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Abstract

In this paper we show a novel application of string kernéiat ts to the problem of recognising famous pianists
from their style of playing. The characteristics of perfens playing the same piece are obtained from changes
in beat-level tempo and beat-level loudness, which overtithe of the piece form gerformance wormFrom
such worms, general performance alphabets can be derinddpianists’ performances can then be represented
as strings. We show that when using the string kernel on thia, doth kernel partial least squares and Support
Vector Machines outperform the current best results. euntlore we suggest a new method of obtaining feature
directions from the Kernel Partial Least Squares algorittmd show that this can deliver better performance than
methods previously used in the literature when used in cmtijon with a Support Vector Machine.

Keywords: String kernel, Partial Least Squares, Support Vector MeghMusic.

. INTRODUCTION

This paper focuses on the challenging problem of identifyamous pianists given a set of performances
of the same piece using only minimal information obtainearfraudio recordings of their playing. Previous
attempt at this challenge had been done by (Grindlay & Helthi#006) where a system that generates
expressive renditions using hierarchical hidden Markowlet® was trained on the stylistic variations
employed by human performers was suggested. (Grindlay &Held, 2006), while not concerned with
artist classification, shows an example where their grabhicodel recognises one particular pianist
(Cortot) among a large number of professional and non-psid@al pianists. Related work, such as
(Stamatatos & Widmer, 2005) attempts at recognising stiygianists using different performance features.

A technique called the performance worm plots a real-timgttory over 2D space is used to analyse
changes in tempo and loudness at the beat level, and ex@¢etorés for learning. Previous work (Widmer
& Zanon, 2004) on this data has compared a variety of mackgaeing techniques whilst using as
features statistical quantities obtained from the pertorce worm. (Widmer & Zanon, 2004) addressed
whether it is possible for a machine to learn to distinguismdus pianists using the features of the
performance worm.

Using the performance worm it is possible however to obtaisetiof cluster prototypes from the
worm trajectory which capture certain characteristicsravesmall time frame, say of two beats. These
cluster prototypes form a ‘performance alphabet’ and therevidence that they capture some aspects
of individual playing style. For example a performer may sistently produce loudness/tempo changes

unique to themselves at specific points in a piece, e.g. atitest sections of a piece. Once a performance



alphabet is obtained, the prototypes can each be assigngahl@olsand the audio recordings can then
be represented as strings constructed from this alphabét.l@ads to a novel application of the string
kernel, working on character-based representations opénrmances.

The ability of the string kernel to include non-contiguoaatures is shown to be key in the performance
of the algorithm. This is in contrast to results presentedciwhused the string kernel on text, where
the ability to handle non-contiguous substrings does ntwetesignificant performance over contiguous
substrings (Lodhi, Saunders, Shawe-Taylor, Cristiar@ni)Vatkins, 2002). Furthermore we examine the
ability of dimension-reduction based methods such as KdPaetial Least Squares (KPLS) (Rosipal,
Trejo, & Matthews, 2003) and Kernel PCA to extract significdirections in the feature space in order
to possibly gain performance benefits. One issue with dilaeabty reduction methods such as the
above, however, is that it introduces yet another paranfdternumber of feature directions to extract).
We therefore employ a semi-definite programming solutiofindd in (Lanckriet, Cristianini, Bartlett,
Ghaoui, & Jordan, 2004) which optimises over a combinatiblorthogonal kernel matrices, and thus
removes the need to select a parameter. This is then compmatbeé more traditional cross-validation
approach.

Our current work extends an earlier study with a similaetiaunders, Hardoon, Shawe-Taylor, &
Widmer, 2004). This paper addresses two limitations of fhgr@ach presented in the prequel, namely
we addressed the issue of the KPLS scaling parameter anceadptoy a semi-definite programming
technique which removes the need to set the pararfiewnich controls the number of feature directions
chosen. In addition to this, we also consider a more thoraergierimental set-up, which allows us to
compare any significant differences in the approaches. Mwaealthough we focus here on a specific,
and difficult, application, the techniques developed aner@griate for a range of application domains.
The combination of kernel PLS-style deflation to extracevaht features from structured kernels (where
the mapping dimension is very high) in conjunction with anNbWe forsee to be a key combination.

The rest of this paper is laid out as follows. In the followisgction we provide background details
on the performance worm representation used for the mugac &mction Il outlines the Partial Least
Squares (PLS) algorithm and string kernel function usednayse the data. Section IV then presents
the Kernel variant of PLS algorithm and gives a formulation éxtracting features which are then used
in conjunction with support vector machines (SVMs). We tipeesent experimental results in Section V

and end with some analysis and suggestions for future @sear



II. AMUSICAL REPRESENTATION

The data used in this paper, first described in (Zanon & Wid@@03), was obtained from recordings
of sonatas by W.A. Mozart played by six famous concert ptanis total the performances of 6 pianists
were analysed across 12 different movements of Mozart asn@he movements represent a cross section
of playing keys, tempi and time signatures, see Table | foaitbe

In many cases the only data available for different perfortea are standard audio recordings (as
opposed to for example MIDI format data from which more dethianalysis is possible), which poses
particular difficulties for the extraction of relevant pemihance information. A tool for analysing this
type of data called the performance worm has recently beeselajged (Dixon, Goebl, & Widmer, 2002;
Zanon & Widmer, 2003; Widmer, Dixon, Goebel, Pampalk, & Tdiay 2003).

