file-IDs, out of the set of all
returned candidate file-IDs. For processing the candidates we use
the early-exit strategy as described in Section 4.5.3. The fraction of
processed file-IDs is shown in Figure 6.1. Even though our reference
collection is roughly 4.3 times as large as the one we used in Chapter 4,
the increased amount of reference tracks does not noticeably influence
the result set processing.

Figure 6.1: Histogram of the fraction of candidate file-IDs out of the set
of retrieved file-IDs) that had to be processed to answer a
query, computed from 11,700 queries. This figure highlights
the effectiveness of the early-exit behaviour of the matching
process. Note the bin to the right. It represents weakly
matched queries and false positives.

The time spent in processing stages using the refined method is
summarized by Figure 6.3. The figures show the impact of two dif-
ferent tree construction parameterizations, one that stops splitting
nodes as soon fewer than 32 hashes are contained, and the other stops
splitting if fewer than 64 nodes are contained. The third figure shows
the second tree version using just 2 worker threads instead of the
typically used 7 worker threads. The processing time when using 2
threads averages at around 1 second per query, while it takes in aver-
age roughly 1.6 seconds to process a query when 7 threads are active.
This difference in processing time is mostly due to cache thrashing,

98 extended experiments

70 75 80 85 90 95 100 105 110 115 120 125 130

SPEED %

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
e
rf

o
rm

a
n
ce

Accuracy
Precision

Avg. score TP
Avg. score FP

(a) Speed (TP-modifications)

70 75 80 85 90 95 100 105 110 115 120 125 130

TEMPO %

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
e
rf

o
rm

a
n
ce

Accuracy
Precision

Avg. score TP
Avg. score FP

(b) Tempo (T-modifications)

70 75 80 85 90 95 100 105 110 115 120 125 130

PITCH %

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
e
rf

o
rm

a
n
ce

Accuracy
Precision

Avg. score TP
Avg. score FP

(c) Pitch (P-modifications)

Figure 6.2: Speed, tempo and pitch modifications in the range of ±30%
on the database of roughly 430,000 tracks.

6.2 scalability : method evaluation on 430,000 tracks 99

i.e. using more threads causes the eviction of cache lines that would
still be needed by other threads.

6.2.1 Robustness to Various Effects

Table 6.1 compares the results to the results that we obtained from
experiments on the smaller reference collection of 100,000 tracks given
in Table 4.2. The overall precision is slightly lower, while the overall
accuracy is increased. The slightly lower precision seems to be caused
by the larger number of reference tracks (roughly 4.3 times as many
tracks), while the higher accuracy is due to the changed parameter
setting of Qfp as described in Section 6.1 and Section 6.1.2. A visuali-
sation of spectrogram excerpts of audio that was modified with these
effects is given in Figure 6.4.

430,000 Tracks 100,000 Tracks

Effect type prec. acc. prec. acc.

Bandpass .993 .999 .997 .993

Chorus .951 .713 .986 .687

Echo .987 .980 .993 .980

Flanger .953 .813 .984 .827

GSM .919 .608 .978 .440

Tremolo .993 .990 .990 .977

Table 6.1: Performance on queries (without scale modifications) that
are distorted by various effects (qps = 1500). A visualisation
of the corresponding spectrograms is given in Figure 6.4.

6.2.2 Robustness to Non-Linear Scale Modifications

In previous experiments we extensively tested the method on T, P,
and TP-modifications in the range of ±30%. In these tests we as-
sume a linear, constant scale modification of either type. In DJ mixes,
however, we potentially encounter non-linear modifications such as
acceleration or deceleration in time, or the equivalent effect along the
frequency axis. We argue that for copy detection systems and for me-
dia monitoring of digital music content the robustness to acceleration
or deceleration is important. For example, a copy detection system
that is known not to be robust to a certain degree of non-linear scale
modifications can be circumvented by crafting a copy of a track that is
perpetually accelerated and decelerated by minuscule amounts. We
are not aware of other work in the audio fingerprinting domain that
includes an experiment on non-linear modifications. To create the
query excerpts we use the sliding window scale effects of the audio

100 extended experiments

tdec tpex tqex tlu tver

Time spent in processing stages (total: avg.: 1.729s, median: 1.520s)

0
2
4
6
8

10
12
14
16
18
20

T
im

e
 s

p
e
n
t

[s
]

(a) Average time per query that is spent in the processing stages, when 7 parallel
processes are used. The timings of the stages represent the mean over 11,700 queries.
The tree stops splitting nodes if n < 32 points are referenced.

tdec tpex tqex tlu tver

Time spent in processing stages (total: avg.: 1.586s, median: 1.409s)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

T
im

e
 s

p
e
n
t

[s
]

(b) Average time per query that is spent in the processing stages, when 7 parallel
processes are used. The timings of the stages represent the mean over 11,700 queries.
The tree stops splitting nodes if n < 64 points are referenced.

tdec tpex tqex tlu tver

Time spent in processing stages (total: avg.: 1.065s, median: 0.936s)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

T
im

e
 s

p
e
n
t

[s
]

(c) Average time per query that is spent in the processing stages, when 2 parallel
processes are used. The timings of the stages represent the mean over 11,700 queries.
The tree stops splitting nodes if n < 64 points are referenced.

Figure 6.3: Average time spent by a query in the processing stages.
The average time is computed from 11,700 queries (3 types
of modifications with 13 values of 300 snippets) using
7 worker threads (top and middle figure), or 2 worker
threads (bottom figure). For the top figure, a deeper tree
is used, such that splitting is stopped when less than 32
hashes are referenced in a node. The middle and bottom
figure use a tree that stops splitting when less than 64
elements are referenced.

6.2 scalability : method evaluation on 430,000 tracks 101

0 100 200 300 400 500
0

100

200

300

400

500
orig

0 100 200 300 400 500

bandpass

0 100 200 300 400 500
0

100

200

300

400

500

Fr
e
q
u
e
n
cy

 b
in

s

echo

0 100 200 300 400 500

chorus

0 100 200 300 400 500
Time frames

0

100

200

300

400

500
gsm

0 100 200 300 400 500
Time frames

tremolo

Figure 6.4: Visualisation of the effects described in Table 6.1. The
spectrograms show roughly two seconds of audio.

processing tool “Audacity2” and specify the initial and final value
of P-, T-, TP–modifications. For example, a T-scaling value of −50%
means half the tempo, i.e. double the length. A value of +100% refers
to double the tempo, or half the duration.

To demonstrate the severity of the non-linear modifications, in Fig-
ure 6.5 we visualize the original spectrogram and the corresponding
modified spectrograms of the audio snippet we already used in Fig-
ure 1.1. Note that the audio snippet length is 20 seconds for this
example, in contrast to the 15 seconds in Figure 1.1. The start posi-
tion of the audio snippet is the same in both figures, however in this
experiment the duration of the query audio is 5 seconds longer.

Using our typical query excerpts, we create non-linear scale modifi-
cations using two values, ±5% and ±10%. For a given modification
value of ±x%, each query excerpt of 20 seconds in length is modified
such that the effect takes a value of −x% at the start position of the
query and reaches a value of +x% at the end position of the query
excerpt. Note that non-linear modifications (P-, T-, TP–modifications)
from e.g. −10% to +10 over the course of 20 seconds are extreme and
very noticeable to a listener. The results of this experiment are listed
in Table 6.2 and Figure 6.5.

Given the severity of the non-linear scale modifications, Qfp’s pre-
cision and accuracy turns out to be surprisingly high, notably so for
the cases where a 20 second query is accelerated from −5% to +5% in
either dimension. We attribute Qfp’s robustness to non-linear scaling
to a combination of two design choices: the range search that we use

2 Audacity is available at https://www.audacityteam.org

https://www.audacityteam.org

102 extended experiments

to obtain match-candidates, and the sequence estimation stage (see
Section 4.5.2) that accepts sequence candidates even if there exists a
certain variance within the estimated scale transform factors.

0
100
200
300
400
500

Fr
eq

ue
nc

y
bi

ns

Original

0
100
200
300
400
500

Fr
eq

ue
nc

y
bi

ns

Tempo [90%; 110%] Difference

0
100
200
300
400
500

Fr
eq

ue
nc

y
bi

ns

Pitch [90%; 110%] Difference

0 1000 2000 3000 4000
Time frames

0
100
200
300
400
500

Fr
eq

ue
nc

y
bi

ns

Speed [90%; 110%]

0 1000 2000 3000 4000
Time frames

Difference

Figure 6.5: Non-linear scale modifications in the range of ±10%. The
rows correspond to the type of scale modification. The left
column shows the spectrogram content of the modified
piece. The right column shows the difference to the original.

6.2.3 Noise Robustness

We here demonstrate the noise robustness of Qfp. The queries are
distorted with additive white noise such that 13 versions of each query
excerpt are created. The 13 values of signal to noise ratios (SNR) are in
the range of [−10; 50]dB, with a step of 5dB. The experiments in two
parts: the first experiment tests the noise robustness of our method
without adding additional P-, T-, TP–modifications. This experiment
will serve as a baseline for the second experiment. For comparison we
also show the results of the fingerprinting implementation “Audfprint”
(see Section 7.2 below). Audfprint is a peak-based method that im-
plements what is known about the “Shazam”-algorithm, but also has
to make assumptions about parameters and implements additional

6.2 scalability : method evaluation on 430,000 tracks 103

concepts. It groups quantized pairs of spectral peaks and uses these as
keys for a lookup-table. The method is generally considered as highly
robust to noise. However, because the it is not robust to even the small-
est scale changes, we here test its performance on queries that are not
P-, T-, TP–modified. In this experiment, for Audfprint we use a very
small reference collection of just 1023 tracks (because we simply want
to establish a baseline). It consists of 723 tracks of a dataset that we
describe in Chapter 7 below (the “Mixotic”-set), and the 300 references
that correspond to the 300 query pieces, to make these identifiable. The
results are shown in Figure 6.6. Qfp performs at higher accuracy for
SNR values down to +5dB, but performs noticeably worse for lower
SNR values. The precision of both methods is equal down to SNR
values of +10dB. For lower SNR values, the precision of Audfprint
is lower than that of Qfp. Note that Qfp returns fewer false positives
than Audfprint, even though its reference collection is more than 420
times as large. Further, using its default settings, Audfprint targets a
rate of 20 hashes per second, Qfp targets a hash rate of 7.5 hashes per
second. That is, Audfprint uses roughly 2.67 times as many hashes,
and Qfp operates at a lower false negative rate for the SNRs down to
+5dB.

The second experiment considers P-, T-, TP–modifications in the
range of ±30% in addition to the 13 values of noise distortions (152,100
queries in total). The results for this experiment are shown in Figure 6.7.
The Qfp results that we obtained in the first experiment are added to
the figures as a baseline.

6.2.4 Performance for Various Query Excerpt Lengths

We here show the performance of Qfp for query snippets between
three and twenty seconds in length. The purpose of this experiment
is to gather data-sheet like data, that should help readers to decide
whether Qfp might be applicable to their use-cases if specific query-
lengths are of interest. If a use-case considers very short queries only,
the performance for this case can be increased by extracting more than
our average of 7.5 hashes per second of reference audio.

The results are given, along with run times, in Table 6.3. We also
show the results of the duplicate-aware evaluation, that counts cases
where a file-ID is returned that is different from the expected file-ID
as tp, if the duplicate dictionary contains that pair of file-IDs. The
performance measures are the total average over P-, T-, TP–modified
queries with the given query length. Thus, each row in Table 6.3
represents 300 queries for 3 types of modification over 13 values of
the modifications. From these 11,700 queries per row, we dismiss 600
queries such that unmodified queries are counted exactly once (i.e.
from the 900 unmodified queries of P-, T-, TP–modifications, we only
count 300 unique unmodified queries).

104 extended experiments

-10 -5 0 5 10 15 20 25 30 35 40 45 50

SNR

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
v
g
.

p
e
rf

.
Acc. Qfp
Prec. Qfp
Acc. Audfprint
Prec. Audfprint

Figure 6.6: Robustness to white noise in the range of [−10; 50]dB,
for queries that are not P-, T-, TP–modified. The figure
shows a comparison of Qfp (square and upward-triangle
markers) to the peak-based method “Audfprint” (circle
and downward-triangle markers), which is considered to
be exceptionally robust to noise. Note that Qfp operates
with high precision on 430,000 tracks (with 7.5 hashes
per second) while for Audfprint we use a small example-
collection that contains a subset of 1023 tracks (with the
default of 20 hashes per second).

The results demonstrate that the precision is barely impacted by the
length of the query audio excerpt. The accuracy drops with shorter
query lengths, which is expected since the time-dimension carries
important information, i.e. the match sequence estimation needs to
find a number of match-candidates that form a sequence over time.
For ten seconds of query audio, Qfp achieves an average accuracy of
over 86%, which includes all the P-, T-, TP–modified queries. While
we believe that this demonstrates excellent performance, we highlight
that for use-cases where shorter queries have to processed we suggest
to increase the hash-rate for reference feature extraction. This will
result in higher accuracy for short queries.

6.2.5 Performance for Varied Numbers of Query-Quads

Here, we repeat the experiment for varying the number of query quads
per second (qps), similar to the experiment as given in Figure 4.9, to
gain insight if the larger reference database has a negative impact
on the results, and to find out if the current parameterization of
Qfp improves its performance. Compared to Figure 4.9, the overall
performance slightly increased, especially for the low numbers of
qps (in the higher number ranges of qps there is not much room left
for improvement). For the low value of 250 qps the accuracy for P-
and TP-modifications is increased by roughly 3 percentage points. We

6.2 scalability : method evaluation on 430,000 tracks 105

Initial value Final value Type Accuracy Precision

T 0.89 0.982

−5% +5% P 0.81 0.98

TP 0.903 0.993

T 0.81 0.987

−10% +10% P 0.433 0.963

TP 0.47 0.972

Table 6.2: Performance on 20s queries with non-linear scale modifica-
tions (constant “acceleration”).

11,100 queries / row 11,700 queries / row

qlen [s] acc. prec. acc.dup prec.dup mean t [s] median t [s]

3 0.214 0.925 0.217 0.942 0.28 0.21

4 0.418 0.962 0.423 0.974 0.32 0.26

5 0.565 0.973 0.570 0.983 0.39 0.31

6 0.674 0.972 0.682 0.984 0.52 0.41

7 0.746 0.976 0.755 0.987 0.57 0.47

8 0.793 0.976 0.803 0.988 0.65 0.53

9 0.832 0.976 0.843 0.989 0.76 0.63

10 0.863 0.978 0.873 0.990 0.82 0.69

11 0.885 0.980 0.895 0.991 0.90 0.76

12 0.902 0.980 0.913 0.992 1.00 0.85

13 0.913 0.981 0.924 0.992 1.07 0.92

14 0.922 0.981 0.933 0.993 1.14 0.98

15 0.932 0.983 0.943 0.994 1.25 1.08

16 0.939 0.982 0.950 0.993 1.31 1.15

17 0.946 0.983 0.956 0.994 1.38 1.21

18 0.950 0.983 0.960 0.994 1.48 1.30

19 0.954 0.983 0.965 0.994 1.54 1.37

20 0.957 0.983 0.968 0.994 1.59 1.41

Table 6.3: Performance on query lengths (qlen) in the range of [3; 20]
seconds. The accuracy is given in columns “acc.” and
(duplicate-aware) in “acc.dup“, the precision is given in
columns ”prec.“ and ”prec.dup”. The third and fourth col-
umn represents the results when using duplicate track infor-
mation. The last row (bold) represents the common experi-
ment using 20 second queries. The two rightmost columns
show the runtime mean and median.

106 extended experiments

-10 -5 0 5 10 15 20 25 30 35 40 45 50

SNR [dB] speed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
v
g
.

p
e
rf

.
Accuracy
Precision
Acc. Baseline
Prec. Baseline

(a) SNR and speed modifications

-10 -5 0 5 10 15 20 25 30 35 40 45 50

SNR [dB] tempo

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
v
g
.

p
e
rf

.

Accuracy
Precision
Acc. Baseline
Prec. Baseline

(b) SNR and tempo modifications

-10 -5 0 5 10 15 20 25 30 35 40 45 50

SNR [dB] pitch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
v
g
.

p
e
rf

.

Accuracy
Precision
Acc. Baseline
Prec. Baseline

(c) SNR and pitch modifications

Figure 6.7: Robustness to white noise for SNR levels from −10dB to
50dB, with P-, T-, TP–modifications in the range of ±30%.
The thin black curves represent the baseline (see “Acc.
Qfp” and “Prec. Qfp” in Figure 6.6). For the blue and red
curves, each pair of points shows precision and accuracy
average over 3900 queries. The experiment consists of a
total number of 152,100 queries (3 types of modifications
for 13 SNR values of 3900 queries).

6.2 scalability : method evaluation on 430,000 tracks 107

do not observe any negative impact caused by the larger number of
reference tracks.

6.2.6 Specificity Experiment

The specificity is about the number of false positives in cases where
the correct reference is not present in the reference collection. Thus, in
these cases a system needs to refrain from claiming a match, in order
to operate at high specificity.

To test the specificity of our proposed method, we need to create
queries from pieces of audio that are not represented in our reference
collection. Therefore, we create the queries from a different, propri-
etary collection that represents songs of a wide variety of genres. This
collection consists of 104,011 tracks. However, as described in Sec-
tion 4.6, it is hard to guarantee that the collections are indeed disjoint.
If we query each track of this collection (with 20 second excerpts
starting at second 20) against our reference database, we get a total of
8144 matched file-IDs. Assuming that the collections are disjoint, all
these matches are fps. This results in a specificity of 0.922.

However, we know that the test collection itself contains duplicates,
which means that we now potentially count some fps more than once:
if the fingerprinter returns a match for a given query-track, it will
necessarily return the same match for each duplicate of that query-
track, resulting in an unfair negative impact on the specificity. To
circumvent this problem, we first perform a duplicate detection on
the test-collection, and then dismiss all fps results that correspond to
duplicate queries. This results in a number of 7897 matches. Discarding
these duplicate queries, Qfp has a slightly higher specificity of 0.924.

Because we assume that the query collection and reference collection
might not be disjunct (in contrast to what we hoped for), we have
to investigate the results in order to find out whether some of the
fps results might be tp after all. To do so, we group the remaining
results (which all should be fp if the collections are disjoint) by their
verification scores and uncovered transformation factors, and listen to
the results. The histograms of the verification scores and the uncovered
scale factors of these false positives are visualized in Figure 6.9.

