
Proc. of the 11th Int. Conference on Digital Audio Effects (DAFx-08), Espoo, Finland, September 1-4, 2008

FRAME LEVEL AUDIO SIMILARITY - A CODEBOOK APPROACH

Klaus Seyerlehner

Dept. of Computational Perception
Johannes Kepler University

Linz, Austria
klaus.seyerlehner@jku.at

Gerhard Widmer

Dept. of Computational Perception
Johannes Kepler University Linz, Austria and

Austrian Research Institute for AI, Vienna
gerhard.widmer@jku.at

Peter Knees

Dept. of Computational Perception
Johannes Kepler University

Linz, Austria
peter.knees@jku.at

ABSTRACT

Modeling audio signals by the long-term statistical distribu-
tion of their local spectral features - often denoted as bag of frames
approach (BOF) - is a popular and powerful method to describe
audio content. While modeling the distribution of local spectral
features by semi-parametric distributions (e.g. Gaussian Mixture
Models) has been studied intensively, we investigate a non-para-
metric variant based on vector quantization (VQ) in this paper.
The essential advantage of the proposed VQ approach over state-
of-the-art similarity measures is that the proposed audio similarity
metric forms a normed vector space. This allows for more pow-
erful search strategies, e.g. KD-Trees or Local Sensitive Hash-
ing (LSH), making content-based audio similarity available for
even larger music archives. Standard VQ approaches are known
to be computationally very expensive; to counter this problem,
we propose a multi-level clustering architecture. Additionally, we
show that the multi-level vector quantization approach (ML-VQ),
in contrast to standard VQ approaches, is comparable to state-of-
the-art frame-level similarity measures in terms of quality. An-
other important finding w.r.t. the ML-VQ approach is that, in con-
trast to GMM models of songs, our approach does not seem to
suffer from the recently discovered hub problem.

1. INTRODUCTION

The rapid growth of music material resulting from ever increas-
ing data storage and transmission capabilities has motivated the
research in new methods to manage and interact with large music
archives. One of the basic building blocks to enable new ways of
interaction with music collections (e.g. new ways of browsing and
searching for audio material) is to automatically determine simi-
larities among songs. To realize such a building block, there are
basically two strategies. The first strategy is to automatically ex-
tract information about music by crawling the web or by analyzing
user feedback with respect to a given song. The second strategy is
to extract information directly out of the music signal itself. While
web based music information retrieval is gaining in popularity be-
cause of the increasing amount of meta information available on
the web, we believe there is still room for improvement on the

audio modeling side. One such improvement is presented in this
paper.

Ideally a content-based audio similarity metric should approx-
imate the ill-defined "sounds like" relation for songs (e.g SongA

"sounds like" SongB). This is of course not a trivial task, espe-
cially since this relation depends on the individual perception of
various musical aspects. So two songs can be perceived to be sim-
ilar because of their instrumentation, rhythmic structure, singing
voice, timbre, melody, tempo, lyrics and even because of com-
mon social backgrounds. A look at the algorithms which have
been submitted to the Music Information Retrieval Evaluation eX-
change (MIREX’071) — a competitive evaluation of music infor-
mation retrieval algorithms —, reveals that most algorithms con-
tain a component which models the overall spectral characteris-
tic of a song by a statistical distribution of local spectral features.
The overall spectral characteristic is related to a song’s timbre
and seems to be a very important subcomponent of state-of-the-art
content-based audio similarity measures. While the most popular
variants to model the distribution of local spectral features are ei-
ther just a single multidimensional Gaussian distribution [1] or a
mixture of several Gaussian components [2], we propose to use a
non-parametric distribution, based on a multi-level vector quanti-
zation (ML-VQ) approach. Our approach will, in contrast to the
very strange similarity spaces resulting from single Gaussian mod-
els or mixture models, form a normed vector space. This can be
very beneficial, if one has to search for elements in such a simi-
larity space or if one wants to visualize a similarity space. Fur-
thermore the similarity space does not seem to be affected by the
hub-problem (see section 5) and the song models obtained by the
ML-VQ approach are rather simple and intuitively interpretable,
which definitely helps to analyze the models’ content as we do in
section 6, where we describe the reconstruction of a song’s spec-
trum based on the codebook and where we also explain how to
resynthesize these reconstructions.

