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ABSTRACT

This paper presents methods for the automatic detection of music
within audio streams, in the fore- or background. The problem
occurs in the context of a real-world application, namely, the anal-
ysis of TV productions w.r.t. the use of music. In contrast to plain
speech/music discrimination, the problem of detecting music in
TV productions is extremely difficult, since music is often used
to accentuate scenes while concurrently speech and any kind of
noise signals might be present. We present results of extensive ex-
periments with a set of standard machine learning algorithms and
standard features, investigate the difference between frame-level
and clip-level features, and demonstrate the importance of the ap-
plication of smoothing functions as a post-processing step. Finally,
we propose a new feature, called Continuous Frequency Activation
(CFA), especially designed for music detection, and show experi-
mentally that this feature is more precise than the other approaches
in identifying segments with music in audio streams.

1. INTRODUCTION

Annotation and tagging of audio data have mainly been human
tasks in the past. The growing amount of digital media, however,
makes manual tagging impractical. One of these tiresome tasks is
to determine whether or not music is present in an audio excerpt.
This problem occurs in many application contexts. A particular
variant of this problem was posed to us by the Austrian National
Broadcasting Corporation (ORF): the task is to automatically de-
termine where in the sound track of a TV production there is mu-
sic being played, in the foreground or in the background. This is
important for the calculation of royalty fees, which are paid to a
national agency according to certain rules. Ideally, the production
team would supply a precise list of all the music segments occur-
ring in a TV production, but in reality these lists are often incorrect
or simply empty, which requires the ORF to more or less guess the
amount of music within a production, since manually annotating
all productions is simply impossible. Thus, it would be desirable
to have a system that automatically detects music segments and
predicts, with high precision, the percentage of time where music
is present within a production.

In this paper, we present our approach to this difficult music
detection problem. First a brief literature review is given out in
Section[2] Section [3]presents an overview of our overall approach
and a detailed description of the features examined. In Section[d.]|
we report on the ground truth data that were collected, on extensive
machine learning experiments and the results obtained with them.
‘We then introduce a new feature in Section [5] and show that this
feature indeed yields further improvement. Finally, we present our
conclusions and discuss future work.
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2. RELATED WORK

There has been quite some research recently on the automatic dis-
crimination between speech and music. Even if our problem is
related, it must be pointed out that detecting music within TV pro-
ductions is more complicated than simple music/speech discrimi-
nation. The major reason is that music and other sounds are gen-
erally mixed in TV, and in particular that the musical background
of movies is typically rather soft compared to spoken words or
scene-related sounds in the foreground. That is because music
is normally used to create the atmosphere of a scene and should
not attract the listener’s attention. Interestingly, when people pay
attention to the presence of music in movies, most of them are
surprised at what a high percentage of music is present and how
difficult it is, in many cases, to even tell whether or not music is
being played at all[] Thus, in contrast to the typical datasets usu-
ally used in speech/music discrimination research, which mostly
consist of relatively distinct cases of the classes music and speech,
we mainly have to deal with soft music signals mixed with other
sound signals.

There has been some previous work that is relevant to our
problem, for example Santo et al. [1], who worked on automatic
video segmentation based on audio track analysis. In contrast to
our problem — deciding whether there is music present or not —
they deal with seven different classes. When aggregating the re-
sults they report for their 7 classes to the two broad classes music
and no_music only, we atrive at a classification accuracy of their
system of approximately 75.86%, which we consider as a quite
good and a useful baseline to evaluate our approach. Khan et al.
[2] give an interesting overview of existing features and methods
for movie audio classification, although the results of the various
approaches are incomparable to each other, due to the lack of com-
mon test databases and different application areas. Minami et al.
[13L 4] focus on the automatic indexing of videos by discriminating
video scenes according to the classes speech, music and music and
speech. Their system is composed of two expert systems, one for
detecting music and the other one for detecting speech. They re-
port an average detection rate of 90% for musical segments. How-
ever their ground truth database seems to be very unrepresenta-
tive — we re-implemented their approach and only achieved a low
55.78% on our real world dataset (see below). Mauclair and Pin-
quier [5] apply their speech/music classification system to record-
ings from radio stations, where they achieve a classification accu-
racy of 86.9% for music/non-music discrimination (which should

ITo illustrate the difficulty of this problem we provide, on our home-
page, some audio samples of the television productions we have been anno-
tating — see http://www.cp. jku.at/people/seyerlehner/
md.html}
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be simpler than background music detection in TV shows). Alto-
gether, speech/music discrimination seems to have broad applica-
tion potential and attracted a lot of research attention, but to our
knowledge there is no scientific work focusing specifically on mu-
sic detection.