The performance worm extracts data from audio recordingsXaynining tempo and general loudness
of the audio when measured at the beat level. An interacta tsacking program (Dixon, 2001) is used
to find the beat from which changes in beat-level tempo anttlbeal loudness can be calculated. These
two types of changes can be integrated to form trajectones mpo-loudness space that show the joint
development of tempo and dynamics over time. As data is @eafrom the audio the 2D plot of the
performance curve can be constructed in real time to aid soalisation of these dynamics, and this is
called the performance worm. Figure VIl shows a screen-ehtite worm in progress.

Note that this is the only information used in the creationhaf worm, more detailed information such

as articulation, individual voicing or timing details beldhe level of a beat is not available.

A. A performance alphabet

From the performance worm, patterns can be observed whithealp characterise the individual playing
styles of some pianists. For example, in (Widmer et al., 2GD3et of tempo-loudness shapes typical
of the performer Mitsuko Uchida were found. These shapegesepted a particular way of combining
a crescendo-decrescendo with a slowing down during a lasdmeaximum. These patterns were often
repeated in Mozart performances by Mitsuko Uchida, but warely found when analysing the recordings
of other performers.

In order to try and capture more of these types of charaet&iss a ‘Mozart Performance Alphabet’
can be constructed in the following way. The trajectoriesh® performance worm are cut into short

segments of a fixed length (e.g. 2 beats) and clustered iotgpgrof similar patterns to form a series of



prototypes (see Figure VII). Recordings of a performanceetban be transcribed in terms of this alphabet
which can then be compared using string matching technidqlies list of pianists and the recordings
used to obtain the data can be found in Table Il. For more ldetaformation on the performance worm
and constructing a performance alphabet of cluster prpestyplease refer to (Zanon & Widmer, 2003;
Widmer et al., 2003).

Note that the only input to our algorithm will be the stringpresentation of the piece, which is simply
a sequence of curves from the performance alphabet. We enefahe using very little information (only
loudness/temp at the beat level), which is known to be ndisgré may be some error in the clustering
process, and the string of cluster prototypes certainlys dae reproduce the original worm).

The task addressed in this paper is to learn to recognisestsasplely from characteristics of their
performance strings. The ability of kernel methods to ofgeoaer string-like structures using kernels such
as the n-gram kernel and the string kernel will be evaluatethis task. In addition to simply applying an
SVM to the data however, we will also examine the ability ahdnsion reduction methods such as Kernel
PCA and Kernel Partial Least Squares (KPLS) to extract aglefeatures from the data before applying
an SVM, which will hopefully lead to improved classificatiperformance. KPCA is well known method
and has often been used to extract features from data (seé€Selglkopf, Smola, & Muller, 1998)).
Partial least squares and its kernel-based variant KPLS3dtastly gained popularity within the machine
learning community (Rosipal & Trejo, 2001; Bennett & Embres; 2003; Rosipal et al., 2003) and either
can be used as a method for regression or classification, @mnethod for dimension reduction. It is not
always clear however, how to use the PLS-based methods srajemew input features for training and

test data, so we shall briefly review the methods here.

[Il. PREVIOUS RESULTS
A. String kernels

The use of string kernels for analysing text documents was s$tudied by Lodhi et al. (Lodhi et al.,
2002). We briefly review the approach to creating a featuezes@nd associated kernel.

The key idea behind the gap-weighted sub-sequences kerriel gompare strings by means of the
sub-sequences they contain. The more sub-sequences inacgrtire more similar they are. Rather than
only considering contiguous n-grams, the degree of coiyigaf the sub-sequence in the input string

determines how much it will contribute to the comparison.



In order to deal with non-contiguous substrings, it is neagsto introduce a decay factdre (0, 1) that
can be used to weight the presence of a certain feature imng.gor an index sequende= (i1, .. ., i)
identifying the occurrence of a sub-sequence s (i) in a strings, we usel(i) = i, —i; + 1 to denote the
length of the string irs. In the gap-weighted kernel, we weight the occurrence with the exponentially
decaying weight\'(V).

Definition 1 (Gap-weighted sub-sequences kernéhe feature space associated with the gap-weighted
sub-sequences kernel of lengtlis indexed byl = >? (i.e. sub-sequences of lengitirom some alphabet

Y)), with the embedding given by
= > XNOuexr 1)

iiu=s(i)

The associated kernel is defined as

o (5,1) = (@ (s Z AC )
Consider the simple stringcat ", "car ", " bat ", and" bar " . Fixing p = 2, the words are mapped
as shown in table Ill.
So the unnormalised kernel betwetnat " and"car" is (" cat"," car ") = \*, while the nor-

malised version is obtained using
r("cat","cat")=r("car","car") =2\ + )6 (3)

asi("cat" " car" ) = AN/(2M + X\6) = (2+ \%) 7!
We omit a description of the efficient dynamic programmingoaithms for computing this kernel

referring the reader to Lodhi et al. (Lodhi et al., 2002).

