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ABSTRACT

This abstract describes the algorithm we submitted to the
MIREX 2009 Audio Similarity (AMS) Task. The algo-
rithm has two main components. One component aims to
describe the similarity of the “timbre” or “sound” that ap-
pears in the two tracks to compare, and the second compo-
nent focuses on comparing the periodicities and frequen-
cies of the onsets appearing in the two tracks. Both com-
ponents are weighted equally (i.e., 1 : 1). The algorithm
is a variant of the algorithm described in [1], and ranked
first in the MIREX 2009 AMS task.

1 ALGORITHM DESCRIPTION

This abstract contains a superficial description of the al-
gorithm components. For more information, the reader is
referred to [1]. The algorithm has two major components
which are weighted equally (i.e., 1 : 1), a rhythm compo-
nent and a “timbral” component.

1.1 Rhythm Component

The rhythm component is based on a modification of the
Fluctuation Patterns [2]. Calculation of the rhythm com-
ponent includes the following steps:

• The audio excerpt is transformed into a cent/sone li-
ke representation. Sone values s are estimated from
the amplitudes a by s = 2log10a (cf. [3]).

• An onset estimation is performed, and the number
of frequency bands is reduced.

• For each frequency band, periodicity estimation is
done on segments of 2.63 sec length. Periodicities
are scaled to assign each metrical level the same
number of bins (assuming only meters of two).

The matrix resulting for each segment is transformed
by applying a 2D cosine transform. Coefficients 0 and
1 are kept in the frequency dimension, and coefficients
0..17 are kept in the periodicity dimension. These values

are stacked to form a 36 dimensional vector for each seg-
ment. The rhythm feature data for a track is the mean and
full covariance matrix of these vectors over all segments.

The rhythm component distance of two songs is esti-
mated by calculating (cf. [4, 5])

D(N1,N2) = H(N3)−
H(N1) + H(N2)

2
(1)

where H denotes the entropy, and N3 results from mer-
ging N1 and N2. We use the square root of D. A way to
merge two Gaussians into one is given in [6], setting the
weights of N1 and N2 to 0.5 each it follows:

µ3 = 0.5µ1 + 0.5µ2

Σ3 = 0.5Σ1 + 0.5Σ2 + 0.5µ1µ
′
1 + 0.5µ2µ

′
2 − µ3µ

′
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The entropy H of a single Gaussian can be computed by
(e.g., [5])

H(N ) =
1
2

log
(
(2πe)d |Σ|

)
(2)

where d is the number of dimensions, and |Σ| denotes the
determinant of covariance matrix Σ.

1.2 “Timbre” Component

The “timbre” component consists of the well-known
MFCCs [7] (coefficients 0..15), Spectral Contrast Feature
[8] using the “2N” method [9], and for each frame, two
feature values estimating the amount of harmonic and per-
cussive elements in the current audio frame (cf. [10]). Fea-
ture values are represented by a single Gaussian, which are
also compared by calculating the square root of (1).

1.3 Distance Computation

Rhythm and “timbre” distances are calculated separate-
ly. Before they are combined, each of the two distance
measures is normalized by mean removal and division by
standard deviation (based on a track’s distance to all other
tracks in the music collection). Symmetry is re-created by
subsequently summing up the distances in both directions
for each pair of tracks (cf. [11]).



Team ID Team Members
ANO Anonymous
BF Benjamin Fields

BSWH Dmitry Bogdanov, Joan Serrà,
Nicolas Wack, Perfecto Herrera

CL Chuan Cao, Ming Li
GT George Tzanetakis
LR Thomas Lidy, Andreas Rauber
ME François Maillet, Douglas Eck
PS Tim Pohle, Dominik Schnitzer
SH Stephan Hübler

Table 1. Team IDs.

2 DISCUSSION OF RESULTS

Overall, 15 algorithms were submitted. Participating teams
are listed in Table 1. For 100 query tracks, each algorithm
was used to retrieve five tracks that are most similar to
the query track according to the respective algorithm. Hu-
man graders assessed the actual similarity of the retrieved
tracks to the repective query track. A detailed description
of the experimental setup is given on http://www.music-
ir.org/mirex/2007/index.php/Audio Music Similarity and
Retrieval. The discussions and figures in this section are
based on the results given on http://www.music-ir.org/mir-
ex/2009/index.php/Audio Music Similarity and Retrieval
Results.

