
1

Using String Kernels to Identify Famous Performers

from their Playing Style

Craig Saunders1 David R. Hardoon2∗ John Shawe-Taylor2 Gerhard Widmer3

This paper extends the work presented in a paper with a similar title that appeared at ECML 2004.

*Corresponding Author

2

1School of Electronics & Computer Science

ISIS Research Group

University of Southampton

E-mail: cjs@ecs.soton.ac.uk

2The Centre for Computational Statistics and Machine Learning

Department of Computer Science

University College London

Tel: +44 (0)20 7679 0425

Fax: +44 (0)20 7387 1397

E-mail: {D.Hardoon, jst}@cs.ucl.ac.uk

3Department of Medical Cybernetics and Artificial Intelligence

Medical University of Vienna

and Austrian Research Institute for Artificial Intelligence

E-mail: gerhard@ai.univie.ac.at

3

Abstract

In this paper we show a novel application of string kernels: that is to the problem of recognising famous pianists

from their style of playing. The characteristics of performers playing the same piece are obtained from changes

in beat-level tempo and beat-level loudness, which over thetime of the piece form aperformance worm. From

such worms, general performance alphabets can be derived, and pianists’ performances can then be represented

as strings. We show that when using the string kernel on this data, both kernel partial least squares and Support

Vector Machines outperform the current best results. Furthermore we suggest a new method of obtaining feature

directions from the Kernel Partial Least Squares algorithmand show that this can deliver better performance than

methods previously used in the literature when used in conjunction with a Support Vector Machine.

Keywords: String kernel, Partial Least Squares, Support Vector Machine, Music.

I. INTRODUCTION

This paper focuses on the challenging problem of identifying famous pianists given a set of performances

of the same piece using only minimal information obtained from audio recordings of their playing. Previous

attempt at this challenge had been done by (Grindlay & Helmbold, 2006) where a system that generates

expressive renditions using hierarchical hidden Markov models was trained on the stylistic variations

employed by human performers was suggested. (Grindlay & Helmbold, 2006), while not concerned with

artist classification, shows an example where their graphical model recognises one particular pianist

(Cortot) among a large number of professional and non-professional pianists. Related work, such as

(Stamatatos & Widmer, 2005) attempts at recognising student pianists using different performance features.

A technique called the performance worm plots a real-time trajectory over 2D space is used to analyse

changes in tempo and loudness at the beat level, and extract features for learning. Previous work (Widmer

& Zanon, 2004) on this data has compared a variety of machine learning techniques whilst using as

features statistical quantities obtained from the performance worm. (Widmer & Zanon, 2004) addressed

whether it is possible for a machine to learn to distinguish famous pianists using the features of the

performance worm.

Using the performance worm it is possible however to obtain aset of cluster prototypes from the

worm trajectory which capture certain characteristics over a small time frame, say of two beats. These

cluster prototypes form a ‘performance alphabet’ and thereis evidence that they capture some aspects

of individual playing style. For example a performer may consistently produce loudness/tempo changes

unique to themselves at specific points in a piece, e.g. at theloudest sections of a piece. Once a performance

4

alphabet is obtained, the prototypes can each be assigned a symbol and the audio recordings can then

be represented as strings constructed from this alphabet. This leads to a novel application of the string

kernel, working on character-based representations of theperformances.

The ability of the string kernel to include non-contiguous features is shown to be key in the performance

of the algorithm. This is in contrast to results presented which used the string kernel on text, where

the ability to handle non-contiguous substrings does not deliver significant performance over contiguous

substrings (Lodhi, Saunders, Shawe-Taylor, Cristianini,& Watkins, 2002). Furthermore we examine the

ability of dimension-reduction based methods such as Kernel Partial Least Squares (KPLS) (Rosipal,

Trejo, & Matthews, 2003) and Kernel PCA to extract significant directions in the feature space in order

to possibly gain performance benefits. One issue with dimensionality reduction methods such as the

above, however, is that it introduces yet another parameter(the number of feature directions to extract).

We therefore employ a semi-definite programming solution defined in (Lanckriet, Cristianini, Bartlett,

Ghaoui, & Jordan, 2004) which optimises over a combination of orthogonal kernel matrices, and thus

removes the need to select a parameter. This is then comparedto the more traditional cross-validation

approach.

Our current work extends an earlier study with a similar title (Saunders, Hardoon, Shawe-Taylor, &

Widmer, 2004). This paper addresses two limitations of the approach presented in the prequel, namely

we addressed the issue of the KPLS scaling parameter and alsoemploy a semi-definite programming

technique which removes the need to set the parameterT which controls the number of feature directions

chosen. In addition to this, we also consider a more thoroughexperimental set-up, which allows us to

compare any significant differences in the approaches. Notethat although we focus here on a specific,

and difficult, application, the techniques developed are appropriate for a range of application domains.

The combination of kernel PLS-style deflation to extract relevant features from structured kernels (where

the mapping dimension is very high) in conjunction with an SVM we forsee to be a key combination.

The rest of this paper is laid out as follows. In the followingsection we provide background details

on the performance worm representation used for the music data. Section III outlines the Partial Least

Squares (PLS) algorithm and string kernel function used to analyse the data. Section IV then presents

the Kernel variant of PLS algorithm and gives a formulation for extracting features which are then used

in conjunction with support vector machines (SVMs). We thenpresent experimental results in Section V

and end with some analysis and suggestions for future research.

5

II. A M USICAL REPRESENTATION

The data used in this paper, first described in (Zanon & Widmer, 2003), was obtained from recordings

of sonatas by W.A. Mozart played by six famous concert pianists. In total the performances of 6 pianists

were analysed across 12 different movements of Mozart sonatas. The movements represent a cross section

of playing keys, tempi and time signatures, see Table I for details.