3. SYSTEM OVERVIEW

The architecture of our music detection system resembles a classi-
cal machine learning process extended by a post-processing stage.
In a first step the audio stream is cut into small frames and features
are extracted for each frame. Second, a classifier is trained on a
distinct training set and learns to distinguish the two classes mu-
sic and no_music. It is then used to predict the class labels for all
the frames in new TV shows. In a final post-processing stage the
classification results are smoothed in such a way that we obtain a
plausible label sequence for longer continuous segments of audio.
Since the choice of features is very critical, we first decided to
test some promising features known from recent work in the field
of speech/music discrimination. The next section gives a detailed
description of the features we have chosen to investigate.

3.1. Features

We focused on four sets of features. A major aspect during the de-
cision process was that a feature must still be able to capture mu-
sical properties, even if speech or any kind of sounds are present.
Thus, for example, we did not consider 4 Hz modulation energy
and zero-crossing rate related features, since they are merely use-
ful in speech/music discrimination to detect speech segments, but
not in the case of music detection alone.

3.1.1. Spectral Entropy (SE)

In general the entropy measures the uncertainty or unpredictabil-
ity of a probability mass function (PMF). The entropy of the spec-
trum of an audio frame is a well-known feature for speech/music
discrimination [6]]. To be able to compute the entropy, the power
spectrum is converted into a probability mass function:

X

Z;‘V:1 X;
where X; denotes the energy of j-th frequency component of the
STFT spectrum of the current frame. For each frame the entropy
is computed from Z as:
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In general the spectral entropy should be higher for speech frames
than for music frames.

3.1.2. Chromatic Spectral Entropy (CSE)

The Chromatic Spectral Entropy, as defined in [7], is a variant of
the Spectral Entropy. Instead of computing the entropy directly
based on the normalized power spectrum, the power spectrum is
first mapped onto the Mel-frequency scale and divided into 12 sub-
bands, where the center frequency f; of a band coincides with one
of the 12 semitones of the chromatic scale. For a fixed center fre-
quency fo of the lowest band, the center frequencies of the other
sub-bands correspond to:
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As for the Spectral Entropy the energies of the sub-bands X; are
normalized according to equation (T), and the entropy of the chro-
matic representation of a frame is again computed as in equation
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3.1.3. Mel Frequency Cepstrum Coefficients (MFCC)

fi = 1127.01048 * log(

Mel Frequency Cepstrum Coefficients are a compact representa-
tion of the spectral envelope of a frame. After a non-linear map-
ping onto the Mel-frequency scale, to better approximate the fre-
quency resolution of the human ear, the envelope of the log-spectrum
is compactly represented by the first few coefficients after a DCT
compression. MFCCs are well-known for capturing timbral as-
pects of short audio frames. Ezzaidi et al. [8] show the successful
application of AMFCCs in the area of speech/music classification.

3.1.4. Linear predictive Coefficients (LPC)

Linear prediction is used to predict the current value §(n) of the
real-valued time series s(n) based on past p samples [9].

3(n) = Z ais(n — 1) 4

The filter coefficients a; define the p-th order linear predictor (FIR
filter). The optimal filter coefficients are determined by minimiz-
ing the prediction error in the least squares sense. The prediction
error, or residual error, is given by

e(n) = s(n) — 3(n) = s(n) — Z ais(n —1). Q)

For the compact representation of an audio frame the time-series
s(n) is the time-domain sample sequence of the current frame.
The prediction error is expected to be significantly higher for im-
pulsive speech compared to steady notes played by instruments.

Additionally, AMFCC, ALPC, ASE and A CSE were also
added to the feature set.