The listening test uncovers interesting results, and in many cases
points out possible mistakes by the users of the Jamendo service
who seem to have uploaded content which is not available under the
Creative Commons License, or vice versa, there seem to be cases of
audio-content that is said to be copyrighted material (as it appears in
our test-collection of copyrighted material) while in fact it is not.

Let us list a few of the roughly 350 examples that we listened to
(“ID” refers to the unique Jamendo file-ID):

• ID 1093751 at second 161 plays a song by James Brown

108 extended experiments

12
5

25
0

37
5

50
0

62
5

75
0

87
5

10
00

11
25

12
50

13
75

15
00

16
25

17
50

18
75

20
00

21
25

22
50

23
75

25
00

26
25

27
50

28
75

30
00

qps

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
v
g
.

p
e
rf

.
Acc. Qfp
Prec. Qfp

(a) Speed and qps variations

12
5

25
0

37
5

50
0

62
5

75
0

87
5

10
00

11
25

12
50

13
75

15
00

16
25

17
50

18
75

20
00

21
25

22
50

23
75

25
00

26
25

27
50

28
75

30
00

qps

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
v
g
.

p
e
rf

.

Acc. Qfp
Prec. Qfp

(b) Tempo and qps variations

12
5

25
0

37
5

50
0

62
5

75
0

87
5

10
00

11
25

12
50

13
75

15
00

16
25

17
50

18
75

20
00

21
25

22
50

23
75

25
00

26
25

27
50

28
75

30
00

qps

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
v
g
.

p
e
rf

.

Acc. Qfp
Prec. Qfp

(c) Pitch and qps variations

Figure 6.8: Precision and accuracy for TP-, T- and P-modifications
(from top to bottom) on our reference database of 430,000
songs. Figures 6.8a to 6.8c (note the y-axis range) show
results for a total of 280,800 queries, for 24 values of quads
per second (qps, parameter q) in the range of [125; 3000]
in steps of 125 qps, and a query snippet length of 20s.
Each pair of data points shows the average precision and
accuracy of 3900 queries for scale modifications in the
range of ±30% of the individual type.

6.2 scalability : method evaluation on 430,000 tracks 109

11,100 queries / row 11,700 queries / row

qps acc. prec. acc.dup prec.dup mean t [s] median t [s]

125 0.808 0.983 0.816 0.994 0.59 0.55

250 0.887 0.983 0.897 0.994 0.72 0.65

375 0.916 0.983 0.926 0.994 0.84 0.74

500 0.931 0.984 0.941 0.994 0.93 0.82

625 0.941 0.984 0.951 0.994 1.04 0.92

750 0.948 0.985 0.958 0.995 1.12 0.99

875 0.950 0.984 0.961 0.995 1.23 1.09

1000 0.953 0.984 0.963 0.995 1.30 1.15

1125 0.956 0.984 0.966 0.995 1.38 1.23

1250 0.956 0.984 0.967 0.994 1.48 1.31

1375 0.957 0.984 0.968 0.995 1.55 1.37

1500 0.957 0.983 0.968 0.994 1.60 1.44

1625 0.958 0.984 0.969 0.994 1.69 1.50

1750 0.959 0.984 0.970 0.995 1.75 1.55

1875 0.960 0.984 0.971 0.995 1.82 1.60

2000 0.960 0.983 0.971 0.994 1.89 1.66

2125 0.960 0.983 0.971 0.994 1.92 1.70

2250 0.960 0.983 0.971 0.994 2.00 1.76

2375 0.960 0.983 0.971 0.995 2.01 1.77

2500 0.960 0.983 0.972 0.994 2.10 1.84

2625 0.960 0.983 0.971 0.994 2.12 1.85

2750 0.960 0.983 0.971 0.994 2.15 1.88

2875 0.960 0.983 0.972 0.994 2.18 1.91

3000 0.961 0.983 0.972 0.994 2.21 1.92

Table 6.4: Performance on 20 seconds long queries with varied num-
bers of query quads per second (qps), in the range of
[125; 3000] qps, in steps of 125 qps. The table shows the total
averaged accuracy and performance (evaluated with and
without awareness of duplicates). The average is obtained by
accumulating the tp, fp, fn for P-, T-, TP–modifications. The
accuracy is given in columns “acc.” and (duplicate-aware)
in “acc.dup“, the precision is given in columns ”prec.“ and
”prec.dup”. The two rightmost columns show the mean and
median run time.

110 extended experiments

0 5 10 15 20 25 30
Uncovered scale modification (abs) %

0

100

200

300

400

500

600

N
u
m

b
e
r

o
f

re
su

lt
s

(a) Histogram of claimed scale modifications (absolute values)

0.5 0.6 0.7 0.8 0.9 1.0
Avg. verification score of detected sequence

0

100

200

300

400

500

600

N
u
m

b
e
r

o
f

re
su

lt
s

(b) Histogram of verification scores of reported sequences

Figure 6.9: Reported scale modification factors (Figure 6.9a) and veri-
fication scores (Figure 6.9b) of the reported results (false-
positives) of the specificity experiment.

• ID 1050228 plays a song by the band Rednex

• ID 733687 seems to make use of the beats and melody of a song
by Dr. Dre and Eminem.

• ID 786051 contains beats and melody of a Snoop Dogg and
Dr. Dre track.

• ID 979780 makes use of content by Beyonce.

• ID 828010 likwise uses content by Lady Gaga

• ID 1077380 uses beats and melody by Gentleman

• ID 594815 might be from a movie scene where people have a
conversation in a bar, while faintly in the background the song
“Love her Madly” by “The Doors” is played (around second 98).

6.2 scalability : method evaluation on 430,000 tracks 111

Having listened to roughly 350 of such cases we point out that the
specificity of 0.924 reached by our method represents a pessimistic
value, due to the overlaps between the two data-collections.

Finally, we want to shortly elaborate on the run time impact on
non-identifiable queries: on average it takes a bit longer to process a
query that does not have a true reference in the reference collection,
compared to cases where a query is identifiable. This is because all
match-candidates have to be processed in order to report that no valid
match could be determined. In a figure like Figure 6.1, all correctly
processed queries of this specificity experiment will end up in the
rightmost bin. Because of the increased workload, the average query
run time of a query used in this present experiment is 2.11s, and the
median run time is 1.55s, while queries of the same length that in fact
are identifiable can be processed on average in 1.59s, with a median
run time of 1.41s (see Table 6.3).

7
D J M I X M O N I T O R I N G : M E T H O D C O M PA R I S O N

In this chapter we assess the fitness of three peak-based audio fin-
gerprinting systems with different properties on real-world data – DJ
mixes that were recorded in discotheques and clubs.

Not surprisingly, the amount and variety of incorporated signal
modifications shows that identification of tracks in DJ mixes is a
highly challenging task. The performance gap between evaluations on
manually crafted test data and evaluations on actual DJ mix sets can
be considerable. To address this evaluation issue, and to enable the
research community to evaluate systems on DJ mixes, we also create
and publish a freely available, creative-commons licensed dataset of
DJ mixes along with their reference tracks and song-border annota-
tions1. Experiments on these datasets reveal that our method, together
with the refined search algorithm as described in Chapter 5 achieves
considerably higher performance on this task than the other methods.

This chapter is heavily based on our third work in the field, in which
we finally apply our matured system to the target application domain:
media monitoring for discotheques.

R. Sonnleitner, A. Arzt, and G. Widmer (2016). “Landmark-Based
Audio Fingerprinting for DJ Mix Monitoring”. In: 17th Interna-
tional Society for Music Information Retrieval Conference (ISMIR
2016)

The chapter is organized as follows. In Section 7.1 we introduce
the datasets that are the basis for the experiments and analysis and
interpretation of results. Section 7.2 gives an overview of the methods
we test in this work. Then, in Section 7.3 we describe the setup of ex-
periments and their evaluation. An analysis of the different properties
of the tested methods is given in Section 7.4.

7.1 data sets

We perform experiments on two different datasets, called disco set, and
mixotic set. The disco set is a non-free dataset that we unfortunately
cannot make publicly available. Therefore, we compile and annotate a
second dataset, the mixotic set, which is freely available for research
purposes. We think that the mixotic set may be useful to the research
community, and could help to design well balanced identification
systems and to uncover specific strengths and potential shortcomings

1 The mixotic-dataset is available at http://www.cp.jku.at/datasets/

fingerprinting/

113

http://www.cp.jku.at/datasets/fingerprinting/
http://www.cp.jku.at/datasets/fingerprinting/

114 dj mix monitoring : method comparison

of various methods, therefore we publish the mixotic set along with
the annotations.

For both datasets we have a larger number of reference tracks than
the number of tracks that are actually played in the performances.
The superfluous reference tracks allow to investigate if a system can
discriminate tracks even in the presence of larger reference collections.
Furhter, the reference collections are incomplete. For the disco set,
we were not supplied with a complete reference collection, and for
the mixotic set we could not find all the references for played tracks.
However, this reflects a realistic use-case for media monitoring: fist,
we cannot expect to have all the references to all songs that could
possibly be performed, and second, we will almost always use a larger
reference collection than the number of tracks that are played in a
single monitored event. Due to the missing reference tracks we can
evaluate an extremely important property of automated systems: their
capability of not answering a query if the query piece is not repre-
sented in the reference database. A system that successfully refrains
from claiming a match in these cases operates at high specificity.

In these datasets, the DJ mix recordings will serve as query content,
and the collected reference tracks serve as the reference database.
In the following we introduce these datasets, and summarize their
properties in Table 7.1.

7.1.1 The non-free Disco Dataset

The first dataset, the disco set, contains eight mixes that were performed
in discotheques, and digitally recorded from the DJ mixing desk. The
duration of the mixes is approximately 7 hours and 16 minutes. For
this dataset we have 296 reference tracks, only some of which are
actually played in the mixes. The genres of the mixes include pop and
rock, electronic music and German folk.

Because of copyright reasons, we cannot make the disco set publicly
available.

7.1.2 The Mixotic Dataset for Research

We compile a second dataset, called mixotic set. We created this dataset
from free, CC-licensed DJ mixes that were published on the mixotic
netlabel2. We manually collected the reference songs via web-search,
and integrate those which are available under the same license in the
dataset. Currently, the mixotic set consists of 10 mixes with a total
duration of 11 hours and 23 minutes. For this dataset we collected
a set of 723 reference tracks, 118 of which are actually played in the
mixes. According to the artists, this set contains genres like Techno,
Chicago House, Deep-Tech, Dub-Techno, Tech-House, and the like. To

2 Mixotic is accessible via http://www.mixotic.net.

http://www.mixotic.net

7.1 data sets 115

Disco tracks ref. +[s] −[s]
set0 25 18 5661 2179

set1 12 12 3760 0

set2 12 11 3206 294

set3 11 4 1054 2006

set20 19 17 3123 457

set35 20 7 324 996

set36 28 13 872 768

set37 21 10 720 720

total: 8 148 92 18 720 7420

Mixotic tracks ref. +[s] −[s]
set044 14 14 4640 0

set123 12 12 3320 0

set222 18 11 3543 2097

set230 9 7 2560 780

set275 17 11 3398 1622

set278 12 11 3576 284

set281 18 15 3300 280

set282 14 8 2200 1740

set285 15 15 4540 0

set286 14 14 3140 0

total: 10 143 118 34 217 6803

Table 7.1: Data set properties of the disco set (top) and the mixotic set
(bottom). The column “tracks” gives the number of played
tracks in the DJ mix, “ref” denotes the number of these
tracks that are present in the reference database, and the
columns “+[s], −[s]” hold the number of seconds of refer-
enced audio and not-referenced audio for the individual DJ
mixes.

116 dj mix monitoring : method comparison

be able to evaluate the fingerprinting results, we annotated the song
borders of the tracks that are played in the individual mixes. Due
to the long fading regions and sometimes very homogeneous track
transitions, these annotations cannot be exact. We tried to mark the
positions in time where the previous track is fully faded out.

7.2 overview of methods: audfprint and panako

We use the datasets that we described in the previous section to
experiment with the following three methods: Audfprint, Panako and
our own proposed method, the quad based audio fingerprinter Qfp
that we already discussed in great detail.

An evaluation of experiments using Audfprint and Panako (on other
audio data) is given in Six and Leman (2014). While all three methods
are peak-based, the systems employ different inner mechanisms and
thus are expected to perform differently on the datasets used in this
thesis. Note that we use Audfprint and Panako as published, without
tuning to the task at hand. We do this because we believe that the
methods are published with a set of standard parameters that turned
out to be well suited for general use cases according to experimen-
tation performed by their authors. Likewise, we use the same set of
parameters for Qfp, as they are described in Chapter 4, and incorpo-
rate the improvements that we described in Chapter 5. For the task at
hand, we want to investigate the fitness of the underlying algorithms
of the methods, rather than discussing their specific implementations.

audfprint Audfprint is an MIT-licensed implementation3 of a
peak-based audio identification algorithm based on the method de-
scribed by Wang (2003). The published algorithm utilizes quantized
hash fingerprints that represent pairs of spectral peaks. The hashes
are described by the time-frequency position of the first peak and its
distance in time and frequency to the second peak. The hashes that are
computed from a snippet of query audio are used as the keys into a
suitable reference data structure, e.g. a hash table, to retrieve reference
hashes with the same key. For each query hash, a lookup is performed
and the result sets are collected. Matched query and reference hashes
which happen to have a constant time offset in their individual peak-
time identify the reference audio, along with its position in which the
query snippet could be located.

panako Panako (Six and Leman, 2014), available4 under the GNU
Affero General Public License is a free audio identification system.
It transforms the time domain audio signal into a two dimensional
time frequency representation using the Constant Q transform, from

3 Audfprint is available on https://github.com/dpwe/audfprint.
4 Panako is available on http://www.panako.be/.

https://github.com/dpwe/audfprint
http://www.panako.be/

7.3 experiment setup 117

which it extracts event coordinates. Instead of peak pairs, the method
uses triples, which allows for a hash representation that is robust to
small time and pitch scale modifications of the query audio. Thus, the
system can also report the scale change factors of the query audio
with respect to the identified reference. The system was evaluated
in (Six and Leman, 2014) on queries against a database of 30,000 full
length songs, and on this data set achieves perfect specificity while
being able to detect queries that were changed in time or frequency
scale of up to around 8%. In this work we use Version 1.4 of Panako.

7.3 experiment setup

Disco-set identifiable [s] non-identifiable [s]

+[s] −[s] M. tp fp fn acc. prec. tn fp spec.

A 7838 7440 3442 0.419 0.513 3611 3809 0.487

18720 7420 P 4624 5596 8500 0.247 0.452 5539 1881 0.746

Q 13879 1253 3588 0.741 0.917 6996 424 0.942

Qv 14316 1523 2881 0.765 0.904 6587 833 0.888

Qε 3423 152 15145 0.183 0.957 7413 7 0.999

Mixotic-set identifiable [s] non-identifiable [s]

+[s] −[s] M. tp fp fn acc. prec. tn fp spec.

A 21783 10233 2201 0.637 0.680 1735 5068 0.255

34 217 6803 P 12326 16181 5710 0.360 0.432 2371 4432 0.349

Q 29985 1262 2970 0.876 0.959 6304 499 0.927

Qv 30445 1680 2092 0.889 0.948 4395 2408 0.647

Qε 19497 349 14371 0.570 0.982 6715 88 0.987

Table 7.2: Evaluation results for the data sets. The column “+” shows
the number of seconds of the DJ mix, for which a reference
is present. The column “−” likewise gives the number of
seconds for which no reference track is present. The methods
(M.) Audfprint, Panako and Qfp are abbreviated as “A”, “P”
and “Q”. The column “Qv” shows Qfp results without the
verification stage, and “Qε” shows results for the reduced
search neighbourhood. “acc.” is the accuracy, “prec.” is the
precision and “spec.” is the specificity (see Section 1.7). The
experiment setup is defined in Section 7.3. In this chapter
we omit showing the individual statistics of each DJ mix
that is contained in the dataset, and directly present the
overall values. Detailed results and additional experiments
are given in the subsequent chapter.

118 dj mix monitoring : method comparison

Experiments are performed individually on the datasets we de-
scribed in Section 7.1. The general experimental setup is as follows.
The mixes are split into non-overlapping query snippets of 20 sec-
onds in length. To create query snippets from the DJ mix we use the
tool SoX5 along with arguments to prevent clipping, and convert the
snippets into .wav files.

The methods process each individual, local and independent query
snippet, and store the results. The implementations of the three tested
systems behave differently in answering a query: if the query excerpt
could be matched, Audfprint and Panako by default report the whole
query duration as matched sequence. Qfp gives a more detailed answer
and reports the start time and end time of the matched portion within
the query excerpt. Likewise, as Qfp, Audfprint allows to report the
exact part of the query that it could actually match (using the option
-find-time-range), but for Panako we did not find such an option.
For best comparability of the evaluation results, for all of the three
methods we assign the reported match file ID to its whole query of
20 seconds. Reporting the exact duration (in seconds) of identified
content would seem to be of high relevance if the industry is going to
aim for fair revenue distribution. In that case, the duration of played
content will impact the assigned revenue, which is not possible if
simply binary decisions are made whether a track is played or not.

In this experiment we make the assumption that there exists exactly
one correct result per query excerpt, which can result in one of the
five types of confusions (tp, fp, fps, fn, tn). This assumption may seem
flawed, since there could be more than one tracks being played at the
same time, for example when two tracks are being overlaid, or in the
case of cross-fading. However, we have to follow our assumption of
one result per query snippet because of two reasons. First, we do not
have an exact ground-truth, as the DJs who created the mixes report a
list of tracks that are contained in the mixes, but no information on
how these are used to compose the mix. A correct manual annota-
tion of cross-fading events, with exact start and end positions in time
turns out to be highly challenging - therefore we mark a single point
in time for each transition of a track into the next one. The second
reason for our assumption concerns the fairness of the evaluation.
The three tested methods behave differently in answering a query.
In some cases Panako returns more than one result in ranked order.
Audfprint returns exactly one result per query, at least with its default
parametrization. If we assume that potentially more than one result
may be correct for a given query, we would have to adapt the evalua-
tion method. Audfprint would have to be assigned an additional fn
for each query with more than one correct result, because it reports
exactly one result. For Panako, in this case we would have to assign
additional fp or fn. Indeed, if there exist true cases with more than one

5 SoX is available on http://sox.sourceforge.net/.

http://sox.sourceforge.net/

7.4 discussion of results 119

correct result, we cannot simply ignore superfluous ranked outputs
of either method for queries in which only one song is played. Since
the three methods behave differently, we believe the most fair and
straightforward way is to consider the top result that is returned, and
always ignore further ranked results. We further discuss this in the
subsequent chapter, where we propose to incorporate more context
for the monitoring of DJ mixes.

