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Abstract. Today, among the best-performing audio-based music simi-
larity measures are algorithms based on Mel Frequency Cepstrum Coef-
ficients (MFCCs). In these algorithms, each music track is modelled as a
Gaussian Mixture Model (GMM) of MFCCs. The similarity between two
tracks is computed by comparing their GMMs. One drawback of this ap-
proach is that the distance space obtained this way has some undesirable
properties.

In this paper, a number of approaches to correct these undesirable prop-
erties are investigated. They use knowledge about the properties of music
by using other music tracks as a reference. These reference tracks can
either be the music collection itself, or they may be an external set of
reference tracks.

Our results show that the proposed techniques clearly improve the qual-
ity of this audio similarity measure. Furthermore, preliminary experi-
ments indicate that the techniques also help to improve other similarity
measures. They may even be useful in completely different domains, most
notably text information retrieval.

1 Introduction

Music similarity measures are central to many music information retrieval (MIR)
applications. Today, among the best-performing audio-based music similarity
measures are algorithms based on Mel Frequency Cepstrum Coefficients
(MFCCs). In these algorithms (e.g. [1–4]), each music track is modelled as a
Gaussian Mixture Model (GMM) of MFCCs. The similarity between two tracks
is computed by comparing their GMMs. As pointed out in [3–6], the distance
space obtained this way has some undesirable properties, as explained in the
next sections. In this paper, we evaluate algorithms to tackle these problems,
and find that they help to improve the quality of the similarity measure.



Always Similar. When calculating the distances between pieces of a music col-
lection with such a music similarity measure, it turns out that some particular
pieces frequently show up as close neighbours of many other pieces in the col-
lection without sounding similar. Such pieces are called hubs [5, 6]. In [5, 6], this
problem is extensively studied, and it is pointed out that the same problem also
appears in a number of other domains, including fingerprint, speech and speaker
recognition. A measure that supports the investigation of this phenomenon is
n-occurrence [5, 6]: For each piece in the collection, the n nearest neighbours
are determined. We call this set of n nearest tracks of track A the n-NN set of
track A. Then, for each piece in the collection, it is counted in how many n-NN
sets it appears. This number is the n-occurrence of the respective piece. Thus,
the first problem with the similarity space is that some pieces have a very high
n-occurrence. For example, in one of our collections consisting of 729 tracks, the
highest occurring 20-occurrence is 175, indicating the existence of hubs. Thus, by
reducing the highest occurring n-occurrences, the quality of the audio similarity
measure may be improved.

Never Similar. Analogously to the preceding section, there are tracks that have
a very low n-occurrence. Although there are some few outliers in most collections
that do not sound similar to any other track, in general this is an undesirable
property.

Triangle Inequality. For existing fast indexing and search algorithms to work
(e.g., [7]), it is necessary that the triangle inequality is fulfilled by the distances of
the similarity space. Unfortunately, this is not the case for the class of algorithms
discussed above. Thus, it would be desirable that this property is changed.

2 Proposed Techniques

In this section, we describe several techniques for improving the aspects of the
similarity space that are discussed above. Music tracks are very unevenly distrib-
uted in the similarity space. Thus, the basic idea is to transform the similarity
space via a normalization operation.

All techniques are based on a modification of the distances between tracks
that are computed by a music similarity measure. This basic similarity measure
is arbitrary (although we will use the similarity measure mentioned in the intro-
duction). We call it Dbasic. When calculating the similarity of two tracks A and
B, the proposed algorithms calculate Dbasic(A, B), and also the distances of the
two tracks to a set of known music tracks. We call this set reference set. The ref-
erence set may be the music collection itself, or it may be a completely different
set of tracks. The latter is of importance if there is no a priori knowledge about
which music the algorithm will compare. Thus, the algorithms apply knowledge
about the reference set to improve an existing audio similarity measure. Based
on this information, the final distance between the tracks A and B is computed.
The details of this step differ for the various approaches, as described in the next
sections.