3.2. From frame-level to “clip-level” features

Short-term frame-level features capture essential information about
the sound of an audio frame. Such an audio frame commonly lasts
10-40 ms, which means that it contains little if any temporal in-
formation. Our machine learning approach does not assume any
specific ordering of the training or test examples either and thus
most of the temporal information is lost. For speech/music dis-
crimination temporal information might be useful, because speech
segments tend to be more impulsive than music segments, leading
to a higher variance of the frame-level feature values over time.
To capture some of this temporal information we summarize a
sequence of consecutive feature vectors by computing mean and
standard deviation over a fixed number of frames. The resulting
features — now representing an audio clip of several seconds of
audio — are called clip-level features in accordance with [9)]. We
performed dedicated machine learning experiments to investigate
if these clip-level features yield any improvement over frame-level
features. We will report on the results in section &1}
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3.3. Smoothing

The result of the classification process is a sequence of class labels
music or no_music, where each label is associated with a short
excerpt of audio. Depending on the type of feature, either frame-
level or clip-level, the labels might change every few milliseconds
or every few seconds. An analysis of our annotated ground truth
material (see section [4.I)) shows that there are no music segments
shorter than 3 seconds, and only 14 out of 324 music segments are
shorter than 7 seconds. This indicates that music as used in TV
productions lasts at least several seconds. Consequently, frame-
based class labels should be aggregated into larger continuous seg-
ments of music or no_music in order to get a plausible segmenta-
tion of an audio stream. To come up with a smoothed version of the
label sequence we iteratively apply (twice) a majority filter with a
sliding window length corresponding to 5 seconds. In a final step,
if there are any continuous label segments left that are shorter than
5 seconds, we remove them by swapping first of all the no_music
segments shorter than 5 seconds to music and then the music seg-
ments shorter than 5 seconds to no_music. Altogether we smooth
the label sequence in a fist step and filter out all remaining seg-
ments shorter than 5 seconds by swapping their class label. It is
important to note that smoothing functions might introduce a bias
by slightly favoring one of the classes.

4. EXPERIMENTS AND RESULTS

4.1. Data and Ground Truth

To be able to train our classifiers on real world situations represen-
tative for the later operation at the television station, we recorded a
number of real TV telecasts. Recording was done using the DVB-
T standard, and the digital digital video streams were encoded as
MPEG-2. In a second stage the sound tracks of the 13 TV shows
(approximately 545 minutes of audio) were converted to PCM
mono at 22 kHz with a precision of 16 Bit/sample. Thereafter all
audio files were annotated manually according to the class labels
music and no_music, which turned out to be quite challenging, be-
cause it is often hard to tell when precisely some background mu-
sic starts or stops playing. Consequently, assuming an imprecision
for each change of the label of just one second, we get an upper
bound on the overall classification accuracy of 98%, which is still
a very optimistic estimate. Table [T] shows the distributions of the
two classes for each of the 13 recorded ORF TV productions. Ob-
viously, the amount of music present in a show depends heavily on
the type of show. The baseline for the overall classification accu-
racy is 58.01%, which is the percentage of the more frequent class,
no_music.

To yield a clear separation between training and test data, all
the frames of an entire show must either be in the training or the
test set. The first three shows, which are separated from the others
in table[I] constituted the training set. Such a separation prevents
a bias of learning algorithms towards specific characteristics of a
single broadcast, e.g. the voice of the moderator, which would lead
to too optimistic results.

4.2. Prediction Experiments

One of our interests was to find out if we can achieve any im-
provement by using clip-level features generated out of frame level
features instead of using the frame-level features themselves (see

title type % music | min

Der Volksanwalt law show 1.48 % 35
Starmania music show 50.18 % 89
Sturm der Liebe soap opera 70.52 % 49
Alpen Donau Adria documentary 57.08 % 30
Barbara Karlich Show talk show 7.51 % 57
Da wo es noch Treue gibt soap opera 62.90 % 89
Frisch gekocht cooking show 10.01 % 24
Gut beraten Osterreich talk show 8.76 % 18
Heilige Orte documentary 54.34 % 44
Heimat fremde Heimat documentary 29.72 % 30
Hohes Haus parliament show | 17.50 % 30
Julia soap opera 80.36 % 43