B. Partial Least Squares

Partial Least Squares (PLS) was developed by Herman Woldgltire 1960’s in the field of economet-
rics (Wold, 1966). It offers an effective approach to sofyproblems with training data that has few points
but high dimensionality, by first projecting the data intoosvér-dimensional space and then utilising a
Least Squares (LS) regression model. This problem is commdme field of Chemometrics where PLS
is regularly used. PLS is a flexible algorithm that was desilyfor regression problems, though it can
be used for classification by treating the labélsl, —1} as real outputs. Alternatively it can also be
stopped after constructing the low-dimensional projectibhe resulting features can then be used in a

different classification or regression algorithm. We wikk@ adopt this approach by applying an SVM



Algorithm 1 The PLS feature extraction algorithm
The PLS feature extraction algorithm is as follows:

input given a selection of” feature directions to extract
process X; =X
fori=1,...,T
let u; be the first singular vector &X’Y,
Mo = (1= TR ) X = X (1= AT

end

)

output Feature directiona;, s =1,...,T.

in this feature space, an approach pioneered by Rosipal éRasipal et al., 2003). LeK contain as
rows the feature vectors of the samples andontain the outputs, wher¥ is the matrix containing as
rows a set of output variables. The procedure for PLS feagiteaction is shown in Algorithm 1. The
algorithmic procedure iteratively takes the first singwectoru; of the matrixX'Y, and then deflates the
matrix X; to obtainX,,;, wherei = 1...7. The deflation is done by projecting the columnsXofinto
the space orthogonal &,u;. The difficulty with this simple description is that the feeg directionsu,
are defined relative to the deflated matrix. We would like tabke to compute the PLS features directly
from the original feature vector.

If we now consider a test point with feature vectpfx) the transformations that we perform at each

step should also be applied tg (x) = ¢ (x) to create a series of feature vectors

Pir1 (%) = ¢ (%) (T - wp;), (4)
where
b= o ©)
This is the same operation that is performed on the rowX 0in Algorithm 1. We can now write
¢ (%) = dri1 (%) + i ¢i (x) wp;. (6)
=1
The feature vector that we need for the regressi¢r) has components
b (x) = (¢ (x)'w),_, (7)

since these are the projections of the residual vector ge stanto the next feature vectar;. Rather than

computes; (x) iteratively, consider using the inner products betweenatiginal ¢ (x)" and the feature



vectorsu; stored as the columns of the matilik
$(x)U = ¢ra(x) U+ Z@ "u,piU
= ¢rp (%) U+¢( ) P'U,
whereP is the matrix whose columns age. Finally, it can be verified that
u;pz- =6, forj <i (8)

Hence, fors > 4, (I — usp’) w; = u;, while (I — u;p}) u; =0, so we can write

zﬂ

bri1 (%) ) —u;p;)u;=0,fori=1,...,T. (9)

j=i

It follows that the new feature vector can be expressed as
$(x)' =¢(x)UPU)". (10)

If we consider the vectors of feature values across theitgsetX ;u;, these are orthogonal since they are
a linear combination of the columns &; that have been repeatedly projected into the orthogonat com
plement of previousX,u;, for i < j. By the analysis above these vectors can be writteK &BigP'U) !

from which it follows that

(U'P)"'UX’XU((P'U)™!

is a diagonal matrix. Sinc€U'P) is upper triangular it follows that the vectors, . .., u, are conjugate
with respect taX'X.
These feature vectors can now be used in conjunction withamileg algorithm. If one wishes to

calculate the overall regression coefficients as in theRWS algorithm, these can be computed as:
W=U(PU)'C, (11)

whereC is the matrix with columns
Y’Xiul-

_. 12

C;, =
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Algorithm 2 Pseudocode for kernel-PLS

Input: DataS = x1, ..., z;; dimensionT’; target outputsy” € R{X™

Kij = & (i, ;)
Ki=K
Y=Y

for i=1,...,7T do

B; = first column of Y

normalises;

repeat
Bi = YY'K;B;
normalises;

until convergence

Ti = Kifi

e = ¥'7i/|lmi?

Y=Y- Tic,

Kipa = (I = mirf/|Imil|?) Ki (I = mim}/|I7il|%)

end for

T:[Tivank]

a=B(TKB)™'T'Y

Output: Training outputsy” — Y and dual regression coefficients
IV. KERNEL PLS

In this section we set out the kernel PLS algorithm and desdts feature extraction stage. The kernel
PLS algorithm is given in Algorithm 2. The vectgi; is a rescaled dual representation of the primal
vectorsu;:

a;u; = X;ﬂi, (13)

the re-scaling arising because of the different point atctvithe re-normalising is performed in the dual.
We can now express the primal matiXU in terms of the dual variables as
P'U = diag(a)diag(r/n)  T'XX'Bdiag (a) "
— diag (a) diag (7/;) " T'"KBdiag (a) " .
Here diag (7/7;) is the diagonal matrix with entriediag (7/7;),, = 7/7;,, wherer, = K;3; and T is the
matrix containingr; as rows . Finally, again using the orthogonalityXfu; to 7;, for i < j, we obtain