In the following section we discuss advantages and disadvan-
tages of GMMs, and give a short overview on related work con-
cerning vector quantization. Section 3 describes the proposed ML-
VQ approach in detail. In section 4 we present the results of eval-

1http://www.music-ir.org/mirex/2007/index.php
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uation experiments, where the ML-VQ approach is compared to
a state-of-the-art algorithm. Finally, section 7 concludes on the
presented results and ideas and gives an outlook on future work.

2. RELATED WORK

The first approaches [3, 2] to model timbral similarity were based
on Gaussian Mixture Models (GMMs), which were used to model
the distribution of local spectral features. The most prominent lo-
cal spectral features in use were Mel Frequency Cepstrum Coef-
ficients (MFCCs). MFCCs are a compact representation of the
spectral envelope of a short audio frame and were and are still one
of the most widespread features in the MIR community. While the
general approach is still conceptually the same for state-of-the-art
algorithms, GMMs have some shortcomings. One of the major
drawbacks is the time consuming training process, which relies on
the Expectation Maximization (EM) algorithm. The second cru-
cial shortcoming is that comparing two distributions modeled by a
GMM is not trivial at all. The Kullback-Leibler (KL) divergence
[4] or relative entropy is a measure of the difference between two
probability distributions, P and Q.

DKL(P ||Q) =

Z ∞
−∞

p(x) log
p(x)

q(x)
dx (1)

However for GMMs there exists no closed form formula to com-
pute the KL distance. Therefore the only way to compute the
KL distance is to approximate the KL distance by Monte-Carlo
sampling of MFCC vectors from one distribution and estimating
the likelihood of these vectors given the other distribution, which
of course is quite computationally expensive. Another popular
variant to compute the distance of two distributions is the Earth
Movers Distance (EMD)[5]. Unfortunately the EMD is quite ex-
pensive as well.

To speed up the overall process various simplified distribution
models were under consideration (e.g. GMMs with diagonal co-
variance matrices only, or with a reduced number of components).
Surprisingly, it turned out that a single multivariate Gaussian dis-
tribution of MFCCs can perform as well as mixture models [1, 6].
This did not only reduce the size of the models themselves, but
also simplified the computation of the KL divergence a lot, since
a closed form exists for the KL divergence for single Gaussians.
Furthermore the training process simplifies to the computation of
mean and covariances over MFCC vectors, altogether resulting in
a dramatically improved performance of the similarity measure.
Nevertheless, it is important to note that the similarity computation
for an entire collection is still exhaustive, to be more precise will
require (N2 − N)/2 distance computations, because the KL dis-
tance does not fulfill the triangle inequality and therefore one can-
not easily apply more powerful search strategies. Consequently, it
is especially desirable to have a model which can be interpreted as
a point in a vector space, because this will enable non-exhaustive
search strategies like KD-tree or Local Sensitive Hashing (LSH).
The recent findings of Aucouturier [7] further emphasize that the
similarity space based on GMMs or single Gaussians is a quite
strange space. There exist some songs in music collections that
according to these similarity measures are similar to almost any
song invariably the music collection, while there cannot be found
any relevant perceptual similarity. These false positives are called
hubs and seem to be related to the model or the distance compu-
tation according to [7, 8]. For a more detailed view on the hub
problem we refer to section 5.

Vector Quantization, as a non-parametric density estimation
method, has not received much research attention. Foote and Pye
were to our knowledge the first to design a music genre classifica-
tion system based on vector quantization [9, 10]. They use a super-
vised tree-based quantization schema to learn a decision tree from
the test-set, which splits the MFCC feature space into maximally
discriminative regions with respect to the associated genre. For
each song of the training set they compute a histogram over the leaf
nodes of the tree, after subdividing the MFCC vectors according
to the trained tree structure. These histograms are then compared
to genre histogram templates by using euclidean or cosine distance
to predict the genre. On the one side the major strength of this ap-
proach is to efficiently generate a global quantization structure, but
on the other side the approach is limited because of its supervised
nature and the strong bias of tree learning algorithms. A more
appropriate way to come up with a global segmentation of the fea-
ture space are unsupervised clustering algorithms, e.g. k-means or
self-organizing maps. Self-Organizing Maps (SOMs) have been
proposed by [11] and have been evaluated in [6]. The SOM-VQ
approach, according to the results in [6], seems to perform worse
than the single Gaussian or GMM variant. The k-means clustering
algorithm has been investigated in [8] by Aucouturier. Addition-
ally, he also investigates a supervised variant known as Learning
Vector Quantization (LVQ). For both variants he reports classifi-
cation results about 15% less precise than GMMs. However he
makes two interesting observations. First of all he points out that
finding a global codebook is a computationally very intense task,
since all feature vectors of all songs have to be clustered at once
to generate a global codebook. To reduce the computational costs,
he proposes to subsample the overall distribution. Secondly, he
observes that the quality increases with the number of songs used
to create the codebook, whereas the number of frames per song
appears not to be a crucial factor, and concludes that the frames of
a single song might be quite redundant. These are two interesting
observations, since the first observation clearly identifies the main
disadvantage of the VQ approach, while the second observation
already gives a hint on how to reduce the computational costs. In
the next section we introduce our multi-level VQ approach, which
tries to reduce the computational complexity of the VQ approach
based on this observation.