Z1B news show 491 % 7

total - 41.99 % | 545

Table 1: The ground truth data.

section @]) To do so, we extracted both frame-level (with a win-

dow size of 24ms) and clip-level features (with a window size of

1172ms) for all 13 audio streams. Our current framework makes

use of the WEKA[10] machine learning library. We used five (very)

different WEKA classifiers to evaluate the features via machine learn-
ing experiments. The simple nearest-neighbor classifier /Bk was

chosen as a representative of instance-based learning methods, Sup-
port Vector Machines (SMO) for kernel-based machine learning

methods, MultilayerPerceptron as the most popular representative

of the neural network family of classifiers, and REPTree and Ran-

domForest for decision tree learners. For each of these classifiers

we computed the overall classification accuracy on the test set (ap-

proximately 372 minutes of audio) after learning from the inde-

pendent training set.

classifiers frame level | clip level

1Bk 69.94 % | 66.47 %
MultilayerPerceptron 69.67 % | 65.99 %
SMO 69.48 % | 73.27 %
REPTree 64.07 % | 64.48 %
RandomForest 70.66 % | 73.19 %

Table 2: Frame level versus clip level features.

Table 2] shows the results. They seem to strongly depend on
the type of classifier. No general advantage of clip-level features
compared to frame-level features could be shown by our experi-
ments. All further experiments are based on frame-level features.

The second experiment investigated the benefits of smooth-
ing. The classification results before and after the application of
the smoothing function are compared in table [3] For all of the
five classifiers a substantial improvement of the classification re-
sult could be shown.

In general, applying smoothing functions increases the accu-
racy, but tests with various smoothing functions indicate that more
sophisticated smoothing does not seem to improve the classifica-
tion results any further. Figure[d]shows the classification results of
"Julia" before and after the application of the smoothing function.
Even visually it is quite obvious that the aggregation of the frame
level classifications makes sense.
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classifier no smoothing | smoothed

1Bk 69.94 % 79.82 %
MultilayerPerceptron 69.67 % 81.21 %
SMO 69.48 % 76.19 %
REPTree 64.07 % 73.48 %
RandomForest 70.66 % 77.20 %

Table 3: Smoothed versus original results.

The best overall result using the machine learning approach
and various standard features was achieved with the smoothing
function applied to the class predictions of the MultilayerPercep-
tron. A total accuracy of 81.21 % can be reached with this configu-
ration. Table[d]shows the classification accuracy for each recorded
show of the test set separately.

title % real % est. diff.

Alpen Donau Adria 57.08 % | 19.00 % | 38.08
Barbara Karlich Show 751 % | 1233 % 4.82
Da wo es noch Treue gibt | 62.90 % | 63.47 % 0.57
Frisch gekocht 10.01 % | 22.73 % | 12.72
Gut beraten Osterreich 8.76 % 6.42 % 2.34
Heilige Orte 54.34 % | 49.82 % 4.52
Heimat fremde Heimat 2972 % | 52.17 % | 22.45
Hohes Haus 17.50 % | 15.84 % 1.66
Julia 80.36 % | 68.01 % | 12.35

ZIB 491 % 2.84 % 2.07

Table 4: The percentage of music really present versus the percent-
age estimated.

Since in our project we have to determine the percentage of
time where music is present within a production, the difference in
percentage points is our real quality measure. Even if the machine
learning approach yields an overall classification accuracy of more
than 80%, the error, in terms of the difference in percentage points,
is too high for some TV shows to be useful for the ORF. In gen-
eral, a maximal prediction error of 5 percentage points would be
desirable for the planned application, and a prediction error of 10
percentage points may be the maximum that is still considered ac-
ceptable. In table [] all results exceeding this maximum error of
10 percentage points are highlighted. Consequently, to further im-
prove the obtained results, a new feature especially designed for
the detection of music was developed and will be introduced in the
next section.