J I N g NI 4y T
quiju] qujX]uj TiTj
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making

C = Y'Tdiag (7/7;) " diag (a) . (15)
Putting the pieces together we can compute the dual regresariables as
a=B(T'’KB)"'T'Y. (16)
In (Rosipal et al., 2003) it was assumed that a dual repragentof the PLS features is then given by
B(T'KB) ™", (17)
but in fact

U (P'U) " =

-1

X'Bdiag (a)~" (diag (a) diag (7/7:) " T'KBdiag (a)_1>

so that the dual representation is

B (T'KB) ' diag (a) ! diag (r{7;) = B (T'KB) " diag (r/7;) diag (a) " . (18)

The missing diagonal matrices perform a re-scaling of tlaufes extracted, which skews the geometry
of the space and affects the performance of for example an.SVM

At first sight it seems as though theare difficult to assess, and there is an argument that thevalia;
should not vary significantly over similar adjacent feasusence they will be related to the corresponding

singular values. Recalling (13) however, we have the fathgw
(aw;)* = (X}6)* = BKB; = af.

In our experiments we have compared the results that cantaaet ignoring both diagonal matrices with

those obtained including the tau rescalitigg (7/7;) and the complete rescalintjag (7/7;) diag (a) .

A. Using Semi-Definite Programming

One disadvantage of using these subspace approacheswgethate introduced yet another parameter:
the number of feature directions to use Also, we are forced into using just one particular valuefor
rather than exploring combinations of directions which ngastd better results (in practice of course we
could try combinations, but this starts to explode the sizeus parameter space even more).

An ideal scenario would be to generate several rank-oneskenatrices from the projections on to the

directionsuy, ..., ur, and then optimise over the combination of these matricemenstep. This would
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both remove the need to choose a paramétéapart from setting a limit forl” in advance) and also
allow combinations of features to be used. An approach radliin (Lanckriet et al., 2004) shows that
it is possible to use semi-definite programming techniqoesptimise over a combination over kernel
matrices whilst simultaneously solving the SVM maximisatproblem. In this section we briefly review
the method in (Lanckriet et al., 2004) and discuss how it carafplied to the problem of selecting the
number of feature directions to use.

In the paper it was shown that a i is a linear combination of kernel matricds = Zle i K
then it is possible to optimise the standard SVM formulaamil the coefficientg; simultaneously using
a semi-definite program. This is due to the problem being eorim K. Furthermore, a generalisation
bound is given which shows that the generalisation erroteadt in part, depends on the trace of the
matrix &; for further details we refer the reader to (Lanckriet et 2004). In essence however, the paper
considers several settings of optimising combinationsesh& matrices, whilst solving the standard hard
and soft margin SVM optimisation problems. One specialainsg¢ that is considered is when the
components of the combination are non-negative. In thig,ci® problem reduces to a Quadractically
Constrained Quadratic Problem (QOQP), which is a specis ©h a Second Order Cone Pogramming
problem (SOCP), which in turn is a special instance of a s#efinite programming problem (SDP). For
the application considered here, this has two importanseguences. Firstly, SOCP problems can be
efficiently solved by publicly available solvers such as 8®D(Sturm, 1999). Secondly, in the general
case, the restriction ofi; > 0 may lead to sub-optimal combinations of the base kernelicestr as
allowing i to have negative coefficients may still lead to a positive isgefinite matrix . Due to the
orthogonality ofv; (as discussed in first part of Section 1V), however, negatormponents:; would lead
to negative eigenvalues; as eigenvaluesiofire equal tqu;||v;|| and therefores’ would not be positive
definite.

In summary, the optimisation problem becomes

minmax 2a'e — o (G(K) + 71)ex
K O

subject to

0<a<Cay >0, trace(K) = ¢,

where G;;(K) = k(xi,x;)y;y,;. For the case where we restrigt > 0 and consider the 1-norm SVM
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margin, the optimisation problem becomes:

max 2a’e — ct (29)
act
subject to ¢ > %a’G(KZ-)a, 1=1,...,k,

o'y =

wherer; = trace(K;).

In this paper we are considering the problem of choosing timeber of feature projections to use when
considering low-dimensional projections of feature-gpdata. Therefore, the kernel matrid€sare rank
one matrices formed by the outer product of feature prajastyv; v, wherev; is the dual representation
of the data projected onto thigh extracted feature (e.g. the columns of the matrix giverefy(18)).
Note that most general SDP solvers use primal dual methogslve problems such as (19). The primal

variablesy; are therefore easily covered once a solution is found.

V. EXPERIMENTS

In our experiments we follow the setup given by (Zanon & Widn#003) and (Widmer & Zanon,
2004) where the original-class problem (where is the number of pianists) was convertediio —1)/2
two-class discrimination problem, one for each possiblie papianists. This set-up gives more insight

into the discriminability of various pianists, and is eadi@r a classifier than the-class problem.