In many cases the only data available for different performances are standard audio recordings (as

opposed to for example MIDI format data from which more detailed analysis is possible), which poses

particular difficulties for the extraction of relevant performance information. A tool for analysing this

type of data called the performance worm has recently been developed (Dixon, Goebl, & Widmer, 2002;

Zanon & Widmer, 2003; Widmer, Dixon, Goebel, Pampalk, & Tobudic, 2003).

The performance worm extracts data from audio recordings byexamining tempo and general loudness

of the audio when measured at the beat level. An interactive beat tracking program (Dixon, 2001) is used

to find the beat from which changes in beat-level tempo and beat-level loudness can be calculated. These

two types of changes can be integrated to form trajectories over tempo-loudness space that show the joint

development of tempo and dynamics over time. As data is extracted from the audio the 2D plot of the

performance curve can be constructed in real time to aid in visualisation of these dynamics, and this is

called the performance worm. Figure VII shows a screen-shotof the worm in progress.

Note that this is the only information used in the creation ofthe worm, more detailed information such

as articulation, individual voicing or timing details below the level of a beat is not available.

A. A performance alphabet

From the performance worm, patterns can be observed which can help characterise the individual playing

styles of some pianists. For example, in (Widmer et al., 2003) a set of tempo-loudness shapes typical

of the performer Mitsuko Uchida were found. These shapes represented a particular way of combining

a crescendo-decrescendo with a slowing down during a loudness maximum. These patterns were often

repeated in Mozart performances by Mitsuko Uchida, but wererarely found when analysing the recordings

of other performers.

In order to try and capture more of these types of characterisations a ‘Mozart Performance Alphabet’

can be constructed in the following way. The trajectories ofthe performance worm are cut into short

segments of a fixed length (e.g. 2 beats) and clustered into groups of similar patterns to form a series of

6

prototypes (see Figure VII). Recordings of a performance can then be transcribed in terms of this alphabet

which can then be compared using string matching techniques. The list of pianists and the recordings

used to obtain the data can be found in Table II. For more detailed information on the performance worm

and constructing a performance alphabet of cluster prototypes, please refer to (Zanon & Widmer, 2003;

Widmer et al., 2003).

Note that the only input to our algorithm will be the string representation of the piece, which is simply

a sequence of curves from the performance alphabet. We are therefore using very little information (only

loudness/temp at the beat level), which is known to be noisy (there may be some error in the clustering

process, and the string of cluster prototypes certainly does not reproduce the original worm).

The task addressed in this paper is to learn to recognise pianists solely from characteristics of their

performance strings. The ability of kernel methods to operate over string-like structures using kernels such

as the n-gram kernel and the string kernel will be evaluated on this task. In addition to simply applying an

SVM to the data however, we will also examine the ability of dimension reduction methods such as Kernel

PCA and Kernel Partial Least Squares (KPLS) to extract relevant features from the data before applying

an SVM, which will hopefully lead to improved classificationperformance. KPCA is well known method

and has often been used to extract features from data (see e.g. (Schölkopf, Smola, & Müller, 1998)).

Partial least squares and its kernel-based variant KPLS hasrecently gained popularity within the machine

learning community (Rosipal & Trejo, 2001; Bennett & Embrechts, 2003; Rosipal et al., 2003) and either

can be used as a method for regression or classification, or asa method for dimension reduction. It is not

always clear however, how to use the PLS-based methods to generate new input features for training and

test data, so we shall briefly review the methods here.

III. PREVIOUS RESULTS

A. String kernels

The use of string kernels for analysing text documents was first studied by Lodhi et al. (Lodhi et al.,

2002). We briefly review the approach to creating a feature space and associated kernel.

The key idea behind the gap-weighted sub-sequences kernel is to compare strings by means of the

sub-sequences they contain. The more sub-sequences in common, the more similar they are. Rather than

only considering contiguous n-grams, the degree of contiguity of the sub-sequence in the input strings

determines how much it will contribute to the comparison.

7

In order to deal with non-contiguous substrings, it is necessary to introduce a decay factorλ ∈ (0, 1) that

can be used to weight the presence of a certain feature in a string. For an index sequencei = (i1, . . . , ik)

identifying the occurrence of a sub-sequenceu = s (i) in a strings, we usel(i) = ik − i1 +1 to denote the

length of the string ins. In the gap-weighted kernel, we weight the occurrence ofu with the exponentially

decaying weightλl(i).

Definition 1 (Gap-weighted sub-sequences kernel):The feature space associated with the gap-weighted

sub-sequences kernel of lengthp is indexed byI = Σp (i.e. sub-sequences of lengthp from some alphabet

Σ), with the embedding given by

φp
u (s) =

∑

i:u=s(i)

λl(i),u ∈ Σp. (1)

The associated kernel is defined as

κp (s, t) = 〈φp (s) , φp (t)〉 =
∑

u∈Σp

φp
u (s) φp

u (t) . (2)

Consider the simple strings"cat", "car", "bat", and"bar". Fixing p = 2, the words are mapped

as shown in table III.

So the unnormalised kernel between"cat" and "car" is κ("cat","car ") = λ4, while the nor-

malised version is obtained using

κ("cat","cat") = κ("car","car") = 2λ4 + λ6 (3)

as κ̂("cat","car") = λ4/(2λ4 + λ6) = (2 + λ2)−1.

We omit a description of the efficient dynamic programming algorithms for computing this kernel

referring the reader to Lodhi et al. (Lodhi et al., 2002).

