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Abstract 
In this paper we present a general approach to the automatic content-based organization and 
visualization of large digital music collections. The general methodology consists in 
extracting musically and perceptually relevant patterns (‘features’) from the given audio 
recordings (e.g., mp3 files), using topology-preserving data projection methods to map the 
entire music collection onto two-dimensional visualization planes (possibly in a hierarchical 
fashion), and using a new display metaphor (the ‘Islands of Music’) to display the inherent 
structure of the music collection to the user. It is shown how arbitrary meta-data can be 
integrated into the visualization process, and how similarity according to different viewpoints 
can be defined and exploited. The basic methodology is briefly described, three prototype 
systems are presented, and a general discussion of the practical application possibilities of 
such technologies is offered. 
Keywords: intelligent music processing, music similarity, automatic hierarchical structuring, 
interfaces to music 
 

Abstract (German) 
Diese Arbeit präsentiert eine allgemeine Methodik zur automatischen inhaltsbasierten 
Strukturierung und Visualisierung großer digitaler Musiksammlungen. The Methode besteht 
im Extrahieren musikalisch und perzeptuell relevanter Muster (‚Features’) aus 
Audioaufnahmen (z.B. mp3-Files), der Projektion der Daten und der Musiksammlung auf 
zweidimensionale (möglicherweise hierarchisch strukturierte) Visualisierungsebenen mittels 
topologiererhaltender Projektionsmethoden, und der Visualisierung der resultierenden 
Strukturen mittel einer neuen graphischen Metapher (den sogenannten ‚Islands of Music’), so 
dass die inhärente Struktur der Musiksammlung für den Benutzer sichtbar wird. Es wird auch 
gezeigt, wie beliebige zusätzliche Meta-Daten in den Visualisierungsvorgang integriert und 
verschiedene Gesichtspunkte von (musikalischer) Ähnlichkeit definiert und mit einbezogen 
werden können. Die Arbeit bietet eine kurze Beschreibung der Grundmethodik, präsentiert 
drei Softwareprototypen und diskutiert dann die praktischen Anwendungsmöglichkeiten 
solcher Technologien. 

Schlüsselwörter: intelligente Musikverarbeitung, musikalische Ähnlichkeit, automatische 
hierarchische Strukturierung, Schnittstellen zu Musik 
 
Title (German): Intelligente Strukturierung und Exploration von digitalen Musiksammlungen 



 

1. Introduction 
Music exchange systems like Napster1 and peer-to-peer networks like Kazaa2, where users 
can easily share their music or other data, have been gaining popularity over the past few 
years. Thanks to Internet-based music stores like iTunes3, digital music distribution (DMD) is 
becoming an important economic factor. According to a recent report4, the online music 
market in Germany is growing by 25 percent per week. 
Naturally, this leads to an increase in the number and size of digital music collections and 
therefore to the necessity of intelligent strategies for searching in and browsing through such 
music databases. At the moment, the standard approach is text-based search, i.e. the user has 
to enter the name of the artist, album, or song s/he intends to find. However, this approach is 
not very suitable if the user does not know exactly what s/he wants to hear or is not able to 
express it in a textual manner [Pachet, 2003]. The desired mode of operation would be 
content-based, where the music collections can be browsed and searched according to musical 
content rather than external description, or, better, a combination of content- and description-
based. To that end, methods which take into account both aspects of the musical content – 
e.g., rhythm, timbre, tempo, etc. – and meta-data of various kinds – e.g. instrumentation, 
style, artist – would be needed. The approach which is presented here is based on the 
extraction of features from audio and the visualization of these data together with various 
kinds of meta-data, by forming clusters of similar pieces of music. 
To obtain musical data such as rhythm or timbre, features relating to these properties are 
extracted from the audio files. Afterwards, a similarity measure is applied to the features in 
order to capture the relative degrees of similarity between pieces of music. These similarities 
are then used to train a Self-Organizing Map (SOM) that is finally visualized by so-called 
smoothed data histograms, which reveal clusters with similar songs. 
Since we have been working on this topic for several years, we developed some prototypes 
for user interfaces. One of the first, called Islands of Music (IoM), is described in detail in 
[Pampalk, 2001]. It uses solely features based on loudness modulation to create an HTML-
document that is linked to the pieces of music of the collection. IoM implements a 
visualization approach that resembles geographical maps where clusters with many songs are 
presented as mountains whereas sparse areas are colored in blue like oceans on maps. As the 
user may be interested in more than one musical feature, IoM was extended with the 
capability of switching between different views, each of which weights the available features 
differently and in effect implements a different notion of musical similarity. The user can 
                                                 