For each pair of performers a leave-one-out procedure widewied where on each iteration one
movement played by each of a pair of performers was used $tinteand the rest of the data was used
for training. That is, for a given pair of performers, say $tiko Uchida and Daniel Barenboim (MU-DB),
a total of 12 runs of an algorithm were performed (there arenb2ements and each time one movement
by both performers was left out of the training set and tesfeon). This was repeated for each of the
possible 15 pairings of performers. Note that in all restiiss number reported is the numberafrrect

classifications made by the algorithm.

A. Previous results

Previous results on the data (as described in (Zanon & Widgg#3; Widmer & Zanon, 2004)) used

a feature-based representation and considered a rangecbfrmadearning techniques by using the well-
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known Waikato Environment for Knowledge Analysis (WEKA)fseare package (Witten & Frank, 1999)
to compare bayesian, rule-based, tree-based and neargsbaur methods. The best results obtained
previously on the data are for a classification via regressi@ta-learner. These results are reported as
FB (feature-based) in the results table. The feature-bes@@sentation used in the experiments included
the raw measures of tempo and loudness along with variotist&ts regarding the variance and standard
deviation of these and additional information extractemrfrthe worm such as the correlation of tempo

and loudness values.

B. Results

Experiments were conducted using both the standard stengekand the n-gram kernel and several
algorithms. In both cases experiments were conducted asstgndard SVM on the relevant kernel matrix.
Kernel Partial Least Squares and Kernel Principal CompioRegression were also used for comparison.
Finally, an SVM was used in conjunction with the projectedtéees obtained from the iterative KPLS
deflation steps. For these features there were three optmnse the features as described in (Rosipal et
al., 2003), to include the extra reweighting factdisg (7/7;) or to also include the scaling produced by
the a; values as described abdvaVe first performed a comparison of these two options by dongrthe
total number of correct predictions across all splits fdfedent feature dimensiong§ for the original
weighting (ORIG), theau-reweighted £-R), and the features with bothu anda rescaling ta-R). Table
IV shows the results obtained. There is a clear advantagersfar the re-weighting schemes, however
the introduction of theliag(a)~' matrix seems to have little effect as expected. In this Sdnausing the
full reweighting actually suffered a slight performancedagainst using only, however for completeness
we will use the full reweighting in all future experimentsofe that this was an illustration to show the
rescaling difference only, and results here cannot be tlireompared to the tables below, where a more
rigorous experimental set-up was used for comparison [geo

In the remaining experiments we used the following set ugr&lare 15 pairs of performers, which were
split up into three groups of five. We used one group as a holdset and used the leave-one-out error
on the 24 movements for each pair (each time leaving out onleeo12 movements for both performers)
as an accuracy measure. Using this measure we were ablestd thed parameters which performed best
across this group. Using these parameters we then obtamedcuracy measure on the remaining 12

"We find that the re-scaling does not add to the total numberookect predictions and therefore only compare with theinaigtwo

options.
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pairs of performers using the same leave-one-movementrogedure as described above. We repeated
this for each group, and therefore obtain four accuracyingadfor each pair. The parameters optimised
included the number of characters used by the string ketimeldecay parameter and the number of PLS
features extracted where appropriate. Substring lendtiis=e 1, ..., 10 were tried for both the n-gram
and string kernels\ = {0.2,0.5,0.9} decay parameters were used for the string kernel and forkiets

and KPCR methods the number of feature directidfisrnged from 1 to 10. All kernel matrices were
normalised and whenever an SVM was used, the paraméteas set to one.

Tables V and VI show results using the n-gram and string kerrespectively. Mean and standard
deviations of the accuracy (maximum of 24 in each case) foh @air are predicted. Significance results
were obtained by using a one-tailed t-test. Note that foféhture-based results, the results reported are the
best possible that can be achieved — parameters were sesaterding to the classification performance
of the movement that was left out (see (Widmer & Zanon, 20@dim@tatos & Widmer, 2005) for details).
Therefore, we are competing against a gold standard, asdikely higher performance for the methods
in this paper could be achieved if we didn't follow the crasdidation procedure outlined above. In some
cases, when optimising parameters using the hold-out greeyeral different choices lead to the same
error value. In order to be consistent we simply chose theestvsubstring lengthtvaluell’-value that
gave this result.

The results obtained from using these methods and kernelg ah improvement over the previous best
results using statistical features extracted from thegoerance worm. We use the following shorthand
to refer to the relevant algorithm/kernel combinatioRB; Previous best method using statistical features
(Widmer & Zanon, 2004)KPL S: Kernel Partial Least SquareSYyM: Support Vector MachineK P-SV:
SVM using KPLS feature PCR: Kernel Principal Components regression. If an n-gram ddeisiused
rather than a string kernel we append’’to the method name. We report both the leave-one-movement-
out accuracy for each pairing, and also statistics for thed sccuracy for each fold of the data. Therefore
the maximum total value i$2 x 24 = 288. For the feature based approach we can simulate this bysimpl
summing accuracies over those test-pairings in each fold tlaerefore obtain a value for each of the 5
runs.

