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Abstract

In this work, two important approaches to automatically describe mu-
sic are treated: content-based analysis of audio signals and information
extraction from the Web. While the former is focussed on the physical
audio signal that actually is sensed by the listener's ears, the latter is
generally acknowledged to capture socio-cultural aspects of music that
are not contained in the audio signal itself.
In the context of this work, the main interest of having characteriza-

tions based on the two media types (audio signal and text) is to use them
as the basis for similarity measures. For both approaches, insights re-
garding existing similarity measures (of audio �les and web-based artist
descriptions, respectively) are gained, and methods are examined to ab-
stract from the low level similarity measures in both areas. The aim
of such abstractions is to allow high-level interactions with the content
of music collections in retrieval scenarios. Elements that support these
interactions are summarization and high-level description of the con-
tent of a music collection, and the possibility to conveniently formulate
content-related queries.
In particular, major contributions discussed in this thesis are as fol-

lows: For audio-based similarity measures, a number of experiments is
presented that lead to an improved audio similarity measure, as indi-
cated by the presented automated classi�cation experiments. Insights
obtained in these experiments were used when building the audio similar-
ity measure that ranked �rst in the 2009 MIREX Audio Music Similarity
and Retrieval task. With respect to text-based artist similarity, in sys-
tematic experiments a part of the parameter space is explored to assess
the optimisation potential. Furthermore, a method aiming to automat-
ically describe artists by �topics� associated with them is discussed.
An approach to combine audio and text based similarity computations

is discussed and evaluated. Finally, the use of the treated techniques is
demonstrated in a number of example applications.
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Zusammenfassung

In dieser Arbeit werden zwei wichtige Ansätze zur automatischen Be-
schreibung von Musik behandelt: inhaltsbasierte Analyse des Audiosi-
gnals und die Gewinnung von Informationen aus dem Internet. Während
der Fokus bei ersterem auf dem physischen Audiosignal liegt, welches im
Ende�ekt von den Ohren des Hörers aufgenommen wird, zielt letzterer
darauf ab, sozio-kulturelle Aspekte der Musik zu erfassen, die nicht im
Audiosignal selbst enthalten sind.
Im Kontext dieser Arbeit werden derartige (aus dem Audiosignal bzw.

Text) automatisch erstellte Charakterisierungen in erster Linie als Ba-
sis für Ähnlichkeitsmaÿe verwendet. Für beide Herangehensweisen wer-
den Erkenntnisse hinsichtlich existierender Ähnlichkeitsmaÿe (von Au-
diodateien bzw. webbasierten Künstlerbeschreibungen) gewonnen, und
es werden Methoden untersucht, um in beiden Bereichen von low-level
Ähnlichkeitsmaÿen zu abstrahieren. Ziel solcher Abstraktionen ist, in
Retrieval-szenarios high-level Interaktionen mit dem Inhalt von Musik-
sammlungen zu ermöglichen. Elemente, die solche Interaktionen unter-
stützen, sind Zusammenfassung und Beschreibung des Inhalts einer Mu-
siksammlung auf hoher Ebene, und die Möglichkeit, bequem inhaltsbe-
zogene Anfragen zu stellen.
Insbesondere werden folgende Hauptbeiträge in dieser Arbeit behan-

delt: Im Bereich audiobasierte Ähnlichkeitsmaÿe wird eine Reihe von
Experimenten vorgestellt, welche zu einem verbesserten Audioähnlich-
keitsmaÿ führen, wie durch die angeführten automatisierten Klassi�-
kationsexperimente gemessen bzw. angezeigt wird. Aufbauend auf den
bei diesen Experimenten gewonnenen Erkenntnissen wurde das Ähnlich-
keitsmaÿ konstruiert, das im MIREX 2009 Audio Music Similarity and
Retrieval Task den ersten Rang belegte. Hinsichtlich der textbasierten
Künstlerähnlichkeit wird in systematischen Experimenten ein Teil des
Parameterraums exploriert, um das Optimierungspotential abzuschät-
zen. Des weiteren wird eine Methode diskutiert, die darauf abzielt, auto-
matisch Künstler durch mit ihnen assoziierte �Themen� zu beschreiben.
Ein Ansatz zur Kombination von audio- und textbasierten Ähnlich-

keitsmaÿen wird diskutiert und evaluiert. Schlieÿlich wird der Nutzen
der behandelten Techniken in einer Reihe von Beispielanwendungen de-
monstriert.
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1. Introduction

The way people use and interact with music has been changing vastly over
the last decades. A major factor in this change is the digital storage and
reproducibility of music, which facilitates online stores o�ering huge amounts
of music for instant downloading, and mobile music players capable of holding
increasing numbers of songs in their memory. These developments induce a
need for specialised methods to handle larger amounts of music tracks. Typical
problems arising from this are:

• With personal music collections growing beyond a certain size, users will
likely have a growing need for assistance in organizing and accessing
the music in their collection. Examples of such supporting functions are
playlist generation algorithms, and the automated grouping of music into
groups of similar music. The latter can be of use e.g. in mobile music
players, where the user might want to select only a type of music instead
of navigating to a particular piece of music. Limiting interactions to a
high level may reduce the need for the user's attention, which is likely to
be rare in mobile usage scenarios.

• Due to limitations of space, physical-world record stores typically o�er
the most popular music having the highest sales �gures1. In contrast,
online record stores could supply their customers also with less-known
music that has lower sales �gures. In general (i.e., not limited to the
domain of music distribution), the multitude of less popular items, made
available to customers, is referred to as Long Tail1. Obviously, providing
well matching and interesting recommendations from the long tail can
both increase customer satisfaction and sales �gures. While methods
discussed in this thesis can be used to create content-based music rec-
ommender systems, they also may be used to complement recommender
systems based on collaborative �ltering [Celma, 2008] that su�er from an
issue known as cold-start problem. The system can not recommend items
for which no user-generated data, such as ratings, is available yet. For
example, this is the case for items that are newly added to the catalogue.

Being able to automatically estimate the similarity of music pieces, or music
artists, can be an important building block for algorithms that aim to rem-
edy such issues. For music recommendation, automated similarity estimation
methods have the advantage that they may take into consideration all music
in the current collection, or catalogue, (almost) regardless of the collection

1http://www.wired.com/wired/archive/12.10/tail.html, retrieved 15. 11. 2009
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1 Introduction

size, and (almost) regardless of the popularity of the music. When using the
calculated similarities for music collection structuring, a structure intrinsic to
the data might be revealed that was not previously apparent to the user.

This work contributes to the research �eld of music similarity estimation by ex-
amining approaches to potentially improve similarity measures between music-
related items based on two sources of information: the audio content of pieces
of music, and textual descriptions of music artists derived from the Internet.
In both areas, insights regarding existing similarity measures are gained, and
methods are examined to abstract from the low-level similarity measures. The
aim of such abstractions is to allow high-level interactions with the content
of music collections in retrieval scenarios. Elements that support these in-
teractions are summarization and high-level description of the content of a
music collection, and the possibility to conveniently formulate content-related
queries.

1.1. Audio Content

By applying Digital Signal Processing (DSP) techniques, the audio signal of
music recordings is analyzed. The present work contributes to our understand-
ing of audio similarity measures in two ways.

First, in Chapter 2, in extensive experiments the e�ect of modi�cations of
existing similarity measures is evaluated. Similarity measures are modi�ed
by changing the distance functions between audio features, by using modi�ed
features and by using new feature combinations. In particular, indication is
found that complementing frame-based audio features with two features we
call Harmonicness and Attackness contributes to an improved audio similar-
ity measure. Measured by genre classi�cation experiments, incorporating the
suggested modi�cations is shown to improve the results obtained by an ex-
isting audio similarity measure by about 5.8 percentage points, for instance
(see Figure 25, page 80). Insights gained in these experiments were used when
building the audio similarity measure that ranked �rst in the 2009 MIREX
Audio Music Similarity and Retrieval task2.

Second, in Chapter 4 a method to extract higher-level sound building blocks
from the raw audio data is discussed and evaluated. Describing audio by
such building blocks may be useful for building future similarity measures.

2http://www.music-ir.org/mirex/2009/index.php/
Audio_Music_Similarity_and_Retrieval_Results
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1.2 Textual Information

Presented results indicate that this method yields comparable accuracies as the
widely-used MFCCs (computed frame-wise) in the used evaluation setting.

1.2. Textual Information

Using text information retrieval techniques, the web pages related to music
artists are analyzed. A variety of methods to calculate similarity functions
based on this data is evaluated in Chapter 3. From these experiments, a
number of conclusions is drawn considering the relative importance of the
algorithm's building blocks.

To bring artist descriptions to a higher level, a previously suggested method
to describe document topics is transferred to describe aspects of music artists.
The automatically found aspects can be used to describe and retrieve artists
in a compressed and more human-understandable form (Chapter 5).

1.3. Combining Audio and Web Based Similarity

Measures

A straightforward method to combine audio and web based similarity measures
is discussed and evaluated, showing that results obtained by the similarity mea-
sure based only on audio can be improved by adding web-based information.
This contribution is the topic of Chapter 6.

1.4. Applications

Finally, some of the methods discussed and evaluated in this work are used
to create example applications. For example, it is demonstrated that the
discussed techniques can be used to enhance user interfaces of music players,
or even create a novel interface concept for music players. Also, an application
to browse music artists is described, and further possible application scenarios
are drafted.

In summary, the work presented in this thesis gives a number of impulses to
the domain of music similarity search. For audio-based similarity measures, a
number of experiments is presented that lead to an improved audio similarity
measure, as indicated by the presented automated classi�cation experiments.
Insights obtained in these experiments also were used when building the audio
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1 Introduction

similarity measure that ranked �rst in the 2009 MIREX Audio Music Similarity
and Retrieval task. With respect to text-based artist similarity, in systematic
experiments a part of the parameter space is explored to assess the optimisation
potential. Furthermore, a method aiming to automatically describe artists by
�topics� associated with them is discussed. A method to combine audio and
text based similarity computations is discussed and evaluated. Finally, the use
of the treated techniques is demonstrated in a number of example applications
that maybe even give a �rst taste of the way music is consumed in the future.
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2. Similarity of Audio Signals

In this chapter the topic of music similarity measures that are based solely
on the audio signal is discussed (so-called content-based music similarity mea-
sures). One main use of such similarity measures is to automatically �nd
similar sounding music in large collections of music. This can be useful in
cases where the audio signal of the music is the only information available for
music from the long tail. However, applications of similarity measures are not
limited to this scenario. Examples of other scenarios include the following.