2.1 Using the N
th Nearest Neighbour: Ndist Normalization

The first approach we evaluate is based on the distance to the nth nearest neigh-
bour of a piece. Analogous to [8, 9], we call this distance of a piece A to its nth

nearest neighbour ndist(A). The basic idea is that if there are many pieces in
close proximity to a piece A, then A is likely to appear in many NN sets of these
close tracks. So, in this case the distances between A and the other pieces in
the collection should be increased. This is done via normalization by ndist(A),
where ndist(A) is the distance of A to its nth closest track in the reference set.

However, when comparing tracks A and B, just normalizing Dbasic(A, B)
with ndist(A) would not result in a symmetric distance measure. Thus, the two
normalization factors are combined:

Dndist
(A, B) :=

Dbasic(A, B)

ndist(A) · ndist(B)
(1)

2.2 Using the N-occurrence: N-occurrence Normalization

The second proposed approach aims to find a factor analogous to Section 2.1,
but defined in a way that each A occurs in n n-NN sets of pieces in the reference
set. Thus, it is aimed to normalize the n-occurrence of all pieces to n.

In detail, the factor associated with piece A is determined the following way.

1. Determine all distances Dbasic(A, Pj) to the pieces Pj in the reference set. Ex-
press these distances as a fraction of the respective distance to the nth nearest
neighbour of Pj from the reference set: g(A, Pj) = Dbasic(A, Pj)/ndist(Pj).

2. Sort g(A, Pj) for all Pj in ascending order. Take the nth value as the factor
for A, denoted f(A).

The distance g(A, Pj) calculated in the first step is greater than one if piece
A does not belong to the n-NN set of piece Pj , and is smaller than one if it
does belong to it. Dividing all distances from piece A to other pieces by the
nth smallest of these g (which is determined in Step 2) aims to modify these
distances in a way that A belongs to n n-NN sets of the tracks in the reference
set, as g measures the relative distance of A to the ndist of Pj .

However, as in Section 2.1, when applying this for calculating the distance
between two pieces, there is a factor f for both the pieces A and B. We apply
the same technique as before to combine these two factors for transforming the
original distance between A and B:

Dn−NN norm(A, B) :=
Dbasic(A, B)

f(A) · f(B)
(2)

2.3 Using Symmetric Ranking: Proximity Verification

The third proposed approach is based on the ranking of the tracks. For calcu-
lating the distance between two tracks A and B, first all distances Dbasic(A, Pj)



between A and the tracks Pj of the reference set are calculated. These distances
are sorted in ascending order. Then it is determined which rank the distance
Dbasic(A, B) would have in these sorted values. As in general, Dbasic(A, B) is
not exactly equal to one of the Dbasic(A, Pj), this value is determined by interpo-
lating the next smaller and next larger distances Dbasic(A, Pi) and Dbasic(A, Pj),
respectively.3 We denote this (interpolated) rank as DP (A, B).

As pointed out in [10], in general such neighbourhood rankings are not sym-
metric (i.e., DP (A, B) 6= DP (B, A)). Thus, to obtain a distance measure, we
define

DPV (A, B) := DP (A, B) + DP (B, A) (3)

We call this measure Proximity Verification, because DPV (A, B) is only small if
both A is a close neighbour of B, and B is a close neighbour of A.

3 Evaluation Techniques

In the remainder of this work, we present an empirical evaluation of the proposed
techniques. In this section, the experimental setup is explained. The results ob-
tained are presented in Section 4.

Basic Audio Similarity Measure. In our experiments, we use an algorithm
similar to the one from [11]. Each track is resampled to 22 kHz, divided into
frames of about 23 ms, and 25 MFCCs are calculated on each of these. The
MFCCs of a song are described by only one Gaussian by taking their overall mean
and calculating the full covariance matrix. For comparing the models, a closed-
form symmetric KL distance is applied [11]. As pointed out in [4], this algorithm
is magnitudes faster than the basic variant with multiple Gaussians [1–3], and
still the obtained song models are very similar to those of the original algorithm.
We follow the practice from [4] and use this faster version as a representative of
this kind of audio similarity algorithms.