It is important to note that we do not perform smoothing over time
on the individual results but rather test the local and independent raw
identification performance of each method based on each individual
query.

We compare the fingerprinting results to the ground truth on a one
second basis, i.e. for each second of the DJ mix we check whether the
corresponding query result is correct.

Here we distinguish the following two cases: Case 1 (C1) identifiable,
and Case 2 (C2) non-identifiable portions of the mixes. We investigate
how the systems perform in cases where a song is identifiable, because
it is present in the reference database (C1), and how well behaving a
system is in not producing a match result in cases where this is correct,
i.e. because the track is in fact not present in the reference (C2).

For all cases (C1), we count the number of seconds of true positives
(tp), false positives (fp) and false negatives (fn). True positives are
cases in which the system correctly identified a track from a query.
The false positives denote situations in which the wrong track is
claimed to be present, and the false negatives are cases in which the
system did not report a result at all. For this evaluation there exist
no true negatives, i.e. tp + fp + fn = N. For this case (C1) we use the
performance measures accuracy and precision.

To assess system performance for cases (C2), in which the reference
track is unknown, i.e. not present in the database, we compute a third
evaluation measure, the specificity.

The identification performance of all three methods is listed in
Table 7.2. We will discuss the results in the Section below, and analyze
the properties and differences of the methods.

7.4 discussion of results

Table 7.2 summarizes the results of each method on the disco set and
the mixotic set (rows Qv and Qε become relevant at a later point of this
section). For the disco set, the accuracy shows that just between 25%
and 74% of identifiable portions were assigned to the correct reference
track. This reveals that DJ mix track identification indeed is a tough
problem. The precision values show that Audfprint and Panako claim
a wrong track in around 50% of the identifiable cases. The specificity
of the systems shows that Audfprint correctly abstains from claiming
a match in roughly 50% of the non-identifiable cases. Panako shows

120 dj mix monitoring : method comparison

higher specificity of around 75%. Qfp manages to correctly treat tn in
94% of the cases.

The results obtained from the experiment on the mixotic set show
higher accuracy for all three methods, and Audfprint and Qfp operate
with higher precision than on the disco set. For the mixotic set, all
three systems show lower specificity than for the disco set. We believe
that this is a result of the larger reference database (723 songs in
contrast to the 296 in the disco set) and the highly repetitive tracks in
the mixotic set. In general, Qfp performs at higher accuracy, precision
and specificity than Audfprint and Panako. Panako shows higher
specificity than Audfprint on both datasets.

The low specificity of the algorithm that is implemented in Audf-
print indicates that its fingerprints are too general and therefore seem
to violate the trait of uniqueness. Panako uses triples of peaks, which
inherently capture more specific information of the local signal. In-
deed, its specificity on the disco set is considerably higher than that of
Audfprint, i.e. its fingerprint descriptors are less general, which may
be the reason for it to correctly refuse to make a claim in around 75%
of the cases on the disco set, and in roughly 35% of the cases on the
mixotic set.

analysis Qfp performs best on the tested datasets. To find out
which properties of the system are responsible for that, we perform
two additional experiments. The first experiment is intended to investi-
gate the impact of the verification process, and the second experiment
highlights the effect of the range query for Qfp. For a detailed expla-
nation on the parameters that are mentioned in this section, we ask
the reader to consult the Chapters 4 and 5.

First, we want to find out if it is the verification process that allows
Qfp to maintain high performance. If we switch off the verification6

and run the experiments, this results in an overall accuracy of 0.76,
a precision of 0.90, and a specificity of 0.89 on the disco set. For
the mixotic set this results in the accuracy of 0.89, precision of 0.95
and a specificity of 0.65 (c.f. Table 7.2, row Qv). In terms of accuracy
and precision, the results for both datasets are comparable to those
with active verification. The specificity on the mixotic set, however, is
notably lower.

We now investigate the performance of Qfp using a reduced neigh-
bourhood for the range queries. We argue that this loosely translates
to using quantized hashes with the same effect of when a query peak
moves with respect to the others, the corresponding reference hash
cannot be retrieved. This neighbourhood is specified as distance in
the hash-space of the quad descriptor. For this experiment we re-

6 Strictly speaking, the implementation does not allow to switch off the verification.
Therefore we instead relax the verification constraints such that no candidate can be
rejected.

7.4 discussion of results 121

duce this distance from 0.0035, 0.0115 for pitch and time to 0.001, 0.001
for pitch and time. For the disco set, this results in a low accuracy
of 0.18, precision of 0.96 and specificity of 0.99. On the mixotic set,
the small range-search neighbourhoods result in an accuracy and
precision of 0.57 and 0.98, and specificity of 0.99 (c.f. Table 7.2, Qε).
Audfprint achieves roughly 42% accuracy on the disco-set, where
Panako achieves roughly 25% accuracy. In this experiment we strongly
reduced the search-range of Qfp, and as expected, the resulting ac-
curacy is worse than that of the other two tested algorithms. This is
because we have to retrieve four “surviving” peaks for a matching
quad, while Panako needs to retrieve three peaks, and Audfprint just
two peaks in order to find a single match. If the same peak extractor
would be used for all three methods, and the probability of a peak not
migrating to a neighbouring bin is denoted as p, the probability of
retrieving a given hash would be p2 for Audfprint, p3 for Panako, and
p4 for Qfp, which fits our observed low performance of Qfp when we
omit the range-search.

For the mixotic set we obtain very similar results. Audfprint man-
ages to operate at an accuracy of roughly 64%, Qfp achieves 57% and
Panako operates at 36% accuracy. For this dataset the “ranks” of Qfp
and Panako switched, but this is due to the low precision of Panako in
the presence of highly repetitive tracks, and a low precision necessarily
impacts the accuracy.

This experiments highlights the importance of range-search: by
using a reasonable search range, migrating peaks are not of any
concern.

extended database We now add the reference tracks of both the
disco set and the mixotic set to our reference database that consists
of 430,000 full length tracks (this captures almost the entire Jamendo
corpus7), and inspect how Qfp copes with this amount of additional
tracks. The results are compared to the previous experiment in Ta-
ble 7.3.

The overall result for the disco set (with standard settings for the
range-search and verification) is 0.69 for accuracy and 0.80 for preci-
sion. The specificity is 0.71. On the mixotic set, the accuracy is 0.83, the
precision amounts to 0.87 and the achieved specificity is 0.56. The low
specificity here is also caused by a song duplicate in the DJ mixes and
Jamendo corpus, i.e. in the case of mixotic set 282, Qfp could correctly
identify the track “Akusmatic - Scamos” within the additional 430,000
songs, but the evaluation treats this as fp, because according to the
ground truth this track is not present. The issue with song duplicates
does not influence any other experiments in this chapter, since we use
the extended reference database only with the Qfp method.

7 Jamendo is accessible via https://www.jamendo.com.

https://www.jamendo.com

122 dj mix monitoring : method comparison

Disco-set identifiable non-id.

M. acc. prec. spec.

Q 0.74 0.92 0.94

Qlarge 0.69 0.80 0.71

Qpart
large 0.60 0.88 0.89

Mixotic-set identifiable non-id.

M. acc. prec. spec.

Q 0.88 0.96 0.93

Qlarge 0.83 0.87 0.56

Qpart
large 0.76 0.93 0.80

Table 7.3: Evaluation results for the data sets within the large reference
collection, compared to the results using the small reference
collections. Q denotes the previous results as shown in
Table 7.2, Qlarge denotes the results on the large database of
430,000 tracks, and Qpart

large denotes the corresponding results
when considering the start and end point of the matched
query segment rather than the whole 20 seconds.

The experiment shows that there is a certain negative impact, caus-
ing more fp when trying to identify tracks in DJ mixes on larger
databases. Note that these results also depend on the experiment
setup as defined in Section 7.3, where we chose to assign the identified
track ID to the whole query of 20 seconds in length. If we consider the
reported start and end time of identified queries, the results on the
disco set give an accuracy of 0.60, precision of 0.88, and a specificity
of 0.89. For the mixotic set the accuracy then is 0.76, precision is 0.93
and the specificity results in 0.80.

Qfp turns out to maintain – what we believe is – acceptable per-
formance, on a database with 430,000 full length songs. According
to precision and specificity, the other methods tested in this work
report large numbers of false positives despite the very small reference
collection of 723 songs. This leads us to suggest that the monitoring
of DJ mixes via automated fingerprinting systems indeed is a highly
challenging task.

visual analysis The different behaviour of the three methods can
be conveyed visually. In Figures 7.1, 7.2, 7.3 we show the predictions of
the three systems on the mixotic dataset 8. Vertical lines represent song
borders. The figures show the scattered query identification results,
where the x-axis position is the query time, and the y-axis position
locates the query within the reference song that the system could

8 The mix-IDs are listed and explained in the published dataset which is available at
http://www.cp.jku.at/datasets/fingerprinting/

http://www.cp.jku.at/datasets/fingerprinting/

7.4 discussion of results 123

A
u
d
fp

.
R

e
f.

 p
o
s[

s]
P
a
n
a
ko

R
e
f.

 p
o
s[

s]

0 1000 2000 3000 4000

Query position [s]

Q
fp

R
e
f.

 p
o
s[

s]

(a) Set044

A
u
d
fp

.
R

e
f.

 p
o
s[

s]
P
a
n
a
ko

R
e
f.

 p
o
s[

s]

0 500 1000 1500 2000 2500 3000

Query position [s]

Q
fp

R
e
f.

 p
o
s[

s]

(b) Set123

A
u
d
fp

.
R

e
f.

 p
o
s[

s]
P
a
n
a
ko

R
e
f.

 p
o
s[

s]

0 1000 2000 3000 4000 5000

Query position [s]

Q
fp

R
e
f.

 p
o
s[

s]

(c) Set222

Figure 7.1: Query visualisations for mixotic sets. The rows show the
results of individual, non-overlapping 20s queries without
smoothing of predictions for Audfprint (top), Panako (mid-
dle) and Qfp (bottom). The vertical lines are the annotated
song borders. The identification claims of the systems are
encoded in the shown markers, where each marker repre-
sents a reference track. The x-axis position shows the query
excerpt position, and y-axis the location of the matched
query within the identified reference track. A missing large
marker indicates a missing reference track. The figures
show a bar at the bottom, which represents the confusions.
tp (green) and tn (blue) are shown on top of the horizontal
line, fp (red) and fn (yellow) are shown below.

124 dj mix monitoring : method comparison

A
u
d
fp

.
R

e
f.

 p
o
s[

s]
P
a
n
a
ko

R
e
f.

 p
o
s[

s]

0 500 1000 1500 2000 2500 3000

Query position [s]

Q
fp

R
e
f.

 p
o
s[

s]

(a) Set230

A
u
d
fp

.
R

e
f.

 p
o
s[

s]
P
a
n
a
ko

R
e
f.

 p
o
s[

s]

0 1000 2000 3000 4000 5000

Query position [s]

Q
fp

R
e
f.

 p
o
s[

s]

(b) Set275

A
u
d
fp

.
R

e
f.

 p
o
s[

s]
P
a
n
a
ko

R
e
f.

 p
o
s[

s]

0 500 1000 1500 2000 2500 3000 3500

Query position [s]

Q
fp

R
e
f.

 p
o
s[

s]

(c) Set278

A
u
d
fp

.
R

e
f.

 p
o
s[

s]
P
a
n
a
ko

R
e
f.

 p
o
s[

s]

0 500 1000 1500 2000 2500 3000 3500

Query position [s]

Q
fp

R
e
f.

 p
o
s[

s]

(d) Set281

Figure 7.2: Visualisation of mixotic sets 230, 275, 278 and 281. Please
refer to Figure 7.2 for explanations.

7.4 discussion of results 125

A
u
d
fp

.
R

e
f.

 p
o
s[

s]
P
a
n
a
ko

R
e
f.

 p
o
s[

s]

0 500 1000 1500 2000 2500 3000 3500

Query position [s]

Q
fp

R
e
f.

 p
o
s[

s]

(a) Set282

A
u
d
fp

.
R

e
f.

 p
o
s[

s]
P
a
n
a
ko

R
e
f.

 p
o
s[

s]

0 1000 2000 3000 4000

Query position [s]

Q
fp

R
e
f.

 p
o
s[

s]

(b) Set285

A
u
d
fp

.
R

e
f.

 p
o
s[

s]
P
a
n
a
ko

R
e
f.

 p
o
s[

s]

0 500 1000 1500 2000 2500 3000

Query position [s]

Q
fp

R
e
f.

 p
o
s[

s]

(c) Set286

Figure 7.3: Visualisation of mixotic sets 282, 285 and 286. Please refer
to Figure 7.2 for explanations.

126 dj mix monitoring : method comparison

identify. Thus, scattered positions of songs that are correctly identified
over several successive queries usually take the shape of a sawtooth
function. In DJ mixes this will not always be the case, as the DJ can
loop content. The different track names are encoded using markers,
to be able to see if a system tends to confuse the same two tracks,
or whether it reports many different tracks for a portion that it fails
to identify correctly. The large markers shown on top, between song
borders, are the reference. A missing reference marker means that the
song is not present in the database, and therefore is non-identifiable.
Note that the evaluation does not consider whether the predicted
position within the reference is correct, as this is not meaningful for
highly repetitive musical content. If two or more missing references
occur after each other, we sometimes omit the song-border between
these unknown tracks. We do this since it is hard to annotate the song
boundaries without being able to listen to the original references.

The results obtained from the experiments shown in this chapter
support the initial premise of this thesis, where we state that auto-
mated audio identification on DJ mixes is a challenging problem. We
observe that Qfp performs best on the tested datasets, and believe that
it constitutes a well suited method to further investigate the analysis
of DJ mixes via audio fingerprinting. Further work that goes into more
detail of the published mixotic dataset is presented in Chapter 8 of
this document.

8
I N T E R A C T I V E A N D A U T O M AT I C M O N I T O R I N G
O F L O N G R E C O R D I N G S

In this chapter we discuss how to build a media monitoring system on
top of the fingerprinter. The goal of monitoring is to identify and ac-
curately locate the tracks that are played within a recording. Basically,
media monitoring can be seen as a segmentation task: locating a track
means to detect and describe its time segment within the query, such
that the start-positions and durations of present tracks are revealed.
Knowing the duration of identified tracks (in seconds) will pave the
way to fair revenue distribution.

We will use a “global sequence detection” algorithm to accomplish
that, which is the main difference to what we demonstrated in Chap-
ter 7. The global approach changes the granularity of the matching
process as follows. In Chapter 7 we computed and reported the top
result for each independent local short query of 20 seconds in length.
There, one single query was the entire context based on which the
fingerprinter could report results (i.e. local context). In contrast to that,
the approach that we propose in this present chapter is to compute all
matches of the entire (in our datasets up to 130 minutes long) query
recording at once, and then try to uncover sequences to determine
time-segments for each identified track within the long query record-
ing. Having computed all match-candidates, the next stage that tries
to form match-sequences can operate on global context, thus we will
refer to this concept as “global sequence detection”. In our experi-
ments, global sequence detection increases the overall identification
performance compared to the local query processing approach that
we described in Chapter 7.

Global sequence detection can be categorized into the reporting
module of our overall architecture, as depicted in Figure 8.1.

Throughout this chapter we mainly make use of our mixotic-dataset
(see Section 7.1). It consists of 10 DJ mixes, and 723 reference songs
which now are included into our database of 430,000 tracks. All exper-
iments in this chapter are performed on the large database, which in
our opinion reflects a quite realistic use-case, considering the volume
of the database. We present detailed figures and tables for each mix
that is contained in the dataset, to document the current state of our
method and to serve as a baseline for future developments. Note that
we introduce minor changes to the dataset: the contents of the dataset
are as previously described in Section 7.1, however, the total number
of seconds is slightly changed. The changes have two reasons: first,
we found that in the experiment setup of the previous chapter we

127

128 interactive and automatic monitoring of long recordings

Figure 8.1: Sequence detection as part of the reporting module.

erroneously cut away the last seconds of some sets, and second, in
this chapter we process the entire recordings rather than individual
query-snippets of 20 seconds in length. The updated dataset statistics
are as follows: The mixotic-set encompasses 10 query sets with a total
length of 41,231 seconds (roughly 11.5h, and exactly 221 seconds more
than in Section 7.1). From the played tracks, a total number of 34,663
seconds is referenced in our database, and the remaining 6568 seconds
are unknown (9.6h and 1.8h, respectively).

This chapter is organised as follows. First, in Section 8.1 we describe
the approach of collecting global fingerprinting results for the monitor-
ing of long recordings. We here include a simple example to introduce
the content of visualisations that we will then use throughout the
following sections of this chapter. Then, in Section 8.2 we describe
the algorithm that is used to implement our global sequence detector.
Next, we describe an interactive monitoring setup where the user is in
control of the sequence detection parameters. The purpose of this is
to help with the manual validation of results.

Section 8.3 then introduces the automatic detection of sequences: we
fix a set of parameters such that the sequence detector can be used to
monitor long recordings without requiring human interaction.

At the end of this chapter, the automatic detection approach is
used in a case study, where we process the entire mixotic set and
discuss two main points: the scale modifications that we uncover in
the individual mixes, and the performance of our proposed system.
Given the overall high performance, we will focus on errors that are
introduced. The case study is presented in Section 8.4. Finally, we
discuss the approach in Section 8.5.

8.1 sequence detection on global results 129

8.1 sequence detection on global results

In Chapter 7 we demonstrated how to use fingerprinters to process
long recordings by creating successive local short queries that do not
overlap. There, each 20s-query is processed independently. The best
result for this query is returned and all weaker results are discarded.
While this approach is simple, the downside is that processing record-
ings in this way discards potentially useful information concerning
the weaker match-candidates and sequences.

