
Large-Scale Music Exploration in Hierarchically Organized
Landscapes Using Prototypicality Information

[deepTune]

Markus Schedl, Christian Höglinger, Peter Knees
Department of Computational Perception

Johannes Kepler University
Linz, Austria

markus.schedl@jku.at

ABSTRACT
We present a novel user interface that offers a fun way to
explore music collections in virtual landscapes in a game-
like manner. Extending previous work, special attention is
paid to scalability and user interaction. In this vein, the
ever growing size of today’s music collections is addressed
in two ways that allow for visualizing and browsing nearly
arbitrarily sized music repositories. First, the proposed user
interface deepTune employs a hierarchical version of the Self-
Organizing Map (SOM) to cluster similar pieces of music us-
ing multiple, hierarchically aligned layers. Second, to facil-
itate orientation in the landscape by presenting well-known
anchor points to the user, a combination of Web-based and
audio signal-based information extraction techniques to de-
termine cluster prototypes (songs) is proposed. Selecting
representative and well-known prototypes – the former is
ensured by using signal-based features, the latter by using
Web-based data – is crucial for browsing large music collec-
tions. We further report on results of an evaluation carried
out to assess the quality of the proposed cluster prototype
ranking.

Categories and Subject Descriptors: H.5.2 [User Inter-
faces]: Auditory, Graphical user interfaces H.5.1 [Multime-
dia Information Systems]: Artificial, augmented, and virtual
realities

General Terms: Algorithms

Keywords: music information extraction, user interface,
human–computer interaction, unsupervised learning

1. BACKGROUND AND RELATED WORK
Steadily growing sizes of digital music collections, both in
the private and the commercial area, necessitate intelligent
user interfaces [18] to make the vast amount of music avail-
able to all. Methods for exploring music repositories by

means beyond simple text-based interfaces1 are thus gain-
ing more and more popularity. According to [33], music
retrieval systems to access music collections can be broadly
categorized with respect to the employed query formulation
method into direct querying, query by example, and browsing
systems. The approach presented in the paper at hand uses
the modality of browsing to retrieve music from a possibly
huge repository.
One group of algorithms that aims at offering the user a
means of intelligently exploring music collections is music
recommender systems, e.g., [4]. Such a system is usually
built by first deriving features from various sources, such as
tags obtained via game playing [9, 32], artist term profiles
extracted from Web pages [2, 12], or RSS feeds [5]. Sub-
sequently, a similarity measure between artists or between
songs is applied to the feature vectors. The resulting simi-
larity estimates are then used to recommend music similar
to a given input song or artist. As an alternative or in ad-
dition, collaborative filtering techniques [3] may be used for
or incorporated into the recommendation.

1.1 Intelligent User Interfaces to Music
Another category of approaches to transcend traditional,
text-based ways of music retrieval is intelligent user inter-
faces (IUI) [18] to explore music collections. The deepTune

application presented here is one example of such an IUI.
Others include [10], where songs are represented as discs
that drop down from various taps (corresponding to different
moods) and can be arranged and combined to form playlists.
[21] and [22] present user interfaces to explore music collec-
tions according to different similarity dimensions (acoustic
similarity as well as similarity derived from term profiles of
artist-related Web pages). [25] proposes an interface that
organizes a music collection in a large circular playlist by
approximating the solution to a Traveling Salesman Prob-
lem that is defined by the collection’s audio similarity ma-
trix. Similar pieces of music are therefore found in similar
regions along a disc visualization, which can be accessed via
a wheel. Several extensions of this interface have been pro-
posed, mainly to improve the user’s orientation within the
music collection: for example, [27] presents an implementa-

1The majority of today’s music playback devices still em-
ploys the traditional step-wise search scheme for artist -
album - track.

tion on a mobile device that incorporates Web-based tags
to facilitate navigation, and [8] presents an approach that
automatically structures the playlist hierarchically.

