
A Systems Theoretic Approach to the Design of
Scalable Cryptographic Hash Functions

Josef Scharinger

Johannes Kepler University, Institute of Computational Perception,
4040 Linz, Austria

Josef.Scharinger@jku.at

Abstract. Cryptographic hash functions are security primitives that
compute check sums of messages in a strong manner and this way are
of fundamental importance for ensuring integrity and authenticity in
secure communications. However, recent developments in cryptanalysis
indicate that conventional approaches to the design of cryptographic
hash functions may have some shortcomings.
Therefore it is the intention of this contribution to propose a novel way
how to design cryptographic hash functions. Our approach is based on
the idea that the hash value of a message is computed as a message-
dependent permutation generated by very special chaotic permutation
systems, so called Kolomogorov systems. Following this systems theoretic
approach we obtain arguably strong hash functions with the additional
useful property of excellent scalability.

1 Introduction and Motivation

Cryptographic hash functions for producing checksums of messages are a core
primitive in secure communication. They are used to ensure communication
integrity and are also essential to signature schemes because in practice one does
not sign an entire message, but the cryptographic checksum of the message.

All the cryptographic hash functions in practical use today (SHA-1, SHA-
224, SHA-256, SHA-384 and SHA-512) are specified in the Secure Hash Standard
(SHS, see [8]) and are based on ideas developed by R. Rivest for his MD5 mes-
sage digest algorithm [9]. Unfortunately, recent attacks [14] on SHA-1 show that
this design approach may have some shortcomings. This is the reason why the
intention of this contribution is to deliver a radically different systems theory
based approach to the design of scalable cryptographic hash functions.

The reminder of this contribution is organized as follows. In section 2 we
explain the notion of a cryptographic hash function. Section 3 introduces the
well-known class of continuous chaotic Kolomogorov systems, present a discrete
version of Kolomogorov systems and analyze cryptographically relevant proper-
ties of these discrete Kolomogorov systems. Next, section 4 describes our novel
approach to the design of cryptographic hash functions which is essentially based
on the idea of computing a message check sum as a message dependent permu-
tation generated by iterated applications of the discrete Kolmogorov systems

described in section 3. Finally, section 5 intends to justify the claim that our
design of cryptographic hash functions based on systems theory constitutes a
highly scalable approach to the development of cryptographic hash functions.

2 Cryptographic Hash Functions

2.1 The Concept of a Cryptographic Hash Function

Following [11], cryptographic hash functions come under many different names:
one-way hash function, message digest function, cryptographic checksum func-
tion, message authentication code, and quite some more. Essentially a crypto-
graphic hash function takes an input string and converts it to a fixed-size (usually
smaller) output string.

In a more formal way, a cryptographic hash function H(M) operates on an
arbitrary-length plaintext (message) M and returns a fixed-length hash value
h = H(M), where h is of length N . While one can think of many functions
that convert an arbitrary-length input and return an output of fixed length, a
cryptographic hash function has to have additional characteristics:

– one-way property: given M, it is easy to compute h, but given h, it is hard
to compute M

– collision resistance: given M, it is hard to find another message M ′, such
that H(M) = H(M ′) and even more it should be hard to find two arbitrary
messages M1 and M2 such that H(M1) = H(M2)

It is perfectly obvious to see that any cryptographic hash function producing
length N hash values can only offer order O(2N) security with respect to fulfilling
the one-way property. Even more, taking into consideration the so-called birthday
attack [11], it follows that any cryptographic hash function can only offer order
O(2N/2) security with respect to collision resistance. It is therefore essential to
note that N defines an upper limit on security that is achievable by any length
N cryptographic hash function. Accordingly it would be nice to have scalable
hash functions where increasing N should be as simple as possible, a point we
pay special attention to with our approach presented in this paper.

3 Chaotic Kolmogorov Systems

Among the most remarkable results of recent systems theory are novel findings
on chaotic systems. There has been good progress in systems science concerning
the analysis of complex dynamical systems and concepts like fractal dimension
or strange attractors are now well understood. However, it is worth noting that
the overwhelming majority of exiting systems is by definition of continuous type,
so system states are in some power set of R.

A fundamental property of chaotic systems is the fact that small deviations
in inputs can completely alter the systems behavior. This immediately leads to

the problem that any approximations, as inherently involved by any digitiza-
tion, may change systems behavior completely. Therefore, for practical digital
applications of interesting chaotic systems it is essential to successfully bridge
the gap from continuous type systems to discrete version that still preserve the
essential properties present in the continuous case.

