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ABSTRACT

There are many MIR applications for which we would like
to be able to determine the perceived tempo of a song au-
tomatically. However, automatic tempo extraction itself is
still an open problem. In general there are two tempo ex-
traction methods, either based on the estimation of inter-
onset intervals or based on self similarity computations.
To predict a tempo the most significant time-lag or the
most significant inter-onset-interval is used. We propose
to use existing rhythm patterns and reformulate the tempo
extraction problem in terms of a nearest neighbor classi-
fication problem. Our experiments, based on three dif-
ferent datasets, show that this novel approach performs at
least comparably to state-of-the-art tempo extraction algo-
rithms and could be useful to get a deeper insight into the
relation between perceived tempo and rhythm patterns.

1 INTRODUCTION

The tempo is a basic and highly descriptive property of a
song, and it is a feature that music users perceive in an
intuitive and direct way. Tempo is one of the parameters a
user would love to have under control. For instance, one
can imagine that depending on her mood, a user would
like to be able to choose faster or slower music. Therefore
the perceived tempo, the perceived speed of music, would
be a perfect and highly intuitive parameter for various new
interfaces to music collections.

The automatic extraction of tempo information directly
from digital audio signals has attracted a lot of research.
Published tempo determination methods generally proceed
in two stages: extracting low-level information related to
apparent periodicities in the signal (we will use the generic
term ‘‘rhythm patterns” for this information), and deter-
mining some assumed tempo from this information. To
be useful in MIR applications, the tempo that is inferred
by an algorithm should match the tempo human listen-
ers intuitively perceive when listening to the music, not
some ‘theoretical’ tempo that might be deduced from a
written score of the piece. It is in this sense that we will
use the term perceived tempo here, to denote the tempo
that most human listeners would assign to a piece. (Of
course, tempo may be perceived differently and may be

c© 2007 Austrian Computer Society (OCG).

ambiguous in certain cases, but in general, there will be
substantial agreement.) In the evaluation of our tempo ex-
traction method in this paper, we will use music collec-
tions manually annotated with tempo values; we will have
to assume that the annotations correspond to the tempo
that most listeners would perceive.

Despite a lot of literature on the subject, the human
perception of rhythms, periodicity and pulsation is not yet
very well understood. The same is true for the relation be-
tween rhythm and tempo perception. Compared to rhythm
patterns, which we consider to be low-level features, the
perceived tempo is a more abstract higher level feature. A
common approach in tempo identification is to analyse the
extracted rhythm patters (even if they not usually called
so – see section 2.2 below), assuming that one of the pe-
riodicities present in the rhythm patterns corresponds to
the perceived tempo. This is usually determined by using
some simple peak picking algorithm to predict the most
salient tempo. However, the relation between rhythmic
patterns and tempo perception might be more complex,
and simple peak picking algorithm might not be the most
appropriate choice. While a lot of scientific work has fo-
cused on onset detection and rhythm pattern extraction,
there has been little effort to gain further insight into this
relation between rhythm and perceived tempo to improve
the tempo estimation step. We propose to view this rela-
tion as a sort of machine learning problem. We model the
overall tempo extraction process as a two stage process
of rhythm pattern extraction and tempo estimation, and
will investigate whether the prediction of perceived tempo
from rhythm patterns can be learned by the computer.

2 BASIC NOTIONS

2.1 Perceived Tempo

Perceived tempo is not a well-defined mathematical con-
cept, since the perception of the tempo of a song strongly
depends on the listener. It is well known that a human’s
preferred tempo range is around 100 to 120 bpm. But
what makes perceived tempo estimation really difficult is
the fact that the perceived tempo of certain pieces might
be ambiguous, and human subjects may indeed perceive
different tempi in the same piece, as has been confirmed
in tapping experiments [10]. Not unexpectedly, many of
the discrepancies in users’ tapping choices relate to differ-
ent choices of the main metrical level; thus, users’ tempo



judgments often differ by a factor of two or three.
Interestingly, it is not yet clear if ambiguities known

from tapping experiments really correspond to ambigui-
ties in tempo perception. According to Chua et al. [1, 7],
the ’Foot-tapping’ tempo is not always the same as the
perceived tempo. This is supported by Zhu et al. [3], who
carried out a user study where the subjects had to deter-
mine the tempo with respect to some reference clips. They
finally conclude that the perception biases between differ-
ent individuals are not large, so that the notion of a unique
perceived tempo might still be practically useful.