B. Partial Least Squares

Partial Least Squares (PLS) was developed by Herman Wold during the 1960’s in the field of economet-

rics (Wold, 1966). It offers an effective approach to solving problems with training data that has few points

but high dimensionality, by first projecting the data into a lower-dimensional space and then utilising a

Least Squares (LS) regression model. This problem is commonin the field of Chemometrics where PLS

is regularly used. PLS is a flexible algorithm that was designed for regression problems, though it can

be used for classification by treating the labels{+1,−1} as real outputs. Alternatively it can also be

stopped after constructing the low-dimensional projection. The resulting features can then be used in a

different classification or regression algorithm. We will also adopt this approach by applying an SVM

8

Algorithm 1 The PLS feature extraction algorithm
The PLS feature extraction algorithm is as follows:

input given a selection ofT feature directions to extract

process X1 = X

for i = 1, . . . , T

let ui be the first singular vector ofX′

iY,

Xi+1 =
“

I −
Xiuiu

′

i
X

′

i

u′

i
X′

i
Xiui

”

Xi = Xi

“

I −
uiu

′

i
X

′

i
Xi

u′

i
X′

i
Xiui

”

end

output Feature directionsui, i = 1, . . . , T .

in this feature space, an approach pioneered by Rosipal et al. (Rosipal et al., 2003). LetX contain as

rows the feature vectors of the samples andy contain the outputs, whereY is the matrix containing as

rows a set of output variables. The procedure for PLS featureextraction is shown in Algorithm 1. The

algorithmic procedure iteratively takes the first singularvectorui of the matrixX′
iY, and then deflates the

matrix Xi to obtainXi+1, wherei = 1 . . . T . The deflation is done by projecting the columns ofXi into

the space orthogonal toXiui. The difficulty with this simple description is that the feature directionsuj

are defined relative to the deflated matrix. We would like to beable to compute the PLS features directly

from the original feature vector.

If we now consider a test point with feature vectorφ (x) the transformations that we perform at each

step should also be applied toφ1 (x) = φ (x) to create a series of feature vectors

φi+1 (x)′ = φi (x)′ (I − uip
′
i) , (4)

where

pi =
X′

iXiui

u′
iX

′
iXiui

, (5)

This is the same operation that is performed on the rows ofXi in Algorithm 1. We can now write

φ (x)′ = φT+1 (x)′ +

T
∑

i=1

φi (x)′ uip
′
i. (6)

The feature vector that we need for the regressionφ̂ (x) has components

φ̂ (x) =
(

φi (x)′ ui

)T

i=1
, (7)

since these are the projections of the residual vector at stage i onto the next feature vectorui. Rather than

computeφi (x)′ iteratively, consider using the inner products between theoriginal φ (x)′ and the feature

9

vectorsui stored as the columns of the matrixU:

φ (x)′ U = φT+1 (x)′ U +
k

∑

i=1

φi (x)′ uip
′
iU

= φT+1 (x)′ U + φ̂ (x)′ P′U,

whereP is the matrix whose columns arepi. Finally, it can be verified that

u′
jpi = δji for j ≤ i. (8)

Hence, fors > i, (I − usp
′
s)ui = ui, while (I− uip

′
i)ui = 0, so we can write

φT+1 (x)′ ui = φi (x)′
T

∏

j=i

(

I− ujp
′
j

)

ui = 0, for i = 1, . . . , T. (9)

It follows that the new feature vector can be expressed as

φ̂ (x)′ = φ (x)′ U (P′U)
−1

. (10)

If we consider the vectors of feature values across the training setXjuj, these are orthogonal since they are

a linear combination of the columns ofXj that have been repeatedly projected into the orthogonal com-

plement of previousXiui, for i < j. By the analysis above these vectors can be written asXU(P′U)−1,

from which it follows that

(U′P)−1U′X′XU(P′U)−1

is a diagonal matrix. Since(U′P) is upper triangular it follows that the vectorsu1, . . . ,uk are conjugate

with respect toX′X.

These feature vectors can now be used in conjunction with a learning algorithm. If one wishes to

calculate the overall regression coefficients as in the fullPLS algorithm, these can be computed as:

W = U (P′U)
−1

C′, (11)

whereC is the matrix with columns

ci =
Y′Xiui

u′
iX

′
iXiui

. (12)

10

Algorithm 2 Pseudocode for kernel-PLS
Input: DataS = x1, . . . , xl; dimensionT ; target outputsY ∈ R

l×m

Kij = κ (xi, xj)

K1 = K

Ŷ = Y

for i = 1, . . . , T do

βi = first column ofŶ

normaliseβi

repeat

βi = YY
′Kiβi

normaliseβi

until convergence

τi = Kiβi

ci = Ŷ′τi/||τi||2

Ŷ = Ŷ − τic′i

Ki+1 =
`

I − τiτ ′

i/||τi||2
´

Ki

`

I − τiτ ′

i/||τi||2
´

end for

B = [βi, . . . , βk]

T = [τi, . . . , τk]

α = B(TKB)−1
T

′
Y

Output: Training outputsY − Ŷ and dual regression coefficientsα

IV. K ERNEL PLS

In this section we set out the kernel PLS algorithm and describe its feature extraction stage. The kernel

PLS algorithm is given in Algorithm 2. The vectorβi is a rescaled dual representation of the primal

vectorsui:

aiui = X′
iβi, (13)

the re-scaling arising because of the different point at which the re-normalising is performed in the dual.

We can now express the primal matrixP′U in terms of the dual variables as

P′U = diag (a) diag (τ ′
iτi)

−1
T′XX′Bdiag (a)−1

= diag (a) diag (τ ′
iτi)

−1
T′KBdiag (a)−1 .

Here diag (τ ′
iτi) is the diagonal matrix with entriesdiag (τ ′

iτi)ii = τ ′
iτi, whereτi = Kiβi and T is the

matrix containingτi as rows . Finally, again using the orthogonality ofXjuj to τi, for i < j, we obtain

cj =
Y′

jXjuj

u′
jX

′
jXjuj

=
Y′Xjuj

u′
jX

′
jXjuj

= aj
Y′τj

τ ′
jτj

, (14)

11

making

C = Y′Tdiag (τ ′
iτi)

−1
diag (a) . (15)

Putting the pieces together we can compute the dual regression variables as

α = B (T′KB)
−1

T′Y. (16)

In (Rosipal et al., 2003) it was assumed that a dual representation of the PLS features is then given by

B (T′KB)
−1

, (17)

but in fact

U (P′U)
−1

=

X′Bdiag (a)−1
(

diag (a) diag (τ ′
iτi)

−1
T′KBdiag (a)−1

)−1

so that the dual representation is

B
`

T
′
KB

´

−1
diag (a)−1 diag

`

τ ′

iτi

´

= B
`

T
′
KB

´

−1
diag

`

τ ′

iτi

´

diag (a)−1 . (18)

The missing diagonal matrices perform a re-scaling of the features extracted, which skews the geometry

of the space and affects the performance of for example an SVM.