Most closely related to the deepTune interface is the nep-

Tune application [13] that builds upon the “Islands of Mu-
sic” (IoM) metaphor [19, 20]. According to this metaphor,
similar music pieces are visualized via islands with homo-
geneous acoustic properties (for example, a “Classical” is-
land, a “Heavy Metal” island, and so on). Depending on
the (musical) distance between these islands, they are sepa-
rated by large oceans or small sand banks. IoM uses the un-
supervised learning algorithm Self-Organizing Map (SOM)
[14] to determine music clusters and subsequently approxi-
mates the distribution of the collection’s data items over the
map by a Smoothed Data Histogram (SDH) [24]. In [13] a
three-dimensional extension of the IoM is presented. The
clusters are determined according to acoustic similarity. In
addition, terms and images extracted from Web pages are
presented to describe the regions of the map. While navi-
gating through the landscape, the songs closest to the user’s
current position are played simultaneously. [17] presents a
similar three-dimensional user interface. The authors, in
contrast, use a metaphor different from the “Islands of Mu-
sic”. Their height map algorithm produces inverse heights,
compared to the IoM approach, i.e., agglomerations of mu-
sic pieces are located in valleys, and the clusters are not
separated by oceans, but by hills. This technique resem-
bles the U-matrix visualization [34] of the Self-Organizing
Map. Moreover, user adaptation is supported by allowing
the user to build or destroy separating hills. In this case,
the similarity measure is adapted accordingly.

A drawback of the interface proposed in [13] is that it does
not scale beyond some hundreds of songs, because of compu-
tational limitations and restricted visualization space. The
deepTune application, in contrast, extends [13] in that it
clusters the given music collection in a hierarchical man-
ner, thus allows to visualize arbitrarily sized music collec-
tions. Given today’s large amounts of tracks in personal
music repositories, scalable, intelligent interfaces are of par-
ticular importance. We hence used a hierarchical clustering
algorithm. The resulting multi-layer visualization requires
various extensions to guide the user in her exploratory music
discovery. These visual extensions, as well as the algorithm
to find representative cluster prototypes that we had to elab-
orate, are detailed in the following section.

2. TECHNICAL FOUNDATIONS
The deepTune system makes use of various techniques from
the fields of music information research, Web mining, and
unsupervised learning. First, acoustic features (Fluctuation
Patterns) are extracted from the audio signal of the input
songs. Based on these features, a clustering algorithm then
organizes the collection. Since deepTune should be able to
visualize arbitrarily sized music collections, we opted for a
hierarchical version of the Self-Organizing Map (SOM) clus-
tering approach. Well-known prototypes for each cluster are
subsequently determined by a Web-based popularity detec-
tion technique, the popularity ratings of which are combined
with acoustic features in order to find music pieces that are
representative for the cluster, but also popular enough to be
of help for the majority of music listeners.