Music Collections. For evaluation, we use two music collections:

1. The first music collection is the one from the ISMIR’04 Genre Classification
Contest, consisting of 729 audio tracks from six genres. One advantage of
using this collection is that it is downloadable4, thus other researchers are
able to compare their results to those reported here. We call this collection
IGC (short for Ismir Genre Contest collection).

2. The second music collection is an in-house collection consisting of 2446 tracks
by 103 artists, grouped into 22 genres. The biggest genres are Punk, consist-
ing of 255 tracks, and Folk-Rock, consisting of 233 tracks.

3 Note that interpolating the value makes this approach more stable than determining
an integral rank, because the order is maintained in crowded regions.

4 http://ismir2005.ismir.net/genre contest/index.htm



Quality Measures. We apply several quality measures for examining the effects
of the proposed techniques. Always similar and never similar are measured by
the n-occurrence. The percentage of tracks A, B and C whose distances do not
satisfy the triangle inequality can easily be estimated on the distance matrix
(via sampling). However, measuring the quality of the algorithm’s similarity
judgements is not as straightforward, as discussed in the next paragraph.

Audio Similarity Performance. One important goal is to improve the algorithm
with respect to the quality of its suggestions (i.e., those tracks that are close
according to the algorithm should sound “similar”). The best way to measure
this is human judgement. As user studies are expensive and time intensive, we
use a common approach to estimate the algorithm’s performance. Assuming that
tracks that belong to the same genre sound more similar than tracks belonging
to different genres, we use the leave-one-out k Nearest Neighbour (k-NN) genre
classification accuracy as a quality measure.

4 Evaluation Results

In this section, we first describe how the parameter n was chosen for the ndist

normalization and for the n-occurrence normalization. Proximity Verification has
no parameter. Afterwards, the results obtained in the experiments are presented.

4.1 Choosing Parameters

For the ndist normalization and for the n-occurrence normalization, the respec-
tive values for n have to be chosen. In the following, we investigate the effect of
specific values for n with respect to genre classification accuracy, measured by
a k nearest neighbour (k-NN) classifier, with k set to 1. Our goal is to get an
impression which parameter choice is well suited for the two parametric algo-
rithms, so that their potential can be compared with the parameterless approach
(i.e., Proximity Verification).

Choosing n for ndist normalization. In Figure 1, the effect of ndist normalization
on the two music collections is shown for n in the range of 1 to 50. It can be
seen that there is a common tendency. Values below n = 10 seem not to be a
good choice, and there seems to be no additional benefit when choosing values
above n = 15. Thus, we choose n = 15 for all subsequent experiments.

Choosing n for n-occurrence normalization. When doing the analogous analysis
for n-occurrence (not depicted here), for the 103 artists collection roughly similar
tendencies as before show up. However, for the IGC collection, the values seem
to be quite inconclusive. Thus, we do not take into account the values of the
IGC collection for choosing n, and opt for a value of n = 15 for all subsequent
experiments, which has the positive side effect that the experimental results may
be better comparable to ndist normalization.
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Fig. 1. Leave one out 1-NN genre classification accuracies on the two test collections
after ndist normalization for n in the range from 1 to 50. The classification accuracies
without normalization are 81.1% for the IGC collection and 77.4% for the 103 artists
collection. We think that the curve for the 103 artists collection is smoother than the
one of the IGC collection because the size of the collections differ by a factor of about
three, resulting in more stable results for the larger collection.