3. A MULTILEVEL VECTOR QUANTIZATION
APPROACH

Our vector quantization approach is based on Lloyd’s variant [12]
of the k-means clustering algorithm to partition the overall feature
space into k quantization regions. This variant of the k-means al-
gorithm was chosen because Lloyd’s iterative refinement heuristic
is known to converge very quickly and is therefore a good choice,
since we have to deal with a huge number of feature vectors. For
this standard variant there is no guarantee on the quality of the re-
sulting clustering. It depends heavily on the chosen initial vectors.
Consequently, we decided to use a special seeding algorithm, pro-
posed by Arthur and Vassilvitskii [13], known as the k-means++
algorithm. They have shown that by applying the proposed seeding
technique, the resulting clustering can be expected to be Ω(log k)
worse than the optimal clustering. Thus, seeding ensures some
quality guarantees on our global codebook. Still to deal with large
audio collections we have to reduce the number of feature vectors
to come up with a global codebook in reasonable time.
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3.1. Main Architecture

One way of reducing the number of feature vectors is to simply
randomly subsample the overall distribution of feature vectors. We
propose to make use of Aucouturier’s observation that the qual-
ity of the codebook increases with the number of songs used to
generate the codebook, rather than the number of frames per song
[8]. Redundant feature vectors from a single song just increase
computational costs, but do not improve the quality of the global
partitioning of the feature space. Consequently it seems to be
advantageous to already remove redundant feature vectors at the
song-level. To do so, we use the k-means++ algorithm to clus-
ter the feature vectors within individual songs first and then pass
these song-level cluster centers to the global codebook generation
stage, where once again a k-means++ algorithm is used to gener-
ate the final codebook. Figure 1 gives an overview on this process.
This multi-level clustering architecture greatly reduces the compu-
tational costs, of course depending on both the number of cluster
centers at the song-level and the number of cluster centers in the
final codebook generation stage.

Figure 1: Overview of the multi-level vector quantization (ML-VQ)
approach.

3.2. Feature Extraction

For feature extraction the input signal is converted to 11kHz mono.
Then we perform a Short Time Fourier Transform (STFT) using a
window size of 2048 samples, a hop size of 256 samples, a hanning
window and take the power spectrum |X(f)|2 thereof. To account
for the musical nature of the content, we sum up all frequency bins
within a constant bandwidth of 25 cents starting from 2050 cent
(equal to about 53.43 Hz), which corresponds to a mapping onto
a logarithmic musical scale [14]. The resulting spectral feature
vectors still have 321 dimensions.

fcent = 1200 log2(fHz/(440× 2
3
12−5)) (2)

This results in a linear frequency resolution up to about 1178 Hz
and starts compressing the higher frequency content thereafter in a
logarithmic way. Note that we have also evaluated a multirate fil-
terbank implementation instead of the very simple summing across
frequency bins to better approximate the musical scale in equation

(2), but except dramatically increased computational costs no im-
provement in quality could be achieved. Finally, we transform this
compressed power spectrum X(k) according to equation (3) to
obtain a logarithmic amplitude scale.

X(k)dB = 20 log10 (X(k)) (3)

Additionally, to speed up the clustering at the song level, we
do not cluster all audio frames, but instead select a fixed number
of so-called "event vectors" for each song, quite similar to [15].
Event vectors should capture onsets and can be identified by an
onset detection function. In our implementation a simple time do-
main power based onset detection function is used to identify on-
set frames. For each song only the n most significant onset frames
are kept and used during the song-level clustering. An additional
speedup can be achieved if we use the time domain onset detection
function to only transform those windows to the spectral domain
which correspond to event vectors. Figure 2 illustrates how the on-
set detection function can be used to only transform onset windows
to the frequency domain. Note that the feature extraction process,
described in this subsection, is an essential part of two processes:
the codebook generation process and the model generation process
(see next subsection).