At first sight it seems as though theai are difficult to assess, and there is an argument that the values ofai

should not vary significantly over similar adjacent features since they will be related to the corresponding

singular values. Recalling (13) however, we have the following

(aiui)
2 = (X′

iβi)
2 = β ′

iKβi = a2
i .

In our experiments we have compared the results that can be obtained ignoring both diagonal matrices with

those obtained including the tau rescalingdiag (τ ′
iτi) and the complete rescalingdiag (τ ′

iτi) diag (a)−1.

A. Using Semi-Definite Programming

One disadvantage of using these subspace approaches is thatwe have introduced yet another parameter:

the number of feature directions to useT . Also, we are forced into using just one particular value forT ,

rather than exploring combinations of directions which mayyield better results (in practice of course we

could try combinations, but this starts to explode the size of our parameter space even more).

An ideal scenario would be to generate several rank-one kernel matrices from the projections on to the

directionsu1, . . . ,uT , and then optimise over the combination of these matrices inone step. This would

12

both remove the need to choose a parameterT (apart from setting a limit forT in advance) and also

allow combinations of features to be used. An approach outlined in (Lanckriet et al., 2004) shows that

it is possible to use semi-definite programming techniques to optimise over a combination over kernel

matrices whilst simultaneously solving the SVM maximisation problem. In this section we briefly review

the method in (Lanckriet et al., 2004) and discuss how it can be applied to the problem of selecting the

number of feature directions to use.

In the paper it was shown that a if̂K is a linear combination of kernel matriceŝK =
∑k

i=1 µiKi

then it is possible to optimise the standard SVM formulationand the coefficientsµi simultaneously using

a semi-definite program. This is due to the problem being convex in K̂. Furthermore, a generalisation

bound is given which shows that the generalisation error, atleast in part, depends on the trace of the

matrix K̂; for further details we refer the reader to (Lanckriet et al., 2004). In essence however, the paper

considers several settings of optimising combinations of kernel matrices, whilst solving the standard hard

and soft margin SVM optimisation problems. One special instance that is considered is when theµi

components of the combination are non-negative. In this case, the problem reduces to a Quadractically

Constrained Quadratic Problem (QOQP), which is a special case of a Second Order Cone Pogramming

problem (SOCP), which in turn is a special instance of a semi-definite programming problem (SDP). For

the application considered here, this has two important consequences. Firstly, SOCP problems can be

efficiently solved by publicly available solvers such as SeDuMi (Sturm, 1999). Secondly, in the general

case, the restriction ofµi ≥ 0 may lead to sub-optimal combinations of the base kernel matrices, as

allowing µ to have negative coefficients may still lead to a positive semi-definite matrixK̂. Due to the

orthogonality ofvi (as discussed in first part of Section IV), however, negativecomponentsµi would lead

to negative eigenvalues; as eigenvalues ofK̂ are equal toµi||vi|| and thereforeK̂ would not be positive

definite.

In summary, the optimisation problem becomes

min
K̂

max
α

2α′e − α
′(G(K̂) + τI)α

subject to

0 ≤ α ≤ C, α′y, τ > 0, trace(K̂) = c,

whereGij(K) = κ(xi,xj)yiyj. For the case where we restrictµi ≥ 0 and consider the 1-norm SVM

13

margin, the optimisation problem becomes:

max
α,t

2α′e − ct (19)

subject to t ≥ 1
ri

α
′G(Ki)α, i = 1, . . . , k,

α
′y = 0

0 ≤ α ≤ C

whereri = trace(Ki).

In this paper we are considering the problem of choosing the number of feature projections to use when

considering low-dimensional projections of feature-space data. Therefore, the kernel matricesKi are rank

one matrices formed by the outer product of feature projectionsviv
′
i, wherevi is the dual representation

of the data projected onto theith extracted feature (e.g. the columns of the matrix given byeq (18)).

Note that most general SDP solvers use primal dual methods tosolve problems such as (19). The primal

variablesµi are therefore easily covered once a solution is found.

V. EXPERIMENTS

In our experiments we follow the setup given by (Zanon & Widmer, 2003) and (Widmer & Zanon,

2004) where the originaln-class problem (wheren is the number of pianists) was converted ton(n−1)/2

two-class discrimination problem, one for each possible pair of pianists. This set-up gives more insight

into the discriminability of various pianists, and is easier for a classifier than then-class problem.

For each pair of performers a leave-one-out procedure was followed where on each iteration one

movement played by each of a pair of performers was used for testing and the rest of the data was used

for training. That is, for a given pair of performers, say Mitsuko Uchida and Daniel Barenboim (MU-DB),

a total of 12 runs of an algorithm were performed (there are 12movements and each time one movement

by both performers was left out of the training set and testedupon). This was repeated for each of the

possible 15 pairings of performers. Note that in all resultsthe number reported is the number ofcorrect

classifications made by the algorithm.

A. Previous results

Previous results on the data (as described in (Zanon & Widmer, 2003; Widmer & Zanon, 2004)) used

a feature-based representation and considered a range of machine learning techniques by using the well-

14

known Waikato Environment for Knowledge Analysis (WEKA) software package (Witten & Frank, 1999)

to compare bayesian, rule-based, tree-based and nearest-neighbour methods. The best results obtained

previously on the data are for a classification via regression meta-learner. These results are reported as

FB (feature-based) in the results table. The feature-basedrepresentation used in the experiments included

the raw measures of tempo and loudness along with various statistics regarding the variance and standard

deviation of these and additional information extracted from the worm such as the correlation of tempo

and loudness values.