Here, instead of independently processing short local queries, the
entire recording is passed to the fingerprinter as one large query. To
do so, we parameterize Qfp exactly as described in Section 4.5: At
least four matches of a candidate file-ID have to be found, and these
are required to form a sequence. In addition, their average verification
score has to meet a threshold. To collect all the (potentially weak)
matches of an entire DJ mix recording, we have to disable Qfp’s
“early exit” optimization (see Section 4.5.3). The set of collected global
results now represents all valid match-candidates that adhere to the
parameterized constraints of Qfp.

Of course, deactivating the early-exit results in longer query pro-
cessing run times as we now have to process all match-candidates for
each candidate file-ID that is found in the query recording. However,
in our tests where we process DJ mixes between one and two hours
in length, the processing time is still shorter than the duration of the
query audio, even when using a only a single core. Note that the
sequence detector is currently not run time optimized.

The global result consists of valid match-candidates, which essen-
tially are “sequence-candidates”, since the constraints of Qfp require
at least four match-candidates for a file-ID to form a sequence. These
global results are basically sub-sequences of various file-IDs that are
scattered throughout the long query, and many of these sub-sequences
may be weakly matched in terms of verification score1. These global
results are now the input to a “global sequence detection” routine that
tries to form sequences of higher “quality” (in terms of the number of
matches, verification-score, etc.) by making use of the global context
of the input. It then reports detailed results for each sequence that
could be determined:

• The reference file-ID

• Start-position and duration in seconds

• Average time and pitch transformation factors of the detected
sequence with respect to the reference

1 The majority of these sub-sequences would have been discarded by the approach
taken in Chapter 7, where local short queries are processed individually, and only
the top match is of relevance.

130 interactive and automatic monitoring of long recordings

• Number of matches

• Average verification score

This is done by merging sub-sequences of the same file-IDs, and
by discarding sub-sequences that violate constraints. The sequence
detection algorithm is described in Section 8.2.

The system can be used as a fully automatic sequence detector for
the monitoring of long query recordings, or in an interactive mode for
use-cases where human post-processing is desired. For the automatic
monitoring, the sequence detector is parameterized to automatically
clean up regions where several (potentially contradicting) sequences
are found, and discard all but the “strongest” sequences by computing
some quality measures and reporting the sequences of highest quality.

We add an interactive monitoring mode because we can imagine
that the reported results of a system that is used to distribute royalties
(among artists, record-labels and rights holders) may be required to
be validated by human experts, at least in the early test stages of sys-
tem application. The interactive analysis is intended to speed up this
process, and therefore reduces the overall cost of the system. In case of
the interactive mode for example, by visualizing “hidden” sequences
(i.e. sequences that would not be revealed when considering just the
best match of each short local query) we can convey a more complete
picture of what is happening in a monitored performance, and how
many contradicting results are given for some time segment of the
query. The interactive mode supports the manual post processing such
that is helps the user to quickly focus on regions with sequence over-
laps by selecting an excerpt and visualising the query and reference
spectrograms along with verified peaks while listening to the selected
excerpt. An example of interactive monitoring is given in Section 8.2.1.

The following section introduces the concept of global result pro-
cessing using a simple manually crafted example.

8.1.1 Toy Example

We start with a simple example to introduce the concept of global
sequence detection. This example shall introduce how we will visualize
the figures that we present throughput this chapter. We manually
modify the time and frequency scale of three reference tracks and
concatenate the tracks to obtain a single piece of audio, which will
serve as our query recording. The first track is pitched down by 10%,
the second is sped up by 20% and the third is slowed down in tempo
by 25%. In Figure 8.2 we visualize the sequences that are formed by
verified matches, and show the corresponding scale transformation
factors (query/ref) that the system uncovers. The upper figure shows
the sequences that could be detected by the fingerprinter. The x-axis
represents the time position of the root point of the query quad in

8.1 sequence detection on global results 131

the query audio, and the y-axis shows the root point of the reference
quad. Note that in all examples the y-axis ranges from 0 seconds to the
maximum reference time position of match-candidates for the claimed
file-ID. Each match-candidate reference position will be positioned at
its corresponding point in time along the y-axis.

The lower figure shows the uncovered time and pitch scale factors
that correspond to the matches within the sequences.

200 400 600 800 1000 1200
query time [s]

0

100

200

300

400

500

re
f

ti
m

e
 [

s]

Verified matches

200 400 600 800 1000 1200
query time [s]

0.8

0.9

1.0

1.1

1.2

1.3

1.4

sc
a
le

 q
/r

e
f

Scale modifications

time

pitch

Figure 8.2: An introductory example of sequence detection on global
results. The upper sub-figure shows the collected verified
matches that adhere to Qfp’s set of constraints. The lower
figure shows the uncovered scale transformations (first se-
quence: pitch −10%, second sequence: speed +20%, third
sequence: tempo −25%).

In the upper part of the figure we can quickly see that there are three
sequences (we concatenated three tracks), and that these sequences
have different slopes, which in turn means that the tracks were pro-
cessed at least with different TP- or T-modifications. A query song
that is played faster compared to the reference will have a slope of
more than 45◦, and a song that is played slower will have a slope of
less than 45◦. Note that P-effects do not influence the slope of the
sequence visualisation.

The lower figure here shows three parts over the time of the query
recording. These three parts correspond to the reported sequences of
the upper figure, and show the uncovered pitch and time modifications.
The first sequence of scale modifications shows that the first track was
changed in pitch only, where (in average) no change of the time scale
is reported. The pitch scale is reported to be modified by a factor

132 interactive and automatic monitoring of long recordings

(query/ref) of approximately 0.9, which means the query has a lower
pitch than the reference. The second part, starting at around second
300, indicates modification in pitch as well as time. The pitch value
is 120%, and the time value is 83.3% which corresponds to the speed
change of +20%. It is important to note that these visualisations show
the time scale with its inverse relationship to the duration of the
song, i.e. 1/0.833 ≈ 1.2, which in turn indicates a 20% longer time
duration of the reference with respect to the query. Recall, that if the
pitch is changed at the same rate as the time duration, we call this
a modification in speed (TP-modification). The third part, at around
second 800, shows the that the third sequence is modified in tempo,
i.e. the pitch was left unaltered and the duration increased to a factor
of 1.33, which is a slowdown in tempo of 25%.

In this simple example we just concatenated three tracks, so there is
no overlap of sequences that need to be resolved by a sequence detector.
More complex and realistic cases from monitoring the mixotic-set are
discussed in Section 8.4.

8.2 sequence detection algorithm for the segmentation

of query recordings

In this section we describe how the sequence detector processes the
global results that were collected by the fingerprinter for the en-
tire query. This is the collection of all verified sequence candidates
that again each consist of a minimum number of 4 verified match-
candidates.

The sequence detector has access to the query content, and knows
the parameterization of the query process (as for example the STFT
settings and the query tolerances). The sequence detector itself is called
with a set of threshold parameters that guide the process to discard or
keep sequence candidates. The parameters are the minimum number
of matches per sequence, the minimum duration of a sequence, the
minimum verification score and a minimum sequence score.

The actual parameter values that we use with the sequence detection
algorithm will be described in Section 8.3, while in this present section
we will focus on the algorithm without suggesting values for the
parameterization.

We assign scores to each sequence to be able to compare their
quality to other sequences. There are many ways to assign a quality
measure to reported sequences of matches, and currently we use
empirically determined parameters to assign a score to sequences.
Sequence scores take into account the information that is associated
with individual verified matches, and ideally would also depend on
temporal properties of sequences. For individual matches we know
the following match-attributes:

• The query and reference quads, and their spectral peak positions

8.2 sequence detection algorithm for the segmentation of query recordings 133

• The time and pitch transformation factors of each matching pair
of quads

• The verification scores

From these attributes we suggest to compute and incorporate temporal
properties of the sequences:

• Sequence density

• Sequence segment coverage: is the segment covered by matches,
and if not, what is the number and size of gaps within the
sequence where no matches are reported.

• The “result-noise”, which is the number of contradicting results
(sequences of different file-IDs) for the time segment of a given
sequence

We currently do not use all of these measures, as in our experiments
with our two small datasets of DJ mixes (the mixotic-set and the
disco-set) we achieve good results without using the sequence density
and segment coverage. If we had more data together with a high
quality ground-truth, it would be interesting to formulate the sequence
detection as a learning problem.

Note that “sequence” and “segment” refer to very different things.
A segment is some time-span in the audio, with a known start-position
and duration. A sequence on the other hand is a series of verified
matches for the same file-ID. If for example two arbitrary sequences
overlap, we will refer to the region of overlap as segment. The region
that is covered by a sequence is also called a segment.

To compute sequences we pass the collected sequence candidates
in a large dictionary that associates the attributes to their sequence-
candidates. In this dictionary, the keys are the sequence candidate
file-IDs and the values are a list of match-attributes.

The sequence detector starts to process this input on a per-file-ID
basis. That means all results that the fingerprinter reported for a given
file-ID are accessed, and the sequence candidates of this file-ID are
sorted according to their start-position in time.

Individual sequences in the list of sorted sequences for a given
file-ID might overlap (in time), or they might even be fully included
in the time-span of a larger sequence. In such cases these sequence
candidates (all of which belong to the same file-ID) are merged using
a straightforward recursive merging algorithm. Merging of two given
overlapping sequences is done by collecting and combining their
match attributes, and to create a new sequence from the combined
match attributes. From this we get an updated list of matching quad
pairs, that we store as lists of query-times, reference-times, verification-
score, pitch factors, and time factors. The order is preserved, such that
the i-th entry in the list of query-times corresponds to the i-th entry in

134 interactive and automatic monitoring of long recordings

the lists of attributes. The merging routine knows the thresholds of
the sequence detector, and uses these as constraints to create merged
sequences. After this merging step, the number of sequence candidates
for all candidate file-IDs is usually drastically reduced.

In our scenario, the next step is to process regions where sequences
of different file-IDs are reported. We call these the “contradicting
segments”. In a production system, it may be desired to not compute
this step to be able to report overlapping sequences. In such cases
revenue could be split among the artists of the co-occurring tracks.
However, we have to compute this step because we we do not have a
ground-truth for overlapping sequences or cross-fading of different
tracks, and therefore cannot evaluate any predicted overlaps. A con-
tradicting segment is resolved by simply letting the stronger sequence
win, such that the time-segment of overlap is assigned to the stronger
sequence, where “strong” means that it achieves a higher score within
the segment of overlap.

The score for a sequence is computed from three measures: the
number of matches within the segment, the average verification score
of the sequence, and the result-noise in the segment.

The result noise is basically intended to be a measure of how many
different file-IDs compete for a given segment of the query audio. In
most musical genres, when using Qfp, we found the result noise to be
very low – in most cases just a single file-ID is reported for a given
time-segment, which is due to the verification step of Qfp. For fast
and repetitive electronic music genres however, we observe a higher
number of competing match-candidates. An intuitive way to interpret
the result-noise is to think of it as a measure of how hard it is for Qfp
to determine the correct match. The result-noise is computed as the
sum of contradicting file-IDs that are reported in a given segment of
interest, which in our task is the segment in which the overlap occurs.
For the segment of the sequence overlap we bin each query-quad
root-point’s time position into bins of one second in size, and store the
bin-indices. We now do the same for all root-points of the reported
global results. After that we inspect the bins at the previously stored
indices, and count the unique file-IDs of the root-points that were
assigned to these bins. The sum of these counts is now what we call
the result-noise.

To assign a segment with overlapping sequences to the strongest
sequence we compute their score as follows:

score = scorev n/(log(noise + 1) + 1) (8.1)

where scorev is the verification score of the sequence as reported by
Qfp, n is the number of matches in the sequence and noise is the
result-noise that corresponds to the binned root-point time positions
in the overlap-segment. The idea behind this way of computing the
score is the following. The higher the result-noise the more sequences

8.2 sequence detection algorithm for the segmentation of query recordings 135

compete, thus, it is more likely to accept a false positive sequence.
Therefore we compute lower scores for noisy segments and assign the
segment to that sequence that stands out in terms of score.

The overlap-segment is now assigned to highest-scoring sequence,
and all weaker (sub-)sequences in this segment are clipped, i.e. their
matches that occur in the segment are deleted. Deleting these matches
will cause the lower scoring sequences to either become shorter in time,
or create gaps. In any case, the weaker sequences will then consist of
a lower number of matches.

At this point, after cleaning up segments with overlap, the exist-
ing sequences will have changed their appearance noticeably. First
sequences of the same file-ID were merged, and then parts of weaker
sequences were deleted.

The next processing step of the sequence detector is to filter the
sequences that we obtained from computing the merging step and
overlap assignment step. This is done in three steps: merging neigh-
bouring sequences of the same file-ID if these are not too far apart,
then deleting sequences that turn out to be short, and finally a second
invocation of the merging step.

At this point the sequence detection is finished, and the result is a
segmented query recording such that each segment corresponds to a
sequence of an identified file-ID.

Note that we also tried to incorporate temporal properties such as
sequence density or segment coverage of sequence candidates into this
filtering process, but with our limited data volume and ground-truth
we could not yet find a reliable way to make temporal properties a
useful feature.

8.2.1 Interactive Sequence Detection

In this section we demonstrate the interactive analysis of DJ mixes.
To keep the example simple, we show the results from changing the
parameter for the minimum number of matches, and visualize the
results as well as their uncovered time and pitch scale modifications.
We gradually increase the minimum required number of matches
within a sequence in order to treat this sequence as valid. The query
recording of mixotic-set282 will serve as example, based on which we
show the sequences that are returned for a minimum of 4, 10, 30, 50, 70
and 100 matches in Figure 8.3 and Figure 8.4. The first of these figures,
Figure 8.3a shows the global sequence-candidates that are returned
from the fingerprinter without any post processing. The following
figures show the result processing using increasing values for the
minimum number of matches. Note, that in addition to this constraint
one could also change the parameters for sequence density, sequence
duration in time, minimum average verification score, etc. Note that
simply changing the number of matches only will not allow for high

136 interactive and automatic monitoring of long recordings

identification performance, however, it effectively cleans up results for
human validation and post processing.

8.3 automatic sequence detection

In this section we demonstrate the automatic sequence detection, that
will set the context for the next section where we perform a case study
on this topic.

We parameterize the sequence detector as follows. We require a
minimum of 10 matches per sequence, a minimum average verification
score of 0.53 and a minimum total sequence score of 5. Finally, we
discard all sequences that are shorter than 50 seconds.

In this section we first show an example using mixotic-set282, and
demonstrate the method using the small reference database of 723
tracks. Then, we perform the same experiment on our large database of
430,000 which allows us to observe the increased problem complexity
and scalability of Qfp.

Having introduced the concept, we then apply the approach to the
whole mixotic dataset. Next, we present evaluation measures and
discuss and analyse the mixes that are contained in the dataset.

Mixotic-set282 has a duration of roughly 65 minutes. The results
using the reference database of 723 tracks as it is described in Chapter 7

is shown in Figure 8.5. The visualisation follows the same concept as
described in the previous section, and it is further extended to show
the sequences that remain after we apply the sequence detector. This
is shown in the middle figure. The returned sequences (shown in the
middle figure of Figure 8.5) match well with the ground truth (vertical
lines in Figure 8.5). The rightmost sequence is a false positive result,
where the system claims a series of matches that were pitched down
by roughly 25% while being increased in tempo by roughly 3%. This
example shows the automatic sequence cleanup on results that are
filtered from a total number of 15,717 matches.

The next experiment follows the same setup as described above, but
uses the large reference database that consists of 430,000 tracks (see
Chapter 6). Instead of sequences made from 15,717 matches we here
obtain a result set that consists of 89,257 matches, but the growth in
matches is of course not proportional. We obtain roughly 5.7 times as
many matches in sequences, but the database is roughly 595 times as
large.

As the individual mixes are of different duration, we do not average
the performance measures over the 10 mixes, but treat the mixotic set
as one very long mix, and accumulate the confusions. This results in a
overall accuracy of 0.88, a precision of roughly 0.96, and a specificity
of roughly 0.90. Compared to the local query evaluation on the large
database, as given in Section 7.4 of Chapter 7, the automatic sequence
detection on global results (using this specific parameterization) in-

8.3 automatic sequence detection 137

(a) All possible sequences on mixotic set282 (minimum number of matches: 4).

(b) Minium number of matches: 10

(c) Minium number of matches: 30

Figure 8.3: Semi-automatic analysis: varying the number of matches.

138 interactive and automatic monitoring of long recordings

(a) Minium number of matches: 50

(b) Minium number of matches: 70

(c) Minium number of matches: 100

Figure 8.4: Semi-automatic analysis: varying the number of matches.

8.3 automatic sequence detection 139

0 500 1000 1500 2000 2500 3000 3500 4000
query time [s]

100
0

100
200
300
400
500
600
700
800

re
f

ti
m

e
 [

s]

Verified matches (match count: 15717)

0 500 1000 1500 2000 2500 3000 3500 4000
query time [s]

100
0

100
200
300
400
500
600
700
800

re
f

ti
m

e
 [

s]

Sequences
fid: 258
fid: 263
fid: 273
fid: 595
fid: 276
fid: 280
fid: 251
fid: 254
fid: 255

0 500 1000 1500 2000 2500 3000 3500 4000
query time [s]

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

sc
a
le

 q
/r

e
f

Scale modifications

time

pitch

Figure 8.5: Automatic sequence detection on set282 of the mixotic data
set, using the small reference database that contains the 723
published reference tracks. The upper sub-figure shows the
collected verified matches. The middle figure shows the
result of the sequence detector, where the colored regions
show the segments are claimed for an identified track, and
the vertical bars show the song-border annotations of the
ground-truth. The lower figure shows the uncovered pitch-
and time-scale transformations.

creases the overall performance: on the mixotic-set the accuracy is
increased by 5 percentage points, the precision by 9 percentage points
and the specificity by 34 percentage points 2. On the disco set, the ac-
curacy increases by 8 percentage points, and precision and specificity
benefit with an increase of 14 and 20 percentage points, respectively.

In Table 8.1 the evaluation of the automatic sequence detector on
the 10 DJ mixes that are contained in the mixotic-set is presented. The
parameters as described above are found empirically to give acceptable
results on the mixotic- as well as the disco-set, although, we need more
data for an absolutely independent parameter study and evaluation.

Note, that it is of course possible to parameterize the automatic
sequence detector to focus on specific performance characteristics, for
example it could be parameterized to try to increase the accuracy of
the system at the cost of precision and specificity.