Figure 2: The onset detection function is used to select those time
domain windows, which have to be transformed to the frequency
domain. The resulting spectral frames are so-called "event vec-
tors".

3.3. Song Model Generation

Once a general codebook has been constructed, song models based
on this codebook have to be generated. To generate a histogram
model of a song (either one of the songs involved in codebook
generation, or a new one), we extract n event vectors for this song
as described in subsection 3.2. Then a histogram over the m quan-
tization units (cluster centers) of the codebook is built. Each event
vector Ej is mapped to its closest codebook vector Cuj , where
uj is the index of the closest codebook vector and is computed
according to equation (4). For each codebook vector Ci we end
up with a corresponding histogram bin Hi indicating the number
of event vectors mapped to the i-th codebook vector, see equation
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(5). To measure the distance between codebook vectors and event
vectors the City-Block or L1 distance is used.

uj = arg min
k≤m

|Ej − Ck| (4)

Hi =

nX
j

uj == i (5)

3.4. Comparison

Various types of distance measures can be used to compare two
histograms. In [10] euclidean and cosine distance are proposed.
We decided to compute the histogram intersection as introduced
by Swain and Ballard for image indexing [16]. Given a pair of
histograms, I and M , each containing N bins, the histogram inter-
section distance is defined by equation (6).

D(I, M) = 1−
Pm

i=1 min(Ii, Mi)Pm
i=1 Mi

(6)

In our special case, where the sum over the histogram bins is con-
stant (

Pm
i Ii =

Pm
i Ji = n) the histogram intersection reduces

to the the City-Block or L1 distance.

D(I, M) = 1−
Pm

i=1 min(Ii, Mi)Pm
i=1 Mi

=
1

2n

mX
j=1

|Ii −Mi| (7)

Histogram intersection is a very simple and fast distance measure,
which can even be computed incrementally [16]. It is important to
note that the histogram intersection distance is a full featured met-
ric implying non-negativity, identity of indiscernibles, subadditiv-
ity and symmetry. Consequently any histogram can be interpreted
as a point in a normed vector space, which probably allows to ap-
ply more powerful search algorithms e.g. Local Sensitive Hashing
(LSH). This could be especially useful in the context of very large
audio archives and is an essential advantage over the KL diver-
gence for example, which does not fulfill the triangle inequality
and is not symmetric by itself.

4. CLASSIFICATION EXPERIMENTS

4.1. Dataset

For lack of reliable ground truth w.r.t perceived audio similarity,
we follow the standard procedure in MIR research and evaluate
our similarity measure in an indirect way, via music genre clas-
sification. We generated a genre classification dataset of freely
available songs from download.com2. To ensure reasonable track
quality only the 190 most popular songs according to the number
of total listens for each genre were taken. Although some of the
songs had to be removed3, the number of songs per genre is al-
most equal. Altogether there are 3180 tracks from 1517 different
artists distributed over 19 genres in this dataset. Table 1 gives an
overview on the genres and their precise distribution. Compared to
other evaluations datasets, this dataset is quite large, has an almost
equal genre distribution and contains tracks from a high number of
different artists.

2http://music.download.com/
3The crawled genre information in our current MATLAB implementa-

tion is stored in the id3 tags of the songs, which for some reason could not
be handled by the external library for some of the songs.

genre #tracks #artists
Blues 186 100

Country 187 103
Hip-Hop 155 87

Jazz 177 103
New Age 175 82
Reggae 172 83

Classical 125 46
Folk 185 98
Latin 163 86

Rock & Pop 181 117
Alternative & Punk 182 116
Electronic & Dance 164 92

R&B & Soul 175 113
World 158 76

Religious 172 71
Children’s 164 74

Easy Listening & Vocals 175 98
Comedy & Spoken Word 134 68

Soundtracks & More 150 72
total 3180 1517

Table 1: The track and artist distribution over 19 genres of the
dataset used in our evaluations. Note that the number of artists
of the whole collection is not equal to the sum over the individ-
ual genres, since some songs of one and the same artist belong to
different genres.