5. CONTINUOUS FREQUENCY ACTIVATION (CFA) - A
NEW FEATURE FOR MUSIC DETECTION

Our experiments show that standard speech/music discrimination
features work reasonably well overall, but produce rather large er-
rors in some cases. On the other hand most of these features were
not designed for this particular type of music detection task we
are working on. None of these features accounts for the special
characteristics of music signals. In essence, what makes music
different from other sounds are structural properties. Examples of
higher-level structural properties are rhythm and harmony. Music
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Figure 1: Spectogram of an audio excerpt containing music and
speech.

detection might benefit from focusing on such structural proper-
ties, at various levels of the signal.

Consider for example the audio track of a movie containing
some sort of background music. Because of the music being played
in the background the music signal itself will be embedded very
softly in the audio signal, and the global characteristics of the au-
dio signal will more strongly resemble the characteristics of speech
or noise. Features characterizing for example the frequency distri-
bution of an audio frame will tend to model the properties of the
sounds belonging to the foreground and are therefore not useful
for music detection in such a case. However, we still might be
able to reveal structural properties of background music, e.g. the
rhythmic structure, because it is unlikly that all rhythmic events are
completely masked by the foreground signal. Consequently, fea-
tures focusing on the extraction of structural properties especially
attributable to music might be more successful in separating music
from no_music segments. In the following, we develop an intu-
itive feature that is meant to capture a kind of low-level structural
property of musical sounds.

5.1. The basic Idea

In general music tends to have more stationary parts than speech,
resulting in horizontal perceivable bars within the spectrogram rep-
resentation of an audio signal (see figure [T). This property was
already investigated by Hawley, who was interested in the struc-
ture of music [[11] and who was the first to propose a simple music
detector based on this. The horizontal bars in the spectrogram are
continuous activations of specific frequencies and are usually the
consequence of sustained musical tones. Minami et al.[3 4] tried
to construct an improved feature based on this observation. Their
feature seems to work quite well for clearly distinct examples of
music and no_music, but tends to fail when it comes to reliably
detecting music within mixed segments containing for example
speech and music. (We checked that by reimplementing their fea-
ture in our framework.) A deeper analysis of the feature led to
the conclusion that concentrating on absolut energy values of the
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spectogram has a counter-productive effect, because the horizon-
tal bars might be rather soft and the absolute values of foreground
sounds will have a stronger impact. Keum et al. [12] recently
introduced a feature that relies on a binarization step to neglect
the absolute strength of an activation. However, their binarization
threshold is chosen so as to remove the small magnitudes, which
is equivalent to removing all the soft activations corresponding to
the soft musical tones we want to detect. In the next section a new
feature is proposed to make the detection of continuous frequency
activations more reliable, even if other audio signals are present
simultaneously.

5.2. The feature extraction process

The computation of the Continuous Frequency Activation (CFA)
of an audio stream can be subdivided into several steps:

e Conversion of the input audio stream
The input stream is converted to 11 kHz and mono.

e Computation of the power spectrum
We compute the power spectrum using a Hanning window
function and a window size of 1024 samples, corresponding
to approximately 100ms of audio. A hop-size of 256 sam-
ples is used, resulting in an overlap of 75% percent. After
the conversion to decibel, we obtain a standard spectrogram
representation.

¢ Emphasize local peaks
To emphasize local energy peaks within each frame of the
STFT we subtract from the power spectrum of each frame
the running average using a window size of N = 21 fre-
quency bins:

N

1 2

Xt = X — N Xmin(max(k,1),N)  (6)

k=—

w2

where X; denotes the energy of the ¢-th frequency compo-
nent of the current frame. This step is useful to emphasize
very soft tones, belonging to background music: if a soft
tone is not masked by another signal over its entire duration
(which is unlikely, as non-music signals tend to be less sta-
tionary), the perceivable horizontal bars in the spectogram
are compositions of consecutive local maxima. Thus, we
try to emphasize these soft bars by emphasizing all local
maxima in the spectrum of a frame.

e Binarization

To neglect the absolute strength of activation (energy) in
a given frame j, we binarize each frequency component
X " by comparing to a fixed binarization threshold. The
binarization threshold ¢ = 0.1 was chosen in such a way
that even soft activations could be kept in the binarized
spectogram. Only frequency bins which are obviously not
active at all, will be set to O using this low threshold. This
is an important difference to Keum et al. [[12], who apply a
threshold to remove small magnitudes.