The use of the methods in this paper in conjunction with tlggam kernel offer a clear performance
advantage over the feature-based approach. InterestikBlyS outperforms an SVM when using this

kernel. This may suggest that for this kernel, projecting ia lower subspace is beneficial. Indeed, the
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performance of KPCR is also close to the SVM. The ability ofLiSPhowever to correlate the feature
directions it selects with the output variable gives it aacladvantage over KPCR and as expected from
previous results on other data (Rosipal & Trejo, 2001; B&nkeEmbrechts, 2003), a performance gain
is achieved. When using the SVM in conjunction with the feaguobtained from the KPLS deflation
steps, the performance improves further which has also tieegase on other data sets (Rosipal et al.,
2003).

In all cases short substrings (with substring lengths ofy dnlor 2 characters) achieved the best
performance, which would perhaps indicate that complexufea are not used. Indeed when running
the n-gram kernel, any string length above 5 has very few zavo- off-diagonal entries and therefore
contains almost no information. It is interesting to notattin the experiments KPCR requires more
feature directions to achieve good performance, wheredsSKd®nsistently requires fewer directions to
perform well.

The string kernel operating over the performance alphalesults shown in Table VI) provides signif-
icantly better classification performance than the feabaged method and in most cases (the exception
being PCR) also outperforms the n-gram kernel. This ind#tat the ability of the string kernel to allow
gaps in matching sub-sequences is a key benefit for this aadathat complex features are indeed needed
to obtain good performance. This is in contrast to resu®med using the string kernel for text, where
the classification rate of n-gram kernels using contigu@agisnces is equal to that of the string kernel if
not superior (Lodhi et al., 2002). For the n-gram kernelngdPLS features improves performance over
the Support Vector Machine (significantly for some pairindgsr the string kernel however, this was not
the case and only slightly improved the mean, at the cost ditiadal variance. It is therefore not clear
in which situations the use of KPLS features in conjunctiathvan SVM will produce a performance
gain.

When using the semi-definite programming approach outline8ection IV-A, we no longer have to
use cross-validation to select the paramé&tehowever the sub-sequence lengthnd for the string kernel
the gap penalty. must still be chosen. We therefore used the same experihsettap as before, however
simply let the SDP solver choose the combination of featurections. The results are shown in table
VII.

In both cases the SDP solution performed well, and althowtieged a slightly lower mean in both

cases, the differences are minor. Interestingly in nealllicases for all parameter settings, the SDP
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optimisation problem chose to weight the features beybnrd 5 with very little or no weight. This result
is in keeping with observations from running the full expeents with all parameter settings; choosing
T > 5 tends to lead to poor performance, hence most informatiocorgained within the first few
projections.

Overall the techniques used in this paper offer a clear pedace advantage over the feature based
method which delivered the previous state of the art perfmee on this data set. As expected KPCR
does not perform as well as KPLS, the ability to use labelrmftion when selecting feature directions
gives a clear performance benefit. The combination of symldiormation and kernel methods provides
a significant advantage over the previous feature-basetbagp Using KPLS features with an SVM
improved performance greatly using the n-gram kernel,oalgih this was not the case for the string
kernel. This suggests that the feature space induced byrthg kernel is able to capture more informative

structure in the training examples, and is therefore palgity suited to this type of application.

VI. CONCLUSIONS

In this paper we have presented a novel application of tivegskernel: to classify pianists by examining
their playing style given the performance on the same pigbés is an extremely complex task and
has previously been attempted by analysing statisticalifea obtained from audio recordings. Here we
have taken a different approach and have examined usingréeptojection methods in conjunction with
kernels which operate on text. These can be applied to tHerp®r recognition problem by representing
the performance as a string of characteristic tempo-lossieirves, which are obtained by analysing
a performance worm. We have reviewed the Kernel Partial tL8gsares method and shown how this
can be successfully used to generate new features whichheanbe used in conjunction with learning
methods such as an SVM. We have also shown a reweighting scfamnobtaining feature directions
from KPLS that peforms better than the technique used ineatifiterature. All algorithms tested in
this paper provided higher performance than the previoate sif the art results on the data. We have
also shown that the ability of the string kernel to considad amatch non-contiguous substrings of input
sequence has a real performance benefit over only congidesimiguous substrings. This is in contrast
to many applications of the string kernel to text, where thlative performance of the string kernel to
the n-gram kernel tends to be very close or even slightly &dide have also shown that it is feasible to
use SemiDefinite programming approaches in practice inrdmleemove the need to select the number

of feature directions via cross-validation. It is an opeolgbem to determine in what circumstances using
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KPLS to obtain features will result in an improvement in gatieation performance and this will be
researched in future. Specifically however, one might eixplee deflation process highlighted in this
paper to be particularly useful with structure based karmelgeneral (e.g. string and graph kernels).
In these cases the feature space mapping tends to be verywitbhmany irrelevant features, thus the
combination of KPLS extraction and an SVM is very promisiddierefore one direction of research
which we wish to pursue is the use of these techniques on enaynttion prediction tasks (using string
kernels across protein sequences to predict reaction)tgmesdrug discovery applications (using graph
kernels on molecules to predict toxicity/activity of cheadicompounds). One other aspect that is perhaps
unsatisfactory with these techniques is that these projecican still be quite time-consuming and are
not sparse, therefore we would like to investigate the usgreédy methods within the KPLS feature

extraction framework.
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TABLE |