2 To be precise, in Section 7.4 we noted the impact of a song that is not present in the
reference recordings of the published dataset, however it is present in the Jamendo
corpus. This resulted in a sequence that was incorrectly labelled as false positive,
and impacted the specificity. Here, we fixed this issue and treat this sequence as true
positive. The influenced values are given bold in Figure 8.14for mixotic set282.

140 interactive and automatic monitoring of long recordings

Figure 8.6: Automatic sequence detection on set282 of the mixotic
data set, using our reference database that contains 430,000
tracks, including the published mixotic reference tracks.
The upper sub-figure shows the collected verified matches.
The middle figure shows the result of the sequence de-
tector, where the colored regions show the segments that
correspond to an identified track, and the vertical bars
show the song-border annotations of the ground-truth. The
lower figure shows the uncovered pitch- and time-scale
transformations.

8.4 case study: analysis of the mixotic dataset

In Figures 8.5, 8.6 the bottom sub-figures demonstrate the variety of
scale modifications that are applied by the DJs. In this section we
look at the entire mixotic-dataset in detail, and discuss what can be
observed based on the results of our proposed method.

We will organise the analysis using a separate double-page for
each mix, where we discuss the query recording properties and the
behaviour of the method on the left-hand page, and show the visuali-
sation of the sequence detector and the result table on the right-hand
page.

8.4.1 Descriptions of Tables and Figures

The sequence detection figures that we present in the following sub-
sections consist of three sub-figures. In these, the top sub-figure shows
the collection of verified matches that are reported by Qfp. The middle

8.4 case study : analysis of the mixotic dataset 141

Set tp fp f n tn fps Acc. Prec. Spec.

044 4126 144 395 0 0 0.88 0.96 −
123 3078 149 113 0 0 0.92 0.95 −
222 3053 26 500 1742 355 0.85 0.99 0.83

230 2494 36 47 778 5 0.96 0.98 0.99

275 3080 177 262 1515 15 0.87 0.94 0.99

278 3245 161 182 265 19 0.90 0.95 0.93

281 2593 151 558 285 12 0.78 0.94 0.95

282 2095 100 180 1345 232 0.88 0.95 0.85

285 3932 31 596 0 0 0.86 0.99 −
286 2815 180 164 0 0 0.89 0.93 −
All: 30511 1155 2997 5930 638 0.88 0.96 0.90

Table 8.1: Evaluation of the automatic sequence detection on the com-
plete mixotic-set, using our large reference database. tp, fp, fn
show the confusions in seconds, concerning those parts of
the mixes for which the reference song is present in the
database. tn, fps show true-negatives and false-positives for
the parts for which we do not have the reference. Acc. is the
accuracy, Prec. the precision and Spec. the specificity.

Set tp fp f n tn fps Acc. Prec. Spec.

set0 4608 138 922 1941 238 0.81 0.97 0.89

set1 3129 213 111 286 27 0.90 0.93 0.91

set2 2377 248 583 294 0 0.74 0.90 1.0

set3 895 0 159 1537 469 0.84 1.0 0.76

set20 2433 365 339 456 1 0.77 0.86 0.99

set35 113 0 218 1004 0 0.34 1.0 1.0

set36 178 0 694 768 0 0.20 1.0 1.0

set37 429 0 291 730 0 0.59 1.0 1.0

All: 14162 964 3317 7016 735 0.77 0.94 0.91

Table 8.2: Evaluation of the automatic sequence detection on the com-
plete (non-free and unpublished) disco-set, using our large
reference database. See Table 8.1 for a description of the
columns. The confusions are given in seconds.

sub-figure shows the detected sequences. There, the ground truth
annotations of the song-boundaries as shown as vertical bars, and
the markers represent the reference file-ID (as there are less markers
than file-IDs we simply cyclically index into a set of markers). The
horizontal bar at the bottom of each middle sub-figure represents the
so-called confusions in seconds: true positives are shown in green,
false positives are red, true negatives are shown in blue and false
negatives are shown in yellow. The legend on the left-hand side of the

142 interactive and automatic monitoring of long recordings

middle sub-figure gives Qfp’s file-IDs of identified tracks. The bottom
sub-figures show the uncovered time and pitch transformations that
correspond to their sequences.

The result tables shown below use eight columns as follows:

1. “nm” is the number of matches within a final sequence. Large
numbers of matches typically indicate that the query content
is not mixed with additional sources, but still might be subject
to severe scale modifications. Low numbers of matches may
indicate false positives, or the presence of highly distorting
digital audio effects, or for example a track being overlaid with
another track.

2. “tquery” gives both, the start and end time in seconds.

3. “len” is the sequence length that we include for convenience, it
could also be determined from tquery.

4. “pf.est” represents the estimated pitch scale factor (query vs.
reference, averaged over all matches contained in the final se-
quence)

5. “tf.est” shows the estimated time scale factor (query vs. reference,
averaged over all matches contained in the sequence). A value
lower than 1.0 means that the time is compressed with respect to
the reference track, i.e. the query is played faster. Values larger
than 1.0 show a stretched query, meaning that the query is player
slower.

6. “vscore” is the verification score averaged over all contained
matches within the sequence. The minimum verification score
for the fingerprinter, before passing results on to the sequence
detector, is 0.53. A low average verification score tells us that
there are a number of missing peaks in the query spectrogram.
This may be due to severe signal distortions or cross-mixing. For
severe non-linear scale modifications, as for example when the
query audio is rapidly accelerated or decelerated the vscore will
be lower in comparison to linearly scaled modifications. This is
because non-linear transformations will cause the fingerprinter
to compute non-representative scale modifications, which can
prevent the algorithm from aligning some present spectral peaks.

7. “score” represents the overall strength of the sequence (see Sec-
tion 8.2). The score is not normalized, and does not have the
same range over different recordings. At this time, the score re-
flects our attempt to find a summarizing measure for the quality
of a matched sequence. We want to refine our scoring method
as soon as we have more data.

8.4 case study : analysis of the mixotic dataset 143

8. “title” gives the first ten letters of artist/track information. We
shorten this due to space constraints. The full titles are available
in the ground-truth files of our published dataset3. In a few cases,
the evaluation table shows a title that is just a long number. In our
reference collection such numbers represent Jamendo file-IDs.
Since the mixotic-set does not contain tracks from the Jamendo
dataset 4, these cases are false-positive sequences.

The lower part of each table shows the evaluation results for the DJ-mix.
The confusions are counted in seconds, and the fields “Acc.”, “Prec.”
and “Spec.” denote the accuracy, precision and specificity. The fields
“Spec.TN” and “Spec.FP” denote the true negatives and false positives
in seconds for cases in which the correct track is non-identifiable. In
cases of identifiable content the specificity is denoted as “−”.

3 The mixotic dataset is available at http://www.cp.jku.at/datasets/

fingerprinting/

4 There is one exception to this. One track of the mixotic-set 282 (see Figure 8.14a) is
contained in our Jamendo dataset.

http://www.cp.jku.at/datasets/fingerprinting/
http://www.cp.jku.at/datasets/fingerprinting/

144 interactive and automatic monitoring of long recordings

8.4.2 Set 044

The results for this mix are presented in Figure 8.7.

• Number of identifiable tracks: 14

• Number of non-identifiable tracks: 0

• Accuracy: 0.88

• Precision: 0.96

• Specificity: −

According to Table 8.7b, the method achieves an accuracy of 0.88
and a precision of 0.96. All played tracks are present in the reference
database, so specificity is not of relevance – there are no true negatives.
The accuracy is impacted by a missed sequence, parts of which even
give rise to a falsely claimed sequence with 70 matches and a duration
of 75 seconds. To see whether the correct matches are overwritten
by false sequences that were discarded in the end, we can consult
the evaluation of local queries as given in Chapter 7, Figure 7.1a. We
can see that there we also fail to identify large portions of that track,
preventing the sequence detector to reveal this part as sequence. The
method Audfprint manages to find large portions of this track at its
expected position in the query recording, but the claimed reference
time positions are rather chaotic. This could indicate that the content is
either highly repetitive or looped. It could also mean that this track is
mixed with another track. In such cases we expect Audfprint’s chances
to detect the part to be higher than for our method, as for Audfprint
only two peaks have to be found to match a single fingerprint while
our method needs to find four peaks to do so. In the case of a track
that is “overlaid” with another track, chances are high that query
quads contain peaks of both signals, and therefore will rarely match
the reference.

Overall, the pitch of played content is hardly modified, while the
time scale is modified in all tracks. This means the performer used
T-modifications: Four tracks are played a bit slower, the remaining
ones are played faster. The most severe change seems to be the tempo
of the first track, which is approximately 5% faster.

8.4 case study : analysis of the mixotic dataset 145

(a) Sequence detection

set044

nm tquery [s] len p f .est t f .est vscore score Title

244 1; 169 168 1.000 0.953 0.791 192.940 pntg012-04

352 195; 513 318 0.999 0.968 0.830 292.238 pntg010-02

634 532; 779 247 0.998 1.008 0.911 577.870 pntg012-01

187 786; 1035 249 0.998 0.987 0.790 147.808 pntg003-04

513 1038; 1367 329 0.999 0.976 0.847 434.462 pntg007-01

429 1393; 1643 250 0.998 0.985 0.891 382.092 pntg009-04

580 1649; 1943 294 0.998 0.992 0.899 521.479 pntg012-08

645 1946; 2377 431 0.998 0.976 0.877 565.697 pntg012-03

70 2536; 2611 75 0.984 0.966 0.688 19.111 1171351

1003 2644; 3143 499 0.998 1.009 0.869 821.058 pntg012-02

803 3152; 3612 460 0.999 0.968 0.823 303.110 pntg012-05

1137 3630; 3901 271 0.998 0.999 0.951 1081.152 pntg005-03

126 3924; 4206 282 0.999 1.007 0.768 96.796 pntg006-03

792 4273; 4656 383 0.998 1.007 0.899 712.148 pntg011-02

Eval :

TP FP FN Spec.TN Spec.FP Acc. Prec. Spec.

4126 144 395 0 0 0.88 0.96 -

(b) Results

Figure 8.7: Automatic sequence detection on mixotic-set 044

146 interactive and automatic monitoring of long recordings

8.4.3 Set 123

The results for this mix are presented in Figure 8.8.

• Number of identifiable tracks: 12

• Number of non-identifiable tracks: 0

• Accuracy: 0.92

• Precision: 0.95

• Specificity: −

This mix contains twelve tracks, all of which are referenced, so
there are no true negatives. Each detected sequence shows a perfect
diagonal, with no disagreement in the reference time positions. The
accuracy of 0.92 and precision of 0.95 seems to be negatively impacted
by what seems to be an inaccurate ground-truth annotation, which we
should revisit. We think we might have put the song border of track
number 9 too late. If we look at the results presented in Figure 7.1b (for
this region before second 2500), neither of the three methods detect
what is claimed by the ground-truth.

In this mix, the performer incorporates TP-modifications to all but
one tracks. In seven cases, the content is played slower together with a
lower pitch. In four cases the content is sped up, and the one remaining
track is not modified in scale at all. Some speed changes are quite
severe, for example the third to last track was played roughly 8%
slower.

8.4 case study : analysis of the mixotic dataset 147

(a) Sequence detection

set123

nm tquery [s] len p f .est t f .est vscore score Title

1058 3; 283 280 0.956 1.046 0.942 997.032 04_Peter_G

445 292; 518 226 1.066 0.939 0.811 361.013 04_Vizar_-

1019 538; 838 300 0.971 1.030 0.947 965.400 04_Sascha_

714 840; 1090 250 0.985 1.015 0.915 653.093 04_Katsuyu

1050 1113; 1460 347 1.023 0.977 0.887 931.809 01_Sascha_

874 1460; 1655 195 1.039 0.963 0.901 654.145 03_Vizar_-

690 1656; 1939 283 0.956 1.047 0.918 459.037 03_Hiroshi

194 1948; 2054 106 0.942 1.061 0.885 171.735 04_Pepe_Ar

613 2063; 2379 316 0.935 1.069 0.814 499.168 02_Sascha_

301 2407; 2659 252 0.928 1.079 0.841 253.025 04_Roger_M

1065 2664; 2971 307 1.000 1.000 0.924 984.461 08_Banding

1150 2982; 3336 354 1.040 0.961 0.909 1044.783 04_Hermeti

Eval :

TP FP FN Spec.TN Spec.FP Acc. Prec. Spec.

3078 149 113 0 0 0.92 0.95 -

(b) Results

Figure 8.8: Automatic sequence detection on mixotic-set 123.

148 interactive and automatic monitoring of long recordings

8.4.4 Set 222

The results for this mix are presented in Figure 8.9.

• Number of identifiable tracks: 11

• Number of non-identifiable tracks: 7

• Accuracy: 0.85

• Precision: 0.99

• Specificity: 0.83

This mix contains TP-modifications not stronger than roughly 4
percent. Remaining tracks are changed in scale only moderately, or
not at all.

Our method completely misses the entire first sequence, and the au-
tomatic sequence detector gives three short false positives, all coming
from regions where many file-ID candidates were returned from the
fingerprinter. From experience we know, that such noisy regions tend
to contain highly repetitive content.

The missed sequence causes the low accuracy of only 85%. The
wrongly claimed sequences occur in locations for which there is no
reference. This noticeably impacts the specificity, which is only 83%.
The overall precision of 99% is almost perfect with only 26 false
positive seconds (in a mix that is longer than 90 minutes) for regions
where the reference is present.

8.4 case study : analysis of the mixotic dataset 149

(a) Sequence detection

set222

nm tquery [s] len p f .est t f .est vscore score Title

702 396; 694 298 1.041 0.961 0.870 442.404 [thn109]-3

374 1123; 1372 249 1.041 0.962 0.860 321.822 mr-cloudy-

48 1424; 1593 169 0.916 1.440 0.593 14.998 346520

1539 2379; 2727 348 0.999 1.002 0.978 1504.803 brq60_nied

770 2748; 2998 250 0.990 1.011 0.939 722.967 Bactee_Tit

635 3016; 3265 249 0.960 1.044 0.856 543.406 Zimmer046.

846 3275; 3607 332 0.997 1.003 0.861 728.649 Max_Cavale

816 3608; 3978 370 0.974 1.027 0.909 741.617 2_DML_-_Fi

22 4068; 4149 81 0.973 1.278 0.638 5.977 394114

15 4202; 4269 67 0.940 1.308 0.639 9.590 964433

1989 4637; 4946 309 0.996 1.004 0.938 1287.533 DML_-_Arbe

1234 4964; 5298 334 0.996 1.004 0.920 1134.841 brq50_max_

1227 5309; 5674 365 0.996 1.004 0.948 1163.004 Patrick Di

Eval :

TP FP FN Spec.TN Spec.FP Acc. Prec. Spec.

3053 26 500 1742 355 0.85 0.99 0.83

(b) Results

Figure 8.9: Automatic sequence detection on mixotic-set 222.

150 interactive and automatic monitoring of long recordings

8.4.5 Set 230

The results for this mix are presented in Figure 8.10.

• Number of identifiable tracks: 7

• Number of non-identifiable tracks: 2

• Accuracy: 0.96

• Precision: 0.98

• Specificity: 0.99

Averaged over the duration of the contained tracks, there occur no
scale modifications at all.

Two tracks are not referenced in the database, and in both cases
the sequence detector manages to correctly abstain from reporting
matches. The results achieved by our method are almost perfect in
this case.

8.4 case study : analysis of the mixotic dataset 151

(a) Sequence detection

set230

nm tquery [s] len p f .est t f .est vscore score Title

1165 4; 447 443 1.000 1.000 0.923 1074.894 DN015_04-a

994 819; 1322 503 1.000 1.000 0.892 886.362 thn010-02-

1442 1330; 1626 296 1.000 1.000 0.955 1376.897 DN020-08_f

1147 1636; 1915 279 1.000 1.000 0.901 1033.343 DN005_04_l

1385 1919; 2226 307 1.000 1.000 0.923 833.818 DN006_01_k

1491 2655; 3062 407 1.000 1.000 0.918 1369.285 DN020-12_t

1579 3062; 3356 294 0.999 1.001 0.981 1549.672 DN015_10-n

Eval :

TP FP FN Spec.TN Spec.FP Acc. Prec. Spec.

2494 36 47 778 5 0.96 0.98 0.99

(b) Results

Figure 8.10: Automatic sequence detection on mixotic-set 230.

152 interactive and automatic monitoring of long recordings

8.4.6 Set 275

The results for this mix are presented in Figure 8.11.

• Number of identifiable tracks: 11

• Number of non-identifiable tracks: 6

• Accuracy: 0.87

• Precision: 0.94

• Specificity: 0.99

Four tracks that are played in this mix are not present in the ref-
erence database. These cases are correctly handled by the method,
which here performs with a specificity of 99%. The total number of
177 seconds of false positives and 262 seconds of false negatives are
due to a missed sequence. Here, the missed sequence gives room for
the false-positive sequence, which in turn lowers the precision to 94%.
This wrongly claimed sequence has a low average verification score of
0.59, and a very low number of matches (12 matches) compared to the
other results in this DJ mix.

As in mixotic-set 230, the correct sequences show no pitch or time
scale modifications.

8.4 case study : analysis of the mixotic dataset 153

(a) Sequence detection

set275

nm tquery [s] len p f .est t f .est vscore score Title

1453 499; 833 334 1.000 1.000 0.978 1421.308 atabey - j

1806 1078; 1359 281 1.000 1.000 0.944 1054.458 02.Stereop

2187 1643; 2131 488 1.000 1.000 0.961 2101.032 Krisz Deak

907 2150; 2388 238 1.000 1.000 0.966 876.436 01_F.l.o._

2013 2403; 2763 360 1.000 1.000 0.979 1971.553 02.Echoton

1792 2764; 3233 469 1.000 1.001 0.914 1413.682 Roberto Fi

1839 3237; 3589 352 1.000 1.000 0.966 1777.378 03_diarmai

3546 3603; 3973 370 1.000 1.000 0.939 2827.459 03_kwartz_

12 4562; 4669 107 0.974 1.219 0.590 7.083 139248

554 4774; 4963 189 1.000 1.001 0.962 511.012 01_the_thi

437 4970; 5043 73 1.000 1.001 0.982 429.305 01_kwartz_

Eval :

TP FP FN Spec.TN Spec.FP Acc. Prec. Spec.