1 X >t
R ij
Blj { 0 X:Jmph S t (7)

Neglecting the actual strength of the activation allows us to
focus on structural aspects of the emphasized spectrogram
only.

o Computation of the frequency activation

We further process the binarized power spectrum in terms
of blocks. Each block consists of /' = 100 frames and
blocks overlap by 50%, which means that a block is an
excerpt of the binarized spectrogram corresponding to 2.6
seconds of audio. For each block we compute the frequency
activation function Activation(i). For each frequency bin
i, the frequency activation function measures how often a
frequency component is active in a block. We obtain the
frequency activation function for a block by simply sum-
ming up the binarized values for each frequency bin ::

F
Activation(i) = % Z By )
Jj=1

Normalizing the frequency activation by the length of the
block is not necessary, but would make it possible to com-
pare results from different block lengths. Figure [2] shows
the binarized emphasized power spectra of two blocks and
the resulting frequency activation functions. Subplot (b) is
typical of blocks containing music, whereas subplot (a) is
representative for blocks without any musical elements.

o Detect strong peaks

Strongs peaks in the frequency activation function of a given
bock indicate steady activations of narrow frequency bands.
The “spikier” the activation function, the more likely hor-
izontal bars, which are characteristic of sustained musical
tones, are present. Even one large peak is quite a good in-
dicator for the presence of a tone. The peakiness of the
frequency activation function is consequently a good indi-
cator for the presence of music. To extract the peaks we use
the following simple peak picking algorithm.

1. Collect all local peaks, starting from the lowest fre-
quency. Each local maximum of the activation func-
tion is a potential peak (and there are many of them —
cf. Figure[2).

2. For each peak z,,, compute its height-to-width index
or peak value pv(x,) = h(zp)/w(xp), Where the
height h(z,) is defined as min[f(p) — f(z1), f(p) —
f(zr)], with f(x) the value of the activation function
at point (frequency bin) x and x; and x, are closest
local minima of f to the left and right of x,, respec-
tively. The width w(x,,) of the peak is given by:

w(zy) = { p—xzi  f(p)— f(z) < f(p) — f(zr)

T, —p otherwise

Steps 1 and 2 can be done in one left-to-right scan of the
activation function.

¢ Quantify the Continuous Frequency Activation
To quantify the Continuous Frequency Activation of the ac-
tivation function of a block, the pv values of all detected
peaks are sorted in descending order, and the sum of the
five largest peak values is taken to characterize the overall
“peakiness” of the activation function.

As aresult of this lengthy extraction process we obtain exactly
one numeric value for each block of frames, which quantifies the
presence of steady frequency components within the current audio
segment. For blocks containing music the resulting value should
be higher than for blocks where no music is present.
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Figure 2: Binarized spectogram of a block and the corresponding
activation function. Block (a) contains no music, whereas in bloci
(b) music is present.

5.3. Results using the new feature

Returning just a single numeric value, the newly proposed feature
simplifies the classification process a lot. The separation of the two
classes music and no_music can be done by a simple comparison
with a threshold ¢. Optimising the threshold on our training set
(the top 3 shows in Table[T) yielded a value of ¢ = 1.24.

Table [5] shows the percentage predictions on the test set with
this threshold value, after the application of the smoothing func-
tion introduced in section[3.3] Only two estimates, highlighted in
bold face, exceed the error level of 10 percentage points. To il-
lustrate the effectiveness of the CFA, Figure [5] once more shows
the automatic segmentation of “Julia”. It is clearly visible that
the CFA feature makes far fewer mistakes even before smoothing.
The classification accuracy of 81.21% obtained with the machine
learning approach improves to 89.93 %, although now just one fea-
ture and simple thresholding is used. This compares favorably to
the 75.86% we reconstructed from the results reported by [1] on a
related problem (see section E] above).

Figure [3] compares the real percentages of music present, the
percentages predicted by the machine learning approach, and the
percentages estimated using CFA alone. There are still some cases
where the CFA feature fails. Especially when the continuous fre-

title % real % est. diff.