1 http://www.napster.com 
2 http://www.kazaa.com 
3 http://www.apple.com/itunes 
4 http://www.heise.de/newsticker/meldung/50150 



choose to view a map where, for example, rhythm is weighted by one third and timbre by two 
thirds. This is done with so-called Aligned Self-Organizing Maps and is explained in detail in 
[Pampalk, Dixon, Widmer, 2003a]. However, this second approach, called IoMv2, still lacks 
the capability to process collections of arbitrary size since it does not use any hierarchical 
information. To address this issue, in [Schedl, 2003] the prototype of a user interface called 
Visualization of Structured Music Collections (ViSMuC) is presented. In addition to IoMv2, 
ViSMuC uses two hierarchical components to deal with large collections: directory structure 
and musical similarity. 
The remainder of this article is structured as follows. In chapter 2, first the process of feature 
extraction and similarity measurement is sketched. Afterwards, our prototypes for music 
visualization are presented and the used techniques explained. Chapter 3 gives a summary and 
an outlook of possible application areas. 
 

2. Methods and Discussion 
Our approach to visualizing musical properties of music collections basically involves two 
stages. First, features capturing some kind of musical properties have to be extracted and a 
similarity measure needs to be applied to them. Hereafter, methods of artificial intelligence, 
e.g. Self-Organizing Maps, are used to cluster the data and perform the automatic structuring 
of the collection. Both stages are described in the following. 

2.1. Musical Features and Similarity Measures 
Extracting meaningful descriptors such as instrumentation or genre from music (audio) is a 
very difficult task. Various approaches exist to extract low-level features that capture some 
aspects relevant to our hearing sensation. Characterising music through such low-level 
features is comparable for example to the use of color histograms to describe the content of an 
image. Clearly, one would expect higher-level patterns like rhythm, melody, or harmony to 
describe a piece of music much more accurately. Extracting such semantically meaningful 
descriptors from audio is currently a hot topic of research; there are no reliable solutions to 
these problems at the moment, so currently we must make do with lower-level features. In the 
following, we briefly describe the steps performed to extract such features from audio 
recordings, and indicate that even such low-level information can be used to create quite 
useful and meaningful organizations of digital music collections. 
To describe the content of a piece of music, we first transform the audio signal into the 
frequency domain via a Fast Fourier Transformation (FFT) [Cooley, Tukey, 1965]. The 
human ear is not equally responsive to all frequencies. Thus we apply an outer and middle ear 
model that reduces the impact of frequencies in the low (around 50 Hz) and high end (16 
kHz) of the frequency range [Terhardt, 1979]. The linear frequency scale is transformed to a 



