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ABSTRACT

Multivariate Gaussians are of special interest in the MIR
field of automatic music recommendation. They are used
as the de facto standard representation of music timbre to
compute music similarity. However, standard algorithms
for clustering and visualization are usually not designed
to handle Gaussian distributions and their attached metrics
(e.g. the Kullback-Leibler divergence). Hence to use these
features the algorithms generally handle them indirectly by
first mapping them to a vector space, for example by deriv-
ing a feature vector representation from a similarity matrix.

This paper uses the symmetrized Kullback-Leibler cen-
troid of Gaussians to show how to avoid the vectorization
detour for the Self Organizing Maps (SOM) data visualiza-
tion algorithm. We propose an approach so that the algo-
rithm can directly and naturally work on Gaussian music
similarity features to compute maps of music collections.
We show that by using our approach we can create SOMs
which (1) better preserve the original similarity topology
and (2) are far less complex to compute, as the often costly
vectorization step is eliminated.

1. INTRODUCTION

Good content-based music recommendation systems are
currently on the wish list of many music services since they
help handling the massive audio databases which are cur-
rently emerging: be it simple music recommendations in
the form of automatically generated playlists, advanced vi-
sualizations of the collections, or other new ideas for music
discovery and listening.

One of the basic foundations of automatic content-
based music recommendation systems is the ability to
compute music similarity. In research it is not yet settled
how to extract and represent good music similarity fea-
tures that correspond well with the human perception of
general music similarity. However, the currently best per-
forming methods have one thing in common: A central
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component in most of the currently best working meth-
ods is a representation of timbre in terms of a multi-
variate Gaussian. Take for example, the top three algo-
rithms in the MIREX 1 2009 (Music Information Retrieval
Exchange [4]) Automatic Music Recommendation eval-
uations. All used multivariate Gaussians and Kullback-
Leibler-related divergences to describe and compare their
similarity features. The basic idea of using a single multi-
variate Gaussian to model timbre similarity was first used
by Mandel and Ellis [10]. In their case the Gaussian is
computed over the Mel Frequency Cepstrum Coefficient
representation [8] of the song.

We see the Gaussian representation of the music fea-
tures as a very powerful way to describe the variability
of the features in a song. With the Kullback-Leibler di-
vergence and related divergence measures (Symmetrized
Kullback-Leibler, Jensen-Shannon divergence) there also
exist well founded ways to compute a distance/similarity
value between the features (even though there are some
problems related to the non-metricity of the divergences).

Things get interesting when we leave the path of simple
feature representation and similarity computation. Stan-
dard algorithms for indexing, clustering or visualization
are usually just not designed to work with Gaussian
distributions and non-standard metrics like the one the
Kullback-Leibler divergence induces. For instance, how
would computing a simple average be performed with
Gaussian features?

To work around that limitation the feature data is often
artificially vectorized. In the domain of content based mu-
sic recommendation techniques we have seen approaches
computing the full distance matrix and using each row of
the matrix as a feature vector [5,14], or more venturesome
ones reshaping the Gaussian covariance matrix and mean
vector into a single long vector [11]. The first solution is
expensive to compute the larger the music collection is,
and the latter one, although fast, takes away the sense of
using Gaussians.

In 2005 Banerjee et al. published an important pa-
per in the machine learning literature where they show
how to generalize the k-means clustering algorithm to the
broad class of Bregman divergences [1]. This generaliza-
tion practically opened all centroid-based algorithms to the

1 http://www.music-ir.org/mirex/2009



wide range of Bregman divergences, which the Kullback-
Leibler divergence is part of.

This paper builds on these findings and defines the
weighted symmetrized Kullback-Leibler centroid to show
how the Self Organizing Map (SOM) algorithm can work
directly and naturally with Gaussians. The approach is able
to create higher-quality two dimensional visualizations of
music archives while retaining the nice scalability charac-
teristics of the general SOM algorithm.