4.2 k-NN Genre Classification Evaluation

The results of the k-NN genre classification evaluation when using the same
collection for evaluation and as the reference set are summarized in Table 1. It
can be seen that in general all approaches improve classification accuracies. Im-
provements are better for the 103 artists collection than for the IGC collection.
For the 15dist normalization and the 15-occurrence normalization, accuracies are
below the baseline (no normalization) in 3 of the 8 tested cases. For Proximity
Verification, the classification accuracy improved in all cases.

4.3 Triangle Inequality

We estimate the percentage where the triangle inequality does not hold by ran-
domly sampling over 100.000 triplets of tracks Pi, Pj and Pk from a collection
and directly checking for the inequality. Without normalization, the inequality is
violated in 50.9% and 33.7% of the cases for the IGC and for the 103 artists col-
lection, respectively. All investigated approaches improve these values. However,
the obtained results are still too high to be of use for fast indexing algorithms.
The best performing algorithm is Proximity Verification, yielding 24.3% and
25.2%, respectively.



IGC collection 1-NN 5-NN 10-NN 20-NN

No normalization 81.1% 65.6% 56.6% 53.1%
15dist normalization 82.7% 64.6% 57.3% 55.6%
15-occurrence norm. 80.9% 66.3% 58.3% 57.8%
Proximity Verification 84.0% 66.8% 57.7% 54.2%

103 artists collection 1-NN 5-NN 10-NN 20-NN

No normalization 77.4% 63.2% 47.5% 30.4%
15dist normalization 80.6% 63.9% 46.3% 26.8%
15-occurrence norm. 82.6% 65.8% 46.3% 27.0%
Proximity Verification 82.3% 68.2% 51.4% 32.3%

Table 1. Average k-NN leave one out classification accuracy for the various methods
for k = {1, 5, 10, 20}, when using the collection itself as reference set. Above: IGC

collection, below: 103 artists collection.

4.4 20-occurrences

In Figure 2, the 20-occurrences are shown that are obtained when the various
approaches are applied to the IGC collection. It can be seen that all approaches
yield a much more uniform distribution of 20-occurrences for the tracks of the
collection. The maximum value drops drastically (from 582 to 61 and below),
and there are much fewer tracks with low 20-occurrences. The best performing
algorithm is 15-occurrence normalization. The corresponding results on the 103
artists collection (not depicted here) are quite comparable.

4.5 Stability of the Approaches

In this section, we briefly examine the behaviour of the algorithms when the
tracks used as a reference are changed. In the experiments presented so far, the
reference set was equal to the music collection. Here, we examine the effect of
using a completely different set of songs for reference. We use the tracks of the
respective other collection as the reference set, as the two collections differ both
in size (with a factor of about three) and in the composition of the kind of music
they contain (e.g., the 103 artists collection does not contain the genre classical,
which is the biggest genre in the IGC collection). Also, the 103 artists collection
contains only commercial music (i.e., music that was bought at record stores),
while the IGC collection contains a significant amount of amateur-made music.

From the results in Table 2, it can be seen that with the exchanged reference
set, in most cases (21 out of 24) the classification accuracy was improved. This
indicates that the performance of the proposed algorithms is not highly depen-
dant on having the music collection they are applied on as a reference set. In the
case of the 103 artists collection, 15-occurrence normalization even performed
better with this different reference set than using the 103 artists collection as
reference set. We think this indicates that this algorithm has a high potential,
but the choice of the reference set is crucial, and the algorithm seems to be less
stable than the other approaches.
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Fig. 2. 20-occurrences after applying the various approaches for the tracks of the IGC

collection. For better comparability, the track indices are sorted according to their 20-
occurrences (x-axis). Values are cut off at 80. The highest values are: baseline (i.e.,
no normalization): 582, 15dist normalization: 61, Proximity Verification: 60, and 15-
occurrence normalization: 40. Note that the purpose of this graphic is to depict the
shape of the curves. Their average height is the same, as as the average n-occurrence
value is the same (cf. [5, 6]).