To deal with the ambiguity problem, some authors have
proposed to extract two main tempi as well as their rela-
tive strength (e.g., [10, 5]). For a tempo descriptor that
should support user interaction, this is rather problematic.
Imagine a user interface having a tempo slider, such that
a user can influence the tempo by selecting another tempo
range. Such an interface obviously presupposes a unique
tempo value.

Because of our interest in a useful tempo descriptor for
MIR applications, we decided to focus on the estimation
of the major or strongest perceived tempo of a piece, the
tempo most people would decide for. This seems reason-
able, as many pieces have unambiguous perceived tempo.
For instance, DJs rely on beat databases to increase the
speed of the songs during an event from slow to fast music.
In section 4.1 we will make use of such publicly available
tempo information from beat databases to create a repre-
sentative ground truth dataset.

2.2 Rhythm Patterns

All tempo extraction algorithm have more or less the same
common structure. In a first stage, information related to
potential periodicities is extracted from the digital audio
signal (rhythm pattern extraction process), and in a sec-
ond final stage a tempo is estimated from the extracted
pattern (tempo estimation process). For a comprehensive
overview on tempo extraction algorithms we refer to [4],
who summarize the results of the ISMIR’04 tempo ex-
traction contest. A detailed description of various state-
of-the art tempo extraction algorithms can also be found
on the MIREX’06 homepage 1 . In this section we give
a brief overview of various representations of rhythmic
structures one can extract from music signals. This is of
interest since most of the tempo extraction algorithms do
not explicitly generate a representation of the rhythm pat-
terns, but instead directly try to estimate the tempo in a
consecutive tempo estimation block. Therefore it is often
not obvious how rhythm information is represented. Our
approach, in contrast, depends on an explicit representa-
tion of rhythm information, and a basic overview on dif-
ferent types of rhythm patterns will illustrate what types
of patterns (or probably combinations of those) might be
useful.

One common method is to automatically detect onsets
and then perform an analysis of inter-onset intervals (IOI).

1 http://www.music-ir.org/mirex2006

For event-based approaches the detection of note onsets is
of major importance. Dixon [6] and Gouyon et al. [13]
give interesting overviews of features suitable for onset
detection. For most of the IOI based methods an inter-
onset histogram can be generated, which represents the
essential rhythm information [9]. Another common ap-
proach is to extract periodicities based on self-similarity
computations. Self-similarity based approaches in general
try to detect periodicities by comparing the audio signal to
delayed versions of the original signal. This can be done
by using a set of comb filters that cover the range of pos-
sible tempi. The output of a comb filter bank can then
be interpreted as a rhythm pattern. The tempo is finally
estimated by predicting the tempo corresponding to the
comb filter with the highest response. Another variant of
the self-similarity approach is the detection of periodici-
ties based on the Autocorrelation Function (ACF). The
autocorrelation measures the similarity of a signal to a de-
layed version of the original signal. The autocorrelation
function represents this self-similarity relation for differ-
ent time lags. For music signals the peaks in the ACF
reflect the occurrence of regular musical events. Thus the
ACF itself is some sort of rhythm pattern. The ACF can
be computed based on the time domain representation or
in the frequency domain, on a frame basis. Foote et al.
[2] cut the audio signal into frames, perform an FFT for
each frame and finally derive the so-called Beat Spec-
trum from the self-similarity matrix of the FFT frame rep-
resentation. Another interesting self-similarity approach
is detrended fluctuation analysis (DFA). The DFA can
measure two-point correlations and is especially suitable
for non-stationary signals like music. In [8] DFA is used
to generate a rhythm pattern useful for genre classifica-
tion. Pampalk et al. [11, 12] measure the fluctuations of
the loudness in twenty different frequency bands to cap-
ture detailed rhythm information. The Fluctuation Pat-
terns are a common descriptor for content-bases audio
similarity computations and will be used in our evalua-
tions in section 4.

