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Abstract. More and more music is being made available to the music
listener today, while people have their favorite music on their mobile play-
ers. In this paper, we investigate an approach to automatically updating
the music on the mobile player based on personal listening behavior. The
aim is to automatically discard those pieces of music from the player the
listener is fed up with, while new music is automatically selected from a
large amount of available music. The source of new music could be a flat
rate music delivery service, where the user pays a monthly fee to have
access to a large amount of music. We assume a scenario where only a
“skip” button is available to the user, which she presses when the cur-
rently playing track does not please her. We evaluate several algorithms
and show that the best ones clearly outperform those with lower perfor-
mance, while it remains open how much they can be improved further.

1 Introduction

Today, portable music players and mobile communication devices are more and
more merging. For example, many mobile phones have audio players built into
them. Thus, there is the possibility that people obtain new music by using a
service over the air. The idea to offer such a service in the form of a music flat
rate has been around for a while (be it over the Internet or immediately over
the phone’s data connection). Some flat rate music delivery services are being
planned, and others are already available. For example, services are being offered
by Yahoo3, Microsoft4, Napster5, and diverse mobile communication providers,
such as One6. The user pays a fixed monthly fee and can listen to music with little

3 http://music.yahoo.com
4 http://music.msn.com
5 http://www.napster.de
6 http://www.one.at



or no limitations with respect to the number of tracks. Some services include the
option to transfer the tracks to mobile players for listening to them offline.

In such a scenario, it might be beneficial to support the user with MIR based
techniques. Two aspects come to mind: First, the user may be supported in
selecting those tracks she likes from all those that are available over the service.
Second, as the amount of storage is eventually limited on any device, the user
may be supported in selecting those tracks she wants to be deleted from the
player (or moved to a larger persistent storage). The ultimate idea of such a
MIR application is to keep the collection on the user’s device up-to-date at any
point in time, with only little effort (and/or interaction) by the user.

In this work, we present algorithms aimed to accomplish such a task based on
an audio similarity measure [AP04,ME05]. Using user feedback to select match-
ing tracks has been suggested in [PPW05,Pam06], from which we adopt ideas
for track selection algorithms.

The remainder of this paper is organized as follows: After a brief literature
review in Section 2, Section 3 gives a detailed and formalized description of the
suggested application. The proposed algorithms are described in Section 4 and
results presented in Section 5. Conclusions are drawn in Section 6.

2 Related Work

A number of MIR systems have been developed to support users in finding mu-
sic7. Some of them e.g., [VP05,PALB+06], use several data sources and make use
of metadata associated with the music. While this helps in supporting robust-
ness, when considering a user’s music collection, metadata may be not available,
or its quality may not always be assured. For example, different sources of meta-
data may assign similar music into different categories. Based on such considera-
tions, we assume that metadata is not available, but rather one music similarity
measure based on the audio signal captures the similarity of the songs. The ap-
proach is based on an audio similarity measure that uses the well-known Mel
Frequency Cepstral Coefficients (MFCCs) as a basis for similarity computation
[AP04,ME05]. While such algorithms widely are evaluated by genre classification
experiments, the one advantage of using them is that they do not assign a track
to one (or more) classes, but rather one yields a usually continuous similarity
score between each pair of songs. For example, by doing so, similar-sounding
music that one usually would assign to different genres still can be considered as
being similar. In [PPW05], a scenario is presented where similarities between all
tracks on a user’s player are known (or calculated from the audio data), and a
playlist should be generated on the fly based on the user’s current (dis)likes. To
support mobile use, the user interface is very limited. Tracks to be played are
selected based only based on the user’s presses of a skip button. Several algo-
rithms are suggested and compared, and the best performing seem to perform
good enough for use in a real-world scenario. We adopt the ideas of these algo-
rithms for the scenario presented here. Otherwise, the scenario described here is

7 an overview can be found at http://mirsystems.info/



more complicated than the one in [PPW05], where each track is either played
or skipped. Here, a particular track might be played and / or skipped multiple
times. Furthermore, there is not only the decision which track should be played
(or added to the player), but also which tracks the user does not like any more,
and consequently should be removed from the player.