4.2. Evaluation Procedure and Results

In our evaluation the multi-level VQ (ML-VQ) approach is com-
pared to the single Gaussian (SG) component of the similarity al-
gorithm proposed by Pohle and Schnitzer [17], which took the first
rank in the MIREX 2007 Audio Music Similarity and Retrieval
competition. Furthermore we also present results for a random al-
gorithm (RND) to represent the baseline. To give a comprehensive
overview of the quality, we compute different quality indicators.
All these indicators are related to a query scenario, where the al-
gorithm is asked to return a set of songs that sound like the query
song. For such a result set one counts the number of correctly
returned songs. A song in the result set is assumed to be correct
w. r. t. our evaluation, if the genre is the same as the genre of
the query song, due to the lack of more precise ground truth in-
formation. The following paragraph gives a mathematically more
precise definition of what kind of quality measures are evaluated.

Consider a music collection of n tracks separated into p gen-
res, then a classification function classify , which counts the num-
ber of songs belonging to genre g in a result set of size r given Si

as query song, is defined by

classify(Si, g, r) =

nX
j=1

G(Sj) == g ∧R(Sj |Si) < r (8)

where G(Sj) denotes the genre of song Sj and R(Sj |Si) denotes
the rank according to the similarity measure of the song Sj given
the song Si as query song.

• k-NN accuracy (k-NN Acc)
The k-nearest neighbor (k-NN accuracy) classification ac-
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curacy for a collection of size n is given by

Acck =

Pn
i=1

Pk
j=1 classify(Si,G(Si), k)

kn
. (9)

The k-NN accuracy is an important measure, because in
quite many applications only the top ranked songs, hence
the most similar songs, are of use. In our evaluation we
present results for the 1-NN accuracy and 5-NN accuracy.

• Average per class classification accuracy (k-NN AvgAcc)
The average per class classification accuracy is the mean
over the k-NN classification accuracies of individual gen-
res. The k-NN classification accuracy of a specific genre
Gh of size nh is defined by

Acck(Gh) =

Pn
i=1 classify(Si, Gh, k)

knh
(10)

The average per class classification accuracy is then defined
as

AvgAcck =

Pp
i=1 Acck(Gi)

p
(11)

In contrast to the total k-NN classification accuracy, where
high classification results on individual genres can lead to
a high overall classification accuracy, the average per class
k-NN accuracy provides a more reliable estimate of the ex-
pected classification accuracy on individual genres.

• R-precision (R-Prec)
The R-precision in contrast to k-NN measures considers all
songs of the genre of the query song. Hence, for a given
query song the size of the result set is equivalent to the size
of the song’s genre. The R-precision for a query song Si is
defined as

Prec(Si) =
classify(Si,G(Si), nG(Si))

nG(Si)

(12)

The global R-precision over a whole collection is defined
as the mean over all songs.

Prec =

Pn
i=1 prec(Si)

n
(13)

• Artist Filter (AF)
An artist filter removes tracks from the same artist as the
query song Si from the dataset before any evaluations are
performed. Algorithms capturing artist-specific song prop-
erties will likely yield higher accuracy values on nearest
neighbor-based quality indicators. Our interest is of course
to find interesting similarity relations between songs of dif-
ferent artists and not trivial similarity relations between songs
of one and the same artist. Therefore we also apply an artist
filter and present evaluation results for both variants, with
and without artist filter.

In table 2 all the results from these evaluations are summa-
rized. The ML-VQ approach seems to perform sightly better when
an artist filter is in use. The single Gaussian model seems to out-
perform the ML-VQ approach when all relevant documents are
considered (R-precision), but altogether we conclude that both ap-
proaches perform equally well in terms of quality.

AF indicator ML-VQ SG RND

w
ith

ou
t 1-NN Acc 36.65% 37.33% 5.03%

1-NN AvgAcc 37.16% 37.70% 5.04%
5-NN Acc 28.16% 28.22% 5.63%
5-NN AvgAcc 28.67% 28.56% 5.56%
R-Prec 0.138 0.141 0.061

w
ith

1-NN Acc 22.83% 21.57% 4.97%
1-NN AvgAcc 23.07% 21.85% 4.98%
5-NN Acc 19.96% 18.70% 5.58%
5-NN AvgAcc 20.17% 18.86% 5.51%
R-Prec 0.136 0.140 0.050

Table 2: Evaluation results for three similarity algorithms: multi-
level vector quantization (ML-VQ), single Gaussian (SG), random
guess (RND); k-NN Acc = k-nearest-neighbor accuracy, k-NN
AvgAcc = Average per class classification accuracy, R-prec = R-
precision (see subsection 4.2).