3 REFORMULATING THE
TEMPO ESTIMATION PROBLEM

Within the tempo extraction process the estimation of the
tempo based on the extracted rhythm pattern is a crucial
step. A perfect rhythm pattern would capture all periodic
elements in a piece, and their relative strengths. Estimat-
ing the tempo from a rhythm pattern means picking the
”correct” periodicity. Which periodicity is most signifi-
cant depends on the human perception and is up to now
not yet fully understood. Various strategies have been im-
plemented to pick the correct tempo, but most tempo ex-
traction algorithms just pick the highest peak from the beat
pattern.

The basic idea of our approach is based on the assump-
tion that songs having a similar rhythmic structure are
likely to have a similar (perceived) tempo as well. Thus
if one has got a set of rhythm patterns manually annotated



Figure 1. Histograms of ground truth tempo values in 5 bpm steps for the ballroom, songs and pop dataset.

with the correct perceived tempo, the mapping of an un-
seen rhythm pattern to a perceived tempo can be realized
just by looking for similar rhythm patterns in the anno-
tated training set. Using the N most similar rhythm pat-
terns from the annotated training set, we can predict the
perceived tempo by predicting the most frequent tempo
of these N rhythm patterns (nearest neighbor classifica-
tion). Thus, we learn the mapping from rhythm patterns
to perceived tempo from a ground truth dataset using an
instance-based machine learning approach.

While this approach is straightforward, we still have
to define a distance metric that measures how similar two
rhythm patterns are. For our experiments we decided to
use the correlation coefficient. For two rhythm patterns ~x
and ~y the correlation is given by equation (1).

r =
sxy

sxsy
=

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=0(xi − x̂)2
∑n

i=0(yi − ŷ)2
(1)

Two different types of rhythm patterns are used in our
experiments, the Autocorrelation Function (ACF) and the
Fluctuation Patterns (FPs).

• Autocorrelation Function (ACF)
In our experiment, the Autocorrelation Function is
computed from a log-magnitude 40-channel Mel-
frequency spectrogram for an 8 kHz down-sampled
mono version of the original audio signal with a 32
ms window and 4 ms hop between frames, exactly
as described in [14]. For each frequency channel
the first-order difference is half-wave rectified and
finally summed across the frequency bands. Af-
ter high-pass filtering the resulting onset signal to
remove the d.c. offset the signal is autocorrelated
out to a maximum lag of 4 seconds. Finally we
smoothen the ACF using an average filter with a
window size of 20, because the ACF can be ex-
tremely ”spiky” and even pretty similar rhythm pat-
terns could be judged as rather dissimilar by our dis-
tance measure. The resulting autocorrelation func-
tion is then used as a representation of the periodic-
ities in the original audio signal.

• Fluctuation Patterns (FP)
The Fluctuation Pattern of a songs describes the am-
plitude modulation of the loudness for 20 frequency

bands, spaced according to the Bark scale. The
FPs were originally designed for rhythm-based au-
dio similarity computations and were never expected
to be useful for automatic tempo extraction. Our
implementation is based directly on [11] and [12].
The only modification we apply is to reduce the
rhythmic information captured for 20 different fre-
quency bands to just one by simply summing across
the bands. This reduces the dimensionality from
1200 to only 60 dimensions, which is expected to be
beneficial for the nearest-neighbor classifier to be
used in our experiments — nearest-neighbor meth-
ods are notorious for their sensitivity to high-dimen-
sional feature spaces.

In the next section we report on our ground truth data
and the results obtained from our experiments.