For evaluation of MIR techniques, generally the best approach is to conduct
user evaluations (as e.g. in [VP05]) or surveys. As user studies are cost and
time intensive, and our work is still in an experimental state, we follow the
approach from [PPW05] and restrain to automated experiments where a certain
user behavior is assumed.

3 Application Scenario

The basic usage scenario in the suggested application is as follows: When listen-
ing to music that is on her mobile player while being en route, the user skips those
tracks she currently does not like. When returning home, she plugs the player to
the personal computer. At this point, the application selects those tracks that
should be removed from the player because the user does not like them so much
any more. These tracks are transferred to the computer’s hard disk. Also, the
application selects those tracks available over the music flat rate that the user is
likely to like. Those tracks are obtained from the service and transferred to the
device. More formally, the scenario is as outlined in the following paragraphs.

3.1 Initial State

In the scenario of this paper, the user likes all tracks that are initially on the
device. It is assumed that the user only adds music she likes to the device when
she has just obtained it, which seems a quite reasonable assumption.

3.2 Listening Session

After the user has copied music she likes to the device, she uses the device to
listen to music. It is assumed that during such a listening session the music on
the device remains the same, i.e., there is no active connection to the music
repository. This assumption is made for several reasons.

– The device itself may not have a connection (e.g., a rather simple stand-alone
music player). If the device does have connectivity, then circumstances may
prohibit its use (e.g., on airplanes connectivity may not be used). For these
reasons, assuming that connectivity is not available makes the modeling more
general.

– Assuming a device that is always connected to the music database (reposi-
tory), the scenario is much closer to the one presented in [PPW05], because
basically all tracks are available for streaming. Thus, the problem reduces
to selecting a track that currently best fits. However, even in this scenario,
it might be beneficial to know which tracks the user has disliked in the past
and thus is likely to dislike also currently.



An important aspect of a listening session is how many tracks ki the user actually
listens to in listening session i before the session ends and the device is being
updated. In the experiments presented here, this is a random number in the
range from 15 to 25, corresponding to approximately 45 to 75 minutes of music.
For better comparability between parameter settings, ki is the same for each
experiment (however, not the same for each i).

Another important factor is how the next track is selected that is played to
the user. There are at least three possible algorithms:

1. The tracks are presented in a fixed predetermined order, e.g. in alphabetical
order or in the order they were added to the device.

2. An algorithm based on skipping behavior is used during the listening session
[PPW05].

3. Tracks are presented in random order.

If the track update algorithm works well, then most tracks on the device fit
the user’s taste and thus are acceptable for the user. However, when using fixed
presentation order (case 1), the first tracks may become boring to the user,
provoking the user to skip the first tracks, which adds false skips (i.e., skips
that do not indicate a genuine dislike). Presenting tracks in random order (case
3) is an algorithm implemented in most current audio players, i.e., a de facto
standard. This, and the fact that using an algorithm based on skipping behavior
(case 2) might induce unwanted effects on the number of skips (e.g., such an
algorithm may prefer or avoid certain tracks), makes it the algorithm of choice
for the experiment.

3.3 User Feedback

There are several ways one could think of for the user to give feedback about her
liking or disliking of the currently played music. The most simple user interface
would consist only of a skip button the user presses if she dislikes the currently
played track. Not pressing this button is interpreted as the user liking the played
music.

However, in a real-world application, there might be a variety of reasons why
the user presses the skip button. Besides accidental presses, most notably the
user might press the button because she does not want to listen to this track
right now (but in general she likes the track). Thus an algorithm based on such
feedback data needs to be robust against such influences. To avoid ambiguities,
it is possible to add a second button with which the user can indicate that
she wants to ban the currently played track. In this scenario, pressing the skip

button then has no particular meaning to the track discard algorithm. In the
experiments to be described below, we simulated both skipping and banning.