2.1 Signal-based Audio Features
Acoustic features are computed according to the approach
proposed in [23]. The Fluctuation Patterns (FP) describe
rhythmical properties as they represent a music piece’s dis-
tribution of re-occurring beats over different frequency bands
and modulation frequencies (at different bpm).
To compute the FP features, first each track is sliced into
6-second-pieces. Then, the audio signal of selected pieces
is transformed into the frequency domain by applying a
Fast Fourier Transform (FFT) [6]. Subsequently, the fre-
quency/magnitude scale is transformed into the psychoa-
coustic Bark scale [35], according to which frequency val-
ues are binned into perceptually equidistant“critical bands”.
Since the human ear is not equally responsive to all frequen-
cies, a perceptual model of the human auditory system [31]
is applied to account for the disproportionately high impact
of low frequencies and the disproportionately low impact of
high frequencies. Furthermore, spectral masking effects, i.e.,
the occlusion of quieter sounds if two or more sounds of
similar frequency co-occur, are taken into account [28]. The
modified Bark scale values are then transformed into the
perceptually linear Sone scale [30]. The final Fluctuation
Pattern of a piece of music is then obtained by computing
the Discrete Cosine Transform (DCT) [1] of the modified
power spectrum of each 6-second-slice, subsequent empha-
sizing perceptually important periodicities, and aggregating
the resulting rhythm periodicity representations for the en-
tire track by computing the median over all slices.
Figure 1 illustrates the Fluctuation Patterns of highly differ-
ent music pieces. The FP depicted on the upper left belongs
to a techno track with dominant bass beats around 120 and
240 bpm (corresponding to 2 and 4 Hertz, respectively). The
piece on the lower left is a quiet song dominated by calm
voices. The one on the upper right is an rock song with a
poignant female voice. The piece on the lower right is a pi-
ano sonata with a clearly horizontal characteristic, without
any activations in the lowest frequency bands.
Applying the FP computation results in a 1,200-dimensional
feature vector representation (20 critical bands times 60 pe-
riodicity bins) for each piece of music. To decorrelate redun-
dant feature dimensions and improve performance the fea-
ture vectors of all songs are compressed to 120 dimensions
using Principal Components Analysis (PCA) [11]. This rep-
resentation is then input into the clustering algorithm.

2.2 Clustering
To group similarly sounding music pieces (according to the
Fluctuation Patterns), we reimplemented and extended the
Growing Hierarchical Self-Organizing Map (GHSOM) clus-
tering algorithm presented in [7]. The standard SOM is a
neural network model that performs a non-linear mapping
from a high-dimensional data space into a low-dimensional
(usually two-dimensional) visualization space while preserv-
ing topological properties, i.e., data items that are similar
in the feature space are mapped to similar positions of the
visualization space. A SOM is described as a set of map
units U arranged in a rectangle. Each map unit ui is as-
signed a model vector mi with same dimensionality as the
data space. During training the model vectors are gradually
adapted to better represent the input data X. The map
unit’s model vector closest to a data item x is referred to as
x’s “best-matching unit” and is used to represent x on the
map.

Floorfilla, Anthem #5

modulation frequency (Hz)

cr
iti

ca
l−

ba
nd

 (
ba

rk
)

1 2 3 4 5 6 7 8 9 10

5

10

15

20

0.02

0.04

0.06

0.08

0.1

0.12

Nightwish, Come Cover Me

modulation frequency (Hz)

cr
iti

ca
l−

ba
nd

 (
ba

rk
)

1 2 3 4 5 6 7 8 9 10

5

10

15

20

0.005

0.01

0.015

0.02

0.025

0.03

Clannad, Caislean Oir

modulation frequency (Hz)

cr
iti

ca
l−

ba
nd

 (
ba

rk
)

1 2 3 4 5 6 7 8 9 10

5

10

15

20

0.005

0.01

0.015

0.02

Mozart, Piano Sonata in C Major, K.330

modulation frequency (Hz)

cr
iti

ca
l−

ba
nd

 (
ba

rk
)

1 2 3 4 5 6 7 8 9 10

5

10

15

20

0.005

0.01

0.015

Figure 1: Fluctual Pattern visualization for different
pieces of music.

In practice the standard SOM approach is limited in the
number of data items that can be visualized. We therefore
opted for the GHSOM approach that automatically adapts
the structure of the SOM during training. Starting with
a standard SOM of size 2 × 2, in each iteration step dur-
ing training, the mean quantization error of each map unit
mqei and of the whole SOM mmqe is calculated according
to Formulas 1 and 2, respectively. Vi represents the Voronoi
set of map unit ui, i.e., the set of all data items for which
ui is the best-matching unit, mi is the model vector that
describes ui, and |X| is the cardinality of the input data set.

mqei =
1

|Vi|
·
∑
j∈Vi

‖xj −mi‖ (1)

mmqe =
∑

i

|Vi|
|X| ·mqei (2)

The parameter τm controls the size of individual SOMs,
whereas τu regulates the depth of the GHSOM. In our ex-
periments we empirically set τm = 0.5 and τu = 0.25.
To enforce a quadratic layout of the (sub-)SOMs, we further
introduced a restricting parameter for the ratio between the
number of rows and columns (set to 0.5). Moreover, we
modified the algorithm in that SOMs representing less than
10 data items are not further expanded. This circumvents
creating a lot of very sparse sub-level SOMs.