In our contribution we focus on the class of chaotic Kolmogorov systems [3, 6,
13]. This class has been of great interest to systems scientists for a long time due
to some unique properties amongst which the outstanding degree of instability
is particularly remarkable. It has been proven [2] that continuous Kolmogorov
systems Tπ guarantee ergodicity, exponential divergence and perfect mixing of
the underlying state space for almost all valid choices of parameter π. Note that
these properties perfectly match the properties of confusion and diffusion (as
first defined by C. Shannon in [12]) that are so fundamental in cryptography.

3.1 Continuous Kolmogorov Systems

Continuous chaotic Kolmogorov systems act as permutation operators upon the
unit square E. Figure 1 is intended to give a notion of the dynamics associated
with a specific Kolmogorov system parameterized by the partition π = (1

3 , 1
2 , 1

6).
As can be seen, the unit square is first partitioned into three vertical strips ac-
cording to 1

3 , 1
2 , 1

6 . These strips are then stretched to full width in the horizontal
and squeezed by the same factor in the vertical direction and finally these trans-
formed strips are stacked atop of each other. After just a few applications (see
Fig. 1 from top left to bottom right depicting the initial and the transformed
state space after 1, 2, 3, 6 and 9 applications of Tπ) this iterated stretching,
squeezing and folding achieves excellent mixing of the elements within the state
space.

Fig. 1. Illustrating the chaotic and mixing dynamics associated when iterating a Kol-
mogorov system.

Formally this process of stretching, squeezing and folding is specified as fol-
lows. Given a partition π = (p1, p2, . . . , pk), 0 < pi < 1 and

∑k
i=1 pi = 1 of the

unit interval U and stretching and squeezing factors defined by qi = 1
pi

. Further-
more, let Fi defined by F1 = 0 and Fi = Fi−1 +pi−1 denote the left border of the
vertical strip containing the point (x, y) ∈ E to transform. Then the continuous
Kolmogorov system Tπ will move (x, y) ∈ [Fi, Fi + pi)× [0, 1) to the position

Tπ(x, y) = (qi(x− Fi),
y

qi
+ Fi). (1)

It is well known and proven [2] that for almost all valid choices of parame-
ter π the corresponding continuous Kolmogorov system Tπ fulfills the following
appealing properties:

– ergodicity: guarantees that almost any initial point approaches any point in
state space arbitrarily close as the system evolves in time. Speaking in terms
of cryptography this property can be considered as equivalent to confusion
since initial (input) positions does not give any information on final (output)
positions.

– exponential divergence: neighboring points diverge quickly at exponential
rate in horizontal direction. Speaking in terms of cryptography this property
can be considered as equivalent to diffusion since initially similar initial
(input) positions rapidly lead to highly different final (output) positions.

– mixing: guarantees that all subspaces of the state space dissipate uniformly
over the entire state space. Speaking in terms of cryptography this property
can be considered as a perfect equivalent to confusion and diffusion.

Deducing from this analysis it can be concluded that continuous Kolmogorov
systems offer all the properties desired for a perfect permutation operator in the
continuous domain. Our task now is to develop a discrete version of Kolmogorov
systems that preserves these outstanding properties. That is precisely what will
be done in the next subsection.

3.2 Discrete Kolmogorov Systems

In our notation a specific discrete Kolmogorov system for permuting a data block
of dimensions n×n shall be defined by a list δ = (n1, n2, . . . , nk), 0 < ni < n and∑k

i=1 ni = n of positive integers that adhere to the restriction that all ni ∈ δ
must partition the side length n.

Furthermore let the quantities qi be defined by qi = n
ni

and let Ni specified
by N1 = 0 and Ni = Ni−1 +ni−1 denote the left border of the vertical strip that
contains the point (x, y) to transform.

Then the discrete Kolmogorov system Tn,δ will move the point (x, y) ∈
[Ni, Ni + ni)× [0, n) to the position

Tn,δ(x, y) = (qi(x−Ni) + (y mod qi), (y div qi) + Ni). (2)

As detailed in the preceding subsection, continuous Kolmogorov systems Tπ

are perfect (ergodic and mixing) permutation operators in the continuous do-
main. Provided that our definition of discrete Kolmogorov systems Tn,δ has the
same desirable properties in the discrete domain, that would deliver a strong
permutation operator inherently possessing the properties of confusion, diffu-
sion and perfect statistics in the sense that permutations produced are statisti-
cally indistinguishable for truly random permutations. The analysis in the next
subsection proofs exactly that this is true indeed.