MOVEMENTS OFMOZART PIANO SONATAS SELECTED FOR ANALYSIS

Sonata Movement Key Time sig.
K.279 1st mvt. C major 4/4
K.279  2nd mvt. C major 3/4
K.279 3rd mvt. C major 2/4
K.280 1st mvt. F major 3/4
K.280  2nd mvt. F major 6/8
K.280 3rd mvt. F major 3/8

K.281 1st mvt. Bb major 2/4
K.282 1st mvt. Eb major 4/4
K.282  2nd mvt.  Eb major 3/4
K.282 3rd mvt. Eb major 2/4
K.330 3rd mvt. C major 2/4
K.332  2nd mvt. F major 4/4

Time: 28.1

Fig. 1. The performance worm: A 2D representation of chamgédeat-level tempo and loudness can be plotted in realtiora fin audio

recording.
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Fig. 2. The performance alphabet: A set of cluster protatygeracted from the performance worm.



LIST OF PIANISTS AND RECORDINGS USED

TABLE Il

Name

Recording

DB
RB
GG
MP
AS
MU

Daniel Barenboim EMI Classics CDZ 7 67295 2, 1984

Roland Batik

Glenn Gould

Maria Joao Pires

Andras Schiff

Mitsuko Uchida

Gramola 98701-705, 1990

Sony Classical SM4K 52627, 1967
DGG 431 761-2, 1991

ADD (Decca) 443 720-2, 1980

Philips Classics 464 856-2, 1987

FEATURES AND WEIGHTS FOR THE STRING KERNEL WITH) = 2 FOR THE WORDS" CAT" , " CAR", " BAT", AND " BAR" .

1) ca ct at ba bt cr ar br

cat X X A2 0 0 0 0 0

car X 0 0 0 0 X A 0

bat 0 0 A2 A2 X 0 0 0

bar 0 0 0 A 0 0 A X
TABLE Il

TABLE IV
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TOTAL NUMBER OF CORRECT PREDICTIONS ACROSS ALL SPLITS AGAINSNUMBER OF FEATURE DIRECTIONS USER7') FOR BOTH THE

FEATURE PROJECTION METHODS DESCRIBED IN THIS PAPHR-R) AND (Ta-R) AND THAT IN PREVIOUS WORK (ORIG). THE

PARAMETERS USED IN THIS WERE THOSE OPTIMAL FOR THKPLS COMBINATION (k = 5,\ = 0.9).

Method/T 1 2 3 4 5 7
ORIG 284 246 230 236 249 240 235 239 244 240
7-R 288 289 290 290 290 290 290 290 290 290

Ta-R

286 289 290 287 287 290 289 290 291 289
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TABLE V
COMPARISON OF ALGORITHMS ACROSS EACH PAIRNISE COUPLING OF PERFORMERS FOR THE-BRAM KERNEL. MEAN AND
STANDARD DEVIATION RATES FOR ACCURACY ARE GIVEN FOR EACH PAR (THE MAXIMUM IS 24). FBREPRESENTS THE PREVIOUS
BEST RESULTS USING A FEATUREBASED REPRESENTATION RATHER THAN THEPERFORMANCE ALPHABET USED FOR THE OTHER
APPROACHES ™ INDICATES SIGNIFICANT DIFFERENCE FROMKPCRAT 95% SIGNIFICANCE LEVEL, ** DENOTES SAME AT99%
SIGNIFICANCE. SIMILARLY , SIGNIFICANCE FROM THESVM IS DENOTED BYt AND ++, AND ¥ IS USED FOR COMPARISON TO THE

FEATURE-BASED REPRESENTATIONFOLD TOTALS ONLY). TOTALS ARE FOR PREDICTING REMAINING12 PERFORMER PAIRYSEE

TEXT).
Pairing FB KPLS-n SVM-n KP-SV-n KPCR-n
RB-DB 19 17.8 (0.5) 17.5 (1.0) 17.3 (0.5) 16.5 (1.0)
GG -DB 18 21.3 (0.5 22.0 (0.0)* 21.0 (0.0)* 13.3 (0.5)
GG-RB 17 21.3 (1.8) 215 (1.0)*  22.0 (0.0)* 12.0 (2.0)
MP -DB 15 20.5 (1.7) 19.0 (0.0) 18.3 (0.5) 15.8 (1.5)
MP-RB 20 16.5 (1.0) 15.0 (0.0) 18.8 (1'3) 15.8 (0.5)
MP - GG 17 225 (0.6f 22.0 (0.0)* 22.8 (0.5 13.0 (0.0)
AS-DB 16 19.8 (0.5) 18.5 (1.0  19.5 (3.0) 13.5 (1.9)
AS-RB 17 20.0 (0.0 20.8 (0.5* 19.5 (0.6)* 13.3 (0.5)
AS -GG 17 145 (1.0)  13.3 (0.5) 18.5 (0.6  16.5 (3.3)
AS-MP 16 20.8 (0.5) 19.8 (0.5* 22.0 (0.0t  13.5(1.7)
MU - DB 15 15.0 (1.6)  17.0 (0.0) 18.3 (2.9) 13.3 (3.2)
MU - RB 17 16.5 (2.0)  14.3 (0.5) 16.8 (1:0)-  12.8 (1.3)
MU - GG 18 205 (1.0) 21.3(1.5) 21.3(1.0) 17.0 (2.4)
MU - MP 13 13.3 (1.0) 12.8 (0.5) 16.5 (3.1) 15.0 (2.4)
MU - AS 16 17.5 (0.6) 17.3 (1.5) 18.3 (1.7) 16.0 (3.8)
Fold Total 200.8 (2.9) 222.0 (85) 217.4 (6.1 232.4 (7.3y*%+ 173.6 (13.3)