2.3 Cluster Prototype Selection
Depicting the labels of all music pieces mapped to the highest-
level-SOM would yield tremendous visual overload when real-
world collections consisting of tens of thousands of tracks are
processed. An easy solution to this problem is to determine
representative prototypes for each map unit ui by selecting
a number of data instances closest to mi. Although this is a
mathematically sound solution, the resulting prototypes are
often not very popular, therefore unknown to most users,
and thus of limited help for their orientation. As an alterna-

(a) top-level

(b) level two

(c) level three

Figure 2: deepTune’s visualization on different levels
of the GHSOM-tree.

tive, we propose the following prototype selection algorithm
that builds upon [8]. Prototypical music pieces for a map
unit ui are determined by combining Web-based popular-
ity estimation and the pieces’ audio-based distance to the
respective map unit’s model vector mi.

First, we estimate the popularity of each artist in the col-
lection by obtaining page counts from Google for queries
of the form "artist name" music review. Based on the
page-count-values, we define an artist ranking according to
Formula 3, where pc(a) is Google’s estimate for artist a’s
number of Web pages and norm(·) scales the values to the
range [1, 5]. The audio signal-based part of the ranking func-
tion is given in Equation 4, where x is the feature vector

(a) upper level

(b) lower level

Figure 3: deepTune interface with anchor points.

corresponding to the music piece under consideration, ‖·‖
is the Euclidean distance, and norm(·) is a normalization
function that shifts the range to [1, 2]. Finally, the artist-
based popularity ranking and the track-based ranking of au-
dio similarity to the model vector under consideration mi

are combined (Formula 5), and the pieces with highest r(x)
value are selected as prototypes for ui.

rw(a) = norm[1,5](log10(pc(a))) (3)

rs(x) = norm[1,2]

(
1

1 + ln(1 + ‖x−mi‖)

)
(4)

r(x) = rs(x) · rw(a) (5)

An evaluation of this ranking technique has been conducted
as well. The results are presented in Section 4.

3. USER INTERFACE
To get a first impression of the deepTune application, Figures
2(a), 2(b), and 2(c) depict the visualization resulting from
a sample collection, respectively, on the top, on the second,
and on the third level in the GHSOM-tree. The height of the
landscape is derived from the voting matrix of the SDH [24],
i.e., it roughly corresponds to the number of pieces mapped
to each map unit. These height values are further encoded
as colors, according to a color map used for topographical
maps. The resulting landscape can be regarded as “Islands
of Music”. Each map unit is assigned a number of most
representative tracks, the labels of which are depicted above

the corresponding unit. Note that deepTune employs linear
initialization of the SOM and batch training; the resulting
maps are hence stable for a constant data set.

User interaction within the deepTune environment is pro-
vided either by using a mouse or a game pad. The interface
supports panning, rotating, and adjusting the viewpoint an-
gle. Furthermore, a “quick zoom” function facilitates swift
orientation in large landscapes.