3.3 Analysis of Discrete Kolmogorov Systems

As detailed in [10], the following theorem can be proven for discrete Kolmogorov
systems Tn,δr

:

Theorem 1. Let the side-length n = pm be an integral power of a prime p. Then
the application of discrete Kolmogorov systems Tn,δr leads to ergodicity, expo-
nential divergence and mixing provided that at least 4m iterations are performed
and lists δr used in every round r are chosen independently and at random. As
an immediate consequence, this definitely is the case if at least 4 log2 n rounds
are iterated.

For any cryptographic system it is always essential to know how many dif-
ferent keys are available to the cryptographic system. In our case of discrete
Kolmogorov systems Tn,δ this reduces to the question, how many different lists
δ = (n1, n2, . . . , nk) of ni summing up to n do exist when all ni have to part n?

As detailed in e.g. [1], a computationally feasible answer to this question can
be found by a method based on formal power series expansion leading to a simple
recursion relation. If R = {r1, r2, . . . , rm} denotes the set of admissible divisors
in ascending order, then cn, the number of all lists δ constituting a valid key for
Tn,δ, is given by

cn =

0, if n < r1

cn−r1 + cn−r2 + . . . + cn−rm if (n ≥ r1) ∧ (n 6∈ {r1, r2, . . . , rm})
1 + cn−r1 + cn−r2 + . . . + cn−rm if n ∈ {r1, r2, . . . , rm}

(3)
Some selected results are given in table 1. To fully appreciate these impressive

numbers note that values given express the number of permissible keys for just
one round and that the total number of particles in the universe is estimated to
be in the range of about 2265.

4 Hash Functions from Chaotic Kolmogorov Systems

Deducing from theorem 1, the following holds true:

– if random parameters δr are used and at least 4 log2 n rounds are iterated,
then any n× n square will be perfectly permuted by applying a sequence of
transformations Tn,δr

n cn n cn n cn

4 1 8 5 16 55

32 5.271 64 47.350.055 128 ≈ 250

256 ≈ 2103 512 ≈ 2209 1024 ≈ 2418

Table 1. Number of permissible parameters δ for parameterizing the discrete Kol-
mogorov system Tn,δ for some selected values of n

– this permutation is determined by the sequence of parameters δr

This immediately leads to the following idea how to calculate the hash value for
a message M using discrete Kolmogorov systems Tn,δr

:

– the bits of the message M can be interpreted as a sequence of parameters δr

– the application of a sequence of transforms Tn,δr will result in a permutation
hash determined by message M

According to this principle, our algorithm for the calculation of a Kolmogorov
permutation hash of length N for a message M works as described next.

4.1 Initialization

In the initialization phase all that has to be done is fill a square array of side
length n (such that n× n = N) with e.g. left half N/2 zeros and right half N/2
ones.

4.2 Message Schedule

Next we partition message M into blocks Mi (e.g. of size 512 bits). This is useful
e.g. because this way the receiver of a message can begin calculation of hash
values without having to wait for receipt of the entire message and additionally
this keeps our approach in compliance with e.g. the HMAC algorithm [7] which
demands an iterated hash function in its very definition.

Then we expand block Mi to get a corresponding expanded pseudo-random
message block Wi. This can e.g. be done using linear congruence generators
(LCGs, see [5]), linear feedback shift registers (LFSRs, see [4]) or the expansion
mechanisms used in the Secure Hash Standard (SHS, see [8]) defined by NIST.
All we demand is that this expansion has to deliver ≥ 4 log2 n Mi-dependent
pseudo-random groups gi,r of bits interpretable as parameters δi,r (see following
two subsections on interpretation and use of bit groups gi,r).

4.3 Mapping Bit Groups onto Partitions

When the task is to map bit groups gi,r from Mi and Wi onto valid parame-
ters δi,r = (n1, n2, . . . , nk) this can be accomplished in very simple ways. Just
examine the following illustration:

Mi or Wi

gi,1 gi,2 gi,3 . . .
0 1 . . . 0 1 1 . . . 0 0 1 . . . 1

δi,1 δi,2 δi,3 . . .

If one writes down explicitly the different partitions δi,r possible for various
n (whose total number is given in Tab. 1) one immediately notices that the
probability of a value ni being contained in a partition decays exponentially
with the magnitude of ni. Therefore the following approach is perfectly justified.
When iterating over bit groups gi,r and generating factors ni for δi,r, we interpret
the smallest run of equal bits (length 1) as the smallest factor of n, namely
ni = 21 = 2, a run of two equal bits as factor ni = 22 = 4, and so on.