B. Results

Experiments were conducted using both the standard string kernel and the n-gram kernel and several

algorithms. In both cases experiments were conducted usinga standard SVM on the relevant kernel matrix.

Kernel Partial Least Squares and Kernel Principal Component Regression were also used for comparison.

Finally, an SVM was used in conjunction with the projected features obtained from the iterative KPLS

deflation steps. For these features there were three options; to use the features as described in (Rosipal et

al., 2003), to include the extra reweighting factorsdiag (τ ′
iτi) or to also include the scaling produced by

the ai values as described above1. We first performed a comparison of these two options by counting the

total number of correct predictions across all splits for different feature dimensions (T) for the original

weighting (ORIG), thetau-reweighted (τ -R), and the features with bothtau anda rescaling (τa-R). Table

IV shows the results obtained. There is a clear advantage shown for the re-weighting schemes, however

the introduction of thediag(a)−1 matrix seems to have little effect as expected. In this situation using the

full reweighting actually suffered a slight performance loss against usingτ only, however for completeness

we will use the full reweighting in all future experiments. Note that this was an illustration to show the

rescaling difference only, and results here cannot be directly compared to the tables below, where a more

rigorous experimental set-up was used for comparison purposes.

In the remaining experiments we used the following set up. There are 15 pairs of performers, which were

split up into three groups of five. We used one group as a hold-out set and used the leave-one-out error

on the 24 movements for each pair (each time leaving out one ofthe 12 movements for both performers)

as an accuracy measure. Using this measure we were able to select the parameters which performed best

across this group. Using these parameters we then obtained an accuracy measure on the remaining 12

1We find that the re-scaling does not add to the total number of correct predictions and therefore only compare with the original two

options.

15

pairs of performers using the same leave-one-movement-outprocedure as described above. We repeated

this for each group, and therefore obtain four accuracy readings for each pair. The parameters optimised

included the number of characters used by the string kernel,the decay parameter and the number of PLS

features extracted where appropriate. Substring lengths of k = 1, . . . , 10 were tried for both the n-gram

and string kernels,λ = {0.2, 0.5, 0.9} decay parameters were used for the string kernel and for bothKPLS

and KPCR methods the number of feature directions (T) ranged from 1 to 10. All kernel matrices were

normalised and whenever an SVM was used, the parameterC was set to one.

Tables V and VI show results using the n-gram and string kernels respectively. Mean and standard

deviations of the accuracy (maximum of 24 in each case) for each pair are predicted. Significance results

were obtained by using a one-tailed t-test. Note that for thefeature-based results, the results reported are the

best possible that can be achieved – parameters were selected according to the classification performance

of the movement that was left out (see (Widmer & Zanon, 2004; Stamatatos & Widmer, 2005) for details).

Therefore, we are competing against a gold standard, and it is likely higher performance for the methods

in this paper could be achieved if we didn’t follow the cross-validation procedure outlined above. In some

cases, when optimising parameters using the hold-out group, several different choices lead to the same

error value. In order to be consistent we simply chose the lowest substring length/λ-value/T -value that

gave this result.

The results obtained from using these methods and kernels show an improvement over the previous best

results using statistical features extracted from the performance worm. We use the following shorthand

to refer to the relevant algorithm/kernel combinations;FB: Previous best method using statistical features

(Widmer & Zanon, 2004),KPLS: Kernel Partial Least Squares,SVM: Support Vector Machine,KP-SV:

SVM using KPLS features,KPCR: Kernel Principal Components regression. If an n-gram kernel is used

rather than a string kernel we append ’-n’ to the method name. We report both the leave-one-movement-

out accuracy for each pairing, and also statistics for the total accuracy for each fold of the data. Therefore

the maximum total value is12×24 = 288. For the feature based approach we can simulate this by simply

summing accuracies over those test-pairings in each fold, and therefore obtain a value for each of the 5

runs.

The use of the methods in this paper in conjunction with the n-gram kernel offer a clear performance

advantage over the feature-based approach. Interestingly, KPLS outperforms an SVM when using this

kernel. This may suggest that for this kernel, projecting into a lower subspace is beneficial. Indeed, the

16

performance of KPCR is also close to the SVM. The ability of KPLS however to correlate the feature

directions it selects with the output variable gives it a clear advantage over KPCR and as expected from

previous results on other data (Rosipal & Trejo, 2001; Bennett & Embrechts, 2003), a performance gain

is achieved. When using the SVM in conjunction with the features obtained from the KPLS deflation

steps, the performance improves further which has also beenthe case on other data sets (Rosipal et al.,

2003).

In all cases short substrings (with substring lengths of only 1 or 2 characters) achieved the best

performance, which would perhaps indicate that complex features are not used. Indeed when running

the n-gram kernel, any string length above 5 has very few non-zero off-diagonal entries and therefore

contains almost no information. It is interesting to note that in the experiments KPCR requires more

feature directions to achieve good performance, whereas KPLS consistently requires fewer directions to

perform well.

The string kernel operating over the performance alphabet (results shown in Table VI) provides signif-

icantly better classification performance than the feature-based method and in most cases (the exception

being PCR) also outperforms the n-gram kernel. This indicates that the ability of the string kernel to allow

gaps in matching sub-sequences is a key benefit for this data,and that complex features are indeed needed

to obtain good performance. This is in contrast to results reported using the string kernel for text, where

the classification rate of n-gram kernels using contiguous sequences is equal to that of the string kernel if

not superior (Lodhi et al., 2002). For the n-gram kernel, using KPLS features improves performance over

the Support Vector Machine (significantly for some pairings). For the string kernel however, this was not

the case and only slightly improved the mean, at the cost of additional variance. It is therefore not clear

in which situations the use of KPLS features in conjunction with an SVM will produce a performance

gain.

When using the semi-definite programming approach outlinedin Section IV-A, we no longer have to

use cross-validation to select the parameterT ; however the sub-sequence lengthk and for the string kernel

the gap penaltyλ must still be chosen. We therefore used the same experimental set-up as before, however

simply let the SDP solver choose the combination of feature directions. The results are shown in table

VII.