The currently played track is highlighted via flashing of its
label. When moving through the landscape, a green rect-
angle around a map unit illustrates that the map unit can
be expanded, i.e., lower-level SOMs do exist. A red rect-
angle denotes map units that cannot be expanded further.
Upon pressing a button, the user“dives” into the surrounded
map unit to the lower-level SOM. To prevent the user from
getting lost in deep SOM hierarchies, sub-SOMs are placed
into their higher-level context by showing the prototypes
of their parents’ neighboring map units, which serve as an-
chor points for better orientation. Figure 3 illustrates this
concept by highlighting different anchor points (the green
labels on the lower screenshot). Note that the layout of the
anchor points within the lower level resembles the layout of
the prototypes of the surrounding map units in the upper
level (upper image). Moreover, a navigation bar illustrates
the current depth in the GHSOM-tree and reveals further
information on the visualization (e.g., the total number of
SOMs and the size of the currently displayed SOM in terms
of map units and represented data items). Furthermore, an
“escape” function immediately brings the user back to the
top-level SOM.
In order to alleviate the visual clutter that would arise from
depicting the whole Voronoi set of each map unit, the num-
ber of prototypical pieces shown per map unit is limited.
The actual number of prototypes shown for map unit ui is
determined by Equation 6, where Vi is the Voronoi set of
map unit ui, and m is the maximum number of prototypes
per unit to be displayed.

np(ui) =

⌈
ln(|Vi|)

ln(maxj(|Vj |))
·m
⌉

(6)

3.1 Implementation Aspects
The audio features are calculated and compressed via PCA
using the CoMIRVA framework [26] for music information re-
trieval and visualization. Also the artist popularity esti-
mation builds upon Web retrieval functionality provided by
CoMIRVA. We extended the framework by our variant of the
GHSOM implementation.
The deepTune application itself is implemented in Java, us-
ing the libraries Xith3D for graphics processing and OpenAL

as audio API. deepTune has been tested on a real-world mu-
sic collection of about 48,000 songs, which is a subset of a
digital music retailer’s catalog.

4. EVALUATION
The selection of suitable cluster prototypes is essential for
the usability of deepTune. To assess the quality of the pro-
posed ranking approach (cf. Section 2.3), we compared the
results obtained by our ranking function with play count
data extracted from the music information system last.fm

[15] for the same artists/tracks. To retrieve the play count

data we used last.fm’s API [16]. Note that we refrained
from directly using last.fm’s play counts in deepTune since
building a Web crawler and simple page counts estimator is
feasible without relying on commercial, proprietary systems.

Two evaluation steps have been performed. First, the pure
Web-based artist ranking function rw(a) has been evaluated
in order to assess its significance for the complete ranking
function. Second, r(x), the combined signal- and Web-based
ranking function for particular sets of songs located on a spe-
cific map unit has been evaluated.
To illustrate the evaluation results, we calculated Spear-
man’s rank correlation coefficient [29] and used a scatter
plot.

4.1 Evaluation of rw(a)
A list of 7,723 unique artist names has been extracted from
our test database of 47,757 songs. For each artist name, two
Web requests were issued. First, the Google page count cor-
responding to the query "artist name" music review was
obtained. Second, the artist’s overall last.fm play count
was retrieved. Subsequently, tie-adjusted rankings were cal-
culated. Tie adjustment was especially necessary for the
calculation of Spearman’s rank correlation coefficient, as un-
corrected ties distort the result. Considering the page counts
and play counts of the data set used, most ties were caused
by either Google returning the value 0 for page counts or
last.fm returning the value −1, indicating that the artist
queried is known to the system. Tied ranks were dealt with
by assigning each tied item the mean of its surrounding
items’ ranks.

Calculating Spearman’s rank correlation coefficient for the
tie-adjusted rankings results in the value 0.819, which in-
dicates a strong correlation between last.fm’s play counts
and Google’s page counts. This correlation is further re-
vealed in the scatter plot depicted in Figure 4. Each point
represents a specific artist, the axes correspond to the re-
spective rankings. The x-axis represents the Google-based
ranking, whereas the y-axis represents the ranking based
on the last.fm play counts. The higher the value, the more
popular an artist is considered by the respective data source.
Thus, the highly unpopular artists should be located in the
bottom left corner of the plot and the highly popular artists
in the top right corner. If both rankings were perfectly sim-
ilar, a straight line from the point of origin to the point
(7,723; 7,723) would be visible. Even though this is obvi-
ously not the case, quite a strong correlation can be spotted,
as most points are aligned around such an ideal line.
The upper left portion of the plot contains nearly no data
points, contrary to the lower right portion. This indicates,
that there are only few artists that have a low Google page
count but a rather high last.fm playcount. Thus, if an artist
is known to Google, he or she is very likely to be known to
last.fm as well, but not necessarily vice versa. This finding
can partly be traced back to misspellings as Google is more
robust in that regard.
The straight horizontal and straight vertical sequences in the
lower left portion of the plot are caused by the tie-corrected
values. Both sequences indicate those artists that have ei-
ther a page count value of zero or are unknown to last.fm.
Such sequences affect Spearman’s rank correlation coeffi-
cient positively. Nonetheless, when omitting both sequences