There are two details to observe in the above outlined procedure of mapping
bit groups gi,r onto valid partitions δi,r:

– One point to observe in this procedure is that the sum of ni’s generated from
bit groups gi,r this way has to equal n. Therefore one has to terminate a run
as soon as an nj+1 would be generated such that

∑j
i=1 ni + nj+1 > n. Then

the maximum possible nj+1 (as a power of 2) still fulfilling the constraint
has to be chosen, and the run length has to be reset to one.

– The other point to observe is that one iteration over gi,r may yield ni sum-
ming up to less than n. In that case gi,r just has to be scanned iteratively
until the ni generated sum up to n indeed.

Observance of these two details will guarantee that valid parameters δi,r will
always be generated for bit groups gi,r.

4.4 Processing a Message Block

Processing message block Mi and corresponding expanded message block Wi is
perfectly straightforward. Just iteratively take groups of bits gi,r first from Mi

then from Wi, map them onto parameters δi,r, permute square array according
to Tn,δi,r , and finally rotate the array by gi,r mod N to avoid problems with
fixed points (0, 0) and (n − 1, n − 1). All one has to care about in this simple
scheme is that groups gi,r taken from Mi must have sizes k, such that 2k is
lower or equal to the number of permissible keys (see Tab. 1) for Tn,δi,r to avoid
collisions, and that groups gi,r taken from Wi must have sizes k, such that 2k is
greater or equal to the number of permissible keys for Tn,δi,r to ensure perfect
mixing according to theorem 1.

Applying this procedure for all message blocks Mi of message M will result
in excellent chaotic mixing of the square array in strong dependence on message
M .

4.5 Reading Out the Message Digest

Finally, reading out the state of array reached after processing all Mi yields a
strong checksum of length N = n× n for message M .

5 Scalability

Some readers might wonder why our description of Kolmogorov permutation
hashes as specified in section 4 does not fix a specific value N for the length
of hash values produced by our approach. The reason is simple: we want our
approach to the design of cryptographic hash functions to be as generic as pos-
sible. As already indicated in the title of this contribution, we are aiming at the
development of scalable cryptographic hash functions.

To understand why this scalability is so important, recall from section 2
that it is a fact that an N bit hash function can only offer security up to level
O(2N/2) [11]. Consequently, as computing power is increasing steadily, it may
become desirable to increase the length of hash values produced without having
to redesign the hash function.

In our scheme, increasing the length and thus achieving remarkable scalability
is straightforward. By just changing the size of the underlying square array from
n×n to 2n×2n, the length of hash values produced is increased by 4. Obviously,
this involves minor modifications to block expansion and bit group partitioning
as explained and specified in section 4, but besides these small changes, the same
algorithm can be used.

References

1. M. Aigner. Kombinatorik. Springer Verlag, 1975.
2. V.I. Arnold and A. Avez. Ergodic Problems of Classical Mechanics. W.A. Ben-

jamin, New York, 1968.
3. S. Goldstein, B. Misra, and M. Courbage. On intrinsic randomness of dynamical

systems. Journal of Statistical Physics, 25(1):111–126, 1981.
4. Solomon W. Golomb. Shift Register Sequences. Aegan Park Pr., 1981.
5. Donald E. Knuth. The Art of Computer Programming. Addison-Wesley, 1998.
6. Jürgen Moser. Stable and Random Motions in Dynamical Systems. Princeton

University Press, Princeton, 1973.
7. NIST. Keyed-Hash Message Authentication Code (HMAC). FIPS 198, March

2002.
8. NIST. Secure hash standard (SHS). FIPS 180-2, August 2002.
9. R.L. Rivest. The MD5 message digest function. RFC 1321, 1992.

10. Josef Scharinger. An excellent permutation operator for cryptographic applica-
tions. In Computer Aided Systems Theory – EUROCAST 2005, pages 317–326.
Springer Lecture Notes in Computer Science, Volume 3643, 2005.

11. Bruce Schneier. Applied Cryptography. Addison-Wesley, 1996.
12. C.E. Shannon. Communication theory of secure systems. Bell System Technical

Journal, 28(4):656–715, 1949.
13. Paul Shields. The Theory of Bernoulli Shifts. The University of Chicago Press,

Chicago, 1973.
14. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full

SHA-1. In CRYPTO, 2005.