2. RELATED WORK

There already exists a wide range of publications deal-
ing with visualizing acoustic music similarity features
on SOMs. One of the first to do so were Rauber and
Frühwirth [18] who use a very basic music similarity fea-
ture and a simple tabular grid which displays the clus-
tered song titles on the map. This idea was extended by
Pampalk et al. who use rhythmic similarity features and
the Smoothed Data Histogram [16] (SDH) visualization
to draw the SOM. Their visualization is inspired by geo-
graphical maps: blue regions (oceans) indicate areas onto
which very few pieces of music are mapped, whereas clus-
ters containing a larger quantity of pieces are colored in
brown and white (mountains and snow). It was published
under the name “Islands of Music” [15], which inspired
the title of the presented paper.

‘Neptune’ [5] developed by Knees et al. improved
Pampalk’s visualization by taking the two dimensional
map into the third dimension. They add crawled meta-
information and pictures from the web and allow a 3D walk
through a music collection. They use a mix of rhythmic
and timbre based similarity measures.

The ‘Globe of Music’ [7] by Leitich and Topf uses a
GeoSOM [20] to map the music collection onto a globe for
exploration. Lübbers et al. developed the ‘SoniXplorer’ [9]
to navigate through music archives. They use a multimodal
navigation model where the auralization of music supports
the user on the SOM visualization of the music collection.

Mörchen et al. use the Emergent SOM algorithm to
visualize and cluster music collections in their ‘Music
Miner’ [12] system. For music similarity they use a large
set of low-level features. In their paper they also point out
that they cannot use Gaussian music similarity features as
“they can not be used with datamining algorithms requir-
ing the calculation of a centroid”. Solving that is the focus
of the next sections of this paper.

3. PRELIMINARIES

To demonstrate how to use the SOM algorithm with Gaus-
sian features we use the standard music similarity al-
gorithm proposed by Mandel and Ellis [10]. This ap-
proach computes a single Gaussian music-timbre similar-
ity feature. Similarity is computed with the symmetrized
Kullback-Leibler divergence.

Since its publication this approach has been modified
and improved in various ways, yet most stayed with the

Gaussian feature representation. So everything presented
here will of course work with the derived approaches too.

3.1 Music Features and Similarity Computation

To extract the timbre music similarity features we extract
25 Mel Cepstrum Frequency Coefficients [8] (MFCCs) for
every 46ms of audio. This corresponds to a window size of
1024 audio samples at 22.05kHz. In this way a Gaussian
timbre model x finally consists of a 25-dimensional mean
vector µ, and a 25× 25-dimensional covariance matrix Σ.

To compute the similarity between two Gaussians the
Kullback-Leibler divergence (kld) can be used. There ex-
ists a closed form of this divergence [17] which allows the
divergence to be computed between two m-dimensional
Gaussians x1,2 ∼ N (µ,Σ).

2 kld(x1||x2) =

loge

(
det Σ2

det Σ1

)
+ tr

(
Σ−12 Σ1

)
+

(µ2 − µ1)
>

Σ−11 (µ2 − µ1)−m (1)

Since the kld is asymmetric usually a symmetrized vari-
ant (skld) of the divergence is used for music similarity
estimation:

skld(x1||x2) =
kld(x1||x2) + kld(x2||x1)

2
(2)

3.2 Self Organizing Map (SOM) Algorithm

The SOM [6] is an unsupervised neural network that or-
ganizes multivariate data on a two dimensional map and
is suited well for visualizations. It maps items which are
similar in the original high-dimensional space onto loca-
tions close to each other on the map.

Basically the SOM consists of an ordered set of so-
called map units ri, each of which is assigned a reference
vector (or model vector) mi in the feature space. The set
of all reference vectors of a SOM is called its codebook. In
the simplest case the codebook is initialized by a random
strategy.