TABLE VI

COMPARISON OF ALGORITHMS ACROSS EACH PAIRWISE COUPLING OF REORMERS FOR THE STRING KERNEL

Pairing FB KPLS SVM KP-SV KPCR
RB-DB 19 16.5 (0.6) 17.0 (1.2) 16.3 (2.1) 14.5 (3.5)
GG-DB 18 19.0 (1.4) 20.3 (0.5)  20.3 (1.0) 12.0 (2.2)
GG-RB 17 22.5 (0.8) 22.8 (0.5) 23.0 (0.0) 11.3 (3.3)
MP -DB 15 225 (0.6 228 (0.5  22.0(1.2) 10.8 (2.2)
MP -RB 20 22.0 (1.4) 21.0 (0.0) 20.3 (1.0) 17.5 (2.4)
MP - GG 17 24.0 (0.0  24.0 (0.0)  24.0 (0.0 14.3 (1.9)
AS -DB 16 18.3 (1.0¥ 18.5 (0.6) 19.0 (0.8) 11.3 (1.7)
AS-RB 17 22.3 (1.3) 23.0 (1.2) 22.0 (0.0) 15.5 (1.7)
AS -GG 17 16.5 (0.6) 17.0 (0.0) 16.0 (0.0) 12.3 (1.9)
AS -MP 16 24.0 (0.0  24.0 (0.0)*  24.0 (0.0 12.5 (2.1)
MU -DB 15 15.0 (0.8) 14.8 (1.3) 14.3 (1.9) 12.5 (2.4)
MU -RB 17 15.3 (0.5) 13.8 (1.3) 17.0 (1.2) 14.8 (2.9)
MU -GG 18 18.8 (0.5) 20.0 (0.05*  20.8 (0.5} 12.5 (1.3)
MU - MP 13 16.3 (1.3) 16.5 (1.0) 17.5 (0.6) 15.0 (3.8)
MU - AS 16 18.8 (1.3) 18.3 (0.5)* 19.8 (0.5*+  13.8 (0.5)
Fold Total 200.8 (2.9) 233.2 (59 234.8 (6.4%* 236.8 (8.05* 160.2 (8.8)

23
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TABLE VII

PERFORMANCE OFSDPUSING KPLS FEATURES IN CONJUNCTION WITH THE NGRAM AND STRING KERNELS THE KP-SV-N AND

KP-SV COLUMNS SHOW THE BEST PERFORMANCE ACHIEVED USINGAGRAM AND STRING KERNELS RESPECTIVELY WITH THESVM

IN CONJUNCTION WITHKPLS FEATURES WHENT WAS SELECTED BY CROSSVALIDATION

Pairing KP-SV-n SDP-n KP-SV SDP

RB-DB  17.3(0.5) 17.8(15) 16.3(2.1) 15.8 (0.5)
GG-DB  21.0(0.0) 21.0(0.0) 20.3(L0) 19.8(0.5)
GG-RB  22.0(0.0) 223 (15 23.0(0.0) 23.0(0.0)
MP-DB 183 (0.5) 19.0 (0.8) 22.0(1.2) 21.5 (0.6)
MP-RB  18.8(1.3) 185(L7) 20.3(1.0) 21.3(0.5)
MP -GG 228 (0.5) 225(0.6) 24.0(0.0) 23.8(0.5)
AS-DB  195(3.0) 19.5(24) 19.0(0.8) 18.0 (1.4)
AS-RB  19.5(0.6) 19.3(0.5) 22.0(0.0) 21.3(1.3)
AS-GG 185(0.6) 17.0(3.4) 16.0(0.0) 16.8 (0.5)
AS-MP  22.0(0.0) 22.0(0.0) 24.0(0.0) 23.5 (0.6)
MU-DB 183 (2.9) 17.8(2.9) 14.3(1.9) 15.8 (0.5)
MU-RB 16.8(1.0) 16.0 (20) 17.0(1.2) 16.5 (1.3)
MU-GG 21.3(1.0) 21.3(05) 20.8(0.5  19.3 (1.0)
MU-MP 165 (3.1) 14.0 (20) 17.5(0.6) 17.8 (1.0)
MU-AS 183 (17) 19.0(0.0) 19.8(0.5) 18.5 (1.3)
Fold Total 232.4 (7.3) 229.4 (9.7) 236.8 (8.0) 233.8 (8.0)