• Collection clustering. Automatically grouping music that is likely to
sound similar can be used to create an overview of a given music col-
lection. Examples of this are the Islands of Music [Pampalk, 2001] and
nepTune [Knees et al., 2006b].

• Playlist generation. Using a music similarity measure, an application
for automatic track selection based on skipping behavior is presented
in [Pampalk et al., 2005c].

• Classi�cation. By using a kNN classi�er, a given music similarity mea-
sure can be used to classify music. This way of classi�cation is also
a possible way to evaluate music similarity measures (e.g., [Pampalk,
2006b]).

• Detection of duplicate tracks in large collections. As tracks with a sim-
ilarity above a certain threshold may be considered as being identical,
music similarity measures also may be used to detect duplicate tracks.

This chapter starts with a general view on the algorithm outline (Section 2.1),
followed by a brief discussion on how to compare and evaluate di�erent ap-
proaches for music similarity computation (Section 2.2). Then, the two al-
gorithms to compute music similarity that ranked top in the MIREX Audio
Similarity Tasks held in 2006 and 2007 are described, which are used as a
starting point for the experiments in this chapter (Sections 2.3 and 2.4).

The biggest part of this chapter is dedicated to systematically evaluating how
these algorithms can be improved. Two approaches are being followed: modi-
�ed or additional audio features and alternative ways to compute the distance
from the features. These experiments are divided into three sections. Two
sections are dedicated to evaluate modi�cations to the two major parts of the
algorithm used as starting point (Section 2.5 and 2.6). One of the most inter-
esting aspects discussed is the use of an audio feature that describes the amount
of harmonic and percussive elements in the spectrogram, called Harmonicness
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2 Similarity of Audio Signals

and Attackness. A third section describes experiments how to combine the
parts of the algorithm into a �nal similarity measure (Section 2.7). An algo-
rithm that incorporates the suggested changes is shown to outperform the two
algorithms that are used as a starting point (Section 2.8).

2.1. Algorithm Outline and Common Audio Features

In this section, an overview of the commonly used algorithm structure is given,
and a number of commonly used audio features is described.

2.1.1. Coarse Structure of Algorithm

Many audio analysis algorithms follow a comparable coarse structure, which
can be represented as two major steps.

1. Feature Data Extraction. In most cases, the audio data to analyze is a
track of music, but also it could be an excerpt of an audio stream. In
the �rst step, feature data is extracted from this audio data to represent
the relevant aspects in a compressed form.

2. Usage of Feature Data. The second step is to use the extracted feature
data. If the application at hand requires to classify (or label) the data,
the extracted feature data is used to classify the current instance into
one of several previously learned classes. Depending on the format of the
feature data, many di�erent classi�cation algorithms can be used in this
step.

If the application requires an estimation of how similar two instances
are (e.g., for retrieving similar items), then the feature data is used to
estimate this similarity by de�ning a similarity (or distance) function on
top of it. If distances can be computed, then also classi�cation can be
done (e.g., by simple kNN-classi�cation, or Support Vector Machines,
e.g. [Mandel and Ellis, 2005a]).

The feature extraction part of this process contains much of the complexity
of this process. The more robust the features (and the more relevant the
aspects of the signal they describe) the more robust the whole algorithm can
be. Feature extraction is illustrated in Figure 1. The steps are discussed in
the following paragraphs. The realisation of each of these steps can have an
in�uence on the overall performance of the algorithm.
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2.1 Algorithm Outline and Common Audio Features

Figure 1: Typical feature extraction phase. In BOF approaches, the temporal
order of frames is discarded.

2.1.1.1. Conversion to time series signal. In most cases, the audio data
is given in a compressed from, e.g., in mp3 format. While in some cases, it is
possible to analyze this compressed form directly (e.g., using a toolkit such as
Maaate3), in most cases it leads to more straightforward algorithms to convert
the data into time series with equitemporal sampling.

2.1.1.2. Data reduction. The purpose of the next step (downsampling, con-
version to mono, only retaining a part of the original signal) is mainly to reduce
the amount of data that is processed, which reduces computation time. How-
ever, one has to be aware that important information may be contained in
the discarded parts of the signal, such as stereo information [Tzanetakis et al.,
2007], or high-frequency content above the Nyquist frequency of the down-
sampled signal. For example, when the signal is converted to a sampling rate
of 11 kHz, then the frequencies above 5.5 kHz are lost. Depending on sound
engineering that was used during recording, in this case high percussive sounds
(e.g., Hi-Hat sounds) may be suppressed to a large extent. The in�uence of
sample rate has been examined in [Aucouturier and Pachet, 2004].

2.1.1.3. Frame-wise processing. Audio feature extraction is typically based
on audio frames that are short enough so that the contained signal can be con-
sidered as stationary. For example, a typical frame length is 46 ms. A common
operation on each audio frame is the transformation from time domain to fre-
quency domain, as discussed in Section 2.1.2. During this transformation, the
samples in the frame are windowed to avoid edge e�ects. As windowing re-
duces the weights of the samples located at the beginning and end of the frame,
consecutive frames are chosen to overlap, e.g., by 50%.

3http://maaate.sourceforge.net/
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2 Similarity of Audio Signals

2.1.1.4. Feature Extraction. Probably the most important aspect of fea-
ture extraction is which audio features to choose. A variety of audio fea-
tures has been suggested, of which some important ones are described in Sec-
tion 2.1.3. Many of these are calculated on only one frame, but there are also
features that are computed on a number of consecutive audio frames.

2.1.1.5. Combination of Feature Data Into Model. The features ex-
tracted in the previous step usually are not in a format suited to serve as
feature data for the whole song. For example, they usually are given on a per-
frame basis. To combine this data into a more compressed form that can be
used for classi�cation or similarity computation, typically statistics are calcu-
lated on them. Common choices are mean and variance of a feature value over
all frames, but also more advanced ways of building a common model are avail-
able, most notably Gaussian Mixture Models, as discussed in Section 2.1.4.

This concludes the discussion of the main aspects of feature extraction on a
coarse level. The next sections give information about crucial steps in more
detail.

2.1.2. Transformation Into Frequency Domain

While much information can be extracted from the time domain signal directly,
many features rely on a representation in the frequency domain instead of the
time domain. This is motivated by human hearing in which frequencies play an
important role. The most widely used algorithm for accomplishing this is the
Fast Fourier Transformation (FFT). By taking the absolute value of the FFT
transformation of a frame, the amplitudes of the signal at frequency bands
with center frequencies of n ·fo are obtained, where f0 is the framesize divided
by the sample rate of the signal.

2.1.2.1. Cent Scale. A drawback when using FFT to model musical signals
is that FFT bands are linearly scaled, while music follows a logarithmic scale.
For example, if the frequency of a tone is doubled, this results in the tone
being one octave higher, and the equal tempered scale is obtained by dividing
an octave equally by 12 on the logarithmic scale. It is possible to transform the
FFT representation into a cent-scale representation by summing and weighting
FFT bands. This is mainly used to extract chroma features, to detect the
activation of frequencies associated with each pitch class in the di�erent octaves
folded together (e.g. [Goto, 2006]).
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2.1 Algorithm Outline and Common Audio Features

Figure 2: The same audio excerpt in di�erent representations.
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2 Similarity of Audio Signals

2.1.2.2. Mel Scale. For a model that is more closely associated with per-
ception than the cent scale, commonly the mel-scale is used. The mel-scale is
designed to re�ect the perceived pitch di�erences of pure sinusoidals. These
perceived di�erences di�er from the cent scale. The mel-scale, like the cent
scale, in higher frequencies is a logarithmic scale. The mapping from mel
scale to Hz scale is determined empirically by listening experiments [Fastl and
Zwicker, 2007]. A su�ciently large number of subjects is asked to indicate what
ratios lie between pure tones (or narrowband noises) that they perceive as hav-
ing half, or double, pitch. It turns out that up to a frequency of about 1000 Hz
for the upper tone, the lower tone has about half the value in Hz. Above 1 kHz,
the lower tone gradually gets assigned a clearly lower Hz value. Conversion of
values larger than 1000 Hz to mel can be done by [O'Shaughnessy, 1987]:

m = 2585 log10(1 + f/700) (1)

The mel scale is associated with critical bands. 1 Bark corresponds to 100 mel
[Fastl and Zwicker, 2007]. Based on this observation, the spectrum can be
represented by means of critical bands. For example, in the G1C algorithm
[Pampalk, 2006b], the spectrum is initially represented as 36 bands, of which
each has a width of approximately 85 mel. Typically, the amplitudes in each
band then are transferred into the log domain to better model human loudness
perception. The various representations are illustrated in Figure 2.

2.1.2.3. Additional Processing. Sometimes, the audio signal is further pro-
cessed. For example, a weighting of the di�erent frequencies depending on the
loudness sensation in di�erent frequency bands can be superimposed on the
spectrum, or spectral masking e�ects can be simulated (e.g. [Pampalk et al.,
2004]).

2.1.3. Typical Audio Features

A great variety of audio features has been proposed in the literature. An
overview of some audio features that have been used for music classi�cation
and similarity computation can be found in [Pohle, 2005,Pohle et al., 2005a].
Here, some audio features are drafted that may be considered as �typical�
audio features. For a number of audio features, software is available to compute
them. One of the �rst frameworks for music feature extraction was MARSYAS
[Tzanetakis and Cook, 1999a]. A Matlab toolbox to extract audio features
is presented in [Pampalk, 2004]. Further implementations for audio feature
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2.1 Algorithm Outline and Common Audio Features

extraction are contained, for example, in YALE [Fischer et al., 2002], ACE
[McKay et al., 2005] and COMIRVA [Schedl et al., 2007].

2.1.3.1. Examples of Time Domain Features Time domain features are
extracted from the waveform of the audio frame. Probably the simplest time
domain feature is the Zero Crossing Rate, which simply is the number of times
the amplitude of the audio signal crosses the zero point in the current frame,
which is linked both to pitch and noise, as noted in [Pampalk, 2006b]. Time
domain features such as Root Mean Square have been used to extract informa-
tion about the volume (e.g. [Tzanetakis and Cook, 1999b]). Linear Prediction
Coe�cients (e.g., [Li et al., 2001]) can for example give information about
clicks in the signal.