3.4 User Modeling

For a systematic quantitative experimentation, we need to simulate a hypothet-
ical user. Specifically, we need to define a criterion by which the user decides



whether or not she likes a piece or hits the skip/ban buttons. We assume two
main use cases, comparable to [PPW05]:

– Use Case 1: The user only likes tracks from one genre. Generally, tracks
from this genre are accepted, and tracks from all other genres are skipped.

– Use Case 2: In the beginning, the user only likes tracks from one genre (A).
Over time, the user’s preferences change to a different genre (B).

In the second case, tracks from genre A are accepted in the first 3

4
of the listening

sessions, and tracks from genre B are accepted during the last 3

4
of the listening

sessions.
Also we take into consideration that once the user has listened to a particular

track many times, the track gets boring, and eventually the track is (almost)
always skipped (cf. [CDB05]). In the use cases, this is formalized as a number
maxListent that is associated with each track t. Once the (hypothetical) user
has accepted track t this often, she will never accept it again (i.e., always skip it
afterwards). The value of maxListent is chosen randomly in the range from 10
to 20 for each track and kept fixed for all different experiment settings.

Obviously, the algorithm is also influenced by the number of tracks that
fit onto the device (denoted as capacity). Today, most mobile players have at
least 1 GB of memory, which corresponds to about 140 tracks in high encoding
quality (if a track has five minutes length and a bit rate of 192 kbit per second).
A realistic alternative figure would be 4 GB (555 tracks). For the experiments,
it is of importance to consider the relation of the number of tracks that fit on
the device and the number of tracks that are available in the “repository” (i.e.,
the tracks available over the flat rate service). Particularly the latter is limited
by the size of the music collection available for the experiments.

Finally, it is important to model unreliability of the user’s input in the ex-
periments: if the input is fully reliable, then pressing the skip button for a piece
means that the skip button will always be pressed for this track (in the current
experiment). Consequently, an algorithm can safely discard all tracks for which
the skip button has been pressed once. As this is unrealistic, unreliability of the
input is simulated by reversing the user’s decision to press the skip button (or
not to press it) with a certain probability. In our experiments, we use p = 0.2.
The ban button, on the other hand, is always deterministically pressed when the
simulated user does not like a piece (or does not like it any more), according to
the present use case.

All these discussed parameters have to be considered when evaluating the
algorithms. Lacking a basis, we set most of them in an ad-hoc manner, assuming
that the relative performance of the evaluated algorithms with respect to each
other will persist over a range of possible parameter settings. The evaluated
algorithms are presented in the next section.

4 Evaluated Algorithms

As already indicated, the algorithm mainly consists of two parts: When the de-
vice is updated, first those tracks are selected that are not of interest to the user



any more. These tracks are removed from the device, and replaced by tracks
selected in the second stage of the algorithm. Obviously, the first part of the al-
gorithm (the discard policy) has a limiting effect on the potential benefit of the
second part (the track selection policy). If the discard policy performs poorly,
e.g., by removing too few outdated tracks from the device, then the track selec-
tion policy can not replace these tracks with better matching ones.

4.1 Discard Policy

For creating discard policies, it is of use to define a basic measure of acceptance
called like value here. Based on the skip count st and the listen count lt of track
t, the like value of track t is

lvt =
lt

lt + st

(1)

The like value is only defined for tracks that have already been presented to the
user.

The following discard policies were evaluated. The first of them only assume
the presence of a skip button, while the last is based on the ban button.

1. skipped once. Discard all tracks that have been skipped. This is the algo-
rithm that discards most tracks. Particularly, also tracks that have only
accidentally been skipped are immediately discarded. This is formalized in
the like value above: discard tracks with a like value lower than 1.0.

2. skip larger accept. Discard tracks that are more often skipped than accepted.
Formally: discard tracks with a like value lower than 0.5. Obviously, this
discard policy is much more conservative than policy 1.

3. like value. As discard policy 2 might be too conservative, and 1 might discard
too many tracks, in the third evaluated discard policy, a track is discarded
if it has a like value lower than 0.75.

4. userbanned. The most informative discard policy is to discard exactly those
tracks that are known to be not liked by the user (any more). This is the
best possible policy, but comes at the cost of having an additional button
on the device.