5. THE HUB PROBLEM

Recent research findings indicate that the similarity spaces based
on GMMs or single Gaussians are rather strange spaces. There ex-
ist songs in music collections that according to these classes of al-
gorithms are similar to almost any other song, while no perceptual
relevant similarity can be found. In accordance with Aucouturier
[7, 2] we define that a song is a so-called hub song,

• if the song appears among the nearest neighbors of most
songs in the database

and
• if most of these appearances do not correspond to any mean-

ingful perceptual similarity.

To quantify the "hubness" of a song Aucouturier introduced
the n-Occurrence of a song as a natural measure of hubness. The
n-Occurrence is the number of times a song occurs in the first n
nearest neighbors of all the other songs in the dataset. Taking a
look at the distribution of the songs in a dataset according to the
number of their n-Occurrences, it turns out that most songs have
a very low n-Occurrence and just a few songs have a very high
n-Occurrence — these are the hubs.

Aucouturier observed that the numbers of songs with a given
n-Occurrence follow an exponential distribution. We could also
observe this type of distribution on our dataset for the single Gaus-
sian approach (see figure 3). However, the distribution of n-Occurrences
of the ML-VQ approach (visible in figure 4) differs significantly.
Even more importantly, the plots of the n-Occurrences themselves
(upper plots in Figs. 3 and 4) are clearly different. Comparing
these two plots for SG and ML-VQ it immediately jumps to the
eye that there are no songs for the ML-VQ approach which have
comparably extreme n-Occurrence values as for the SG approach.
Since extreme n-Occurrence values are an indicator for hubs, we
conclude that our approach is apparently hub-free, which actually
contradicts the results obtained in [8].

6. FROM CODEBOOKS TO SONG RECONSTRUCTION

Any vector quantization algorithm partitions the input or feature
space into disjoint regions, and this partitioning determines the
quality of the quantization. In some cases – e.g., with tree learners
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Figure 3: Visualization of the 100-Occurrences of the single Gaussian distance measure (upper plot) and the corresponding histogram,
showing the expected exponential decay. Extreme 100-Occurrence values (upper plot) indicate hubs.

Figure 4: Visualization of the 100-Occurrences of the histogram intersection distance measure (upper plot) and the corresponding his-
togram. Obviously the distribution is quite different compared to the distribution in figure 3. Most notably there are no songs, which have
an extreme 100-Occurrence value (upper plot), which implies that there are no hubs.

– this partitioning has an explicit representation. In clustering-
based vector quantization, the partitions are implicitly defined by
the most prototypical vector in each region – the so-called code-
book vectors. A very interesting question is surely if there are
methods to improve our codebooks. To that end, it would be help-
ful to understand what is actually represented by our current code-
book. This could probably allow us to conclude on what is not
captured and on how to improve the codebook.

One important advantage of our VQ approach is that the re-
sulting models are very intuitive to interpret. To get an auditive
impression of what is captured by a song’s model, we simply have
to transform a song’s spectrum into its codebook representation.
To do so, we extract all feature frames Fj (see subsection 3.2) of
a song, not just the event frames, and map each frame to its most
similar codebook vector Ci according to equation (14).

uj = arg min
k∈N≤m

|Fj − Ck| (14)

Then we replace the original feature vector Fj by the correspond-
ing codebook vector Cuj . Finally, to come up with the recon-
structed model spectrum we have to invert the logarithmic trans-
formation of the amplitude scale, uncompress the high frequencies
according to equation (2) and take the square root to transform the
power into the magnitude spectrum.

Knowing what is actually captured by a model (attributed to

the reconstructed spectrum), we are also interested in what kind of
information is lost. So we compute the residual by subtracting the
reconstructed model spectrum Xm from the original magnitude
spectrum Xo.