2.1.3.2. Statistics on Spectrum of Frame. A number of audio features
can be calculated from the spectrum of a single audio frame. Many of them
are related to aspects of timbre sensation, which refers to sound quality, in-
dependent from pitch and loudness (cf. [Fastl and Zwicker, 2007,Aucouturier,
2006]). For example, the center of the magnitude distribution, called Spectral
Centroid, is related to brightness. A somewhat related measure is the Spectral
Rollo�, which is the frequency band index below which a given portion (e.g.,
85%) of the signal energy is accumulated (e.g. [Tzanetakis and Cook, 2002]).
Another feature based on the time scale of individual frames is Spectral Flux,
which is a measure of the rate of change between consecutive frames. The
spectrum such features are calculated from either is the FFT spectrum, or it
can be a logarithmically scaled spectrum ( [mpe, a]).

2.1.3.3. MFCCs Perhaps the most important single feature in music in-
formation retrieval are Mel Frequency Cepstral Coe�cients (MFCCs). They
have been adapted for music signal analysis from speech processing [Logan,
2000,Logan and Salomon, 2001]. MFCCs are calculated from a frame that is
transformed into a mel-scaled frequency representation with amplitudes given
on the logarithmic scale. For instance, this representation has 40 frequency
bands. Typically, the activations of these bands are highly correlated. Decor-
relation is done by Principal Component Analysis, or with comparable results
( [Logan, 2000]) by Discrete Cosine Transform (DCT). The result of this step
are MFCCs. The 0th MFCC re�ects the average amplitude of the spectrum,
and lower-order MFCCs are a coarse representation of the spectrum's shape.
Higher-order MFCCs contain information about the more �ne-grained shape
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of the spectrum, which usually is discarded. An illustration of MFCCs is given
in Figure 5.

2.1.3.4. Features Related to Rhythm. As development in time is one of
the key aspects of music, time-dependent features are of particular interest.
Techniques such features can be based on are inter-onset analysis, or periodicity
estimation functions such as autocorrelation, FFT and comb �lterbanks. The
topic is discussed in depth in [Gouyon, 2005].

A possible �rst step in calculating rhythm features is to estimate onset strengths
at di�erent frequency bands, and then combining these to obtain an overall
function. In [Ellis, 2006] onset strengths are estimated on 40 mel bands, which
are summed up and periodicities are then extracted by applying an autocorre-
lation function. The Beat Histogram [Tzanetakis et al., 2001,Tzanetakis and
Cook, 2002], cf. [Scheirer, 1998] is the autocorrelation function of the sum
of the time-domain amplitude envelopes in several frequency bands. Various
features are obtained from a Beat Histogram, such as the periodicity, mea-
sured in bpm, of the highest peak. A Periodicity Histogram (PH) [Pampalk
et al., 2004] indicates how often within a music track di�erent strength levels
occur at di�erent periodicities. The similarity of two PHs can be calculated by
interpreting them as vectors and taking the Euclidean distance. For summa-
rizing the periodicity estimation function, MFCC-like descriptors have been
proposed [Gouyon and Dixon, 2004].

Fluctuation Patterns (FPs) [Pampalk et al., 2002,Pampalk et al., 2003] mea-
sure both rhythmic and frequency aspects of the sound. They are designed to
indicate perceived periodicities (�uctuation strengths) at various time scales
and frequency bands. FPs are calculated from audio chunks of approximately
3 s length. The computation of FPs is described in more detail in Sec-
tion 2.3.1.

2.1.4. Combining Feature Data for a Track

Usually, MIR applications are based on statistics of feature values over a chunk
of audio (or a whole audio track). There are at least two reasons for doing
so. First, storing all feature data (e.g., feature vectors of all frames of a track)
typically consumes magnitudes more storage than only storing statistics cal-
culated from them. Second, statistics of the feature values is in many cases
better suited as input for the algorithmic steps that follow the feature extrac-
tion phase. For example, a time series of features typically can not be used
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2.1 Algorithm Outline and Common Audio Features

as useful attribute for a classi�cation algorithm, while the mean and variance
of the given feature are better-suited attributes. Such an approach of using
mean and variance of features as attributes is used in [Tzanetakis and Cook,
2002]. Within the same lines, characteristics of peak positions (e.g., within a
spectrum or autocorrelation function) are of interest and can be used as the
basis for attributes [Mierswa and Morik, 2005].

Due to the temporal structure of music, mid-term characteristics of the signal
can be of interest. For example, [Tzanetakis and Cook, 2002] use a �xed-size
Texture Window to calculate mid-term statistics over segments of length of
e.g. one second. These statistics (mean and variance) then are combined over
all texture windows in a track. In this case, the texture window has a �xed
length. Also, it has been proposed to use an onset detection algorithm to cut
the track into segments [West and Cox, 2005].

2.1.4.1. Gaussian Mixture Models. Instead of simple statistics of individ-
ual features, Gaussian Mixture Models (GMMs) can be used to model depen-
dencies between features to a certain extent. GMMs model a set of observations
by explaining each observation as being produced by one of K multivariate
Gaussians (e.g., [Aucouturier and Pachet, 2004,Pampalk, 2006b,Jensen et al.,
2007]).

p(x) =
K∑

k=1

ck
1√
|2πΣk|

exp(−1

2
(x− µk)

T Σ−1
k (x− µk)) (2)

The process of generating points with this distribution can be imagined by �rst
choosing one of the K Gaussians (Gaussian k is chosen with probability ck),
and then one point is generated according to N (µk, Σk). A common way to
estimate the parameters ck, µk and Σk from a set of given points is by applying
an expectation maximization (EM) procedure.

Two GMMs can be compared by estimating the probability that a set of points
generated by one GMM is generated by the other. For example, the �rst GMM
is used to generate a set of random points, and the probability of these points
being generated by the second GMM is estimated, and vice versa [Aucouturier
and Pachet, 2004].

Using a single Gaussian to model the MFCC frames of a song ( [Mandel and
Ellis, 2005a]) turned out to perform roughly comparably to using a GMM in
a number of experiments ( [Mandel and Ellis, 2005a, Pampalk, 2006b, Levy
and Sandler, 2006, Jensen et al., 2007]), while being computationally more
e�ective.
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2.1.5. Examples of MIR Algorithms Based on Audio Features.

The area of classi�cation based on audio features has been extensively studied.
Genre classi�cation algorithms are presented in [Tzanetakis and Cook, 2002].
Learning tags associated with audio excerpts has been proposed in [Aucou-
turier et al., 2007, Eck et al., 2007,Torres et al., 2007]. Approaches to using
such labels that are assigned to a track by the machine learning algorithm
to improve similarity estimation of audio tracks are presented in [West and
Lamere, 2007,Barrington et al., 2007].

2.2. Evaluation Techniques

After in the previous section, a coarse overview of some techniques commonly
used in the �eld of music signal analysis was given, in this section, issues asso-
ciated with evaluating music retrieval algorithms are discussed. This section
also covers the evaluation procedure that will be used throughout this thesis,
and the data used for the evaluations presented in this chapter.

In retrieval tasks, it is of interest to �nd (a) particular item(s) in a � usually
large � database. In the case of music audio similarity, usually the scenario is
a query-by-example scenario. The query takes the form of one (or more) music
tracks, or excerpts, and the task is to retrieve tracks from a music collection
that match the query. In the case of music similarity algorithms �match�
means to sound similar. While still being an imprecise de�nition, it turns out
that human subjects are quite consistent in rating which tracks sound similar
(cf. [Pampalk, 2006b,Pampalk, 2006a,Novello et al., 2006]).

Usually, during development of audio based music similarity algorithms, these
algorithms are tested on one or more music collections with associated meta
data giving information about similarities of the music pieces. In the optimum
case, this meta data would consist of reliable (i.e., veri�ed) pairwise similarity
ratings between all pairs of tracks. The method generally accepted to be most
reliable for this validation is by human assessment. As associating each pair
of tracks with a human rating is costly both in terms of time and money,
this method would be feasible only for small music collections. However, as
di�erences in various variants of an algorithms may be rather small, and to
test for robustness, it is generally preferable to have tests run on larger music
collections.

A number of ways have been proposed to circumvent this problem [Berenzweig
et al., 2003]. One kind of solution is to analyze user data. Playlist (or music
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collection) co-occurrence [Logan et al., 2003] is based on the idea to collect a
large number of human-generated playlists. Assuming that similar music ap-
pears more frequently in the same playlist (or user collection), a (normalised)
co-occurrence of items is used as ground truth for similarity. Potential prob-
lems with this approach include the problem of data availability. As large
amounts of data may be necessary to obtain su�ciently stable similarity scor-
ings, distances to tracks for which only little data is available are likely to be
noisy, and for very unknown artists it is likely that data is not available at all.
On the other hand, unknown artists are of particular interest, as one of the
strengths of audio based approaches is that tracks are suggested regardless of
their popularity.

Last.fm4 collects usage data, and makes data such as lists of similar artists
available over a web service5. However, it is not obvious how this data is
generated. For example, data collected from the users might be complemented
by data collected from the web, or by audio similarity measures. Using such
complemented data as ground truth obviously would induce a bias.

Probably the most common approach to automated similarity evaluation is
to obtain genre labels for the tracks, and use these as a ground truth. It is
assumed that tracks in the same genre are generally similar in some relevant
ways. A suitable similarity algorithm would rank such very similar items high.
Based on this notion, k-NN genre classi�cation accuracy is frequently used as
an indication of the algorithm's quality. As in this work, evaluation is also
based on k-NN genre classi�cation accuracy, this issue is discussed in detail in
the next section.

2.2.1. Evaluation by Genre Classi�cation

While the assumption that very similar tracks are in the same genre is an im-
portant grounding of using k-NN genre classi�cation experiments as a basis for
evaluation, it is not the only aspect. Another argument for using genre classi-
�cation accuracy for evaluation of music recommendation systems is based on
common sense. Asking people what kind of music they like, it is reasonable to
expect an answer based on genre, e.g., �I like Goth�, �I listen to a lot of classical
piano music�, etc. Such an argumentation is of importance when taking into
account that one important application scenario of music similarity algorithms
is music recommendation.

4http://last.fm
5http://www.audioscrobbler.net/
http://www.lastfm.com/api
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Figure 3: MIREX'07 results: Average (probabilistic) genre classi�cation accu-
racy versus human judgment. Each data point represents the values of one
participating algorithm. The overall impression is that genre classi�cation
accuracy and human judgments are highly related.

In the literature, further support for the evaluation of audio similarity algo-
rithms by k-NN genre classi�cation is given. [Novello et al., 2006] present a
user study based on 19 tracks from 8 genres, �nding that di�erent subjects'
similarity ratings are rather concordant, and gives support for genre as a di-
mension of human similarity ranking. In [Pampalk, 2006b], two algorithms
are evaluated by genre classi�cation and human listening tests, and in both
cases the same algorithm scored higher. However, in this experiment, it also
turned out that overall, �more tracks from di�erent genres are rated as perfect
matches than songs from the same genre�. It seems noteworthy that this e�ect
is even desirable, as it points out the algorithm's strength to suggest matching
tracks that are not in the same genre. At the same time, it indicates that the
algorithm might actually perform better than indicated by genre classi�cation
�gures. This should be kept in mind when interpreting genre classi�cation
accuracies in the context of music similarity. It might be even impossible to
improve accuracy above a certain value.