4 EXPERIMENTS

4.1 Ground truth data

Our results are based on three different datasets. The first
two datasets have been used in [4] for tempo extraction
evaluations and should help make the results of our ex-
periments more comparable to previous work. The ball-
room dataset is a well known dance music collection from
BallroomDancers.com and consists of 698 audio excerpts
— each of about 30 seconds of playing time. The songs
dataset, also used in [4], is publicly available 2 . This data-
set contains 465 audio clips (20 seconds each) from nine
genres (Rock, Classic, Electronica, Latin, Samba, Jazz,
AfroBeat, Flamenco, Balkan and Greek).

The third dataset, pop, was generated by ourselves, by
crawling publicly available beat databases from the web
and retrieving the tempo information for thousands of pop-
ular songs. The authors’ private collections were then
searched for songs for which the tempo information was
now available, using a approximative string matching al-
gorithm. The resulting dataset was checked manually for
plausibility. The final set consists of 545 full length songs
belonging to various different popular genres. The dis-
tributions of the annotated tempi of the test databases are
shown in Figure 1.

2 http://www.iua.upf.es/mtg/ismir2004/contest/tempoContest/



Figure 2. Comparative experimental results on ballroom and songs datasets.

Figure 3. Visualisation of errors of S2 on pop dataset, sorted in ascending order according to ground truth tempo. Top
panel: prediction errors. Bottom panel: ground truth tempo.

4.2 Learning and evaluation methods

To estimate the tempo for a given song from one of our
datasets, we use a simple k-nearest-neighbor (k-NN) clas-
sifier, which searches for the k most similar songs in the
database and predicts the tempo that appears most fre-
quently within these k songs. In our experiments, we used
k = 5. Evaluating the method on a whole music collec-
tion is done via a strategy known as leave-one-out cross
validation: the tempo estimate of one single audio excerpt
is computed by using all other examples from the dataset
(except the audio excerpt we estimate the tempo of) as
training examples. Since there are no duplicates in the
datasets, there is no general advantage of this approach
compared to the tempo estimation algorithms evaluated in
[4].

To make the results comparable to [4], we define the
tempo estimation to be correct if the predicted tempo esti-
mate is within 4% (the precision window) of the ground-
truth tempo. For visualizing the errors, (see Fig. 3) we
introduce a slightly modified error measure compared to
[4], which is defined in equation (2), where t denotes the
ground truth tempo and t̂ the estimated tempo of a piece.
Compared to the error measure in [4], which is based on
the logarithm, incorrect tempo estimates exceeding half
or double the ground truth tempo will be judged in a more
linear way.

e =

{
t̂
t − 1 t̂ > t
−( t

t̂
− 1) t̂ <= t

(2)

Correct or almost correct estimates will yield an error
value close to zero, whereas tempo estimates double or
half the ground truth value are considered to be equally er-
roneous. Positive values indicate that the tempo extraction
algorithm predicts too fast a tempo, while negative values
indicate that the predicted tempo is too slow. In particular,
predicting twice the correct tempo gives an error of 1.0,
predicting half the tempo gives −1.0.

4.3 Results

The results obtained from the datasets ballroom and songs
can easily be compared to the results obtained in [4]. The
detailed evaluation results for eleven algorithms from six
different participants in the ISMIR’04 tempo induction
contest, namely Miguel Alonso (A1, A2), Simon Dixon
(D1, D2, D3), Anssi Klapuri (KL), Eric Scheirer (SC),
George Tzanetakis(T1, T2, T3) and Christian Uhle (UH)
can be found on the web 3 . We will denote our own al-
gorithms as S1 (the NN approach using Fluctuation Pat-
terns) and S2 (NN prediction based on the Autocorrelation
Function), respectively. Figure 2 illustrates the results for

3 http://www.iua.upf.es/mtg/ismir2004/contest/tempoContest



Figure 4. Visualization of the relation of annotated tempo and the Fluctuation Patterns for the ballroom dataset.