Xr = Xo −Xm (15)

The residual spectrum Xr consists of two different "components".
There is the positive residual spectrum X+

r and the negative resid-
ual spectrum X−

r which are defined by

X+
r =

�
Xr Xr ≥ 0
0 Xr < 0

(16)

and

X−
r =

�
|Xr| Xr ≤ 0

0 Xr > 0.
(17)

These two residual signals result from the fact that the reconstructed
model spectrum sometimes underestimates the original spectrum,
resulting in a positive residual, but also overestimates the origi-
nal spectrum, resulting in a negative residual. We believe that it
is important to treat these two residual signals separately, since
the negative residual is essentially noise introduced by the model,
whereas the positive residual corresponds to peaks in the original
spectrum that could not be approximated by the model and carries
some quite useful information.
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Once we have obtained these magnitude spectra, it is quite
straightforward to resynthesize a song. We perform a block-by-
block synthesis by computing the inverse Fast Fourier Transform
(iFFT) for each frame, overlap the short audio chunks and add
them up, as for example described in [18]. Since no phase infor-
mation is captured by the codebook elements, which would not
make much sense, we use the phase of the original spectrum. Of
course the phase information is not part of the model, but as we
resynthesize both the reconstructed spectrum as well as the resid-
ual spectra the audible difference of these signals can only result
from the change of the magnitude spectrum, since the phase infor-
mation stays the same in both cases. Another interesting property
of this decomposition of the original signal so into the model sig-
nal sm, the positive residual signal s+

r and the negative residual
signal s−r is their additivity.

so = sm + s+
r − s−r (18)

Thus, one can for example easily subtract from the model signal,
the noise signal introduced by the model, which helps in analyzing
the resynthesized signals.

By listening to the separated audio components we found that
quite little information is captured by our model. This implies that
the similarity judgment of a state-of-the-art frame-level audio sim-
ilarity metric is based on little and very reduced information of the
analyzed song. Somewhat surprisingly we also found that our VQ
approach tends to capture percussive elements more precisely than
tonal components. This is an interesting finding and might be re-
lated to our feature extraction process. As pointed out in section
3.2 one strategy to reduce the computational effort of frame clus-
tering at the song-level is to only cluster event vectors. Because of
the chosen onset function, which is used to identify event frames, it
is very likely that event vectors preferably capture percussive ele-
ments. In some way we unintentionally restricted the algorithm to
model songs preferably by transient events. An example of such
a signal or spectrum decomposition is visualized in figure 5 and
some audio examples can be found on the web4.

4www.cp.jku.at/people/seyerlehner/vq/vq.html

Figure 5: Signal decomposition into original, reconstructed, posi-
tive and negative magnitude spectrum in (dB). The original signal
is only very roughly approximated by the codebook. Percussive
elements starting at the end of the audio clip are far better ap-
proximated than the sinusoidal components in the first two-thirds
of this audio chunk.
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7. DISCUSSION, CONCLUSION AND FUTURE WORK

This paper has presented a new algorithm for modeling audio con-
tent based on local spectral features, using multi-level vector quan-
tization. The proposed multi-level VQ approach performs com-
parably to state-of-the-art frame-level audio similarity algorithms,
which we have shown by a broad experimental evaluation. How-
ever, compared to state-of-the-art approaches, the ML-VQ approach
has considerable advantages. Most notably the proposed histogram
intersection distance implies a normed vector space. This allows
to apply more powerful search strategies (e.g. KD-Tree or Local
Sensitive Hashing) enabling content-based music retrieval for even
larger music archives. We could also show that the resulting audio
similarity space is hub-free. Furthermore the model itself is rather
simple and intuitively interpretable, which led to the idea to repre-
sent a song’s spectrum in terms of codebook vectors. This revealed
that rather little information is stored in the current song models.
In particular, our approach seems to focus on percussive elements.
This of course raises new questions. Can we create even better
codebooks? Can we generate codebooks, which focus on other
aspects than just percussive events? Hence, can we for example
create a piano specific codebook? Another interesting idea is to
represent a song only by the song-level codebook vectors of an-
other song or perhaps manually specify which codebook elements
should be replaced by other codebook elements. The result could
be some automatic or semi-automatic content-based audio effect.

Last but not least, some future research could focus on how
one could maintain a constantly adapting codebook. This will be
important because in the current approach the codebook is trained
once and for all and does not allow to adapt to changes within a
collection, e.g songs which are being added or removed.

8. ACKNOWLEDGMENTS

This research was supported by the Austrian Fonds zur Förderung
der Wissenschaftlichen Forschung (FWF) under grants L112-N04
and L511-N15.