Alpen Donau Adria 57.08 % | 48.61 % 8.47
Barbara Karlich Show 7.51 % 6.64 % 0.87
Da wo es noch Treue gibt | 62.90 % | 63.50 % 0.60
Frisch gekocht 10.01 % 6.69 % 3.32
Gut beraten Osterreich 8.76 % 5.74 % 3.02
Heilige Orte 5434 % | 4270 % | 11.64
Heimat fremde Heimat 29.72% | 17.33 % | 12.39
Hohes Haus 17.50 % 9.26 % 8.24
Julia 80.36 % | 76.88 % 348

Z1B 491 % 0% 491

Table 5: The percentage of music really present versus the percent-
age estimated using Continuous Frequency Activation.

0.8 % real B
% est. CFA
[_]% est. machine learning

Figure 3: Comparison of the real percentage of music, the machine
learning estimate and the CFA estimate (see tables[|and3).

quency activations are a consequence of continuous noise signals,
such as e.g. helicopter noise, the CFA feature wrongly detects mu-
sic segments. Again, some examples of those misclassifications
canbe found at (http://www.cp. jku.at/people/seyerlehn
er/md.html).

We also tested the CFA feature on a different set of reference
data, namely, the Scheirer-Slaney database [13]], which consists of
245 samples of radio recordings (which are presumably easier to
classify than our data). To our knowledge, this is currently the
only dataset of this kind that is publicly availableﬂ The dataset
was split into a training and a test set by Dan Ellis and is described
in detail in [15]. The only change we made was to reduce the
classes to music and no_music only. Based on this training set
of 184 examples, we found an empirical threshold of ¢ = 1.05.
Using this threshold, 60 out of the 61 examples of the test set were
classified correctly — a classification accuracy of 98.36%, which is
roughly comparable to the results reported in [[14].

2We hope to get the permission by the Austrian National Broadcasting
Corporation (ORF) to make our ground truth data available online.
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6. CONCLUSIONS

In this paper we introduced a new music detection application,
namely music detection in TV productions, and pointed out that
this application differs from common speech/music classification
problems. Our experiments show that standard speech/music dis-
crimination features in combination with standard machine learn-
ing algorithms yield interesting, but highly varying results. There-
fore we focused on the development of more reliable features.

Extending standard frame-level features to clip-level features,
thus incorporating some rudimentary temporal information, seems
not to be a successful strategy. On the other hand, our experiments
show that the application of an appropriate smoothing function re-
sults in plausible segmentations and improves the overall accuracy
considerably.

We then introduced a new feature which was especially de-
signed to detect music in an accurate and robust way. This raised
the total accuracy on our highly non-trivial test set to 89.93%.
Surprisingly, a simple thresholding approach based on this new
feature alone outperforms the machine learning approach. This
supports the thesis that music detection can be further improved
if one makes use of the structural aspects of music, which even
allows the detection of background music.

We have plans to further optimize the parameter settings of
the Continuous Frequency Activation and to develop other features
exploiting structural properties of music signals. One interesting
direction might be to focus on rhythmic properties, as Scheirer and
Slaney [13]] and Jarina et al. [16] have already tried. With respect
to the current application, we will also investigate combinations
of speech/music discrimination features and the CFA feature and
hope to deploy an operational music detection system at the Aus-
trian National Broadcasting Corporation (ORF) in the near future.
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Figure 4: Visualization of the classification results for the machine learning approach of 40 minutes of the soap opera "Julia". Each line
represents 20 minutes of audio and is split to compare the class prediction with the true class. The class "music" is represented by a lighter
color, whereas "no_music" is in the form of dark regions. The lower subplot illustrates the results after the application of the smoothing
function.
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Figure 5: Visualization the classification results for the new CFA feature of 40 minutes of the soap opera "Julia”. Each line represents 20
minutes of audio and is split to compare the class prediction with the true class. The class "music" is represented by a lighter color, whereas
"no_music" is shown in the form of dark regions. The lower subplot illustrates the results after the application of the smoothing function.
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