Figure 5. Visualization of the relation of annotated tempo and the Autocorrelation Function for the pop dataset (ACF
data binarized to enhance visibility of patterns).

the ballroom dataset and for the songs dataset. For the
ballroom dataset the k-NN approach clearly outperforms
the other tempo extraction algorithms. S1 achieves an ac-
curacy of 78.51% and S2 an accuracy of 73.78%. For the
songs dataset we obtain accuracies of 40.86% for S1 and
60.43% for S2, which amounts to rank 4 (S1) and rank 1
(S2) in this comparison, respectively. Thus, we may con-
clude that our learning approach performs roughly at the
same level as the best current tempo identification algo-
rithms, at least on these two data sets.

On our own data set pop we obtain a classification ac-
curacy of 68.8% for S1 and 74.5% for S2. Since no
comparision is possible for our own dataset, Figure 3 just
illustrates the estimation errors of S2. As can be seen,
the errors are almost exclusively due a commitment to the
‘wrong’ metrical level — the errors are either 1.0 or−1.0.
Also, the errors occur mainly in those parts of the music
collection where there are extreme tempi and (thus) few
similar pieces (i.e., pieces with similar rhythm patterns).

Finally, joining all three datasets into one large set of
more diverse styles and running our algorithms on this set
gives accuracies of 64.06% for S1, and 68.91% for S2,
which shows that the good performance on the individual
sets is not just due to the narrow stylistic range of the sets.

Our tempo estimation NN-approach is based on the as-
sumption that songs having similar rhythm patterns tend
to have the same perceived tempo. To check if this is a
reasonable assumption, we can sort all the rhythm patterns
according to the annotated ground truth tempo and visual-
ize the result. Figure 4 shows the Fluctuation Patterns for
all the 698 instances of the ballroom dataset. Each column
represents the FP of the corresponding audio excerpt. The
tempo curve in figure 4 indicates the increasing tempo for
each sample from the dataset. One can visually observe
that audio clips of similar annotated tempo tend to have
similar rhythm patterns. Figure 5 visualizes the Autocor-
relation Function for the pop dataset. The patterns of the
ACF seem to change smoothly as the annotated tempo in-
creases. In figure 5, instance 251 is marked. This instance
is rather dissimilar compared to its neighbors. A further
investigation of the corresponding song Five - When The
Lights Go Out led to the conclusion that the ground truth
annotation of this song (104 bpm) is incorrect and should
be changed to about 140 bpm. This case illustrates that
one can even visually explore mistakes in the ground truth
annotation based on this representation. 4

4 The outlier is not well visible in the printed version of Figure 5 – not
even in the enlarged excerpt –, but it clearly sticks out in the coloured



5 CONCLUSIONS

The reformulation of the tempo estimation step in terms
of a nearest neighbor classification problem permits to
learn the relation of rhythm patterns and perceived tempo.
Thus, we can make the implicit tempo information from
rhythm patterns explicit, such that it can be used in form of
a tempo descriptor for MIR applications. We have demon-
strated this both for the Autocorrelation Function and for
Fluctuation Patterns. Experimental results based on three
different datasets indicate that this approach performs at
least equally well as other state-of-the-art tempo identifi-
cation methods.

A visualization of the datasets supports our basic as-
sumption that songs with similar rhythm patterns tend to
have the same perceived tempo. The proposed visual-
ization of rhythm patterns ordered according to the asso-
ciated perceived tempo reveals interesting structures and
might be a useful representation to get some more insight
in the relation of rhythm patterns and perceived tempo.
Also, possible annotation failures in the ground truth data
can be visually explored using the proposed representa-
tion.

As with each instance based learning approach, the ef-
fectiveness of the tempo extraction strongly depends on
the training instances, the similarity measure, and the abil-
ity of the rhythm patterns to capture periodicity informa-
tion. To be useful in terms of a general tempo extrac-
tion algorithm a large annotated training set is needed that
covers various tempo ranges and various genres and musi-
cal styles. This may be a limiting factor in practical MIR
applications. We do, however, hope that the kind of ap-
proach proposed here, if investigated further, could help
in getting deeper insights in the relation of rhythm and
tempo perception.
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