To gain further insight into the relationship between genre classi�cation ac-
curacy and human ratings, a visualization based on data collected in the
MIREX'07 Audio Similarity and Retrieval Task6 is given in Figure 3. The
�gure shows the average genre classi�cation accuracy of each algorithm in
relation to the average human-assigned broad similarity score pSum6 of each

6available at http://www.music-ir.org/mirex/2007/index.php/MIREX2007_Results
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Figure 4: Same �gure as in Figure 3, but accuracy calculated with the classes
Romantic, Classical and Baroque merged. The dotted line indicates a linear
�t.

algorithm. This score was obtained by assigning each suggested track that was
ranked not similar a score of 0, tracks that were ranked as somewhat similar
a score of 1, and very similar tracks a score of 2. Scores are normalized in the
range 0..1, i.e., an algorithm for which all candidates are scored �not similar�
would be assigned a pSum score of zero, while an algorithm for that all candi-
dates are scored �very similar� would be assigned a pSum score of 1.0. It can be
seen that there is a certain relationship between pSum (i.e., human judgment)
and the genre membership of the suggested tracks7. However, the relationship
seems not fully straight, i.e., there seem to be some deviations in the middle
part of the �gure. This phenomenon can be examined by analyzing the al-
gorithms' genre confusion matrices. It turns out that most algorithms have
noticeable confusions between the genres Romantic, Classical and Baroque.
Without knowing for sure, it may be the case that the found pieces actually
sound quite similar (e.g., due to similar instrumentation) although they were
categorised into di�erent genres. Without access to the actual tracks used in
the evaluation, it is not possible to know if this is the case.

Based on these observations and thoughts, a second �gure (Figure 4) is given
with the corresponding results when the classes Romantic, Classical and Ba-
roque are merged. It can be seen that there is a much closer relationship
between genre classi�cation accuracy and human judgments in this case.

7Figures based on other human judgment measures than pSum are roughly comparable.
pSum was chosen because it seems to show the assumed relationship between genre
classi�cation accuracy and human scoring most clearly.
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As a conclusion, it seems that with an appropriate genre labeling, it is possible
to model the human view with su�cient precision to conduct automated eval-
uations using genre classi�cation accuracy. However, dividing a set of similar
sounding tracks into various genres (e.g., due to socio-cultural aspects such as
a historic period) is counterproductive to this evaluation approach, as it may
induce additional randomness into the classi�cation result. It seems likely that
when comparing algorithms over a number of collections, these noise e�ects
level out � in addition to minimizing the danger of over�tting to a particular
collection.

2.2.2. Used Evaluation Score

In this thesis, automated evaluation of audio similarity measures based on
genre labels is conducted in a leave-one-out k-NN genre classi�cation manner.
Each evaluated algorithm is applied to obtain the k closest (most similar)
tracks for each track t in the music collection in turn. The percentage of the
k closest tracks that have the same genre as the seed track t is taken as the
quality score for the recommendations associated with track t, denoted pt.
This is equivalent to calculating precision at k. We refer to this measure as
the (probabilistic) genre classi�cation accuracy of track t. Obviously, choosing
a higher number for k yields scores with higher resolution (and usually lower
overall �gures), which can have an impact on the results of the Friedman test
(see below). In most experiments in this thesis, k was chosen to be 20.

The score pt is used in two ways. First, its average for algorithm A accA over all
tracks is assumed to be a reasonable indication of the algorithm's performance.
It is calculated as

accA =
1

T

T∑
t=1

pt (3)

where T is the number of tracks in the collection. The second way the pt are
used is to rank di�erent algorithms by their performance for track t when the
Friedman test is calculated, as discussed in Section 2.2.3.

2.2.2.1. Artist Filter It has been noted that the audio signals of tracks by
the same artist may have aspects in common that are perceptually not so
relevant, such as production e�ects [Pampalk, 2006b]. To reduce the risk that
the algorithm is optimised towards such perceptually less relevant aspects,
following [Pampalk, 2006b], an artist �lter is applied in some experiments
discussed in this thesis. An artist �lter prevents tracks by the same artist
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as the seed track's artist to appear in the set of k closest tracks, i.e., the k
closest tracks with di�erent artist than the seed track's artist are used as the
evaluation basis.

2.2.3. Friedman Test

In several tasks of the second and third runnings of the Music Information Re-
trieval eXchange (MIREX2006 and MIREX2007), the Friedman test ( [Fried-
man, 1937]) was applied to test participating algorithms for signi�cant di�er-
ences in their performances [Downie, 2006]. The evaluation setting in this work
is basically comparable to the one in the MIREX Audio Music Similarity and
Retrieval task. Human-assigned similarity scores are replaced by measuring
how many of the k closest tracks are in the same genre as the current query
track. Thus, the Friedman test can be applied in a similar manner (cf. [West,
2008]). In the human evaluation, 60 or 100 query tracks are used, while the
automated experiments are run on all tracks. One should keep in mind that
with a larger number of queries, smaller di�erences can be shown to be signif-
icant than with a smaller number of queries (i.e., there is a higher statistical
power).

Using the Friedman test, only the relative performance of algorithms with
respect to each track to be classi�ed are compared, not how much they di�er
as measured by overall average classi�cation accuracy. I.e., in the scenario
used here, when comparing two algorithms A and B, if for Algorithm A all k
nearest neighbors of a track t are in the correct genre, then it does not matter
if for Algorithm B only k − 1 tracks are in the correct genre, or none � both
cases are treated the same by the Friedman test (cf. [Pampalk, 2006a]).

In this manner, all algorithms Ai under test are ranked for each seed track
t, resulting in a rank rAi,t for the given seed track t and algorithm Ai. If an
algorithm A1 performs better than algorithm A2 for seed track t, then A1 is
ranked higher than A2 for this track. Results of the Friedman test are presented
as a multiple comparison graph, such as e.g. shown in Figure 7. Algorithms are
represented as lines that indicate signi�cance bounds, with the x-Axis denoting
the mean rank of an algorithm over all seed tracks ( 1

T

∑T
t=1 rAi,t). I.e., �better�

algorithms are indicated by lines more to the right, and if the lines of two
algorithms don't overlap, then they show a signi�cant di�erence according to
the Friedman test.

In the experiments, there is typically some sort of baseline algorithm one wants
to improve upon, e.g., an existing algorithm. Usually, the baseline algorithm
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2 Similarity of Audio Signals

is shown in blue colour, and its signi�cance bounds are shown as gray vertical
lines. Algorithms for which no signi�cant di�erence is measured by the Fried-
man test in the current experiment are shown in gray colour, while algorithms
for which signi�cance is measured are shown in red.

The order algorithms are listed in the �gure from top to bottom can be chosen
arbitrarily. In this thesis, they are sorted according to an overall score, which
in most cases is the average percentage of closest tracks in the correct genre
accA. Better algorithms are ranked on the top. In general, algorithms with
higher accA are ranked more to the right, but there can be exceptions to this
general tendency.

2.2.4. Music Collections Used

In this work, the following audio collections were used for evaluation. The
names are the same as in [Pampalk, 2006b] for those collections that already
are used there. Basic statistics are given in Table 1. More details about the
genres each music collection contains are given in Table 2. DB-NORM, DB-
MS and DB-L* were used to test ideas and optimize parameters. DB-CC and
DB-HOMB were not used for optimization (to avoid over�tting). They are
only used for evaluating the resulting algorithm.

Name Tracks Genres Artists Naive
Total in a Genre Total in a Genre Baseline

min max min max
DB-MS 729 26 320 6 128 5 40 43.9%
DB-L* 2445 44 477 13 103 3 28 19.5%
DB-CC 871 81 200 6 469 27 150 23.0%
DB-NORM 100 10 10 10 92 7 10 10.0%
DB-HOMB 1886 47 504 9 1492 39 448 26.7%

Table 1: Music collections used in this work. Naive Baseline is the result of
an algorithm that would during classi�cation assign the most frequent class
to each item.

2.2.4.1. DB-MS. The DB-MS (Magnatune, small) collection consists of 729
tracks, divided into 6 genres. It is compiled from music from Magnatune8 that
is available under a creative commons license. This collection was compiled by

8www.magnatune.com
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MTG9 and was used as training set in the genre classi�cation part of the Audio
Description Contest held at ISMIR 2004. The contained music tracks and
associated meta data can be downloaded from the ISMIR 2004 web site10. This
allows for reproducing and comparing results obtained on this collection by
di�erent researchers. This collection has been used in a number of MIR-related
publications, e.g. [Levy and Sandler, 2006, Moerchen et al., 2006, Pampalk,
2006b,Jensen et al., 2007].

2.2.4.2. DB-L*. The tracks in this collection are mostly identical to those
in DB-L in [Pampalk, 2006b], but instead of having 22 genres, the number of
genres was reduced to 13 to reduce genre overlaps. This collection was also
used in [Pohle et al., 2007].

2.2.4.3. DB-CC. The DB-CC (Compilation Collection) is an in-house col-
lection that was compiled with both audio and web based MIR research in
mind. It consists of a selection of music compilations bought at local record
stores. Such a compilation typically contains music by many di�erent artists.
Each compilation has a title related to a speci�c music style or genre, for
example Rock'n'Roll, or Jazz Classics. In most cases, the titles of the compi-
lations are used as genre labels, which is quite straightforward. Music styles
are selected to be clearly distinct from each other to obtain a sound ground
truth. The music contained in this collection covers a wide range of acoustical
quality.

2.2.4.4. DB-NORM. The normalization collection (DB-NORM) is com-
piled from 100 tracks belonging to 10 di�erent genres, each of those containing
10 tracks. Tracks in each genre were chosen to share typical elements of this
genre, and being from a variety of di�erent artists and recording conditions.
For example, the piano genre covers di�erently sounding pianos and recording
settings. At the same time, genres are chosen so that songs in di�erent genres
are unlikely to be considered as being similar. This collection was used in dif-
ferent ways. For example, it was used to quickly test the e�ect of modi�cations
to algorithms, and to determine normalization factors for the combination of
similarity measures.