In both cases the SDP solution performed well, and although achieved a slightly lower mean in both

cases, the differences are minor. Interestingly in nearly all cases for all parameter settings, the SDP

17

optimisation problem chose to weight the features beyondT = 5 with very little or no weight. This result

is in keeping with observations from running the full experiments with all parameter settings; choosing

T > 5 tends to lead to poor performance, hence most information iscontained within the first few

projections.

Overall the techniques used in this paper offer a clear performance advantage over the feature based

method which delivered the previous state of the art performance on this data set. As expected KPCR

does not perform as well as KPLS, the ability to use label information when selecting feature directions

gives a clear performance benefit. The combination of symbolic information and kernel methods provides

a significant advantage over the previous feature-based approach. Using KPLS features with an SVM

improved performance greatly using the n-gram kernel, although this was not the case for the string

kernel. This suggests that the feature space induced by the string kernel is able to capture more informative

structure in the training examples, and is therefore particularly suited to this type of application.

VI. CONCLUSIONS

In this paper we have presented a novel application of the string kernel: to classify pianists by examining

their playing style given the performance on the same piece.This is an extremely complex task and

has previously been attempted by analysing statistical features obtained from audio recordings. Here we

have taken a different approach and have examined using feature-projection methods in conjunction with

kernels which operate on text. These can be applied to the performer recognition problem by representing

the performance as a string of characteristic tempo-loudness curves, which are obtained by analysing

a performance worm. We have reviewed the Kernel Partial Least Squares method and shown how this

can be successfully used to generate new features which can then be used in conjunction with learning

methods such as an SVM. We have also shown a reweighting scheme for obtaining feature directions

from KPLS that peforms better than the technique used in current literature. All algorithms tested in

this paper provided higher performance than the previous state of the art results on the data. We have

also shown that the ability of the string kernel to consider and match non-contiguous substrings of input

sequence has a real performance benefit over only considering contiguous substrings. This is in contrast

to many applications of the string kernel to text, where the relative performance of the string kernel to

the n-gram kernel tends to be very close or even slightly worse. We have also shown that it is feasible to

use SemiDefinite programming approaches in practice in order to remove the need to select the number

of feature directions via cross-validation. It is an open problem to determine in what circumstances using

18

KPLS to obtain features will result in an improvement in generalisation performance and this will be

researched in future. Specifically however, one might expect the deflation process highlighted in this

paper to be particularly useful with structure based kernels in general (e.g. string and graph kernels).

In these cases the feature space mapping tends to be very high, with many irrelevant features, thus the

combination of KPLS extraction and an SVM is very promising.Therefore one direction of research

which we wish to pursue is the use of these techniques on enzyme function prediction tasks (using string

kernels across protein sequences to predict reaction types) and drug discovery applications (using graph

kernels on molecules to predict toxicity/activity of chemical compounds). One other aspect that is perhaps

unsatisfactory with these techniques is that these projections can still be quite time-consuming and are

not sparse, therefore we would like to investigate the use ofgreedy methods within the KPLS feature

extraction framework.

VII. A CKNOWLEDGEMENTS

This work was supported in part by EPSRC grant no GR/S22301/01 (”Development and Application of

String-Type Kernels”), the IST Programme of the European Community, under the PASCAL Network of

Excellence, IST-2002-506778 and by the Austrian Fonds zur Förderung der Wissenschaftlichen Forschung

(FWF) under grant Y99-INF. The Austrian Research Institutefor Artificial Intelligence is supported by

the Austrian Federal Ministry for Education, Science, and Culture, and by the Austrian Federal Ministry

for Transport, Innovation, and Technology. We would also like to thank Tjel de Bie for useful discussions.

REFERENCES

Bennett, K. P., & Embrechts, M. J. (2003). An optimization perspective on kernel partial least squares

regression.Advances in Learning Theory: Methods, Models and Applications. NATO Science Series

III: Computer & Systems Science, 190, 227–250.

Dixon, S. (2001). Automatic extraction of tempo and beat from expressive performances.Journal of New

Music Research, 30(1), 39–58.

Dixon, S., Goebl, W., & Widmer, G. (2002). The performance worm: Real time visualisation of expression

based on langner’s tempo-loudness animation. InProceedings of the international computer music

conference (icmc 2002).

Grindlay, G., & Helmbold, D. (2006). Modeling, analyzing, and synthesizing expressive piano performance

with graphical models.Machine Learning, 65(2-3), 361–387.

19

Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L. E., & Jordan, M. I. (2004, Jan). Learning the kernel

matrix with semidefinite programming.Journal of Machine Learning Research, 5, 27–72.

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., & Watkins, C. (2002). Text classification using

string kernels.Journal of Machine Learning Research(2), 419–444.

Rosipal, R., & Trejo, L. (2001). Kernel partial least squares regression in reproducing kernel hilbert

space. InJournal of machine learning research 2(pp. 97–123).

Rosipal, R., Trejo, L., & Matthews, B. (2003). Kernel pls-svc for linear and nonlinear classification. In

Proceedings of the twentieth international conference on machine learning (icml-2003).

Saunders, C., Hardoon, D., Shawe-Taylor, J., & Widmer, G. (2004, September). Using string kernels to

identify famous performers from their playing style. In J.-F. Boulicaut, F. Esposito, F. Giannotti,

& D. Pedreschi (Eds.),Proceedings of the 15th european conference on machine learning (ecml)

and the 8th european conference on principles and practice of knowledge discovery in databases

(pkdd) (Vol. 3201, pp. 384–399). Springer-Verlag Heidelberg.

Schölkopf, B., Smola, A., & Müller, K.-R. (1998). Nonlinear component analysis as a kernel eigenvalue

problem. Neural Computation.