To compute a SOM, first the map dimensions and the
number of training iterations (t) are fixed. Training is done
in four basic repeating steps:

1. At iteration t select a random vector v(t) from the
set of features.

2. Search for the best matching map unit c on the SOM
by computing the (Euclidean) distance of v(t) to all
mi.

3. The codebook is updated by calculating a weighted
centroid between v(t) and the best matching unit rc.
Based on a neighborhood weighting function hci(t)
all map units participate in the adaptations depend-
ing on their distance on the two-dimensional outout



map. Equation 3 shows a standard Gaussian neigh-
borhood function.

hci(t) = α(t) exp

(
−||rc − ri||

2α2(t)

)
(3)

mi(t+ 1) = mi(t) + hci(t) [v(t)−mi(t)] (4)

4. The adaptation strength α(t) is decreased gradually
with the iteration cycle t. This supports the forma-
tion of large clusters in the beginning and a fine-
tuning toward the end of the training.

Usually, the iterative training is continued until a conver-
gence criterion is fulfilled or a preselected number of train-
ing iterations is finished. In the final step all items are as-
signed to the map unit they are most similar to.

A popular way of visualizing SOMs trained with mu-
sic similarity features is the Smoothed Data Histogram
(SDH) [16].

4. FROM VECTORS TO GAUSSIAN
DISTRIBUTIONS

Although originally SOMs were defined for Euclidean fea-
ture vectors only, the algorithm per se is not limited to the
vector space. Kohonen himself mentions this in the most
recent edition of his standard work on Self-Organizing
Maps [6]. This observation will be the basis for extend-
ing the SOM algorithm to the ‘distribution space’.

A closer look at the SOM algorithm sketched in the last
section, shows that there is only a single step where the
algorithm in fact depends on vectors. It is the computation
of the weighted centroid in Equation 4 2 . We now rewrite
Equation 4 so that it is more obvious that a centroid (a
weighted mean of several vectors) is computed:

mi(t+ 1) = (1− hci(t))mi(t) + hci(t)v(t) (5)

The essence of this is if a weighted centroid can be com-
puted for Gaussians and the symmetrized Kullback-Leibler
divergence, the SOM algorithm would, without modifica-
tions, work for our data.

4.1 Weighted Symmetrized Kullback-Leibler
Centroid

The Kullback-Leibler divergence is part of the broad fam-
ily of Bregman divergences [3]. In 2005 Banerjee et al.
showed that a unique centroid exists for any Bregman di-
vergence and proved that the standard k-means (and with
that basically any centroid-based) works in this rich family
of divergences [1].

As Bregman divergences are asymmetric divergences,
there exist three uniquely defined centroids for a diver-
gence D and a set of points xi: the left-sided centroid cL,
right-sided centroid cR and symmetrized centroid cS . The

2 The distance ||rc − ri|| in Equation 3 is computed in ‘map space’
and does not need to be modified.

centroids are the optimizers of the minimum average dis-
tance:

cL = argmin
c

1

n

n∑
i=1

D(c||xi) (6)

cR = argmin
c

1

n

n∑
i=1

D(xi||c) (7)

cS = argmin
c

1

n

n∑
i=1

D(xi||c) +D(c||xi)
2

(8)

As Nielsen and Nock show [13], no closed analytical form
to compute the symmetrized centroid exists. In their pa-
per they present an efficient geodesic walk algorithm to
find the symmetrized Bregman centroid c using the left cL
and right cR centroids. In the last section they also define
the three centroids for the Kullback-Leibler divergence and
xi ∼ N (µxi

,Σxi
) multivariate Gaussians.

To use these centroids in the SOM algorithm we need to
modify them and add a weighing term λi (with

∑n
i=1 λi =

1) for each Gaussian. The individual weighted centroid
definitions are given in the next paragraphs 3 .

4.1.1 Weighted Right-Sided Gaussian kld-Centroid

The right-type kld-centroid Gaussian cR ∼ N (µcR ,ΣcR)
coincides with the center of mass. For Gaussians xi and
the kld it is defined as:

µcR =

n∑
i=1

λiµi (9)

ΣcR =

n∑
i=1

λi
(
µi × µT

i + Σi

)
− µcR × µT

cR (10)

with λi as defined above.

4.1.2 Weighted Left-Sided Gaussian kld-Centroid

The left-type kld-centroid Gaussian cL ∼ N (µcL ,ΣcL)
is obtained equivalently by minimizing the dual right-type
centroid problem. For Gaussians xi and the kld it is de-
fined as:

µcL = ΣcL ×
n∑

i=1

λi(Σ
−1
i × µi) (11)

ΣcL =

(
n∑

i=1

λiΣ
−1
i

)−1
(12)

with λi as defined above.