Figure 4: Scatter plot of artist ranking evaluation.
Spearman’s coefficient: 0.819.

in the calculation, a coefficient of 0.786 is attained, which is
still very convincing.

In summary, a strong correlation between Google page counts,
which serve as basis of deepTune’s prototypicality rating,
and last.fm play counts could be determined.

4.2 Evaluation of r(x)
The setup for the evaluation of the track-based ranking func-
tion was quite similar to the evaluation of the artist ranking.
When focusing on single tracks, however, the complete rank-
ing function, i.e., the combination of signal- and Web-based
ratings, has to be evaluated. Thus, instead of the cumu-
lated artist play counts (over all tracks), we retrieved from
last.fm the play counts of specific songs, i.e., combinations
of "artist name" - "track name".
First, the tie-corrected ranking function was applied to the
ratings of each map unit’s Voronoi set, and then the respec-
tive Spearman’s rank correlation coefficient was calculated.
Based on the entire collection of 47,757 songs, an overall
measure as well as the results for two exemplary map units
are discussed in the following.

To get a general impression of the quality of our prototype
selection technique, the overall Spearman’s rank correlation
coefficient, averaged over all map units of the GHSOM’s
topmost map, was calculated according to Formula 7, where
M is the number of map units, sm is Spearman’s rank cor-
relation coefficient for map unit m having im data items
mapped to, M denotes the total number of map units, and
N the total number of data items.

savg =

∑M
m=1 sm · im

N
(7)

For the collection of 47,757 songs, our evaluation setting
yielded an savg of 0.491, which states that the track-based
ranking produced by deepTune correlates with the ranking
of the corresponding last.fm play count values. Although

Figure 5: Track-based ranking evaluation of 1,312
songs. Spearman’s coefficient: 0.840.

this result is convincing, it is not as strong as the result of
the pure artist-based evaluation. That is mostly due to the
fact that the track rating also incorporates a signal-based
component which does not necessarily correlate with the
Web-based component.

Example 1 (Strong Correlation)
This example shows a comparison of the rankings of 1,312
songs drawn from a well-populated map unit. The correla-
tion between both rankings becomes apparent from Figure
5. Spearman’s rank correlation coefficient is 0.840, which
indicates a strong positive correlation.

However, the long horizontal sequence of points in the lower
left corner indicates a problem with last.fm not recognizing
the queried artist/track, which may be traced back to mis-
spellings. In addition, the collection contains some rather
unknown songs. As such a sequence considerably affects
Spearman’s rank correlation coefficient, its calculation was
repeated without those misspelled or unknown songs. Omit-
ting those songs results in a smaller collection of 812 tracks.
For this subset, Spearman’s rank correlation coefficient is
0.751, which is still remarkable.

Example 2 (Fair Correlation)
This example shows the popularity rating of another map
unit with a Voronoi set of cardinality 1,083. This time the
results are not quite as clear as those of Example 1. Visually,
the points of the respective scatter plot, depicted in Figure
6, appear much more widespread than in the previous ex-
ample. Nonetheless, when examining the plot closely, some
correlation can be identified, as more densely populated ar-
eas are located in the lower left and upper right corners
whereas more scarcely populated areas are present in the
upper left and lower right corners.