Stamatatos, E., & Widmer, G. (2005). Automatic Identification of Music Performers with Learning

Ensembles.Artificial Intelligence, 165(1), 37–56.

Sturm, J. (1999). Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones.

Optimization Methods and Software, 11(12), 625–653. (Special issue on Interior Point Methods)

Widmer, G., Dixon, S., Goebel, W., Pampalk, E., & Tobudic, A.(2003). In search of the horowitz factor.

AI Magazine, 3(24), 111–130.

Widmer, G., & Zanon, P. (2004). Automatic recognition of famous artists by machine. 1109-1110.

Witten, I., & Frank, E. (1999).Data mining. San Francisco, CA: Morgan Kaufmann.

Wold, H. (1966). Estimation of principal components and related models by iterative least squares.

Multivariate Analysis, 391–420.

Zanon, P., & Widmer, G. (2003, August). Learning to recognise famous pianists with machine learning

techniques. InProceedings of the stockholm music acoustics conference (smac ’03).

20

TABLE I

MOVEMENTS OFMOZART PIANO SONATAS SELECTED FOR ANALYSIS.

Sonata Movement Key Time sig.

K.279 1st mvt. C major 4/4

K.279 2nd mvt. C major 3/4

K.279 3rd mvt. C major 2/4

K.280 1st mvt. F major 3/4

K.280 2nd mvt. F major 6/8

K.280 3rd mvt. F major 3/8

K.281 1st mvt. Bb major 2/4

K.282 1st mvt. Eb major 4/4

K.282 2nd mvt. Eb major 3/4

K.282 3rd mvt. Eb major 2/4

K.330 3rd mvt. C major 2/4

K.332 2nd mvt. F major 4/4

Fig. 1. The performance worm: A 2D representation of changesin beat-level tempo and loudness can be plotted in realtime from an audio

recording.

Fig. 2. The performance alphabet: A set of cluster prototypes extracted from the performance worm.

21

TABLE II

L IST OF PIANISTS AND RECORDINGS USED

ID Name Recording

DB Daniel Barenboim EMI Classics CDZ 7 67295 2, 1984

RB Roland Batik Gramola 98701-705, 1990

GG Glenn Gould Sony Classical SM4K 52627, 1967

MP Maria João Pires DGG 431 761-2, 1991

AS András Schiff ADD (Decca) 443 720-2, 1980

MU Mitsuko Uchida Philips Classics 464 856-2, 1987

φ ca ct at ba bt cr ar br

cat λ2 λ3 λ2
0 0 0 0 0

car λ2
0 0 0 0 λ3 λ2

0

bat 0 0 λ2 λ2 λ3
0 0 0

bar 0 0 0 λ2
0 0 λ2 λ3

TABLE III

FEATURES AND WEIGHTS FOR THE STRING KERNEL WITHp = 2 FOR THE WORDS"CAT", "CAR", "BAT", AND "BAR".

TABLE IV

TOTAL NUMBER OF CORRECT PREDICTIONS ACROSS ALL SPLITS AGAINST NUMBER OF FEATURE DIRECTIONS USED(T) FOR BOTH THE

FEATURE PROJECTION METHODS DESCRIBED IN THIS PAPER(τ -R) AND (τa-R) AND THAT IN PREVIOUS WORK (ORIG). THE

PARAMETERS USED IN THIS WERE THOSE OPTIMAL FOR THEKPLS COMBINATION (k = 5,λ = 0.9).

Method/T 1 2 3 4 5 6 7 8 9 10

ORIG 284 246 230 236 249 240 235 239 244 240

τ -R 288 289 290 290 290 290 290 290 290 290

τa-R 286 289 290 287 287 290 289 290 291 289

22

TABLE V

COMPARISON OF ALGORITHMS ACROSS EACH PAIR-WISE COUPLING OF PERFORMERS FOR THE N-GRAM KERNEL. MEAN AND

STANDARD DEVIATION RATES FOR ACCURACY ARE GIVEN FOR EACH PAIR (THE MAXIMUM IS 24). FBREPRESENTS THE PREVIOUS

BEST RESULTS USING A FEATURE-BASED REPRESENTATION RATHER THAN THE’ PERFORMANCE ALPHABET’ USED FOR THE OTHER

APPROACHES. ∗ INDICATES SIGNIFICANT DIFFERENCE FROMKPCRAT 95% SIGNIFICANCE LEVEL, ∗∗ DENOTES SAME AT99%

SIGNIFICANCE. SIMILARLY , SIGNIFICANCE FROM THESVM IS DENOTED BY + AND ++, AND $ IS USED FOR COMPARISON TO THE

FEATURE-BASED REPRESENTATION(FOLD TOTALS ONLY). TOTALS ARE FOR PREDICTING REMAINING12 PERFORMER PAIRS(SEE

TEXT).

Pairing FB KPLS-n SVM-n KP-SV-n KPCR-n

RB - DB 19 17.8 (0.5) 17.5 (1.0) 17.3 (0.5) 16.5 (1.0)

GG - DB 18 21.3 (0.5)∗∗ 22.0 (0.0)∗∗ 21.0 (0.0)∗∗ 13.3 (0.5)

GG - RB 17 21.3 (1.5)∗ 21.5 (1.0)∗ 22.0 (0.0)∗∗ 12.0 (2.0)

MP - DB 15 20.5 (1.7) 19.0 (0.0) 18.3 (0.5) 15.8 (1.5)

MP - RB 20 16.5 (1.0) 15.0 (0.0) 18.8 (1.3)∗+ 15.8 (0.5)

MP - GG 17 22.5 (0.6)∗∗ 22.0 (0.0)∗∗ 22.8 (0.5)∗∗ 13.0 (0.0)

AS - DB 16 19.8 (0.5)∗ 18.5 (1.0)∗ 19.5 (3.0) 13.5 (1.9)

AS - RB 17 20.0 (0.0)∗∗ 20.8 (0.5)∗∗ 19.5 (0.6)∗∗ 13.3 (0.5)