perceptive scale known as the Bark scale with a critical band width defined by listening 
experiments [Zwicker, Fastl, 1999]. Spectral masking effects are computed to take into 
account the occlusion of two simultaneous sounds with similar frequencies [Schröder, Atal, 
Hall, 1979], and the loudness is computed according to the perceptual Sone scale [Bladon, 
Lindblom, 1981]. 
As a result of the described psychoacoustic preprocessing we obtain a sonogram, also known 
as an auditory spectrogram, with the dimensions time, loudness, and frequency.  
Based on these sonograms we compute a spectrum histogram (SH) for each piece by simply 
counting how often a certain loudness level was reached in each frequency band. This results 
in a 2-dimensional histogram where each bin contains the count for the number of times a 
specific loudness level was exceeded, for each frequency band. 
Alternatively, we can compute so-called fluctuation patterns (FP) by modelling the 
modulations in each frequency band over time with sinusoids. In particular, we compute a 
Fast Fourier Transformation (FFT) [Cooley, Tukey, 1965] on segments of the sonogram with 
a length of 6 seconds and apply some filters to emphasize fluctuations with a frequency 
around 4 Hz. For each 6-second-sequence of the song, we obtain a representation describing 
the strength in each frequency band and for each modulation frequency. All these 6-second-
segments are then aggregated into one common representation of the entire piece by 
combining them into some statistical model (e.g., simple models like the median, or more 
complex ones such as Gaussian Mixture Models (GMMs)). The results of all this computation 
is a fixed-size model representing a specific property of the processed piece of music. 
In the next step, distances between the representations of all songs in a collection are 
calculated to measure the similarity of arbitrary songs. This can be done in various ways, 
using various distance functions, ranging from a simple Euclidean distance measure to 
sophisticated methods like the Kullback-Leibler and Earth Mover’s distances, which are used 
in [Logan, Salomon, 2001]. 
There have been a variety of experimental studies recently that tried to establish which of the 
many features and similarity measures that were proposed in the past few years actually work 
best (e.g., in the context of categorical tasks like genre classification). The results obtained so 
far (e.g., [Aucouturier, Pachet, 2002], [Logan, Salomon, 2001], [Pampalk, Dixon, Widmer, 
2003b], [Schedl, 2003]) are inconclusive in the sense that they show no clear superiority of 
one measure over all others, and over all experiments. Music similarity is a complex concept 
and cannot be fully captured in one single representation and measure. 
Our latest prototype ViSMuC uses two types of features to characterize music, one describing 
the timbre and another one addressing rhythmic characteristics. Specifically, we found that 
the above-mentioned “modified fluctuation patterns” (MFS) [Pampalk, Rauber, Merkl, 
2002a], which describe rhythmic aspects at various levels, and “spectrum histograms” (SH) 



[Pampalk, Dixon, Widmer, 2003a], which address timbral properties, represent a reasonable 
compromise with regard to accuracy and computing time. 
The MFS features describe loudness modulations in 20 frequency bands and reveal their 
fluctuations in the range from 0 to 10 Hertz. In figure 1, the strong beats of the Techno piece 
“Anthem #5” by “Floorfilla” at about 4.5 Hz can be seen. In contrast, the Mozart piano sonata 
contains no typical periodic beat, instead many variations in tempo can be observed. 
The timbre-based SH features measure how many times the piece of music reaches or exceeds 
a specific loudness in each of 20 frequency bands. Figure 2 shows spectrum histograms of 
four very different pieces of music. Like in figure 1, it can be seen that the piano sonata has 
quite low activations, mainly in the lower frequency bands. The song by “Nightwish” is very 
melodious but also characterized by high energy in all frequencies. Thus, its spectrum 
histogram shows high loudness levels in all critical bands, especially at higher frequencies. 
The outcome of the feature extraction is a data matrix containing the features (data vectors) of 
all pieces of music of the collection under consideration. During the last few years, we have 
been developing a number of prototypes for visualizing music collections using such feature 
matrices. In the following sections, the main three prototypes are presented in chronological 
order. 

2.2. Automatic Structuring of Digital Music Collections 
Since all our prototypes use some standard techniques of statistical data analysis and AI, these 
common steps are briefly described before the prototypes themselves are presented. 
After the features have been extracted, we use a Principal Components Analysis (PCA) 
[Jolliffe, 1986] to compress the data, i.e. to reduce the dimensionality of the feature vectors. 
This task is performed in order to reduce the computation times for the following calculations. 
We are able to reduce the dimensionality of the feature matrices from values greater than 
1000 to 80 without any visible influence on the quality of the visualizations. 
Afterwards, we use Self-Organizing Maps (SOM) [Kohonen, 1982, 2001] to discover 
structure in the data by clustering the data items (pieces of music). The SOM organizes 
multivariate data on a usually 2-dimensional map in such a way that data items which are 
similar in the high-dimensional data space are projected to similar locations on the map. 
Basically, the SOM consists of an ordered set of map units, each of which is assigned a 
“model vector” im  of the same dimensionality as the original data space. The set of all model 