In a realistic setting, the user should be able to mark a track “sticky”, so that
it is not removed from the device. Here, this is omitted as such an option would
further complicate the experimental setup.

4.2 Track Selection Policy

To decide which songs to add to the player, the system relies on an audio similar-

ity measure that compares tracks on the mobile device to tracks in the repository.
More specifically, we use the following similarity measure here: Each track is rep-
resented as a Gaussian model of Mel Frequency Cepstral Coefficients (MFCCs)
calculated on short audio frames. Two songs are compared by calculating the
KullbackLeibler (KL) distance between their models. More detailed descriptions
of the approach can be found in the literature ([AP04,Pam06]).

Based on this, the following track selection policies were evaluated (cf. [PPW05]):



1. Random Baseline. Added tracks are selected from the “candidate” tracks in
the repository in a random manner.

2. Policy A. The order in which new tracks are added to the device is deter-
mined only based on the tracks that are initially on the device. All tracks
in the repository are ordered once by their minimum distance to any of the
tracks initially on the device.

3. Policy B. Those songs closest to any of the songs listened to during the last
listening session are added.

4. Policy C. Select songs closest to any of the last capacity tracks8 that have
been accepted (i.e., listened to).

5. Policy D. Select songs based on the last capacity tracks that have been
accepted (set A) and the last capacity tracks that have been skipped (set
R). Let da be the distance of song d to the closest song from A, and dr the
distance from song d to the closest song in R. From all tracks with da < dr,
select those with smallest da and transfer them to the player. If these are
not enough tracks to fill the player, go on with adding those tracks with
smallest da

dr

. Optionally, the distance calculation is weighted by the number
each track in A and R was listened to or skipped, respectively.

To determine the distance of a candidate track in the repository to the tracks
on the device (i.e., the subset used to determine the distance), the minimum
distance of the track to all tracks of interest is used [Log04]. Policies B, C and
D were also evaluated in a second variant, where distances to the tracks on the
device were weighted according to the number of times the corresponding tracks
have been accepted. Distances to tracks that have more frequently been listened
to were weighted higher. In this case, the final distance is the weighted mean
distance instead of the minimum.

For all policies the general rule applies that a song that already has been
discarded from the device in the past will not be added again. Of course, in a
real-world application, the user should be allowed to do so manually, which could
eventually improve the quality of the suggested songs.

5 Evaluation Results

To measure the quality of an algorithm, two measures were used: the average
number of times the skip button was pressed by the (simulated) user, and the
number of tracks discarded by an algorithm. In both cases, generally lower means
better. However, of course if too few tracks are discarded, then the number of
times the skip button is pressed increases.

For userbanned, it is of interest how often skip or ban was pressed, both are
counted together. The skip button presses are also counted to allow a comparison
to the other policies, i.e., to also take into account the effects of the random
factor p that is only applied to the skip button, but not to the ban button. This
results in the reasonable situation where each button press is counted as a user

8 or fewer, if fewer than capacity tracks have been accepted so far



interaction. For the other track discard policies besides userbanned, it is only
of interest how often skip was pressed, as ban presses are ignored by the other
policies. Some parameters used in the experiments are given in Table 1.

Parameter Value

capacity (# of tracks on device) 100
p (randomly invert skip decision) 0.2
# listening sessions 100
ki (# of tracks listened to in session i) 15 to 25 (randomly chosen for each i)
maxListent 10 to 20 (randomly chosen for track t)

Table 1. Parameters used in the experiments.

5.1 Data

We evaluated the various approaches on a music collection consisting of 51, 056
tracks by 7, 610 artists. Tracks were assigned to 45 genres. For the experiments,
the 18 largest genres were used (while all tracks were left in the collection). Small
genres were disregarded because potentially they did not contain enough tracks
to offer enough matches (e.g., in cases where the discard policy would discard
very many tracks), which could have resulted in artificially low evaluation results.
All used genres consisted of more than 1, 500 tracks each. Altogether, the 18
largest genres contained 35, 265 tracks. For evaluation, each of the 18 genres was
assumed to be “accepted” music in turn, and results were averaged.