Our submission (denoted PS2) ranked first, while our
re-submitted algorithm from 2007 (denoted PS1, which is
a modification of the G1C algorithm [2])) ranked second.
In Figure 1 results of the Friedman test are given. This
test is based on the rank of an algorithm after sorting the
algorithms according to the average fine score for a given
query song. Thus, the theoretical optimum value is equal
to the number of algorithms.

Figure 1. Friedman test based on human-assigned fine
scores.

PS2 has an average rank of 12.7 (of the theoretical ma-
ximum value of 15.0), while the mean ranks of PS1 and

BSWH2 are 10.89 and 10.87, respectively. No significant
difference between these three algorithms is measured by
the Friedman test. However, a significant difference bet-
ween PS2 and the other 12 submitted algorithms is mea-
sured.

While the Friedman test measures the relative perfor-
mance of algorithms, absolute values are given by the hi-
stogram of the human-assigned broad scores in Figure 2.
Overall, more than half (56.4%) of the songs retrieved by
the PS2 algorithm were rated “very similar”. For PS1, this
figure is 45.2%. Correspondingly, PS2 produces about one
third (36.3%) less “outliers” (i.e., songs that were rated
“not similar”) than the next best algorithm in this respect
(BSWH2), and 38.9% less outliers in comparison to PS1.

2.1 Comparison to 2007

Comparability of results obtained in the MIREX 2007 AMS
task and the MIREX 2009 AMS task is supported in two
ways. First, a similar experimental setting was used (same
music collection, same number of queries, same number
of candidate tracks per query). Second, the algorithm that
ranked first in the 2007 AMS task was re-submitted unal-
tered (denoted PS and PS1 in 2007 and 2009, respective-
ly). Table 2 lists the number of candidates retrieved by this
algorithm that were rated very similar, somewhat similar,
and not similar in the 2007 and 2009 AMS tasks.

VS SS NS
2007 221 177 102
2009 226 179 95

Table 2. Comparison of results of PS07 algorithm in the
AMS Tasks held in 2007 and 2009. Number of retrie-
ved songs rated “Very Similar” (VS), “Somewhat Similar”
(SS), and “Not Similar” (NS).

It can be seen that the absolute numbers are quite com-
parable, in spite of different query songs, different sets of
graders, and different sets of participating algorithms. We
see this as an indication that there is a good comparability
of results between the AMS tasks held in 2007 and 2009.

2.2 Runtime

Runtimes of the algorithms are shown in Figure 3. It can
be seen that the runtime of our submission was neither
particularly slow nor fast in comparison to the other sub-
missions.

2.3 Outlook

PS2 has two components. The first is the “timbre” com-
ponent, that is intended to calculate the overall “sound si-
milarity” of two tracks. The second is the “rhythm” com-
ponent, that aims at determining rhythm similarity, i.e.,
aspects of how the onsets of sounds are organized in ti-
me. This may evoke the definition of music as “organi-
zed sound” given by Edgar Varese (e.g. [12]). Seen in this
light, the question may arise in how far the used algorithm



Figure 3. Algorithm runtimes. Same ordering of algo-
rithms as in Figure 1. CL1 and CL2 were left out, as no
runtimes are given. Values were cut off at 5500 min, for
BF1 and BF2, a runtime of 10 days and 0 minutes is re-
ported. When no separate runtimes for feature extraction
and distance computation (blue and green, repsectively)
are reported, the overall runtime is shown (red).

concept is suited to actually compare “music”, and not
just “timbre”. Regardless of the answer to this question,
the techniques used in our algorithm might also be of use
in the context of other algorithm concepts. For example,
one could think of using the Gaussian representation of
rhythm in a similar way as [13] in a classifier-based simi-
larity measure such as BSWH1.
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Figure 2. Histogram of human-assigned broad scores. Each submitted algorithm was used to retrieve 500 tracks. Our
submission PS2 ranked first. Compared to the second-ranked algorithm PS1, 24.8% more tracks retrieved by PS2 were
rated as “very similar”, and 38.9% less tracks were rated “not similar”.