4.1.3 Weighted (mid-point) Gaussian skld-Centroid

To compute the weighted symmetrized Kullback-Leibler
centroid, the weighted left and right centroids need to be
computed. We then use the mid-point centroid approxi-
mation instead of computing the exact centroid. The mid-
point empirically proved to be a good approximation of
the true centroid of the skld [19]. The approximation

3 A detailed listing and explaination of the derivation of each centroid
can not be given due to the length constraints of this paper.



(a) Euclidean Vectors (from the similarity
matrix)

(b) Gaussians

Figure 1. A 10 × 10 SOM, computed with the two different approaches. The SOMs are visualized using the Matlab
Smoothed Data Histogram Toolbox [16] clustering a collection of 1 000 music pieces. They were created using identical
parameters for initialization and learning.

cS ∼ N (µcS ,ΣcS ) merges the weighted left and right cen-
troids in one step:

µcS =
1

2
(µcL + µcR) (13)

ΣcS =
1

2

∑
i={L,R}

(
µci × µT

ci + Σci

)
− µcS × µT

cS

(14)

4.2 The Generalized SOM

With the definition of the weighted skld-centroid every-
thing is in place to use the SOM algorithm with Gaussian
music-timbre models and the skld:

1. Initialization of the SOM and its mi is done by
selecting random Gaussians from the music-timbre
models.

2. Most importantly the iterative computation of the
weighted centroid during the training of the code-
book can now be replaced with the weighted sym-
metrized kld centroid.

3. The learning rate adaptation and neighborhood func-
tions do not need to be changed. They are not depen-
dent on the features.

4. In the final step the Gaussians are assigned to the
nearest map units according to skld.

The approach of using the SOM directly with the Gaussian
features is very close to the data and the original intention
of the algorithm. We evaluate the generalized SOM in the
next section.

5. EVALUATION

To compare SOMs generated with different approaches,
we quantify how well the original neighborhood topology
is preserved in a SOM mapping. As we need to com-
pare SOMs using different metrics it is not possible to use
standard SOM quality measures like the quantization error.

Therefore we are using a rank distance. We search for the
n nearest neighbors of every item xi in the original space
and check their location on the SOM. Ideally the nearest
neighbors should also be mapped close to each other on
the SOM. For a given number n of nearest neighbors and a
Gaussian xi this will be measured as the n nearest neigh-
bor rank distance:

1. Assign all Gaussians to their corresponding map unit
on the SOM.

2. For Gaussian xi compute the Euclidean distance of
its assigned map unit on the SOM to the map units
assigned to all other Gaussians.

3. Sort the list of Euclidean distances in ascending or-
der and transform it into a list of ranks.

4. Find the n nearest neighbors of xi in the original
space and average across their corresponding ranks.

The average n nearest neighbor rank distance of all xi is a
value describing the whole SOM. The lower its value, the
better the preservation of the neighborhood on the SOM.

5.1 Setup

To test how the SOM algorithm performs operating di-
rectly on the Gaussians we used a test collection of 16 754
songs. The songs are typical full three to five minutes
songs of a mixed genre music collection. We compute the
Gaussian timbre music similarity features for these songs
(see Section 3.1) so that every song is characterized by a
25-dimensional Gaussian.

To compare the quality of the SOMs generated with our
approach, we also generate SOMs with vectorized features.
For each Gaussian feature we build a vector by computing
the distance to all other features and normalizing this dis-
tance vector to zero mean and unit variance. This is equiv-
alent to computing the full similarity matrix and using each
row as a feature vector (done e.g. in [5, 14]).