Spearman’s rank correlation coefficient for this set is 0.497,
a value that indicates some correlation, but is not as distinct
and convincing as in the previous example.

Figure 6: Track-based ranking evaluation of 1,083
songs. Spearman’s coefficient: 0.497.

Interestingly, the scatter plot reveals no prominent horizon-
tal sequence of points at the bottom of the y-axis, which
means that the Voronoi set of that particular map unit con-
tains hardly any totally unknown or misspelled songs.

5. CONCLUSIONS AND FUTURE WORK
We presented a user interface to explore large music collec-
tions in virtual landscapes. Using a hierarchical clustering
approach, we partition a music collection according to rhyth-
mical features. We further proposed a method to determine
meaningful cluster prototypes, and we implemented some
techniques that facilitate the user’s orientation within the
hierarchical visualization framework.
Future work will include integrating automated playlist gen-
eration functionality. Moreover, we would like to extend the
application by “social functions”. For example, in a network
version of deepTune each user could see the music currently
listened to by her friends. Users may also be able to set vi-
sual markers or indicate favorite tracks or recommendations
to other users. We are further assessing methods to port
deepTune to mobile devices. Due to system and comput-
ing limitations of current mobile platforms, calculating the
audio features will likely have to be carried out on a PC.

6. ACKNOWLEDGMENTS
This research is supported by the Austrian Science Fund
(FWF): P22856-N23, L511-N15, and Z159.

7. REFERENCES
[1] N. Ahmed, T. Natarajan, and K. R. Rao. Discrete

Cosine Transfom. IEEE Transactions on Computers,
23:90–93, January 1974.

[2] S. Baumann and O. Hummel. Using Cultural
Metadata for Artist Recommendation. In Proc. of
WEDELMUSIC, Leeds, UK, 2003.

[3] J. S. Breese, D. Heckerman, and C. Kadie. Empirical
Analysis of Predictive Algorithms for Collaborative
Filtering. In Proc. of UAI, San Francisco, USA, 1998.
Morgan Kaufmann.

[4] O. Celma. Music Recommendation and Discovery in
the Long Tail. PhD thesis, Universitat Pompeu Fabra,
Barcelona, Spain, 2008.

[5] O. Celma, M. Ramı́rez, and P. Herrera. Foafing the
Music: A Music Recommendation System Based on
RSS Feeds and User Preferences. In Proc. of ISMIR,
London, UK, 2005.

[6] J. W. Cooley and J. W. Tukey. An algorithm for the
machine calculation of complex Fourier series.
Mathematics of Computation, 19(90):297–301, 1965.

[7] M. Dittenbach, D. Merkl, and A. Rauber. The
Growing Hierarchical Self-Organizing Map. In Proc. of
IJCNN, Como, Italy, 2000.

[8] M. Dopler, M. Schedl, T. Pohle, and P. Knees.
Accessing Music Collections via Representative
Cluster Prototypes in a Hierarchical Organization
Scheme. In Proc. of ISMIR, Philadelphia, USA, 2008.

[9] D. Eck, P. Lamere, T. Bertin-Mahieux, and S. Green.
Automatic Generation of Social Tags for Music
Recommendation. In Proc. of NIPS, 2008.

[10] M. Goto and T. Goto. Musicream: New Music
Playback Interface for Streaming, Sticking, Sorting,
and Recalling Musical Pieces. In Proc. of ISMIR,
London, UK, 2005.

[11] I. T. Jolliffe. Principal Component Analysis. Springer,
New York, USA, 1986.

[12] P. Knees, E. Pampalk, and G. Widmer. Artist
Classification with Web-based Data. In Proc. of
ISMIR, Barcelona, Spain, 2004.

[13] P. Knees, M. Schedl, T. Pohle, and G. Widmer. An
Innovative Three-Dimensional User Interface for
Exploring Music Collections Enriched with
Meta-Information from the Web. In Proc. of ACM
Multimedia, Santa Barbara, USA, 2006.