3080 177 262 1515 15 0.87 0.94 0.99

(b) Results

Figure 8.11: Automatic sequence detection on mixotic-set 275.

154 interactive and automatic monitoring of long recordings

8.4.7 Set 278

The results for this mix are presented in Figure 8.12.

• Number of identifiable tracks: 11

• Number of non-identifiable tracks: 1

• Accuracy: 0.90

• Precision: 0.95

• Specificity: 0.93

Apart from one correctly interpreted missing reference track, all se-
quences are identified. There are minor errors near the annotated
borders, which may be due to long fading regions.

Scale modifications are quite moderate, and lower than two percent.
Modified content is mostly sped up, and slowed down in only one of
the contained tracks.

8.4 case study : analysis of the mixotic dataset 155

(a) Sequence detection

set278

nm tquery [s] len p f .est t f .est vscore score Title

1300 27; 412 385 1.017 0.981 0.904 459.387 hryk - A.D

927 444; 748 304 1.010 0.989 0.909 690.240 ivity - ce

814 754; 1055 301 0.999 0.999 0.905 736.381 Dynastic_-

736 1064; 1392 328 1.008 0.992 0.921 677.730 Dynastic_-

880 1400; 1744 344 0.992 1.007 0.924 509.528 hryk - par

1343 1760; 2153 393 1.008 0.991 0.952 932.248 Flip & Tou

1536 2159; 2514 355 1.000 1.000 0.962 1477.365 l_cio - al

1035 2800; 3052 252 1.000 0.999 0.897 549.579 whimee - a

1268 3053; 3398 345 1.000 0.999 0.916 1161.334 06 6. Redu

1847 3456; 3864 408 1.000 1.000 0.951 1757.101 The Nautil

Eval :

TP FP FN Spec.TN Spec.FP Acc. Prec. Spec.

3245 161 182 265 19 0.90 0.95 0.93

(b) Results

Figure 8.12: Automatic sequence detection on mixotic-set 278.

156 interactive and automatic monitoring of long recordings

8.4.8 Set 281

The results for this mix are presented in Figure 8.13.

• Number of identifiable tracks: 15

• Number of non-identifiable tracks: 3

• Accuracy: 0.78

• Precision: 0.94

• Specificity: 0.95

This mix contains 18 tracks, three of which are not referenced in
the database. The obtained accuracy of 78% is relatively low, and is
explained by the method failing to detect two sequences, one of which
is of long duration.

In this mix we only observe T-modifications. In six cases the tempo
is reduced, and in two cases it is sped up. This mix contains one of
the more severe scale changes, where the second track is played 10%
slower.

However, there is something odd in this mix. The number of matches
for the sequences is extremely low, and all but two sequences have less
than 100 matches, which is not the case in other mixes in the dataset.
Typically, there are hundreds of matches for a correctly identified
sequence. Consulting Figure 7.2d, we can see the good performance
of Audfprint for this mix (but on the small database of 723 tracks). We
listened to the some of the tracks and their references, and found that
these indeed are heavily modified with additional samples and effects.

8.4 case study : analysis of the mixotic dataset 157

(a) Sequence detection

set281

nm tquery [s] len p f .est t f .est vscore score Title

12 15; 74 59 1.002 1.035 0.613 7.354 Zimmer110.

17 80; 220 140 1.001 1.111 0.673 11.448 4.Rabitza-

29 322; 404 82 0.940 0.795 0.613 17.786 267695

54 626; 884 258 1.000 1.003 0.726 39.227 01.Brandon

62 947; 1165 218 0.999 1.048 0.758 47.021 [DigitalDi

13 1229; 1336 107 0.998 1.013 0.710 9.225 CODA013_Dr

230 1354; 1688 334 1.000 0.995 0.823 139.727 [DigitalDi

59 1705; 1906 201 1.000 0.995 0.730 43.042 [DigitalDi

96 1910; 2040 130 1.000 1.016 0.758 45.584 [DigitalDi

199 2060; 2329 269 0.999 0.994 0.830 165.200 [DigitalDi

111 2472; 2770 298 1.000 0.994 0.711 78.929 [DigitalDi

50 2782; 2979 197 1.000 1.034 0.840 28.103 brq101_nic

95 3010; 3147 137 1.000 0.980 0.849 80.701 02_kreisla

54 3270; 3582 312 1.001 0.956 0.731 39.494 7.ALW042_P

Eval :

TP FP FN Spec.TN Spec.FP Acc. Prec. Spec.

2593 151 558 285 12 0.78 0.94 0.95

(b) Results

Figure 8.13: Automatic sequence detection on mixotic-set 281.

158 interactive and automatic monitoring of long recordings

8.4.9 Set 282

The results for this mix are presented in Figure 8.14.

• Number of identifiable tracks: 8

• Number of non-identifiable tracks: 6

• Accuracy: 0.88

• Precision: 0.95

• Specificity: 0.85

For this mix we found the correct reference for track number 7 in our
large reference database, but this track is not present in our published
dataset. In Chapter 7 we treat this as false positive, as the ground
truth claims that this track is not present. Here, we treat this track
correctly, and manually fix the wrongly assigned confusions. These
cases are typed bold in Table 8.14b. Apart from the issues with that
specific track, we falsely claim a detected sequence in a region where
the reference is missing, and only reach a specificity of 85%. The last
sequence is noticeably longer than the corresponding region of the
ground truth, which also negatively impacts the specificity.

The scale modifications are done with at most 6% of speed-up. One
track is slowed down by roughly 3%.

8.4 case study : analysis of the mixotic dataset 159

(a) Sequence detection

set282

nm tquery [s] len p f .est t f .est vscore score Title

627 4; 302 298 1.061 0.942 0.893 560.032 (05) Smoot

446 320; 562 242 1.016 0.983 0.869 387.629 08 Baumfre

12 649; 804 155 0.712 1.318 0.657 7.878 730347

540 820; 1139 319 1.061 0.941 0.807 334.292 [04] Smoot

795 1153; 1404 251 1.000 0.999 0.934 742.274 04 - Spira

195 1438; 1613 175 1.017 0.984 0.823 160.504 ! Scamos !

356 1688; 1844 156 1.017 0.983 0.813 196.886 (03) Smoot

74 1870; 2092 222 1.017 0.983 0.835 61.780 (02) Smoot

588 2148; 2412 264 1.034 0.967 0.907 475.255 10 Martin

614 2934; 3269 335 0.968 1.033 0.832 341.220 04 - Subli

Eval :

TP FP FN Spec.TN Spec.FP Acc. Prec. Spec.

2095 100 180 1345 232 0.88 0.95 0.85

(b) Results

Figure 8.14: Automatic sequence detection on mixotic-set 282.

160 interactive and automatic monitoring of long recordings

8.4.10 Set 285

The results for this mix are presented in Figure 8.15.

• Number of identifiable tracks: 15

• Number of non-identifiable tracks: 0

• Accuracy: 0.86

• Precision: 0.99

• Specificity: −

All of the 15 tracks are present in the reference database. For one of
the tracks our method fails to report the correct reference, but does
not introduce false positives for this region. The missed sequence as
well as mistakes near the annotated song borders negatively impact
the accuracy to 86%.

All but one track are modified with higher tempo (T-modification).
The remaining one is not scale-modified at all. The most severe scale
modification is roughly +7.4% faster tempo. An interesting obser-
vation is that the content starting at around second 3000 is slowly
but steadily decelerated (non-linear scale modification), but still our
method manages to correctly identify the track.

8.4 case study : analysis of the mixotic dataset 161

(a) Sequence detection

set285

nm tquery [s] len p f .est t f .est vscore score Title

247 4; 291 287 1.000 0.982 0.845 208.610 7-04 - psy

226 335; 545 210 1.000 1.000 0.745 168.279 06 - Hudoz

62 600; 871 271 1.001 0.993 0.798 49.449 04 - Alex

71 903; 1180 277 1.000 0.931 0.729 41.843 15 - Bet O

77 1228; 1490 262 1.001 0.966 0.790 60.808 01 - Fcode

75 1506; 1818 312 1.000 0.966 0.800 57.016 04 - Mudar

257 1857; 2230 373 0.999 0.975 0.812 208.611 079 - DJ Z

49 2256; 2515 259 0.999 0.971 0.780 38.204 28 - Whoon

117 2540; 2885 345 1.001 0.954 0.750 87.738 02 - Mr Ka

175 2923; 3146 223 0.999 0.946 0.806 92.261 02 - Faris

136 3149; 3476 327 1.000 0.959 0.778 105.844 03 - Mudar

189 3677; 3885 208 0.999 0.957 0.787 62.880 02 - AFTec

243 3918; 4180 262 0.999 0.941 0.807 196.092 02 - Lenne

159 4215; 4548 333 1.000 0.968 0.722 114.775 093 - BKMZ

Eval :

TP FP FN Spec.TN Spec.FP Acc. Prec. Spec.

3932 31 596 0 0 0.86 0.99 -

(b) Results

Figure 8.15: Automatic sequence detection on mixotic-set 285.

162 interactive and automatic monitoring of long recordings

8.4.11 Set 286

The results for this mix are presented in Figure 8.16.

• Number of identifiable tracks: 14

• Number of non-identifiable tracks: 0

• Accuracy: 0.89

• Precision: 0.93

• Specificity: −

Apart from one sequence, which (according to the ground-truth) seems
to start far too early (see the region at second 500), everything is
mostly correctly detected, but some mistakes are made around the
song borders

All songs are played approximately one percent faster, but two
performed tracks in this mix stand out: Sequences number 5 and 7
(around second 1000 and 1500, respectively) are played slower, but
also with a higher pitch. These cases are examples of a combination of
time as well as pitch scale modifications.

8.4 case study : analysis of the mixotic dataset 163

(a) Sequence detection

set286

nm tquery [s] len p f .est t f .est vscore score Title

670 0; 292 292 1.008 0.991 0.880 589.388 Zimmer119.

210 297; 468 171 1.008 0.988 0.928 92.265 Zimmer119.

559 471; 807 336 1.008 0.991 0.863 482.676 Zimmer120.

108 810; 1069 259 1.009 1.007 0.799 74.806 Zimmer121.

1036 1069; 1312 243 1.008 0.991 0.867 612.419 Zimmer121.

196 1346; 1501 155 1.007 1.006 0.842 165.011 Zimmer121.

97 1536; 1753 217 1.008 0.971 0.824 67.412 Zimmer121.

230 1768; 1955 187 1.008 1.000 0.844 194.045 01_hermeti

777 1962; 2255 293 1.008 0.999 0.860 319.258 02_hermeti

234 2275; 2538 263 1.008 0.998 0.830 194.264 Track_Jack

147 2567; 2766 199 1.008 0.976 0.853 125.427 Track_Jack

78 2773; 2900 127 1.008 0.971 0.837 59.702 A3 Miami S

122 2906; 3031 125 1.009 0.966 0.844 102.972 B1 Miami S

145 3042; 3157 115 1.009 0.958 0.811 58.068 Track_Jack

Eval :

TP FP FN Spec.TN Spec.FP Acc. Prec. Spec.

2815 180 164 0 0 0.89 0.93 -

(b) Results

Figure 8.16: Automatic sequence detection on mixotic-set 286.

164 interactive and automatic monitoring of long recordings

8.5 discussion

In this chapter we demonstrated how to take advantage of first collect-
ing all fingerprinted match-candidates of an entire query recording,
and then use this collection to segment the query recording and re-
port sequences. We refer to this as a “global” approach to sequence
detection.

We demonstrate that the use of global information supports the
capabilities of an automated system to maintain a higher identification
performance in comparison to short, local query snippets as used
in Chapter 7. For interactive post-processing the gradually refined
visualisations seem to help – one can see regions of the mix where
a lot of repetitive content is played, and where the largest amount
of competing file-IDs are returned. One could change the sequence
detector parameters in an interactive fashion to clean up complicated
regions of the result set. On the other hand, when considering the
local query results that were stripped of weak results beforehand,
information is lost that otherwise could turn out to be helpful to
the task. We argue that for interactive post-processing this kind of
visualisations help to speed up the validation, and allow a user to
focus on apparently incorrect, or dubious results.

For fully automatic sequence detection this approach successfully
increases all three performance measures, i.e. the accuracy, precision
and specificity. On our dataset, the most impact for the increase in
performance is the successful deletion of false positive sequences, for
which simpler and cheaper approaches might work as well. However,
we could in fact increase the accuracy by 5 percentage points on the
mixotic-set and by 8 percentage points on the disco-set.

Note that the sequence detector parameters should be tuned on
large and independent data sets. Unfortunately, we currently do not
have enough data for an independent parameter study.

9
C O N C L U S I O N

This thesis has presented our work on audio fingerprinting. We aimed
at solving the complex problem of building an automated system that
is practically applicable to a wide variety of use cases, most notably,
to a topic that is of high relevance to the industry: the monitoring of
DJ performances for transparent distribution of revenue.

For the application to a wide variety of use cases, systems have to be
robust to background noise, introduced signal artifacts caused by lossy
audio compression, and most importantly, scale modifications in time
and frequency. These requirements have to be met without limiting
the identification performance of systems, or their applicability to
large-scale tasks.

For this, we defined a set of robustness requirements that have to
be met for system application to media monitoring and audio copy
detection tasks. To do so we cite sources that observe the importance
of systems being robust to changes in the pitch and time scale of
query audio. We further investigate DJ performances to establish a
lower bound of ±5% of scale robustness. However, it turned out that
this lower bound seems to be too optimistic: in our small datasets we
encounter scale changes of up to 10%, which calls for even more robust
systems. To meet this demand, we designed Qfp to be highly robust,
and evaluate all experiments in the range ±30% of scale modifications.

Studying previous and related work in the academic literature, we
concluded that at the time we started working on the topic, the task of
building an automated system that can meet the criteria indeed was
an unsolved research problem.

In this thesis we propose a novel audio fingerprinting method,
“Qfp”. It is based on simple and elegant methods that have been
discovered by researchers working in the domain of astronomy. Ac-
cording to the rich evaluation reported in this thesis, Qfp seems to
be able to meet the established robustness criteria. To our knowledge,
Qfp is the first system to be proposed in the academic literature, that
can satisfy all of the defined criteria at the same time – even if the
lower bound of scale robustness is to be raised from 5% to 10%.

Due to the compact fingerprints used in Qfp, the four-dimensional
hash space can be efficiently searched via range search techniques. We
demonstrated high identification performance with low processing run
times in experiments of more than a million of queries with various dis-
tortions, against a large database consisting of up to 430,000 full-length
songs (roughly 3.37 years of music). While there is high potential of
false positive matches in a database of this size (roughly 757 million

165

166 conclusion

quads) in combination with the rather large scale tolerances of ±30%
of our system, the proposed filtering stage and verification of match
sequence hypotheses enable the system to maintain high precision
and specificity, even for musical genres with highly repetitive content.
The database is created from freely available (for non-commercial use)
Creative-Commons licensed tracks that are hosted by the Jamendo
service, i.e. we perform the experiments on a reproducible reference
collection.

We assume that the monitoring of DJ performances could be seen
as the “grand challenge” of audio fingerprinting, due to the enormous
robustness demands that are caused by the large degree of freedom for
DJs to introduce effects that modify the audio signal. For evaluating
the system, we aimed at constructing a realistic test scenario and tested
the system on real world data – actual DJ performances over a variety
of music genres. In the experiments, Qfp is compared to two further
methods, both of which are freely available for research purposes. With
this setup we intend to facilitate reproducible research. The method
we propose turned out to operate at considerably higher performance
than the other tested methods. The results allow to observe that
this use-case indeed reveals issues that are not encountered when
evaluating systems on manually crafted evaluation data. To facilitate
research in this direction, we created and published a free dataset for
this task.

Then, we proceed to append the reference tracks of our two DJ
performance datasets to our large reference database, in order to
perform experiments that, we believe, are quite realistic scenarios for
the application in industry, because of the large reference collection.
Here, apart from maintaining high identification performance, systems
must be able to operate on very large reference collections, and at the
same time operate with high efficiency. The results highlight that our
proposed system seems to be a highly promising method.

To further increase the identification performance for media mon-
itoring, we propose to build a sequence detector on top of Qfp. The
underlying idea is to first collect all match-candidates by fingerprint-
ing the entire query recording to then filter this global result set using
a sequence detector. We observe that despite the verification process
of Qfp, the system reports large numbers of potentially correct match
hypotheses of various, contradicting file-IDs. This is to be expected in
the presence of highly repetitive electronic music. To increase the per-
formance of the system in these cases, we perform sequence estimation
on global context, rather than on successive short and local queries.
This also seems to be a promising way to accelerate the verification of
results in a supervised setting, where manual efforts must be invested
to validate the system output. While the sequence detection on global
results is a more runtime demanding process than performing local
queries, we show that the proposed system is highly beneficial in

conclusion 167

terms of accuracy, precision and specificity. According to a case study
that we perform in this thesis, we could increase the overall identi-
fication performance. In terms of accuracy, precision and specificity,
for the first dataset (called “disco-set”) we achieved an increase in
accuracy by 8 percentage points, precision by 14 percentage points,
and specificity by 20 percentage points, respectively. On the second
dataset (called “mixotic-set”), we could improve the results by 5, 9,
and 34 percentage points. However, it remains to be seen how this
method performs on a large and representative dataset.

In the course of this thesis we established, via extensive experimen-
tation, that our own proposed method “Qfp” reports reliable results
and is efficiently applicable to large collections of data. Qfp seems to
be a promising method to be applied to a task that is highly demanded
by artists: artists claim the right of fair and transparent distribution
of revenue. For this, it is not sufficient to simply report which tracks
occurred in the processed recordings. Rather, to distribute revenue
in an accurate and fair way, it is important to assess the amount of
seconds that a given song was played. In our experiments on media
monitoring, our evaluation methodology is designed to report this
kind of information in detail.

For future analysis and experiments in this direction we think it
would be worthwhile to collect DJ mixes with accurate annotations
and timestamps that are exported from the specific software or the
midi controller used by the DJ. This would allow to gain insight on
what kinds of effects and combinations thereof prevent automated
identification systems from correctly identifying certain portions of
query audio.

We hope that our contributions can complement the active field
of research on audio fingerprinting, and that the level of detail in
our evaluation methodology, together with reproducible reference
data collections 1, allows our system to serve as a baseline for further
research in this field.