5.2 Use Case 1

Figure 1 gives the average number of button presses that sum up during the
considered simulated usage time of the device (100 listening sessions) when only
tracks by a particular genre are accepted. For better comparability, values are
given relative to the best obtained value of the discard policy userbanned, which
is thought to give an indication of an upper bound. On average over all policies,
1, 933 out of a total of 3, 909 suggested tracks were fully listened to by the
hypothetic user during all listening sessions.

The results show that even for the better-performing (non-baseline) algo-
rithms, overall in about 50% of the cases a suggested song was skipped. This
seems a large number, but it should be considered that even for a perfect algo-
rithm this would still be 20% because of the random factor. To evaluate if these
results are low enough for a real-world application, a user study is necessary.

A closer look at the relative performance of the algorithms shows that as ex-
pected, the best discard policy is userbanned. The other discard policies produce
much higher values, starting at a factor of 1.8 times as high.

For the track selection policies, it is somewhat surprising that the simple
random policy which was used as a baseline does not always perform worse
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Fig. 1. UC1: Mean and standard deviation of number of user interactions (button
presses), summed over 100 listening sessions. Mean and standard deviation measure
this value over 18 genre experiments. Values are normalized with respect to the best
(minimum) average value obtained for userbanned, which is 1058.5.

than more sophisticated approaches (B, C, D). However, all of B, C and D

are greatly improved when the similarity measure is weighted according to the
number of times a song has actually been listened to (B wm, C wm and D wm).
In combination with like value, they produce the best results achieved in the
experiments in cases where only a skip button is available. Taking into account
the number of times a song was accepted seems an important step, resulting in
the best values. A likely reason is that the random factor is leveled out to a
certain degree. Also it is interesting to note that all three algorithms that use
weighted values perform quite similarly, which may be an indication that this is
some sort of upper bound for the examined techniques.
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Fig. 2. UC1: Mean and standard deviation of number of discarded songs, measured
relative to the minimum mean number of user interactions for userbanned, which is
607.1.

To complement the number of button skips, Figure 2 gives the number of
songs that were removed from the device (and replaced with new tracks) in the



same period. As expected, using the discard policy that discards tracks most
reluctantly (skip larger accept) leads to the lowest number of discarded tracks.
These numbers are even lower than for userbanned. Also, it is of interest that
the number of discarded songs decays from skipped once over skip like value to
skip larger accept, while the number of user interaction was lowest for skip like -

value, which we see as an indication that this is the most recommendable of the
presented skip policies.

5.3 Use Case 2

Figures 3 and 4 give the corresponding data based on use case 2, when the
user’s preferences change over time (i.e., the genre accepted by the user shifts
from a genre A to genre B). Each of the 18 genres was used as the starting genre
A in turn. A corresponding genre B was chosen manually, where each genre
appeared once as genre B. Most transitions were between somewhat related
genres, although there also was the unusual transition Classical to Pop-Rock.
Generally, the results show the same tendency as for use case 1. Again, the
combination of track discard policy skip like value with selection policy D wm

resulted in the lowest values in the non-baseline scenario where only a skip button
is available, although there is no big difference to the other two algorithms based
on weighted values.
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Fig. 3. UC2: Mean and standard deviations of number of user interactions (button
presses), measured relative to the minimum mean number of user interactions for user-
banned, which is 1383.

6 Conclusion

We have presented several algorithms aiming to automatically select music that
is on a user’s portable music player. The algorithms assess the user’s like and
dislike of individual tracks by the number they were skipped. Tracks the user
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Fig. 4. UC2: Mean and standard deviations of number of discarded songs, measured
relative to the minimum mean number of discarded songs for userbanned, which is 928.5

seems to dislike are removed from the device, and replaced by tracks that seem
to fit the user’s current music taste. Our automated experiments showed clear
differences between the suggested algorithms, while weighting tracks based on the
number they were skipped improves the examined algorithms to a comparable
level with regard to the evaluation measures. User studies could show if the
algorithms are sufficiently good for using them in a real world application, and
to measure the actual user experience.
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