vectors of a SOM is called its “codebook”. Before the SOM is trained, we initialize the 
codebook linearly along the greatest eigenvectors. 
In each iteration of the sequential training algorithm [Kohonen, 1982], one randomly selected 
data item x  is chosen. Subsequently, the Euclidean distance between x  and each model 
vector im  is calculated. The map unit possessing the model vector bmum  that is closest to the 

data item x  is referred to as “best matching unit” (BMU) and is used to represent x  on the 



map. In the next step, the codebook is updated to reduce the distance between x  and the 
model vectors of the BMU and its surrounding units. The adaptation strength decreases 
gradually and depends on both distance between the model vector and the BMU and iteration 
cycle. This is of particular importance since it supports the formation of large clusters in the 
beginning and a selective fine-tuning towards the end of the training. The complete formula 
for updating the model vectors is given by the equation 

)]([)()()()1( , tmxthttmtm iibmuii −⋅⋅+=+ α   (1) 

where )(tα  is the decreasing learning rate and )(, th ibmu  defines the spatial amount of 

adaptation on the map. For )(, th ibmu  we take a Gaussian centered at the BMU. Usually, the 

iterative training is continued until a convergence criterion is fulfilled. 

2.2.1. Islands of Music (IoM) 
Our first prototype, Islands of Music (IoM), calculates a single SOM based on MFS features. 
It visualizes the calculated SOM by applying a newly developed technique called “smoothed 
data histogram” (SDH) [Pampalk, Rauber, Merkl, 2002b]. The SDH estimates the density of 
the data items over the map. To this end, each data item votes for its best matching map units. 
The selected units are weighted according to the quality of the matching. The votes are 
accumulated in a matrix describing the distribution over the complete map. After each piece 
of music has voted, the resulting matrix is interpolated in order to obtain a smooth 
visualization. Finally, the interpolated matrix is visualized by applying a colormap. The 
outcome of this final stage is a map that resembles geographical maps. An example can be 
found in figure 3. Blue regions (oceans) indicate areas onto which very few pieces of music 
are mapped, whereas clusters containing lots of pieces are colored in brown and white 
(mountains and snow).  

2.2.2. Aligned Self-Organizing Maps – IoMv2 
The first version of IoM uses only one kind of features (fluctuation patterns) to calculate a 
SOM and visualize it using an SDH. However, the user may be interested in having his/her 
music collection visualized not only according to rhythmical properties, but also based on 
timbral ones or according to any other descriptor. To address this issue, we elaborated the 
concept of Aligned Self-Organizing Maps, which are used in the second version of IoM. 
Aligned SOMs, as described in [Pampalk, Dixon, Widmer, 2003a], is a new algorithm for 
computing a stack of mutually constrained SOMs that can structure and represent a given data 
set according to different aspects of similarity and offers the possibility of gradually shifting 
the focus from one aspect to another by providing a number of aligned views. More precisely, 
multiple SOMs are trained on the same data using slightly but gradually modified parameters. 
The resulting stack consists of the SOMs that represent the extreme values of the aspects 