AS - GG 17 14.5 (1.0) 13.3 (0.5) 18.5 (0.6)++ 16.5 (3.3)

AS - MP 16 20.8 (0.5)∗ 19.8 (0.5)∗∗ 22.0 (0.0)∗∗+ 13.5 (1.7)

MU - DB 15 15.0 (1.6) 17.0 (0.0) 18.3 (2.9) 13.3 (3.2)

MU - RB 17 16.5 (2.0) 14.3 (0.5) 16.8 (1.0)∗++ 12.8 (1.3)

MU - GG 18 20.5 (1.0) 21.3 (1.5)∗ 21.3 (1.0) 17.0 (2.4)

MU - MP 13 13.3 (1.0) 12.8 (0.5) 16.5 (3.1) 15.0 (2.4)

MU - AS 16 17.5 (0.6) 17.3 (1.5) 18.3 (1.7) 16.0 (3.8)

Fold Total 200.8 (2.9) 222.0 (8.5)$∗ 217.4 (6.1)$∗∗ 232.4 (7.3)$∗∗$+ 173.6 (13.3)

23

TABLE VI

COMPARISON OF ALGORITHMS ACROSS EACH PAIRWISE COUPLING OF PERFORMERS FOR THE STRING KERNEL.

Pairing FB KPLS SVM KP-SV KPCR

RB - DB 19 16.5 (0.6) 17.0 (1.2) 16.3 (2.1) 14.5 (3.5)

GG - DB 18 19.0 (1.4) 20.3 (0.5)∗ 20.3 (1.0)∗ 12.0 (2.2)

GG - RB 17 22.5 (0.6)∗ 22.8 (0.5)∗ 23.0 (0.0)∗ 11.3 (3.3)

MP - DB 15 22.5 (0.6)∗∗ 22.8 (0.5)∗∗ 22.0 (1.2)∗ 10.8 (2.2)

MP - RB 20 22.0 (1.4) 21.0 (0.0) 20.3 (1.0) 17.5 (2.4)

MP - GG 17 24.0 (0.0)∗∗ 24.0 (0.0)∗∗ 24.0 (0.0)∗∗ 14.3 (1.9)

AS - DB 16 18.3 (1.0)∗∗ 18.5 (0.6)∗ 19.0 (0.8)∗ 11.3 (1.7)

AS - RB 17 22.3 (1.3)∗ 23.0 (1.2)∗ 22.0 (0.0)∗ 15.5 (1.7)

AS - GG 17 16.5 (0.6)∗ 17.0 (0.0)∗ 16.0 (0.0) 12.3 (1.9)

AS - MP 16 24.0 (0.0)∗∗ 24.0 (0.0)∗∗ 24.0 (0.0)∗∗ 12.5 (2.1)

MU - DB 15 15.0 (0.8) 14.8 (1.3) 14.3 (1.9) 12.5 (2.4)

MU - RB 17 15.3 (0.5) 13.8 (1.3) 17.0 (1.2) 14.8 (2.9)

MU - GG 18 18.8 (0.5)∗ 20.0 (0.0)∗∗ 20.8 (0.5)∗∗ 12.5 (1.3)

MU - MP 13 16.3 (1.3) 16.5 (1.0) 17.5 (0.6) 15.0 (3.8)

MU - AS 16 18.8 (1.3)∗ 18.3 (0.5)∗∗ 19.8 (0.5)∗∗+ 13.8 (0.5)

Fold Total 200.8 (2.9) 233.2 (5.2)$$∗∗ 234.8 (6.4)$$∗∗ 236.8 (8.0)$$∗∗ 160.2 (8.8)

24

TABLE VII

PERFORMANCE OFSDPUSING KPLS FEATURES IN CONJUNCTION WITH THE N-GRAM AND STRING KERNELS. THE KP-SV-N AND

KP-SV COLUMNS SHOW THE BEST PERFORMANCE ACHIEVED USING N-GRAM AND STRING KERNELS RESPECTIVELY WITH THESVM

IN CONJUNCTION WITH KPLS FEATURES WHENT WAS SELECTED BY CROSS-VALIDATION

Pairing KP-SV-n SDP-n KP-SV SDP

RB - DB 17.3 (0.5) 17.8 (1.5) 16.3 (2.1) 15.8 (0.5)

GG - DB 21.0 (0.0) 21.0 (0.0) 20.3 (1.0) 19.8 (0.5)

GG - RB 22.0 (0.0) 22.3 (1.5) 23.0 (0.0) 23.0 (0.0)

MP - DB 18.3 (0.5) 19.0 (0.8) 22.0 (1.2) 21.5 (0.6)

MP - RB 18.8 (1.3) 18.5 (1.7) 20.3 (1.0) 21.3 (0.5)

MP - GG 22.8 (0.5) 22.5 (0.6) 24.0 (0.0) 23.8 (0.5)

AS - DB 19.5 (3.0) 19.5 (2.4) 19.0 (0.8) 18.0 (1.4)

AS - RB 19.5 (0.6) 19.3 (0.5) 22.0 (0.0) 21.3 (1.3)

AS - GG 18.5 (0.6) 17.0 (3.4) 16.0 (0.0) 16.8 (0.5)

AS - MP 22.0 (0.0) 22.0 (0.0) 24.0 (0.0) 23.5 (0.6)

MU - DB 18.3 (2.9) 17.8 (2.9) 14.3 (1.9) 15.8 (0.5)

MU - RB 16.8 (1.0) 16.0 (2.0) 17.0 (1.2) 16.5 (1.3)

MU - GG 21.3 (1.0) 21.3 (0.5) 20.8 (0.5) 19.3 (1.0)

MU - MP 16.5 (3.1) 14.0 (2.0) 17.5 (0.6) 17.8 (1.0)

MU - AS 18.3 (1.7) 19.0 (0.0) 19.8 (0.5) 18.5 (1.3)

Fold Total 232.4 (7.3) 229.4 (9.7) 236.8 (8.0) 233.8 (8.0)