9http://www.iua.upf.es/mtg
10http://ismir2004.ismir.net/genre_contest/index.htm
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2.2.4.5. DB-HOMB. This collection is the one presented in [Homburg et al.,
2005]. It consists of 10 second song excerpts collected from the Garageband
web site. It contains excerpts from 1886 tracks by 1463 di�erent artists. Due
to the large number of artists, classi�cation results with and without artist
�ltering are relatively close. The data is available to the research community,
which allows comparison of results presented in di�erent publications and by
di�erent authors. An advantage of the audio excerpt's shortness is that all
publications use the full � and exactly the same � excerpts, which supports
comparability of the obtained results.

DB-MS classical (320/40), world (122/19), electronic (115/30),
rock/pop (101/26), metal/punk (45/8), jazz/blues (26/5)

DB-NORM african (10/10), dance�oor (10/10), hawaiian (10/7), mambo
(10/8), metal (10/10), orchestral (10/10(?)), piano (10/9), rap
(10/10), rocknroll (10/8), volksmusik (10/10)

DB-HOMB rock (504/448), jazz (319/214), raphiphop (300/210), folk-
country (222/177), alternative (145/121), blues (120/80), pop
(116/106), electronic (113/97), funksoulrnb (47/39)

DB-L* metal (477/14), electronica (452/28), rap (262/12), punk-rock
(255/6), folk-rock (233/5), italian (142/5), jazz (133/9), celtic
(132/5), a capella (112/4), bossa nova (72/4), acid jazz (68/4),
blues (63/4), reggae (44/3)

DB-CC rocknroll (200/127), volksmusik (197/150), punk (160/85),
latino (125/46), reggae (108/27), dance�oor (81)

Table 2: Genre labels of the used music collections, and number of tracks /
number of artists in each genre.

2.3. Starting Point: G1C

In this section, Pampalk's G1C music similarity algorithm [Pampalk, 2006a,
Pampalk, 2006b] is described. It is well suited as a starting point for experi-
ments (which will be presented in the next sections) and as evaluation baseline
for several reasons. Its main component is based on MFCCs, which can be
considered as state-of-the-art features for music similarity algorithms. Addi-
tional components based on Fluctuation Patterns (FPs) introduce descriptions
of temporal developments in the signal that are not described by the MFCC
component. The G1C algorithm scored �rst in the 2006 MIREX Audio Music
Similarity and Retrieval task [Pampalk, 2006a]. An implementation is avail-
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able11. Detailed descriptions of the algorithm's parts are given in the next
sections.

2.3.1. MFCC Component

Amusic track is analysed by converting it into mono format at 22050 Hz sample
rate, only keeping the central two minutes of the track. The signal is cut into
frames of length 512 samples (with a hop size of 512 samples, f0 = 43, 1 Hz),
and each frame is represented on the perceptually motivated mel scale by
calculating the power FFT and subsequently applying a triangular-shaped mel
�lterbank with 36 bands. MFCCs are approximated by calculating the discrete
cosine transform (DCT) on the logarithm of this representation, only keeping
coe�cients 1 to 19.

Figure 5: MFCCs of 30 second excerpts of a choir piece (left) and a pop song
(right).

The feature data kept for a track consists of the mean and full covariance
matrix of all MFCC frames (Single Gaussian model). Two tracks are compared
by calculating the symmetric Kullback-Leibler (KL) distance (Equation 38)
DKL of the Gaussian models. The resulting distance is scaled to the range of
the unit interval by

DG1 = − exp(−1/fact ·DKL) (4)

For fact a value of 450 is used, based on empirical evaluations. Examples for
MFCCs are given in Figure 5.

11http://www.pampalk.at/ma/download.html
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2.3.2. Fluctuation Patterns

To also model aspects of time-dependent properties of the music such as
rhythm, Fluctuation Patterns (FP) [Pampalk et al., 2002,Pampalk et al., 2003]
are computed on the Mel-Frequency frames. To reduce the size of the resulting
features, the 36 Mel bands are reduced to 12. Then, the frames of the whole
two-minute excerpt are divided into blocks of 128 frames (i.e., 2.97 sec) length,
and a hop size of 64 frames. For each of the blocks, the temporal development
in each of the 12 Mel bands is analysed by a FFT. The lowest 31 of these �uc-
tuation time scales are used as features for the block (i.e., �uctuation speeds
from 0.34 Hz to 10.4 Hz are considered). The resulting amplitude spectrum
is post processed to enhance the detection and ease comparison of perceived
�uctuation strengths. This results in feature data of size 12 ·30 for each frame.
The median of each of these values over all frames is the �nal Fluctuation
Pattern for the track.

Figure 6: FPs of 30 second excerpts of a choir piece (left) and a pop song
(right). It can be seen that due to summing up more bands in the higher
frequencies, most energy is concentrated in rows 11 and 12. Colours are
scaled independently for the two �gures to improve visibility. Absolute val-
ues are smaller for the choir piece than for the pop song.

In G1C, FPs are used in three ways to determine the similarity of two tracks.

1. DFP: The Euclidean distance between the FPs of the two tracks is com-
puted.

2. DFPG (Gravity): The values contained in the FP are summed up along
the �rst dimension, and the centroid of the resulting vector is computed.
This value is called Gravity, which obviously depends on the �uctuation
strengths measured at di�erent �uctuation speeds, and is assumed to be
related to aspects of the rhythm such as overall tempo. The (absolute)
di�erence between the Gravity values of the two tracks is computed.
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3. DFPB (Bass): The �uctuation values in the range 1 Hz to 10.4 Hz in the
two lowest bands are summed up to obtain information about the bass
frequencies. The di�erence between the Bass values of the two tracks is
also computed.

Example images of FPs are given in Figure 6.

2.3.3. Combination.

The various basic distance measures DG1, DFP, DFPG, and DFPB are combined
into one overall similarity measure by

DG1C(A, B) = 0.1 · (DFP(A, B)− µFP)/σFP

+ 0.1 · (DFPB(A, B)− µFPB)/σFPB (5)

+ 0.1 · (DFPG(A, B)− µFPG)/σFPG

+ 0.7 · (DG1(A, B)− µG1)/σG1

+ c

where µX and σX are the mean and standard deviation of distances measured
with basic similarity measure X, empirically determined over a large num-
ber of track pairs. The tracks that are used to determine µX and σX are
taken from one music collection that is not necessarily the same collection
as the music collection on which the similarity measure is actually applied
for retrieval. For such an independent music collection that is used to de-
termine normalisation factors, in this thesis the term �reference collection� is
used. µX and σX are determined once, and then hard-coded to be used for
all similarity computations. The constant c ensures that the result is always
positive. This non-negativity can be ensured as it is known that all Dx(A, B)
are non-negative. A constant c can be chosen empirically to be large enough
for most distance computations, or it could be determined from Equation 6:
c = 0.1 · (µFP/σFP + µFPB/σFPB + µFPG/σFPG) + 0.7 · µG1/σG1.

2.4. A Variant of G1C: G1Cmod

Before going on with presenting the experiments, here we brie�y describe a
modi�ed variant of the G1C algorithm from 2007. Although the choice of
modi�cations was not based on extensive systematic tests, our automated
evaluations indicated that this algorithm has a (slightly) better similarity com-
putation performance than the original G1C algorithm. This can be seen as
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a motivation for the experiments presented in the next sections (i.e., to test
whether further improvements can be found by evaluating a number of modi-
�cations of algorithm parts such as the distance computation function).

As described in [Pohle and Schnitzer, 2007], we have submitted a modi�ed
version of G1C to the 2007 MIREX Audio Similarity and Retrieval task. In
the evaluation based on human judgments, this submission ranked �rst. No
signi�cant di�erence to six out of the eleven other submissions was measured
by the Friedman test. The modi�cations applied to G1C were

• Based on the results presented in [Bosteels and Kerre, 2007b], DFP was
not calculated by Euclidean distance, but rather by cosine similarity
(Equation 7) .

• The distance DG1 between Gaussians was not calculated by the KL Di-
vergence (Equation 38, page 63) but rather a distance measure based
on the Bhattacharyya coe�cient was applied (Equation 46, page 64).
Furthermore, the number of used MFCCs was increased to 25.

• The normalization factors µX and σX were determined dynamically for
each seed track, based on all distances from a track A to all other tracks
in the current collection. Consequently, when comparing two tracks A
and B, there are four normalization factors for each basic distance mea-
sure X (µX,A, σX,A and µX,B, σX,B). They are used to calculate the
distance DG1Cmod by applying Equation 6 twice (once with each of the
normalization factors for track A and track B), and summing up the
results. The resulting distances can be negative, which either has to be
compensated by adding up a constant determined for the current collec-
tion, or it has to be taken into account when retrieving tracks, in which
case the closest tracks may have a negative distance value associated.

In genre classi�cation experiments performed before submitting the algorithm
to MIREX'07, G1Cmod slightly outperformed G1C [Pohle and Schnitzer, 2007],
while it remained unclear whether there is a signi�cant di�erence.

2.5. Modi�cation of Fluctuation Pattern based

Distances

There is some indication that the modi�cations proposed in G1Cmod have a
positive e�ect on the overall algorithm. One of the contributions of this thesis
is the evaluation of a larger number of possible modi�cations of the various
parts of the G1C algorithm, aiming to further improve upon G1C (or G1Cmod,
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respectively). Thus, we start this section by presenting experimental results
from evaluating possible alternative distance measures between Fluctuation
Patterns. Previous work in this area is [Bosteels and Kerre, 2007b]. Also,
possible alternatives to the descriptors FP Bass and FP Gravity are presented
and evaluated. The next section (Section 2.6) is focused on modi�cations of
the Gaussian component. Combining the various parts in a di�erent manner
than in the G1C algorithm is discussed and evaluated in Section 2.7. Finally,
a modi�ed algorithm is created based on the presented evaluations, and its
relative performance to G1C and G1Cmod is tested in Section 2.8.

For comparing Fluctuation Patterns, in [Pampalk et al., 2005b,Pampalk, 2005,
Pampalk, 2006b] Euclidean distance is applied. While Euclidean distance is
straightforward and e�ciently computed, there may be better ways from a con-
ceptional point of view. In Euclidean distance computation, each component
of the FPs is interpreted as one dimension in a high-dimensional space. The
computed distance has the notion of a �line� between two points in this space,
each represented by one �uctuation pattern. This concept has no immediately
obvious link to the spatial organization of FPs (and thus may be inappropri-
ate). Other distance measures may perform better. So in this section, a variety
of di�erent distance measures is evaluated. There are two major �avors. The
�rst kind of distance measures is based only on comparing corresponding bins
(or �entries�) of the two FPs (as e.g., the Euclidan distance), here denoted
same-bin-measures. The second kind of measures also takes into consideration
the spatial proximity of FP bins, so that activations that are only few bins
apart also can be matched. This kind of measure is called inter-bin-measure.
The discussion starts with the �rst kind of measures.