9. REFERENCES

[1] M. Mandel and D. Ellis, “Song-level features and svms
for music classification,” in In Proceedings of the 6th In-
ternational Conference on Music Information Retrieval, IS-
MIR’05, London, UK, 11-15th September 2005.

[2] J.-J. Aucouturier and F. Pachet, “Improving timbre similar-
ity: How high’s the sky?,” J. Negative Results Speech Audio
Sci., vol. 1, no. 1, 2004.

[3] B. Logan and A. Salomon, “A music similarity function
based on signal analysis,” in In proceedings IEEE Interna-
tional Conference on Multimedia and Expo (ICME), Tokyo,
Japan, August 2001.

[4] S. Kullback and R. A. Leibler, “On information and suffi-
ciency,” Annals of Mathematical Statistics, vol. 22, pp. 79–
86, 1951.

[5] Y. Rubner, C. Tomasi, and L. J. Guibas, “A metric for distri-
butions with applications to image databases,” in In Proceed-
ings of the 1998 IEEE International Conference on Com-
puter Vision, ICCV’98, Bombay, India, January 1998, pp.
59–66.

[6] M. Levy and M. Sandler, “Lightweight measures for tim-
bral similarity of musical audio,” in AMCMM ’06: Proceed-
ings of the 1st ACM workshop on Audio and music comput-
ing multimedia, Santa Barbara, California, USA, 2006, pp.
27–36.

[7] J.-J. Aucouturier and F. Pachet, “A scale-free distribution of
false positives for a large class of audio similarity measures,”
Pattern Recogn., vol. 41, no. 1, pp. 272–284, 2008.

[8] J.-J. Aucouturier, Ten experiments on the modelling of poly-
phonic timbre, Ph.D. thesis, University of Paris 6, 2006.

[9] D. Pye, “Content-based methods for the management of dig-
ital music,” in ICASSP ’00: Proceedings of the Acoustics,
Speech, and Signal Processing, 2000. on IEEE International
Conference, Washington, DC, USA, Sept. 17-23, 2006, pp.
2437–2440.

[10] J. T. Foote, “Content-based retrieval of music and audio,”
in In Multimedia Storage and Archiving Systems II, Proc. of
SPIE, 1997, pp. 138–147.

[11] F. Vignoli and S. Pauws, “A music retrieval system based
on user-driven similarity and its evaluation,” in In Proceed-
ings of the 6th International Conference on Music Informa-
tion Retrieval, ISMIR’05, London, UK, 11-15th September
2005.

[12] S. Lloyd, “Least squares quantization in pcm,” IEEE Trans-
actions on Information Theory, vol. 28, no. 2, pp. 129–137,
March 1982.

[13] D. Arthur and S. Vassilvitskii, “k-means++: The advan-
tages of careful seeding,” in SODA ’07: Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete algo-
rithms, New Orleans, Louisiana, 2007, pp. 1027–1035.

[14] M. Goto, “Smartmusickiosk: Music listening station with
chorus-search function,” in Proceedings of the 16th Annual
ACM Symposium on User Interface Software and Technol-
ogy, UIST’03, November 2003, pp. 31–40.

[15] C. Yang, “The macsis acoustic indexing framework for mu-
sic retrieval: An experimental study,” in In Proceedings of
the 3rd International Conference on Music Information Re-
trieval, ISMIR’02, Paris, France, 2002.

[16] M.J. Swain and D.H. Ballard, “Color indexing,” Interna-
tional Journal of Computer Vision, vol. 7, no. 1, pp. 11–32,
November 1991.

[17] T. Pohle and D. Schnitzer, “Striving for an improved audio
similarity measure,” in Third Music Information Retrieval
Evaluation eXchange, MIREX’07, Vienna, Austria, 2007.

[18] U. Zölzer, DAFX - Digital Audio Effects, WILEY, Southern
Gate, Chichester, England, 2002.

DAFX-8


	1  Introduction
	2  Related Work
	3  A multilevel Vector Quantization Approach
	3.1  Main Architecture
	3.2  Feature Extraction
	3.3  Song Model Generation
	3.4  Comparison

	4  Classification Experiments
	4.1  Dataset
	4.2  Evaluation Procedure and Results

	5  The hub problem
	6  From Codebooks to song reconstruction
	7  Discussion, Conclusion and Future Work
	8  Acknowledgments
	9  References