As a baseline for our experiments we also use a ran-
domly initialized SOM without any training. In our exper-
iments we vary various SOM parameters to test different
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Figure 2. Four plots of the average n-nearest neighbor rank distance using different SOM configurations. Each plot
compares the two strategies (Gaussian/Vectorized) to compute a SOM. As a baseline a randomly initialized SOM (black
bar) is added. Lower rank distance values indicate that the original nearest neighbors (NNs) are mapped closer to each other
on the SOM. The plots clearly shows that using Gaussians directly produces SOMs better preserving the neighborhood.

configurations: (1) we used SOM grid sizes of 5×5, 7×7,
10×10, 12×12, (2) and mapped 500, 1 000, 1 500 or 2 000
songs (randomly drawn from the base collection).

To ensure a fair evaluation we took the following pre-
cautions:

• In each run the same random seed is used for the ran-
dom, vectorized and Gaussian SOM. This ensures
identical random initialization and use of the same
randomly chosen features during the training phase.

• The previously defined average n-nearest neigh-
bor rank distance is computed for each map (n =
1, 5, 10, 20).

• Each unique experiment configuration is repeated
ten times. Results are averaged.

5.2 Results

Figure 2 shows the average n-nearest neighbor rank dis-
tance for four selected SOM configurations which have
been evaluated. In these experiments it can be seen that
directly using Gaussians to train a SOM results in maps
which are able to better preserve the neighborhood.

The results of all experiments conducted are summa-
rized in Table 1. The table expresses the improvement of
SOMs created with the Gaussian and vectorized approach
relative to the randomly initialized SOMs. It confirms the
results of the previous figure that throughout the configura-
tions SOMs computed directly with the Gaussians produce
higher-quality mappings and that this method should be
preferred.

An illustration comparing two SOMs created with the
two approaches is plotted in Figure 1. Albeit we can not
make any judgements concerning the quality of the SOMs
from the plots, we can see that a more structured SOM
emerged from directly using the Gaussian features.

Besides producing higher-quality SOMs, we emphasize
that this approach is also far less complex to compute than
a variant working with vectorized features: (1) it is al-
most impossible to compute the full similarity matrix on a
large collection of songs (i.e. over 100 000 songs) and (2) a
SOM with 100 000-dimensional (or larger) vectors would

Nearest Neighbors
Features Type 1 5 10 20

500 Gaussians 0.90 0.41 0.41 0.43
Vectors 0.97 .55 0.56 0.54

1000 Gaussians 0.80 0.40 0.40 0.41
Vectors 1.07 0.64 0.63 0.62

1500 Gaussians 0.75 0.38 0.38 0.40
Vectors 0.75 0.60 0.60 0.60

2000 Gaussians 0.76 0.41 0.42 0.43
Vectors 0.77 0.70 0.70 0.69

Table 1. The table shows the average n-nearest neighbor
rank distance of a SOM in relation to a randomly initialized
one. Lower ratios indicate a better neighborhood topology
preservation. It can be seen that in each configuration the
Gaussian approach produces better mappings.

be very expensive to compute. By using random projec-
tions [2] one can overcome that, but that would probably
come with a loss of mapping quality. A SOM computed di-
rectly with the Gaussians, on the other hand, requires only
a fraction of the computational effort, as the full similar-
ity matrix does not need to be computed and the original
features are used as intended.

6. DISCUSSION & FUTURE WORK

We have shown how to compute a weighted symmetrized
Kullback-Leibler centroid on multivariate Gaussians and
on top of that how to directly and naturally compute a SOM
with Gaussian music similarity features. The SOMs com-
puted with that approach are shown to produce better map-
pings and omit the so far necessary step of vectorizing the
data to compute a SOM.

The approach easily fits into the large number of ex-
isting SOM visualizations using Gaussian music similar-
ity features together with a Kullback-Leibler related diver-
gence and is of course not limited to music similarity. By
using it the quality of the produced SOM should increase
and the application can scale to larger collections of fea-
tures.



Besides computing SOMs we also gave a clear def-
inition of how to compute the weighted symmetrized
Kullback-Leibler centroid so that it can be re-used to solve
different problems where the features are also parametric
Gaussians: for example to do a k-means cluster analysis
in music collections directly with the Gaussian features.
Maybe the centroid could also be of use to build an index-
ing algorithm for faster nearest neighbor retrieval.
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