Previous work regarding bin-to-bin distance (same-bin-measures) between FPs
has been done by [Bosteels and Kerre, 2007b]. A FP is interpreted as a fuzzy
set and a number of fuzzy similarity measures is evaluated on them. [Bosteels
and Kerre, 2007b] use a collection of 128 tracks, and similarity refers to �nding
fragments of the same song. One of the conclusions is that applying the cosine
similarity measure is preferable over using Euclidean distance. It remains
unclear how the results scale to larger collections and similarity between songs.
By taking these similarity measures as a subset of the experiments presented
here, it is aimed to increase knowledge in this direction.

The evaluated same-bin distance measures between two FPs F = {fi} and
G = {gi} are described in the next sections, largely following [Rubner et al.,
2000,Bosteels and Kerre, 2007b].
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2.5.1. Distance Measures

2.5.1.1. p-Norm, or Minkowski-form distance is de�ned as (e.g., [Rubner
et al., 2000])

dLp (F, G) =

(∑
i

|fi − gi|p
) 1

p

(6)

Here, L1 (Manhattan- or taxicab distance), L2 (Euclidean distance), L4 and
L∞ are evaluated, with L∞ = max (|f1 − g1| ... |fn − gn|). dL4 is e�ciently im-
plemented as d_L4 = sqrt(sqrt(sum(abs(f-g).^2.^2))). As preliminary
experiments indicated that accuracy may increase with smaller integer p, also
non-integer values smaller than one were tested for p (1

2
and 1

3
).

2.5.1.2. Cosine Similarity. The cosine similarity of two vectors measures
the cosine between the two vectors. Considering the two FPs F and G as
vectors, this takes the form (cf. [Bosteels and Kerre, 2007b])

dcos (F, G) =

∑
i

(fi · gi)√∑
i

f 2
i ·
√∑

i

g2
i

(7)

When both vectors have only non-negative entries, this measure has a range
of [0..1].

2.5.1.3. Histogram Intersections. Various forms of histogram intersections
are evaluated. The basic form is (cf. [Swain and Ballard, 1991,Rubner et al.,
2000])

d∩f,g (F, G) = 1−
∑

i min (fi, gi)∑
i gi

(8)

which results in the distance from F to G being zero if G is fully contained
in F (i.e., if F is a superset of G). Obviously, the opposite point of view (the
distance from G to F is zero if F is a subset of G) is given by:

d∩g,f (F, G) = d∩f,g (G, F ) , (9)

We combine both as

d∩symm (F, G) = d∩f,g (F, G) + d∩g,f (F, G) , (10)
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Based on this concept of set operations, an arbitrary number of further distance
measures can be de�ned. When calculated from normalised FPs, FPs can
be interpreted as fuzzy sets, and the corresponding similarity measures are
denoted fuzzy audio similarity measures [Bosteels and Kerre, 2007b].

In the experiments, a number of such measures is evaluated both in a com-
pletely unnormalised version12 and after each FP has been normalised by divid-
ing each value by the FP's maximum value. Rede�ning cardinality as summing
up the elements, F ∩G := {min (fi, gi)}, and F ∪G := {max (fi, gi)} these take
the form (evaluated for normalised, fuzzy FPs in [Bosteels and Kerre, 2007b],
citing [Cross and Sudkamp, 2002]):

d5(F, G) = 1− |F ∩G|
|F ∪G|

(11)

d6(F, G) = 1− |F ∩G|√
|F | · |G|

(12)

d7(F, G) = 1− 2 |F ∩G|
|F |+ |G|

(13)

d8(F, G) = 1− |F ∩G|
min (|F | , |G|)

(14)

d9(F, G) = 1− |F ∩G|
max (|F | , |G|)

(15)

d10(F, G) = 1− min (|F | , |G|)
|F ∪G|

(16)

d11(F, G) = 1− max (|F | , |G|)
|F ∪G|

(17)

d12(F, G) = 1− min (|F | , |G|)
max (|F | , |G|)

(18)

12for the measures considered in this section, this is equivalent to scaling all values by the
same factor f = 1/vmax with vmax being the largest value appearing over all FPs of the
whole music collection
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2.5.1.4. Correlation Coe�cient. To determine the correlation between the
values in two FPs, Pearson's linear correlation coe�cient is calculated, which
is de�ned as (cf. [Seyerlehner and Schnitzer, 2007]):

ρF,G =
σ2

FG

σF σG

=

∑
i

(fi − f)(gi − g)√∑
i

(fi − f)2
√∑

i

(gi − g)2

(19)

with f and g being the mean of all values in FP F and G, respectively.

2.5.1.5. Jensen-Shannon Distance. For discrete distributions, the Kullback-
Leibler divergence is de�ned as (e.g., [Diaconis and Zabell, 1982])

dKL (F, G) =
∑

i

fi log
fi

gi

(20)

Following [Rubner et al., 2000], for the experiments the numerically more stable
Je�rey distance (Jensen-Shannon distance) is used:

dJS (F, G) =
∑

i

(
fi log

fi

mi

+ gi log
gi

mi

)
(21)

with

mi =
fi + gi

2
(22)

In the implementation, for numerical stability, those i with both fi and gi being
zero (or below a threshold of 1e-10) are left out, as such i do not increase the
distance between F and G.

An alternative way to compute Equation 21 is given by [Lin, 1991]

dJS = H(m)− 1

2
H(f)− 1

2
H(g) (23)

where H(x) is the Shannon entropy

H(x) = −
∑

i

xi · log xi (24)

√
dJS is a metric (e.g., [Briët and Harremoës, 2009]).
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2.5.1.6. Chi-Square Statistics The χ2 distance between two discrete prob-
ability distributions is de�ned as

dχ2 (F, M) =
∑

i

(fi −mi)
2

mi

(25)

Here again M is set to mi = fi+gi

2
as above [Rubner et al., 2000]. As |fi −mi| =

|gi −mi|, this measure is symmetric. Again, those i with both fi and gi being
(close to) zero are left out during computation.

2.5.1.7. Bhattacharyya Coe�cient. On discrete probability distributions,
the sample estimate of the Bhattacharyya coe�cient is given by (cf. [Comaniciu
et al., 2003], [Kailath, 1967])

ρ(F, G) =
∑

i

√
fi · gi (26)

Although it is de�ned on probability distributions (i.e., both F and G sum to
one), in the experiments all of unnormalised FPs, FPs divided by the maxi-
mum, and FPs normalised to sum to one were evaluated.

2.5.1.8. Hellinger Distance Hellinger Distance is given as [Diaconis and
Zabell, 1982]

dH(F, G) =

√∑
i

(√
fi −

√
gi

)2

(27)

As Hellinger distance is related to the Bhattacharyya coe�cient by dh(F, G) =√
2− 2 · ρ(F, G) (cf. [Jebara and Kondor, 2003]) for probability distributions,

it produces the same ranking of tracks as the Bhattacharyya coe�cient in the
case when F and G are normalized to sum to one.

2.5.1.9. Mutual Information For two (discrete) random variables X and
Y , Mutual Information is de�ned as [Kraskov et al., 2003]

I(X, Y ) =
n∑

i,j=1

pij log
pij

pi(X)pi(Y )
(28)

= H(X) + H(Y )−H(X, Y )
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with H(X) and H(Y ) denoting the entropy of X and Y (Shannon entropy,
Equation 24), and H(X, Y ) being the joint entropy of X and Y . Based on
this, it is possible to de�ne a metric as follows (cf.13 [Kraskov et al., 2003]):

dI(X, Y ) = H(X, Y )− I(X, Y )

= H(X, Y )− (H(X) + H(Y )−H(X, Y )) (29)

= 2H(X, Y )−H(X)−H(Y )

This metric can be modi�ed to be not biased by the dimensionality n of the
data and to yield values in the unit interval [Kraskov et al., 2003]:

DI(X, Y ) =
dI(X, Y )

H(X, Y )
(30)

To calculate DI on �uctuation patterns, X and Y here are de�ned as his-
tograms over all values appearing in Fluctuation Patterns F and G. The
joint entropy H(X, Y ) is calculated from the joint histogram of pairs of values
appearing at corresponding positions of the two Fluctuation Patterns. The
number k of histogram bins in X and Y (and consequently the number k ·k of
histogram bins of the joint histogram) is determined by Sturge's rule ( [Legg
et al., 2007]), which is used to determine the width w of each histogram bin:

w =
r

1 + log2(n)
, (31)

where r is the data range and n is the number of input points (n = 30, 20, and
20 ·30 in the case of the �rst dimension, second dimension and full Fluctuation
Pattern, respectively). As w is calculated separately for each Fluctuation Pat-
tern (on the range r from 0 to the maximum value appearing), normalization
does not play a role for this distance measure, as in each case the histogram
bins are adapted to the full range of values appearing in the given Fluctuation
Pattern, and thus the same histogram results regardless of normalization.

2.5.1.10. Inter-Bin Distance Measures. The distance measures discussed
so far only compare the corresponding bins of the two FPs. However, if the two
FPs have peaks at di�erent bins that are close to each other, then they might
be considered more similar than having peaks that are far away. To some
extent, this is taken into account by blurring during computation of the FP.
To evaluate if it is bene�cial to take such possible inter-bin associations into
account, also the quadratic-form distance, Mahalanobis distance and Earth
Mover's Distance are computed.

13also cf. http://en.wikipedia.org/wiki/Mutual_Information
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2.5.1.11. Quadratic-Form Distance. The quadratic-form distance is de-
�ned as [Niblack et al., 1993]

dA (F, G) =

√
(f − g)T A (f − g) (32)

f and g are vectors that contain all bins (fi and gi) of the two FPs F and
G, and A is a matrix containing at Aij the similarity between bins i and
j. A is computed from a ground-truth distance dij between bins i and j by
aij = 1 − dij/dmax ( [Niblack et al., 1993]), with dmax being the largest value
over all dij . This de�nition of A results in dA being a metric [Rubner et al.,
2000].

For applying this distance measure to FPs, the ground-truth distances dij have
to be de�ned. Here, ground truth refers to the impact a given shift in frequency
and �uctuation speed has on the perceived similarity. In this context, it seems
reasonable to assume a small impact for bins that are close neighbors. For
example such a small shift may occur when comparing a piece of music to a
slightly faster, or slower, version of itself.