[14] T. Kohonen. Self-Organizing Maps, volume 30 of
Springer Series in Information Sciences. Springer,
Berlin, Germany, 3rd edition, 2001.

[15] http://last.fm (access: January 2010).

[16] http://last.fm/api (access: January 2010).

[17] D. Lübbers and M. Jarke. Adaptive Multimodal
Exploration of Music Collections. In Proc. of ISMIR,
Kobe, Japan, 2009.

[18] C. Mourlas and P. Germanakos, editors. Intelligent
User Interfaces. Information Science Reference,
Hershey, New York, USA, 2009.

[19] E. Pampalk. Islands of Music: Analysis, Organization,
and Visualization of Music Archives. Master’s thesis,
Vienna University of Technology, Vienna, Austria,
2001.

[20] E. Pampalk, S. Dixon, and G. Widmer. Exploring
Music Collections by Browsing Different Views.
Computer Music Journal, 28(3), 2004.

[21] E. Pampalk and M. Goto. MusicRainbow: A New
User Interface to Discover Artists Using Audio-based
Similarity and Web-based Labeling. In Proc. of
ISMIR, Victoria, Canada, 2006.

[22] E. Pampalk and M. Goto. MusicSun: A New
Approach to Artist Recommendation. In Proc. of
ISMIR, Vienna, Austria, 2007.

[23] E. Pampalk, A. Rauber, and D. Merkl. Content-based
Organization and Visualization of Music Archives. In

Proc. of ACM Multimedia, Juan les Pins, France, 2002.

[24] E. Pampalk, A. Rauber, and D. Merkl. Using
Smoothed Data Histograms for Cluster Visualization
in Self-Organizing Maps. In Proc. of ICANN, Madrid,
Spain, 2002.

[25] T. Pohle, P. Knees, M. Schedl, E. Pampalk, and
G. Widmer. “Reinventing the Wheel”: A Novel
Approach to Music Player Interfaces. IEEE
Transactions on Multimedia, 9, 2007.

[26] M. Schedl, P. Knees, K. Seyerlehner, and T. Pohle.
The CoMIRVA Toolkit for Visualizing Music-Related
Data. In Proc. of EuroVis, Norrköping, Sweden, 2007.

[27] D. Schnitzer, T. Pohle, P. Knees, and G. Widmer.
One-Touch Access to Music on Mobile Devices. In
Proc. of MUM, Oulu, Finland, 2007.

[28] M. R. Schröder, B. S. Atal, and J. L. Hall. Optimizing
Digital Speech Coders by Exploiting Masking
Properties of the Human Ear. Journal of the
Acoustical Society of America, 66:1647–1652, 1979.

[29] D. J. Sheskin. Handbook of Parametric and
Nonparametric Statistical Procedures. Chapman &
Hall/CRC, Boca Raton, London, New York,
Washington, DC, 3rd edition, 2004.

[30] S. S. Stevens. A Scale for the Measurement of the
Psychological Magnitude: Loudness. Psychological
Review, 43(5):405–416, 1936.

[31] E. Terhardt. Calculating Virtual Pitch. Hearing
Research, 1:155–182, 1979.

[32] D. Turnbull, R. Liu, L. Barrington, and G. Lanckriet.
A Game-based Approach for Collecting Semantic
Annotations of Music. In Proc. of ISMIR, Vienna,
Austria, 2007.

[33] R. C. Veltkamp. Multimedia Retrieval Algorithmics.
In Proc. of the SOFSEM), Harrachov, Czech Republic,
2007.

[34] J. Vesanto. SOM-Based Data Visualization Methods.
Intelligent Data Analysis, 3(2):111–126, 1999.

[35] E. Zwicker and H. Fastl. Psychoacoustics, Facts and
Models, volume 22 of Springer Series of Information
Sciences. Springer, Berlin, Germany, 2nd updated
edition, 1999.