( maxmin , pp ) and a number of layers that are inserted between them. The individual SOMs are 

trained such that each layer maps similar data items near one another within the layer. 
Neighboring layers are further constrained to map the same items to similar locations, which 
makes for smooth transitions between layers. To that end, we define a distance between 
individual SOM layers (inter-layer distance) that is made to depend on how similar the 
respective views are. An illustration of the concept of Aligned SOMs can be found in figure 4. 
The training algorithm for standard SOMs that was presented above had to be extended to 
handle the multi-layer-architecture of Aligned SOMs. In detail, in each iteration, not only a 
data item x , but also a layer l  is chosen randomly. Hereafter, the BMU bmum  for x  within 

layer l  is calculated. The adaptations of the model vectors within layer l  are calculated based 
on the intra-layer distances exactly as shown in equation 1. The update function for all other 
layers takes into account the inter-layer distances and adapts the model vectors according to 
the representation of the data item x  in the respective layer. After having updated all model 
vectors in all layers, the described process is repeated iteratively until convergence. As for the 
representation of the same data item in different layers, each data item is assigned one feature 
vector lx  for each layer l , where each lx  is composed of at least two feature sets (one for 

each aspect), which are weighted differently according to the feature balance parameters ip  

of the layer. Equation 2 shows the compound feature vector x  in the two-feature-case. 1p  and 

2p  are in the range of [ maxmin , pp ], m denotes the dimensionality of feature 1 and n  that of 

feature 2. Furthermore, 1p  and 2p  sum up to maxp  so that an increase in either of the two 

parameters causes a decrease in the other. 
[ ]nm xpxpxpxpx 2221211111 ⋅⋅⋅⋅= LL   (2) 

Figure 5 gives an illustration of the effect of Aligned SOMs. For this figure, we used a simple 
artificial dataset consisting of 16 animals, each described via 13 Boolean features describing 
aspects of the animal’s appearance (e.g. type of skin or number of legs) and activity (e.g. 
ability to swim). The leftmost picture, which uses solely appearance features, clusters all 
mammals together in the lower half of the map, whereas birds are located in the upper 
regions. As the focus is gradually shifted from appearance to activity, the map becomes 
reorganized as can be seen in the two center figures. In the rightmost picture, with a ratio of 
0:1 between appearance and activity, all predators can be found on the left. 
The same technology can be applied to collections of music pieces represented as feature 
vectors. We have made available an online demonstration of IoMv2 on a small music 
collection that combines three different features: rhythm-based, timbre-based, and user-



defined (i.e. based on a direct positioning, by the user, of the songs on the map according to 
personal musical preferences). The reader is invited to interact with the on-line demo5. 

2.2.3. Hierarchical Organization of Music Collections – ViSMuC 
Although IoMv2 permits focusing the view on various musical properties, the system is still 
constrained to a limited number of pieces of music since it does not allow creating a 
hierarchical structure. Our latest prototype, Visualization of Structured Music Collections 
(ViSMuC)6, in contrast, provides an automatic structuring of the input music collection. 
Figure 6 shows the user interface of ViSMuC, which uses Aligned SOMs to permit focus 
shifting between rhythm and timbre. As for the automatic structuring that is necessary to 
handle music collections of arbitrary size, two different hierarchies are used together with 
focusing and linking techniques. The first hierarchy is defined by the number of music files 
which are mapped to each unit. If this number exceeds a specified limit for a certain map unit 
(five in our demonstration), only the best matching data item is chosen and displayed to 
represent a prototype for the map unit (focusing). The omitted pieces of music are made 
available to the user via a link to a SOM on a lower hierarchy level which consists of all 
omitted pieces of the particular map unit together with its prototype (linking).  
Since users often define sophisticated, or at least meaningful, directory structures for their 
music collections, the second hierarchical component is given by the directory structure. 
Hence, for each displayed piece of music, a link to a SOM that comprises all music files in the 
same directory is made available to the user. In figure 6, these links are situated in the lower 
right corner of the map units, next to the darker links used by the first hierarchy. 
The user interface also permits visualizing almost arbitrary meta-information taken, for 
example, from ID3-tags or external databases. For this purpose, the distribution of (attribute, 
value)-pairs over the map is visualized with an SDH, as can be seen for some examples in the 
right frame in figure 6. Since ID3 is very widely used for tagging music collections, these data 
are visualized not only by SDHs but are also presented in a pop-up-window that appears when 
the user moves the mouse over the name of a piece of music. Furthermore, VisMuC offers 
different colormaps, some of which focus more on strong contrasts, whereas others produce 
smoother transitions. 
 