In general, these ground truth distances dij would have to be de�ned by lis-
tening tests (which, however, may be di�cult to design). Here, as a rather
simple and straightforward way of de�ning distances between di�erent fre-
quency bands and between di�erent �uctuation speeds, a linearly increasing
cost is assumed (transformation from slowest to fastest �uctuation speed has a
cost of 1, and transformation from lowest to highest frequency has also a cost
of 1 associated). When it comes to combining both these dimensions into one
common measure things get even more arguable (i.e., how does an increase
in frequency relate to an increase in speed?). As a solution, for the experi-
ments the city block distance was chosen as it re�ects the concatenation of the
transformation in speed and a consecutive transformation in frequency.

The FPs used in the experiments have a size of 20 × 30, so A gets very large
(360.000 elements), which results in a slow computation. By resampling the
FPs dimensions to 8× 20, the number of elements in A is reduced to 25.600.
With this size, computation is much faster. Resampling is done by using 0.5
values on either side of the current sample.

2.5.1.12. Earth Mover's Distance. The Earth Mover's Distance (EMD)
[Rubner et al., 2000] formalizes the concept to model the distance of two
distributions (e.g., considered describing the topology of �piles of earth�) by
the amount of �work� necessary to transform one distribution into the other.
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Here, each FP is assumed to represent a two-dimensional description of such
piles of earth, comparable to a topological map. For de�ning the amount of
�work�, the same inter-bin distance de�nition as in the quadratic-form distance
evaluation is used. For calculating14 the EMD, also the reduced-size version of
the FPs is used for reasons of computational time.

2.5.2. Results of (full) FP Distance Measures.

The multiple comparison test for the discussed distance measures on DB_MS
is given in Figure 7, and the corresponding results for DB_102a13g are given
in Figure 8. The way the distance between FPs is computed in the G1C algo-
rithm is taken as baseline algorithm we want to improve upon (i.e., Euclidean
distance measure on unnormalised FPs of size 12 · 30). As discussed in Sec-
tion 2.2.3, the baseline algorithm is given in blue colour, and the corresponding
signi�cance bounds are marked as gray vertical lines. On both collections l2
performs better when calculated from FPs of size 20 · 30 (downsampled from
FPs of size 36 · 30 by linear interpolation) instead of the way it is calculated in
G1C, which is taken as indication that this representation is better suited. As
a consequence, all other distance measures (except the Quadratic-Form Dis-
tance and Earth Mover's Distance) were calculated from this representation of
size 20 · 30.

Although some of the measures are de�ned on probability distributions, each
distance measure was evaluated on unnormalised data (i.e., the FPs as com-
puted, denoted by normno), each FP normalised to have a maximum value of
one (denoted by normmax ), and each FP normalised to sum to one (denoted
by normsum, which is the normalization approach that is conceptually clos-
est to a probability distribution). Each algorithm was tested as described in
Section 2.2.3, considering the 20 closest neighbors after artist �ltering.

In both �gures, d12normsum represents some kind of worst case scenario, be-
cause it produces a constant value of zero (as can be seen from the de�nition,
|F | and |G| are both 1). Cosine similarity, correlation and the mutual in-
formation measure are independent from normalization. Distance measures
EMD and Quadratic Form Distance were only calculated on DB_MS. As they
showed to be not better than the baseline they were not computed on the other
collection due to computation time.

14A Matlab wrapper was used to run the C �les written by Y. Rubner,
http://vision.stanford.edu/�rubner/
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2.5 Modi�cation of Fluctuation Pattern based Distances

Figure 7: Multiple comparison of the examined FP distance measures. Leave
one out genre classi�cation experiments, ISMIR set, 20 �rst neighbors con-
sidered, artist �ltering. Sorted from top to bottom by average (probabilistic)
classi�cation accuracy.
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As can be seen, a number of the evaluated measures perform better than
the chosen baseline (Euclidean distance measure on unnormalised FPs of size
12 · 30) in these experiments. Cosine similarity, which is recommended in
[Bosteels and Kerre, 2007b], performs better than the baseline on DB_MS,
but is below the baseline on DB_103a13g, i.e., cosine similarity does not al-
ways outperform Euclidean distance. It is interesting to note that all measures
that outperform the baseline on DB_102a13g (Figure 8) also outperform the
baseline on DB_MS (Figure 7). As both collections have many di�erences
(di�erent sizes, number and sizes of genres and di�erent music styles), this can
be seen as an indication that these measures generally outperform the baseline
measure. Furthermore, the seven measures top-ranked on DB_102a13g (which
are signi�cantly better than the baseline on this collection) are also signi�cantly
better than the baseline on DB_MS. All of these are calculated from unnor-
malised FPs, which may be seen as an indication that in general, normalizing
FPs is not bene�cial for distance computations. All of these best-performing
measures seem suited for using them as a replacement of the original measure.
Considering the average (increase of) classi�cation accuracy of each measure
on the two collections, d5 and d7 seem the best candidates, particularly as they
have the nice property of producing values in the unit interval, despite the fact
that they are computed on unnormalised FPs. Also, they seem meaningful
from a conceptual point of view.

2.5.3. Tempo Component from FP

After having evaluated a number of alternative distance measures between FPs,
we here go on by extending the experiments to the two additional descriptors
based on FPs that are used in the G1C and G1C_mod algorithms, respectively:
Gravity (FPG) and Bass (FPB). G1C uses Gravity (FPG) as a tempo-related
feature. In this section, experiments are presented that help assessing whether
FPG can be replaced by a di�erent way to �nd songs with similar perceived
tempo. Without doubt, perceived tempo is an important aspect of music
similarity. The Bass (FPB) descriptor will be discussed in the next section.

In [Seyerlehner and Schnitzer, 2007], an approach is described to use the
rhythm structure of a piece to determine its tempo. The authors use the sum
of the �rst dimension of FPs as an indicator of the song's rhythmic structure,
that is a vector containing the sums over all frequencies for each periodicity
(see Figure 9). The vector containing the sum of the �rst dimension of FPs is
denoted FPR here. In [Seyerlehner and Schnitzer, 2007], this feature is used in
conjunction with a nearest neighbor approach to determine the song's tempo
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Figure 8: Same evaluation as in Figure 7 but on 102a13g collection.
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value in beats per minute (bpm). The nearest neighbors are determined by
correlation.

Figure 9: FPR of the choir piece and the pop song from Figure 2.3.1. Note that
the colours are scaled independently for each �gure to improve visibility.

To assess if the use of Gravity in G1C can be replaced by a better-performing
estimation of the similarity of the perceived tempo, it is compared against
the algorithms that result when comparing FPRs with the distance measures
discussed above. However, ground truth is not given by genre labels this time,
but rather by human-annotated tempo information.

As in the research presented here, the aim is not to �nd a good estimation of
the seed song's tempo in bpm, but rather to �nd tracks that match the seed
song's perceived tempo, evaluation is modi�ed. Evaluation is based on a leave
one out nearest neighbor scheme as in the previous experiments, but no explicit
tempo estimation for the seed song is carried out (i.e., no explicit bpm value
is calculated). Rather the seed track's true tempo is compared against the
nearest neighbor's true tempi (as annotated). Goodness of match s between
the seed track's tempo t and a nearest neighbor's tempo t̂ is calculated by
(cf. [Seyerlehner and Schnitzer, 2007])

s =
max (t, t̂)

min (t, t̂)
(33)

For evaluation, DB_MS was annotated by tap-along tempo by one musically
trained individual. Those tracks that do not have a recognizable (or various
or changing tempi) were marked and left out during evaluation. Also, it was
marked if tap-along tempo can be considered arguable, and if so, which factor
would be acceptable otherwise (double, half, both of these, three times as fast
or one third as fast). During evaluation, these were also considered as correct
matches by taking the minimum s between the tracks in question and the
tapping tempo alternatives.

During evaluation, 20 nearest neighbors were considered. An artist �lter was
not applied, as tempo is assumed to be independent from the artist, which can
easily be seen from the notion that suggesting only tracks by the same artist

48



2.5 Modi�cation of Fluctuation Pattern based Distances

might even degrade performance. While FPG was calculated in a manner as in
G1C, FPRs were derived from the FPs of size 20 · 30 (downsampled from FPs
of size 36 ·30), as this is the way FPs are calculated in Section 2.5.2. However,
it is assumed that the alternative way of calculating FPs (combining upper
frequency bands as in G1C) would not make a big di�erence as the number of
�uctuation time scales is the same (i.e., 30).

In Figure 10, it can be seen that FPG surprisingly does not perform signif-
icantly better than choosing nearest neighbors randomly on DB-MS in our
evaluation setting (but it does on the second used test collection, as can be
seen in Figure 11). A possible explanation is that FPG seems not only to mea-
sure the actual tempo, but also the relation between the amounts of slower and
faster metrical levels present in the piece. The latter is an aspect of rhythm
that is not directly taken into account in our evaluation setting.

The best-performing algorithm in terms of average score s is L2 normalised to
a maximum of 1.0. However, Correlation is the algorithm that has a higher
score for more seed songs than any other algorithm (i.e., it is the algorithm
positioned rightmost). The absolute di�erence measured by the tempo score
s seems rather small.

To gain more insight which algorithm can be considered preferable, the algo-
rithms are also run on a di�erent collection, which was used in the ISMIR
2004 tempo contest15 [Gouyon et al., 2006]. It is called Songs set and contains
465 audio excerpts of 20 seconds length with tempo annotations created by a
professional musician.

The corresponding results are given in Figure 11. It turns out that Correlation
is the best performing algorithm among those evaluated, both by means of s
and number of seeds with best score. Considering all algorithms that are
within the signi�cance bounds in this experiment (all top-ranked algorithms
up to Infnorm normalised to sum to 1.0), it turns out that all of them are also
within the signi�cance bound of the best-performing algorithm in Figure 10.

In both experiments, absolute �gures of s seem rather low � it indicates that
even for the best-performing algorithms, the annotated tempi of the 20 re-
trieved tracks deviated from the seed track's annotated tempo by about 1

3
on

average. Maybe this number would decrease if the number of songs within a
collection were greater.

15http://mtg.upf.edu/ismir2004/contest/tempoContest/
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Figure 10: Tempo evaluation on DB_MS for 20NN. Values sorted according to
average raw tempo matching score s. Scores for Random: 1.47, FPG: 144.5,
Correlation: 135.6, L2 Normmax: 135.1.
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Figure 11: Tempo evaluation on Songs Set for 20NN. Values sorted according
to average raw tempo matching score s. Scores for Random: 1.47, FPG:
1.41, Correlation: 1.36.
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Surprisingly, it turns out that also genre classi�cation accuracy increases when
replacing FPF with Correlation between FPRs. On DB_MS, for rank 20,
accuracy after artist �ltering increases from 42.84% for FPG to 48.19%.