1 The information to reproduce the data is available at http://www.cp.jku.at/

datasets/fingerprinting/

http://www.cp.jku.at/datasets/fingerprinting/
http://www.cp.jku.at/datasets/fingerprinting/

L I S T O F F I G U R E S

Figure 1.1 The three basic types of time and frequency
scale modifications, compared to the original
(top left). 4

Figure 1.2 Abstract system modules 11

Figure 1.3 Detailed system architecture 12

Figure 2.1 Literature by year of publication (Figure 2.1a),
annotated with the type of scale change robust-
ness. Publications of the same year are stacked
vertically, without specific order. Grey colored
citation indices denote literature that does not
consider robustness to any kind of scale modi-
fications. Black citation indices represent work
that is robust to at least one kind of scale mod-
ifications, where “S” is shorthand for what we
defined as TP-modification, and “T” and “P”
denote T- and P-modifications. “STP” denotes
P-, T-, TP–modification robustness. Table 2.1b
resolves the citation indices given in Figure 2.1a. 18

Figure 3.1 Feature extraction components 33

Figure 3.2 Reference quad grouping (3.2a) and query quad
grouping with increased tempo (3.2b), and decreased
tempo (3.2c). 36

Figure 3.3 Extracted spectral peaks and grouped quads on a
15 seconds excerpt of “Radiohead - Exit Music (For
a Film)“. 37

Figure 3.4 Database components 38

Figure 3.5 Subcomponents of the search module 40

Figure 3.6 Histogram of the average number of quads per sec-
ond for all files in a reference database of 20,000
songs. 43

Figure 3.7 Precision and accuracy for speed (3.7a), tempo (3.7b)
and SNR (3.7c) modifications, on a database of 1000
songs. 45

Figure 3.8 SNR variations for 95% and 105% speed on a database
of 1000 songs. 46

Figure 3.9 SNR variations for 95% and 105% tempo on a
database of 1000 songs. 47

Figure 3.10 Precision and accuracy for speed (3.10a) and tempo
modifications (3.10b) on a database of 20,000 songs. 48

Figure 4.1 Feature extraction components 54

169

170 List of Figures

Figure 4.2 Reference quad grouping (4.2a) and adaptive
query quad grouping with increased tempo
(4.2b), and decreased tempo (4.2c). 4.2a shows
a root point A and the hollow circles B, C, D to
group a reference quad. Figures 4.2b, 4.2c show
the regions for the tolerance of ±30% in the
queries, and the different peak densities. Note
the important difference to Figure 3.2: rquery is
scaled according to Equations 4.4, rather than
proportionally to the tolerance bounds of ±30%. 57

Figure 4.3 Example of a valid quad A, B, C, D and its cor-
responding hash. 60

Figure 4.4 Example of a valid quad A, B, C, D that depicts
cre f , rre f , and its corresponding hash. The hash
space that is not greyed out is the relevant sub-
space. 60

Figure 4.5 Search components 63

Figure 4.6 Verification of a match candidate for a query
snippet of +120% pitch (i.e. the query audio
has higher pitch than the unmodified refer-
ence audio). The two black squares are the
root points Aref , Aquery. The plus symbols and
crosses in the upper figure show all reference
peaks in proximity of Aref . The lower figure
shows the location estimates of peaks in query
space. The plus symbol means “not verified”,
the cross means “verified”. The dots in the
lower figure show all additional peaks which
are extracted due to smaller peak filter sizes.
Note that crosses always coincide with a dot,
while this is never the case for the plus sym-
bols. The rectangles show the tolerance regions
for the alignments. The figure allows to ob-
serve that the high frequency reference peaks
were shifted out of the query content. Note that
this shows an example using a sampling rate
of 16kHz, window size of 2048 samples and a
hop size of 64 samples. 68

Figure 4.7 Histogram of the percentage of candidate file-
IDs from the retrieved set of potential file-IDs
that had to be processed in order to answer
a query, computed from 11,700 queries. Note
the bin at x = 100%: here, the contributors
are false negatives, and weakly matched file-
IDs with exactly ts matches (either true or false
positives). 69

List of Figures 171

Figure 4.8 Precision and accuracy for TP- (4.8a), T- (4.8b)
and P-modifications (4.8c) of 20s queries with
a near-neighbour search radius εL = 0.01 on a
database of 100,000 songs. The figures show re-
sults of a total of 11,700 queries (3 kinds of dis-
tortions for 13 values over 300 queries), where
each pair of data points shows the result of 300
queries. The boxplot pairs show the average
verification scores of tp (left) and fp (right) se-
quences. In cases with perfect precision, no fp
boxplots are shown. 70

Figure 4.9 Precision and accuracy for TP-, T- and P-modifications
(from top to bottom) on our reference database
of 100,000 songs. Figures 4.9a to 4.9c (note the
y-axis range) show results for a total of 117,000
queries, for various values of quads per sec-
ond (qps, parameter q) and a query snippet
length of 20s and εL = 0.01. Each pair of data
points shows the average precision and accu-
racy of 3900 queries for scale modifications in
the range of ±30% of the individual type, as in
the experiment shown in Figure 4.8. 71

Figure 4.10 TP-, T- and P-modifications (from top to bot-
tom) for varying SNRs. The figures show re-
sults for a total of 152,100 queries of various
SNR, snippet length of 15s and εL = 0.01,
where each pair of data points is the average
over 3900 queries using our reference collec-
tion of 100,000 tracks. Figure 4.10a shows TP-
modified queries for 13 TP-modification values
in the range of ±30%. Figure 4.10b and Fig-
ure 4.10c show T- and P-modifications, respec-
tively, such that each pair of datapoints is one
single experiment as depicted in Figure 4.8. . 72

Figure 4.11 Fraction of time spent in the processing stages
by the average query, averaged over the 11,700
queries performed for Figure 4.8 (l = 20s, εL =

0.01, qps = 1500). This figure represents a me-
dian query processing time of 1.65s. 77

172 List of Figures

Figure 4.12 Example of an incorrect verification of a single
match-candidate, resulting in a false positive
match. Note, to report a false positive sequence,
the verification step has to fail on several match
candidates of the same incorrect file-ID, and
these matches still have to end up in the same
bin during sequence estimation. The mean-
ing of the markers (cross, plus, circle, box) is
described in Section 4.5.3 and Figure 4.6. . . . 80

Figure 5.1 System components for searching 83

Figure 5.2 Example of range-search. The figure shows the
search space that is populated with reference
points (labelled by their IDs). The circle q is
the query point with its search neighbourhood
(grey area). The expected result set consists of
the records 6 and 2. 84

Figure 5.3 Example of a split operation for a 4-ary BVH.
The numbered circles represent data points in
two dimensional space. The top box shows the
aabb for the collection of data points, where
the widest axis is chosen as split axis. The split
position is shown as a dotted line. The sec-
ond box shows the result of the first split, and
the third box shows the results of the second
and third split. The corresponding partitioned
record arrays obtained with the Hoare parti-
tioning scheme are shown below. This example
shows arbitrary, non-optimal split positions. . 90

Figure 5.4 Evaluating split positions for the SAH sweep
over the x-axis. The record partitions for each
split candidate are shown in the lower half of
the figure. The arrows denote the start of the
record range of the second box. 91

Figure 6.1 Histogram of the fraction of candidate file-IDs
out of the set of retrieved file-IDs) that had
to be processed to answer a query, computed
from 11,700 queries. This figure highlights the
effectiveness of the early-exit behaviour of the
matching process. Note the bin to the right. It
represents weakly matched queries and false
positives. 97

Figure 6.2 Speed, tempo and pitch modifications in the
range of ±30% on the database of roughly
430,000 tracks. 98

List of Figures 173

Figure 6.3 Average time spent by a query in the processing
stages. The average time is computed from
11,700 queries (3 types of modifications with 13
values of 300 snippets) using 7 worker threads
(top and middle figure), or 2 worker threads
(bottom figure). For the top figure, a deeper
tree is used, such that splitting is stopped when
less than 32 hashes are referenced in a node.
The middle and bottom figure use a tree that
stops splitting when less than 64 elements are
referenced. 100

Figure 6.4 Visualisation of the effects described in Ta-
ble 6.1. The spectrograms show roughly two
seconds of audio. 101

Figure 6.5 Non-linear scale modifications in the range of
±10%. The rows correspond to the type of
scale modification. The left column shows the
spectrogram content of the modified piece. The
right column shows the difference to the origi-
nal. 102

Figure 6.6 Robustness to white noise in the range of [−10; 50]dB,
for queries that are not P-, T-, TP–modified. The
figure shows a comparison of Qfp (square and
upward-triangle markers) to the peak-based
method “Audfprint” (circle and downward-
triangle markers), which is considered to be
exceptionally robust to noise. Note that Qfp
operates with high precision on 430,000 tracks
(with 7.5 hashes per second) while for Audf-
print we use a small example-collection that
contains a subset of 1023 tracks (with the de-
fault of 20 hashes per second). 104

Figure 6.7 Robustness to white noise for SNR levels from
−10dB to 50dB, with P-, T-, TP–modifications
in the range of ±30%. The thin black curves
represent the baseline (see “Acc. Qfp” and
“Prec. Qfp” in Figure 6.6). For the blue and red
curves, each pair of points shows precision and
accuracy average over 3900 queries. The ex-
periment consists of a total number of 152,100
queries (3 types of modifications for 13 SNR
values of 3900 queries). 106

174 List of Figures

Figure 6.8 Precision and accuracy for TP-, T- and P-modifications
(from top to bottom) on our reference database
of 430,000 songs. Figures 6.8a to 6.8c (note the
y-axis range) show results for a total of 280,800
queries, for 24 values of quads per second (qps,
parameter q) in the range of [125; 3000] in steps
of 125 qps, and a query snippet length of 20s.
Each pair of data points shows the average pre-
cision and accuracy of 3900 queries for scale
modifications in the range of ±30% of the indi-
vidual type. 108

Figure 6.9 Reported scale modification factors (Figure 6.9a)
and verification scores (Figure 6.9b) of the re-
ported results (false-positives) of the specificity
experiment. 110

Figure 7.1 Query visualisations for mixotic sets. The rows
show the results of individual, non-overlapping
20s queries without smoothing of predictions
for Audfprint (top), Panako (middle) and Qfp (bot-
tom). The vertical lines are the annotated song
borders. The identification claims of the sys-
tems are encoded in the shown markers, where
each marker represents a reference track. The x-
axis position shows the query excerpt position,
and y-axis the location of the matched query
within the identified reference track. A miss-
ing large marker indicates a missing reference
track. The figures show a bar at the bottom,
which represents the confusions. tp (green) and
tn (blue) are shown on top of the horizontal
line, fp (red) and fn (yellow) are shown below. 123

Figure 7.2 Visualisation of mixotic sets 230, 275, 278 and
281. Please refer to Figure 7.2 for explanations. 124

Figure 7.3 Visualisation of mixotic sets 282, 285 and 286.
Please refer to Figure 7.2 for explanations. . . . 125

Figure 8.1 Sequence detection as part of the reporting
module. 128

Figure 8.2 An introductory example of sequence detection
on global results. The upper sub-figure shows
the collected verified matches that adhere to
Qfp’s set of constraints. The lower figure shows
the uncovered scale transformations (first se-
quence: pitch −10%, second sequence: speed
+20%, third sequence: tempo −25%). 131

Figure 8.3 Semi-automatic analysis: varying the number
of matches. 137

List of Figures 175

Figure 8.4 Semi-automatic analysis: varying the number
of matches. 138

Figure 8.5 Automatic sequence detection on set282 of the
mixotic data set, using the small reference database
that contains the 723 published reference tracks.
The upper sub-figure shows the collected veri-
fied matches. The middle figure shows the re-
sult of the sequence detector, where the colored
regions show the segments are claimed for an
identified track, and the vertical bars show the
song-border annotations of the ground-truth.
The lower figure shows the uncovered pitch-
and time-scale transformations. 139

Figure 8.6 Automatic sequence detection on set282 of the
mixotic data set, using our reference database
that contains 430,000 tracks, including the pub-
lished mixotic reference tracks. The upper sub-
figure shows the collected verified matches.
The middle figure shows the result of the se-
quence detector, where the colored regions show
the segments that correspond to an identified
track, and the vertical bars show the song-
border annotations of the ground-truth. The
lower figure shows the uncovered pitch- and
time-scale transformations. 140

Figure 8.7 Automatic sequence detection on mixotic-set 044145

Figure 8.8 Automatic sequence detection on mixotic-set 123.147

Figure 8.9 Automatic sequence detection on mixotic-set 222.149

Figure 8.10 Automatic sequence detection on mixotic-set 230.151

Figure 8.11 Automatic sequence detection on mixotic-set 275.153

Figure 8.12 Automatic sequence detection on mixotic-set 278.155

Figure 8.13 Automatic sequence detection on mixotic-set 281.157

Figure 8.14 Automatic sequence detection on mixotic-set 282.159

Figure 8.15 Automatic sequence detection on mixotic-set 285.161

Figure 8.16 Automatic sequence detection on mixotic-set 286.163

L I S T O F TA B L E S

Table 2.1 Size of reference collections (in hours) and re-
ported evaluation measures for methods robust
to time or frequency modifications. For eval-
uation measures, “A”, “P” and “S” denote ac-
curacy, precision and specificity. “R” denotes
recall (tp/(tp + fn)). 19

Table 3.1 Query runtimes in seconds. “tot” is the total
time, “tree” is the time taken by tree intersec-
tion, “feat.” is the feature extraction time for
spectral peaks and quad grouping and “match”
is the matching and verification time. 49

Table 4.1 Average performance and run times (qps = 1500). 74

Table 4.2 Performance on 20s-queries without scale mod-
ifications, that are distorted by various effects.
Column “Qfp” shows the results using our
method (with qps = 1500). Column “Panako”
shows the transcribed results for the same ef-
fects as presented by Six and Leman (2014),
on their smaller reference collection of 30,000
tracks. A visualisation of example spectro-
grams for the effects is given in Figure 6.4 . . . 76

Table 6.1 Performance on queries (without scale modi-
fications) that are distorted by various effects
(qps = 1500). A visualisation of the correspond-
ing spectrograms is given in Figure 6.4. 99

Table 6.2 Performance on 20s queries with non-linear
scale modifications (constant “acceleration”). . 105

Table 6.3 Performance on query lengths (qlen) in the
range of [3; 20] seconds. The accuracy is given
in columns “acc.” and (duplicate-aware) in
“acc.dup“, the precision is given in columns
”prec.“ and ”prec.dup”. The third and fourth
column represents the results when using du-
plicate track information. The last row (bold)
represents the common experiment using 20
second queries. The two rightmost columns
show the runtime mean and median. 105

176

List of Tables 177

Table 6.4 Performance on 20 seconds long queries with
varied numbers of query quads per second
(qps), in the range of [125; 3000] qps, in steps
of 125 qps. The table shows the total averaged
accuracy and performance (evaluated with and
without awareness of duplicates). The aver-
age is obtained by accumulating the tp, fp, fn
for P-, T-, TP–modifications. The accuracy is
given in columns “acc.” and (duplicate-aware)
in “acc.dup“, the precision is given in columns
”prec.“ and ”prec.dup”. The two rightmost
columns show the mean and median run time. 109

Table 7.1 Data set properties of the disco set (top) and
the mixotic set (bottom). The column “tracks”
gives the number of played tracks in the DJ
mix, “ref” denotes the number of these tracks
that are present in the reference database, and
the columns “+[s], −[s]” hold the number of
seconds of referenced audio and not-referenced
audio for the individual DJ mixes. 115

Table 7.2 Evaluation results for the data sets. The column
“+” shows the number of seconds of the DJ
mix, for which a reference is present. The col-
umn “−” likewise gives the number of seconds
for which no reference track is present. The
methods (M.) Audfprint, Panako and Qfp are
abbreviated as “A”, “P” and “Q”. The column
“Qv” shows Qfp results without the verification
stage, and “Qε” shows results for the reduced
search neighbourhood. “acc.” is the accuracy,
“prec.” is the precision and “spec.” is the speci-
ficity (see Section 1.7). The experiment setup
is defined in Section 7.3. In this chapter we
omit showing the individual statistics of each
DJ mix that is contained in the dataset, and
directly present the overall values. Detailed re-
sults and additional experiments are given in
the subsequent chapter. 117

178 List of Tables

Table 7.3 Evaluation results for the data sets within the
large reference collection, compared to the re-
sults using the small reference collections. Q
denotes the previous results as shown in Ta-
ble 7.2, Qlarge denotes the results on the large
database of 430,000 tracks, and Qpart

large denotes
the corresponding results when considering the
start and end point of the matched query seg-
ment rather than the whole 20 seconds. 122

Table 8.1 Evaluation of the automatic sequence detection
on the complete mixotic-set, using our large
reference database. tp, fp, fn show the confu-
sions in seconds, concerning those parts of the
mixes for which the reference song is present
in the database. tn, fps show true-negatives and
false-positives for the parts for which we do not
have the reference. Acc. is the accuracy, Prec.
the precision and Spec. the specificity. 141

Table 8.2 Evaluation of the automatic sequence detection
on the complete (non-free and unpublished)
disco-set, using our large reference database.
See Table 8.1 for a description of the columns.
The confusions are given in seconds. 141

B I B L I O G R A P H Y

Anguera, X., A. Garzon, and T. Adamek (2012). “MASK: Robust Local
Features for Audio Fingerprinting”. In: IEEE International Confer-
ence on Multimedia and Expo, pp. 455–460.

Baluja, S. and M. Covell (2007). “Audio Fingerprinting: Combining
Computer Vision and Data Stream Processing”. In: IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP
2007). Vol. 2, pp. 213–216.

Baluja, S. and M. Covell (2008). “Waveprint: Efficient Wavelet-Based
Audio Fingerprinting”. In: Pattern Recognition 41.11, pp. 3467–3480.
issn: 0031-3203.

Bardeli, R. and F. Kurth (2004). “Robust Identification of Time-Scaled
Audio”. In: Audio Engineering Society (AES 2004), 25th International
Conference on Metadata for Audio, London, UK.