5 Application to Web Based Artist Similarity

Encouraged by the results presented in the previous section, we evaluate if the
proposed techniques may also successfully be applied to other similarity mea-
sures. We choose to evaluate the proposed post processing steps on web-based
artist similarity data [12–14]. Such data is obtained using algorithms inspired by
text information retrieval techniques. We use the data obtained from the web
pages of 103 artists, grouped into 22 genres, which are analysed with TF× IDF.
Pairwise artist similarities are computed using the cosine measure. On this data,
the three highest 5-occurrences are 31, 23 and 18, belonging to the artists Ge-

nius, The Speed Freak and Ominus, respectively. Although the music by these
artists is off-mainstream and rather genre-specific, they appear in the 5-NN sets
of artists from 15, 10 and 8 different genres, respectively. Thus, also in this do-
main there may be a problem with hubs. Note that according to [15], also the
construction of user-rating or user-behaviour derived artist networks is not guar-
anteed to be uniquely guided by similarity criteria and that such networks may
contain hub artists (i.e. certain artists that keep the network together), which is
not expected for a network based on expert opinions.

The results obtained in our experiments are given in Table 3. It can be
seen that the techniques also work for this completely different domain. We will
investigate this in more detail in future work. Note that for a metric space (as



IGC collection 1-NN 5-NN 10-NN 20-NN

No normalization 81.1% 65.6% 56.6% 53.1%
15dist normalization 80.7% 62.4% 56.9% 54.0%
15-occurrence norm. 81.5% 65.7% 58.0% 53.9%
Proximity Verification 82.9% 65.2% 57.8% 53.8%

103 artists collection 1-NN 5-NN 10-NN 20-NN

No normalization 77.4% 63.2% 47.5% 30.4%
15dist normalization 81.2% 67.5% 50.8% 33.2%
15-occurrence norm. 82.7% 69.4% 52.3% 34.1%
Proximity Verification 81.2% 67.9% 51.5% 33.2%

Table 2. Average k-NN leave one out classification accuracy for the various methods
for k = {1, 5, 10, 20}, when using the respective other collection as reference set. Top:
results for the IGC collection with the 103 artists collection used as reference set,
bottom: vice versa.

it is given in this case), techniques like those presented in [10, 8] may be useful
for a more efficient implementation of Proximity Verification.

web based artist-sim. 1-NN 3-NN 5-NN 10-NN

No normalization 62.1% 48.9% 29.8% 14.8%
15dist normalization 69.9% 56.8% 35.9% 24.7%
15-occurrence norm. 69.9% 58.9% 37.0% 26.0%
Proximity Verification 68.0% 59.7% 34.0% 26.3%

Table 3. Web based similarities between 103 musical artists from 22 genres: Average
k-NN leave one out classification accuracy for the various methods for k = {1, 3, 5, 10}.
The same 103 artists serve as reference models (i.e. no external reference models are
used). The maximum number of artists in a genre is six.

6 Conclusion and Future Work

We presented three different approaches for modifying the distances calculated
by a similarity measure. These algorithms are based on using a set of music
tracks as a reference, which we call reference set. In the evaluation of the ap-
proaches, it turned out that all three algorithms are able to improve the audio
similarity measure under investigation. Preliminary experiments indicate that
the proposed techniques also may be successfully applied to other similarity
measures, which was shown by means of a text-based similarity measure. The
presented results show that the approaches seem to be stable with respect to
replacing the reference set with a different one.

The latter two points will be investigated in more depth in future work. In
particular, we think it will be interesting to see how much the cardinality of the
reference set can be reduced without degrading the algorithm’s performance.
Also, we will investigate in more detail the merits of the proposed algorithms
in the domain of text information retrieval. Furthermore, we will conduct more



theoretical investigations about the algorithm’s impacts on the similarity space,
and the relation of the resulting distributions to power-law and exponential
decay.
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