3. Summary and Application Areas 
This article has presented three prototypes for the intelligent structuring and visualization of 
digital music collections, and briefly described the underlying techniques for feature 
extraction, similarity measurement, data compression, clustering, and visualization. Our latest 

                                                 
5 http://www.oefai.at/~elias/aligned-soms/IoMv2 
6 http://vismuc.schedl.name 



prototype, Visualization of Structured Music Collections (ViSMuC), combines similarity 
based collection mapping with automatic hierarchy building and thus makes it possible to 
work with truly large music archives (tens of thousands of recordings). 
There is a wide field of application possibilities for these technologies. Systems such as those 
described above could be used either for organizing and browsing through private music 
collections, or for supporting users of commercial music stores in exploring their content. 
Other application areas are phone-based services and smart home entertainment devices. We 
are currently discussing exploitation strategies with several companies from the digital music 
sector. 
The main device on which the prototypes can be used currently is the personal computer. 
Future versions should be extended towards usage on mobile devices like Personal Digital 
Assistants (PDAs) or MP3 players with built-in screens. Unfortunately, today’s screen 
resolutions of such devices are still too low to display the complete user interface properly. 
Another research question concerns improvements of the computational complexity, e.g. by 
optimizing the algorithms. Ideally, the calculation times should be reduced to a level where, 
given the musical features, the visualizations can be calculated on demand. Moreover, 
experiments with additional meta-data should be conducted in order to improve the quality of 
the clustering and to enhance the information given to the user. A step in this direction is the 
European FP6 project “Semantic Interaction with Music Audio Contents” (SIMAC)7, which, 
among other things, aims at finding and organizing “semantic” (i.e., musically interpretable) 
descriptors of musical content. Also, extra-musical information like social meta-data may be 
used to improve the quality of collection organization. For example, in [Knees, Pampalk, 
Widmer, 2004] a web-based approach for artist classification has described which entirely 
bypasses the actual music and characterizes artists exclusively via information that can be 
found about them on the Internet. This approach uses solely information gained from the 
Internet search engines Yahoo8 and Google9. 
Generally, research on intelligent music processing is currently experiencing a strong boost, 
driven by the ongoing rapid transition of the music market from physical (e.g., CD) to digital 
media (e.g., distribution of audio files via the Internet). Music industry urgently asks for new 
intelligent music processing technology that will support novel types of content-based music 
services on many types of devices (home entertainment centers, PDAs, MP3 players, mobile 
phones), and Artificial Intelligence with its subfields such as machine learning and intelligent 
data analysis has an important role to play in all this. 
 

                                                 
7 http://www.semanticaudio.org 
8 http://www.yahoo.com 
9 http://www.google.com 



Figures 

 
Figure 1 This image visualizes the MFS values for four selected pieces of music. The color (grey-scale) bars 
next to the figures reveal the unequal scaling of the MFS values. 
 

 
Figure 2 This figure shows the spectrum histograms for the selected pieces of music. The bar beside each figure 
shows the number of frames into which each track was split. 
 



 
Figure 3 This figure shows a smoothed data histogram (SDH) created with the first version of Islands of Music. 
The SOM was trained with a data set containing 273 “Queen”-songs. For each map unit, the pieces mapped to 
this unit are displayed. 
 

 
Figure 4 This figure shows the basic architecture of Aligned SOMs. 
 

 
Figure 5 This figure shows four Aligned SOMs trained on a test dataset which contains appearance and activity 
features for a few animals. From left to right the organization of the SOMs changes according to the weighting 



of the features. The ratio between appearance and activity is the following: 1:0 (leftmost), 2:1, 1:2, 0:1 
(rightmost). 
 

 
Figure 6 This image depicts the ViSMuC-user interface for a collection of 834 songs. The left frame shows the 
control panel with the Aligned SOM- and colormap-selector, the centered one contains the actual visualization, 
and the right frame gives information about the distribution of meta-data values from an external database. 
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