Batlle, E., J. Masip, E. Guaus, and P. Cano (2004). “Scalability Issues
in an HMM-Based Audio Fingerprinting”. In: IEEE International
Conference on Multimedia and Expo (ICME 2004). Vol. 1, 735–738

Vol.1.
Batlle, E., J. Masip, and E. Guaus (2002). “Automatic Song Identifi-

cation in Noisy Broadcast Audio”. In: International Conference on
Signal and Image Processing (IASTED 2002).

Bellettini, C. and G. Mazzini (2008). “Reliable Automatic Recognition
for Pitch-Shifted Audio”. In: Proceedings of 17th International Con-
ference on Computer Communications and Networks, ICCCN’08, St.
Thomas, U.S. Virgin Islands, August 3-7, 2008. IEEE, pp. 838–843.

Betser, M., P. Collen, and J.-B. Rault (2007). “Audio Identification
Using Sinusoidal Modeling and Application to Jingle Detection.”
In: Proceedings of the 8th International Conference on Music Information
Retrieval (ISMIR 2007). Vienna, Austria, pp. 139–142.

Burges, C. J. C., D. Plastina, J. C. Platt, E. Renshaw, and H. S. Malvar
(2005). “Using Audio Fingerprinting for Duplicate Detection and
Thumbnail Generation”. In: IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP 2005). Vol. 3, iii/9–iii12

Vol. 3.
Burges, C. J., J. C. Platt, and S. Jana (2002). “Extracting Noise-Robust

Features from Audio Data”. In: IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP 2002). Vol. 1. IEEE,
pp. I–1021.

Burges, C. J., J. C. Platt, and S. Jana (2003). “Distortion Discriminant
Analysis for Audio Fingerprinting”. In: IEEE Transactions on Speech
and Audio Processing 11.3, pp. 165–174.

179

180 Bibliography

Cano Vila, P. and X. Serra (2007). Content-Based Audio Search: from
Fingerprinting to Semantic Audio Retrieval. English. Barcelona: Uni-
versitat Pompeu Fabra. isbn: 978-84-691-1205-2.

Cano, P., E. Batlle, T. Kalker, and J. Haitsma (2002). “A Review of Algo-
rithms for Audio Fingerprinting”. In: IEEE Workshop on Multimedia
Signal Processing, pp. 169–173.

Cano, P., E. Batlle, T. Kalker, and J. Haitsma (2005). “A Review of
Audio Fingerprinting”. en. In: Journal of VLSI signal processing
systems for signal, image and video technology 41.3, pp. 271–284. issn:
0922-5773.

Cano, P., E. Batlle, H. Mayer, and H. Neuschmied (2002). “Robust
Sound Modeling for Song Detection in Broadcast Audio”. In:
pp. 1–7.

Casey, M., C. Rhodes, and M. Slaney (2008). “Analysis of Minimum
Distances in High-Dimensional Musical Spaces”. In: Trans. Audio,
Speech and Lang. Proc. 16.5, pp. 1015–1028. issn: 1558-7916.

Chandrasekhar, V., M. Sharifi, and D. A. Ross (2011). “Survey and
Evaluation of Audio Fingerprinting Schemes for Mobile Query-
by-Example Applications.” In: International Society for Music Infor-
mation Retrieval Conference (ISMIR 2011). Vol. 20, pp. 801–806.

Dammertz, H., J. Hanika, and A. Keller (2008). “Shallow Bounding Vol-
ume Hierarchies for Fast SIMD Ray Tracing of Incoherent Rays”.
In: Proceedings Eurographics Conference on Rendering. Aire-la-Ville,
Switzerland, Switzerland: Eurographics Association, pp. 1225–
1233.

Dupraz, E. and G. Richard (2010). “Robust Frequency-Based Audio Fin-
gerprinting”. In: IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP 2010), pp. 281–284.

Ellis, D. P. and G. E. Poliner (2007). “Identifying ‘Cover Songs’ with
Chroma Features and Dynamic Programming Beat Tracking”. In:
Proceedings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP 2007). Vol. 4. Honolulu, Hawaii,
USA.

Evangelidis, G. and C. Bauckhage (2011). “Efficient and Robust Align-
ment of Unsynchronized Video Sequences.” In: DAGM-Symposium.
Vol. 6835. Lecture Notes in Computer Science. Springer, pp. 286–
295. isbn: 978-3-642-23122-3.

Evangelidis, G. and C. Bauckhage (2013). “Efficient Subframe Video
Alignment Using Short Descriptors.” In: IEEE Trans. Pattern Anal.
Mach. Intell. 35.10, pp. 2371–2386.

Fenet, S. (2013). “PhD thesis. Telecom-ParisTech”. PhD thesis. telecom-
paristech.

Fenet, S., G. Richard, and Y. Grenier (2011). “A Scalable Audio Finger-
print Method with Robustness to Pitch-Shifting.” In: Proceedings
of the 12th International Conference on Music Information Retrieval
(ISMIR 2011), pp. 121–126.

Bibliography 181

Fujishima, T. (1999). “Realtime Chord Recognition of Musical Sound:
a System Using Common Lisp Music”. In: Proceedings of the 1999
International Computer Music Conference, ICMC 1999, Beijing, China,
October 22-27, 1999.

Goldsmith, J. and J. Salmon (1987). “Automatic Creation of Object
Hierarchies for Ray Tracing”. In: IEEE Computer Graphics and Ap-
plications 7.5, pp. 14–20.

Goldstein, J., J. C. Plat, and C. J. Burges (2005). “Redundant Bit Vectors
for Quickly Searching High-Dimensional Regions”. In: Determinis-
tic and Statistical Methods in Machine Learning. Springer, pp. 137–
158.

Goto, M. (2003). “A Chorus-Section Detecting Method for Musical
Audio Signals”. In: Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP 2003). Hong
Kong, China, pp. 437–440.

Grosche, P. and M. Müller (2012). “Toward Characteristic Audio Shin-
gles for Efficient Cross-Version Music Retrieval”. In: IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP
2012), Kyoto, Japan, March 25-30, 2012, pp. 473–476.

Grosche, P., M. Müller, and J. Serrà (2012). “Audio Content-Based Mu-
sic Retrieval”. In: Multimodal Music Processing. Ed. by M. Müller, M.
Goto, and M. Schedl. Vol. 3. Dagstuhl Follow-Ups. Dagstuhl, Ger-
many: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, pp. 157–
174.

Guttman, A. (1984). “R-trees: A Dynamic Index Structure for Spatial
Searching”. In: SIGMOD Rec. 14.2, pp. 47–57. issn: 0163-5808.

Haitsma, J. and T. Kalker (2002). “A Highly Robust Audio Fingerprint-
ing System”. In: International Society for Music Information Retrieval
Conference (ISMIR 2002).

Haitsma, J. and T. Kalker (2003). “Speed-Change Resistant Audio Fin-
gerprinting using Auto-Correlation”. In: IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP ’03). Vol. 4,
pp. 728–731.

Haitsma, J., T. Kalker, and J. Oostveen (2001). “Robust Audio Hashing
for Content Identification”. In: International Workshop on Content-
Based Multimedia Indexing. Vol. 4. Citeseer, pp. 117–124.

Herre, J., O. Hellmuth, and M. Cremer (2002). “Scalable Robust Au-
dio Fingerprinting using MPEG-7 Content Description”. In: IEEE
Workshop on Multimedia Signal Processing, pp. 165–168.

Jain, A., A. Ross, and K. Nandakumar (2011). Introduction to Biometrics.
SpringerLink : Bücher. Springer US. isbn: 9780387773261.

“Jamendo Service”. Available at https://www.jamendo.com.
Ke, Y., D. Hoiem, and R. Sukthankar (2005). “Computer Vision for

Music Identification”. In: 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR 2005), 20-26 June
2005, San Diego, CA, USA, pp. 597–604.

https://www.jamendo.com

182 Bibliography

Kurth, F., T. Gehrmann, and M. Müller (2006). “The Cyclic Beat Spec-
trum: Tempo-Related Audio Features for Time-Scale Invariant
Audio Identification.” In: International Society for Music Information
Retrieval Conference (ISMIR 2011), pp. 35–40.

Kurth, F. and M. Müller (2008). “Efficient Index-Based Audio Match-
ing”. In: IEEE Transactions on Audio, Speech, and Language Processing
16.2, pp. 382–395.

Kurth, F., A. Ribbrock, and M. Clausen (2002). “Identification of Highly
Distorted Audio Material for Querying Large Scale Data Bases”.
In: International Audio Engineering Society Convention 112. Audio
Engineering Society.

Lang, D., D. Hogg, K. Mierle, M. Blanton, and S. Roweis (2010). “As-
trometry.net: Blind Astrometric Calibration of Arbitrary Astro-
nomical Images”. In: The Astronomical Journal 137, pp. 1782–2800.

“libspatialindex”. Available at https://libspatialindex.github.io/.
Liu, Y., H. S. Yun, and N. S. Kim (2009). “Audio Fingerprinting Based

on Multiple Hashing in DCT Domain”. In: IEEE Signal Processing
Letters 16.6, pp. 525–528. issn: 1070-9908.

Lu, C.-S. (2002). “Audio Fingerprinting based on Analyzing Time-
Frequency Localization of Signals”. In: 2002 IEEE Workshop on
Multimedia Signal Processing, pp. 174–177.

Malekesmaeili, M. and R. K. Ward (2014). “A Local Fingerprinting
Approach for Audio Copy Detection”. In: Signal Processing 98,
pp. 308–321.

Miller, M. L., M. A. Rodriguez, and I. J. Cox (2002). “Audio Fingerprint-
ing: Nearest Neighbor Search in High Dimensional Binary Spaces”.
In: IEEE Workshop on Multimedia Signal Processing, pp. 182–185.

Müller, M., F. Kurth, and M. Clausen (2005). “Audio Matching via
Chroma-Based Statistical Features”. In: Proceedings of the Inter-
national Conference on Music Information Retrieval (ISMIR 2005),
pp. 288–295.

“Ogg Vorbis”. Available at http://www.vorbis.com.
Ogle, J. P. and D. P. Ellis (2007). “Fingerprinting to Identify Repeated

Sound Events in Long-Duration Personal Audio Recordings”. In:
IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP 2007). Vol. 1. IEEE, pp. I–233.

Ouali, C., P. Dumouchel, and V. Gupta (2014). “A Robust Audio
Fingerprinting Method for Content-Based Copy Detection”. In:
12th International Workshop on Content-Based Multimedia Indexing
(CBMI), 2014. IEEE, pp. 1–6.

Porter, A. (2012). “Evaluating Musical Fingerprinting Systems”. PhD
thesis. McGill University.

Rafii, Z., B. Coover, and J. Han (2014). “An Audio Fingerprinting
System for Live Version Identification using Image Processing
Techniques”. In: IEEE International Conference on Acoustics, Speech

http://www.vorbis.com

Bibliography 183

and Signal Processing, (ICASSP 2014), Florence, Italy, May 4-9, 2014.
IEEE, pp. 644–648.

Ramalingam, A. and S. Krishnan (2006). “Gaussian Mixture Modeling
of Short-Time Fourier Transform Features for Audio Fingerprint-
ing”. In: IEEE Transactions on Information Forensics and Security 1.4,
pp. 457–463. issn: 1556-6013.

Ramona, M. and G. Peeters (2011). “Audio Identification Based on
Spectral Modeling of Bark-Bands Energy and Synchronization
through Onset Detection”. In: International Conference on Acoustics,
Speech and Signal Processing (ICASSP 2011). IEEE, pp. 477–480.

Ramona, M. and G. Peeters (2013). “AudioPrint: An Efficient Audio
Fingerprint System Based on a Novel Cost-Less Synchronization
Scheme”. In: IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP 2013). IEEE, pp. 818–822.

Rotteker, V. (2016). “Evaluation of Pitch Shift and Time Stretch In-
variant Acoustic Fingerprinting Systems”. MA thesis. Technische
Universität Berlin.

Schreiber, H. and M. Müller (2014). “Accelerating Index-Based Audio
Identification”. In: IEEE Transactions on Multimedia 16.6, pp. 1654–
1664. issn: 1520-9210, 1941-0077.

Seo, J. S., M. Jin, S. Lee, D. Jang, S. Lee, and C. D. Yoo (2005). “Audio
Fingerprinting based on Normalized Spectral Subband Centroids”.
In: IEEE International Conference on Acoustics, Speech, and Signal
Processing, 2005. Proceedings.(ICASSP 2005). Vol. 3. IEEE, pp. iii–
213.

Serrà, J. and E. Gómez (2008). “Audio Cover Song Identification Based
on Tonal Sequence Alignment”. In: IEEE International Conference
on Acoustics, Speech and Signal processing (ICASSP 2008). Las Vegas,
USA, pp. 61–64.

Six, J. and O. Cornelis (2012). “A Robust Audio Fingerprinter Based on
Pitch Class Histograms Applications for Ethnic Music Archives”.
In: Proceedings of the Folk Music Analysis conference (FMA 2012).

Six, J. and M. Leman (2014). “Panako: a Scalable Acoustic Finger-
printing System Handling Time-Scale And Pitch Modification”. In:
15th International Society for Music Information Retrieval Conference
(ISMIR 2014).

Smeaton, A. F., P. Over, and W. Kraaij (2006). “Evaluation Campaigns
and TRECVid”. In: Proceedings of the International Workshop on
Multimedia Information Retrieval. New York, NY, USA: ACM Press,
pp. 321–330. isbn: 1-59593-495-2.

Sonnleitner, R. and G. Widmer (2014). “Quad-Based Audio Finger-
printing Robust to Time and Frequency Scaling”. In: Proceedings
of the International Conference on Digital Audio Effects (DAFX 2014).
Erlangen, Germany, pp. 173–180.

184 Bibliography

Sonnleitner, R., A. Arzt, and G. Widmer (2016). “Landmark-Based
Audio Fingerprinting for DJ Mix Monitoring”. In: 17th International
Society for Music Information Retrieval Conference (ISMIR 2016).

Sonnleitner, R. and G. Widmer (2016). “Robust Quad-Based Audio
Fingerprinting”. In: IEEE/ACM Trans. Audio, Speech & Language
Processing 24.3, pp. 409–421.

“SoX - Sound eXchange”. Available at http://sox.sourceforge.net/.
Sukittanon, S. and L. E. Atlas (2002). “Modulation Frequency Fea-

tures for Audio Fingerprinting”. In: IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP 2002). Vol. 2,
pp. 1773–1776.

Tsai, T., T. Prätzlich, and M. Müller (2016). “Known-Artist Live Song
ID: A Hashprint Approach”. In: Proceedings of the International
Conference on Music Information Retrieval (ISMIR 2016). New York,
USA, pp. 427–433.

Tsakok, J. A. (2009). “Faster Incoherent Rays: Multi-BVH Ray Stream
Tracing”. In: Proceedings of the Conference on High Performance Graph-
ics 2009. HPG ’09. New York, NY, USA: ACM, pp. 151–158.

Wakefield, G. (1999). “Mathematical Representation of Joint Time-
Chroma Distributions”. In: International Symposium on Optical Sci-
ence, Engineering, and Instrumentation, SPIE. Vol. 99, pp. 18–23.

Wald, I. (2007). “On Fast Construction of SAH-based Bounding Vol-
ume Hierarchies”. In: Proc. Symposium on Interactive Ray Tracing.
Washington, DC, USA: IEEE Computer Society, pp. 33–40.

Wang, A. (2003). “An Industrial Strength Audio Search Algorithm.”
In: International Society for Music Information Retrieval Conference
(ISMIR 2003), pp. 7–13.

Yu, C., R. Wang, J. Xiao, and J. Sun (2014). “High Performance Indexing
for Massive Audio Fingerprint Data”. In: IEEE Transactions on
Consumer Electronics 60.4, pp. 690–695. issn: 0098-3063.

Zhang, X., B. Zhu, L. Li, W. Li, X. Li, W. Wang, P. Lu, and W. Zhang
(2015). “SIFT-Based Local Spectrogram Image Descriptor: a Novel
Feature for Robust Music Identification”. en. In: EURASIP Journal
on Audio, Speech, and Music Processing 2015.1. issn: 1687-4722.

Zhu, B., W. Li, Z. Wang, and X. Xue (2010). “A Novel Audio Finger-
printing Method Robust to Time Scale Modification and Pitch
Shifting”. In: Proceedings of the 18th ACM international conference on
Multimedia. ACM, pp. 987–990.

http://sox.sourceforge.net/

	Declaration
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Challenges
	1.3 Contributions
	1.4 Audio Retrieval and Identification
	1.5 Audio Fingerprinting
	1.6 Fingerprinter System Architecture
	1.7 Evaluation and Performance Measures
	1.8 Organisation of this Thesis
	1.9 Dataset Availability

	2 Literature Overview
	2.1 Literature not Considering Scale Change Robustness
	2.2 Methods that are Robust to Specific Types of Scale Changes
	2.3 Methods that are Robust to Combinations of Scale Modification Types
	2.4 The Quad-Descriptor

	3 Quad-Based Audio Fingerprinting: Concept
	3.1 Introduction
	3.2 Method Overview
	3.3 Feature Extraction
	3.4 Recognition Algorithm
	3.5 Evaluation
	3.6 Conclusions

	4 Large-Scale Quad-Based Audio Fingerprinting
	4.1 Noteworthy Refinements
	4.2 Method Overview
	4.3 Feature Extraction
	4.4 Fingerprints: Storing Hashes for Efficient Retrieval
	4.5 Identification Algorithm
	4.6 Experiments and Results
	4.7 Discussion

	5 Search Algorithm
	5.1 Overview
	5.2 Bounding Volume Hierarchies
	5.3 Data Layout
	5.4 Tree Construction
	5.5 Traversal
	5.6 Construction and Traversal Parameters

	6 Extended Experiments
	6.1 Reference Database and Parameterization
	6.2 Scalability: Method Evaluation on 430,000 Tracks

	7 DJ Mix Monitoring: Method Comparison
	7.1 Data Sets
	7.2 Overview of Methods: Audfprint and Panako
	7.3 Experiment Setup
	7.4 Discussion of Results

	8 Interactive and Automatic Monitoring of long Recordings
	8.1 Sequence Detection on Global Results
	8.2 Sequence Detection Algorithm for the Segmentation of Query Recordings
	8.3 Automatic Sequence Detection
	8.4 Case Study: Analysis of the Mixotic Dataset
	8.5 Discussion

	9 Conclusion
	List of Figures

	List of Figures
	List of Tables

	List of Tables
	Bibliography