As a conclusion from this tempo evaluation (or FPG evaluation, respectively),
it can be stated that replacing the FPG part of G1C with Correlation seems
promising, as it brings a signi�cant improvement in �nding songs with similar
perceived tempo, and additionally an increase in genre classi�cation accuracy.
Finally, it should be noted that here only FP based features are evaluated,
and only 30 �uctuation time scales. There may be improvements when using
di�erent representations that could turn out to be better suited (candidates
for this might be, e.g., 60 �uctuation speeds [Seyerlehner and Schnitzer, 2007],
or autocorrelation as in [Ellis, 2006]).

2.5.4. Spectrum Summarization: FP Based Timbre (FPT)

In Section 2.5.3, the sum along the �rst dimension of the FP was taken as a
basis for tempo estimation, which is used to replace FPG. In this section, it is
examined if the second feature in G1C that is based on FPs � Bass (FPB) �
might also be replaced by a conceptually similar algorithm, taking the sum of
the FP in the second dimension. This section concludes the experiments with
respect to Fluctuation Pattern based distance measures.

Bass (FPB) is calculated by taking the sum of the values in the lower FP
bands. From a conceptual point of view, it may make sense to replace this by
the sum of the values in the second dimension of the FP, i.e., the sum over all
periodicities in the FP for each frequency band. While the feature data of FPB
is one scalar value per track, the resulting feature values in this case is equal
to the number of frequency bands in the FP (see Figure 12). This feature is
denoted FPT here, T for timbre. The distance of FPTs can be determined by
one of the distance measures described in Section 2.5.

This approach can be motivated by comparing the aspects it presumably de-
scribes. While MFCCs capture the frequency spectrum of individual frames,
FPTs may combine frequencies into a common feature vector that are not acti-
vated together at the time level of one individual frame. Furthermore, MFCCs
and FPTs work on di�erent time scales, as FPTs are only based on �uctuations
up to a certain �uctuation time scale, i.e., they do not consider the time scale
of individual frames.

Here, it is evaluated how FPTs perform when compared by the di�erent dis-
tance measures, and how they compare to FPB (compared by the absolute
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Figure 12: FPT of the choir piece and the pop song from Figure 2.3.1. Note
that the colours are scaled independently for each �gure to improve visibility,
and that in the actual experiments presented here, there are 36 frequency
bands instead of 12, as the bands are not combined.

di�erence). As baseline, FPTs compared by L2 distance, calculated on FPs
of size 12 · 30, i.e., 360-element FPS, are taken. In the other cases, FPTs are
calculated on 36 frequency bands. Evaluation is done based on genre labels,
accepting the common assumption that genre labels are suited as an indicator
for timbre similarity. Detailed result �gures are given in Figures 13 and 14.
Comparing these, it gets obvious that the top-ranking 13 algorithms are the
same on both collections (although in a di�erent order). When choosing as a
baseline Euclidean distance on the second dimension of FPs (calculated as in
G1C), all these algorithms are signi�cantly better than the baseline. While
the results seem somewhat inconclusive which of these to choose, it seems that
the χ2 distance is a good choice, or D5 (or D6) if it is important that the range
of resulting values is in the unit interval.

When comparing these results to the performance of FPB in these experiments
(which may not be an appropriate comparison as FPB is designed to focus on
just one aspect, bass) it becomes apparent that most examined algorithms
clearly outperform FPB in the genre classi�cation task. While this perfor-
mance boost may be bene�cial for calculating timbre similarity, one has to
keep in mind that there likely is a high correlation between FP, FPR and FPT
based measures. Taking these into account when combining these measures
might improve overall performance.
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Figure 13: DB-MS: FPT distance measures.

54



2.5 Modi�cation of Fluctuation Pattern based Distances

Figure 14: DB-L*: FPT distance measures.
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2.6. Modi�cation of the Gaussian Component

In the previous section alternative ways of using FP data were evaluated. This
section is devoted to the basic similarity measure that has the highest weight
in G1C, the MFCC based component. The experiments take two directions:
First, it is evaluated if the quality of the similarity computation can be in-
creased by adding di�erent audio features. Second, as for FPs, alternative
distance measures are evaluated. The runtimes of there distance measures is
discussed. Also, the impact of some simple modi�cations of this part of the
algorithm is assessed.

While there are many possible ways to compare the MFCC frames that are
calculated from the music signal, the experiments presented here will focus
on the so-called bag-of-frames (BOF) approach. The BOF approach can be
considered the most common one. The temporal order of the MFCC frames
is discarded, and only the overall statistical characteristics of the frames are
kept as feature data. Two songs are compared by comparing their statistical
models.

While there have been approaches that also take into consideration the tempo-
ral order of the frames (most notably, Hidden Markov Models, HMMs), they
have not been generally accepted to outperform the BOF approach ( [Aucou-
turier and Pachet, 2004,Aucouturier, 2006]).

To build a statistical model of the frames, usually Gaussian Mixture Models
(GMMs) or Single Gaussians are applied. As previous work indicates that using
Single Gaussians performs comparably to using GMMs [Pampalk, 2006b,Levy
and Sandler, 2006], here only the Single Gaussian case is considered. A possible
alternative to Gaussian modeling is using codebook approaches such as Vector
Quantization (VQ), however in [Aucouturier, 2006] such experiments did not
show an improvement of such approaches over GMM modeling with optimal
settings. While recent research has indicated that VQ based approaches can
perform comparably to similarity measures based on Single Gaussians [Sey-
erlehner et al., 2008], still for VQ algorithms a codebook has to be trained.
Thus they seem less �exible than Single Gaussian approaches when it comes to
generalizing to unseen music. Thus, VQ approaches are not considered here.

Based on the thoughts above, the experiments have two major directions.

1. In a like manner as in Section 2.5 it is evaluated if the commonly used way
to calculate the similarity between Single Gaussians can be replaced by
a di�erent similarity measure that performs better. This approach has
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been followed before for (multiple-gaussians) GMMs in [Jensen et al.,
2007]. Here a larger number of possible measures is evaluated.

2. As MFCCs do not capture certain aspects of the musical signal (short-
time developments and �ne-grained shape of the spectrum), it is evalu-
ated if additional features can be appended to each MFCC vector before
creating the Gaussian model, to obtain a better-performing overall mea-
sure.

As changes in each of these directions may have an in�uence on the perfor-
mance of the other (e.g., the performance of a similarity measure may depend
on the type of audio features), these are evaluated together. Next, the addi-
tional audio features are discussed, followed by a description of the evaluated
distance measures.

2.6.1. Additional Audio Features

The features based on MFCCs are tailored to capture the overall distribu-
tion of sounds, and the features based on FPs are designed to describe the
sound's periodic mid- to long term changes. Both approaches use a relatively
broad representation of the spectrum (e.g., these descriptors are based on 36
mel bands, which are combined into the equivalent of 25 bands in the case of
MFCCs, or to 12 bands in case of FPs). In this representation, information
about the shape of the spectrum on a �ner scale is lost. Most importantly,
no distinction is made if only a few sinusoidal components in the band are
clearly activated and the other frequencies are zero, or if the band contains
noise (assumed that in both scenarios there is the same signal power in the
considered band). From a perceptual point of view, this makes a clear di�er-
ence. Also, information about short-time changes between consecutive frames
is discarded.

2.6.1.1. Di�erential features from the literature. To incorporate such
information into the audio similarity measure, additional features have been
suggested in the literature. Here, three of them are evaluated: Delta Coe�-
cients / Acceleration Coe�cients [Aucouturier and Pachet, 2004], and Spectral
Contrast.

Delta Coe�cients are calculated by [Aucouturier and Pachet, 2004] as

dt =

∑Θ
θ=1 θ(ct+θ − ct−θ)

2
∑Θ

θ=1 θ2
(34)
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where dt is the resulting delta coe�cient for MFC coe�cient c at time t, and Θ
is the size of the window on which the delta coe�cient is calculated. Accelera-
tion Coe�cients are calculated by applying this formula twice (i.e., the formula
is applied on the Delta Coe�cients to calculate Acceleration Coe�cients). In
this work, Θ was set to 1 (and the normalization factor of 2 was omitted based
on the notion that KL divergence is invariant to linear scaling factors). There
are as many Delta / Acceleration Coe�cients as MFCCs. They are appended
to each MFCC vector, yielding a vector of twice the original dimensionality.

Spectral Contrast [Jiang et al., 2002] measures the logarithm of the power dif-
ference between the most silent and the most activated FFT bins in a (logarith-
mically spaced) band. While in [Jiang et al., 2002] eight octave-scaled bands
are used, [Aucouturier and Pachet, 2004] use the mel bands from MFCC com-
putation. These values are decorrelated by the KL-transform ( [Jiang et al.,
2002]) or by DCT ( [Aucouturier and Pachet, 2004]). In this work, the way of
calculating Spectral Contrast is adopted from [Aucouturier and Pachet, 2004],
i.e., the mel bands and DCT from MFCC calculation are re-used, and the re-
sulting contrast features are appended to each MFCC frame. This procedure
yields a vector with a dimensionality of twice the number of MFCCs. [Au-
couturier, 2006] reports an improvement of about 1% compared to standard
MFCCs, measured by R-Precision.

2.6.1.2. Kernel-based features. Another approach to add information that
is not contained in the MFCC vectors is to apply particularly designed �lter
kernels to the 2D representation of the spectrogram to detect the presence of
speci�c aspects of the signal. This approach has been adopted from computer
graphics. For music feature extraction, [Deshpande et al., 2001] use 25 direc-
tional Gaussian �lters, while [Pohle et al., 2006a,Yu and Slotine, 2009] calculate
the kernels from a number of randomly selected patches of training examples.
In this thesis, �lter kernels are designed manually after inspecting the spec-
trograms for the shape of harmonic and percussive structures (cf. [Ono et al.,
2008]). The used time-frequency resolution and the two �lters are discussed
next. The approach could also be extended to other structures of interest, such
as speci�c overtone constellations or short-time developments.

Time-Frequency Representation. The features described in this section are
meant to describe �ner-scaled aspects of the spectrogram, so the spectrogram is
divided into 128 instead of 64 bands as used for MFCC computation. To obtain
a representation that allows a straightforward interpretation of the audio signal
of music, the signal is represented on a cent scale. The signal parts below about
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70 Hz and above 95% of the Nyquist frequency are discarded. The applied
�lterbank transforms the magnitude FFT (i.e., amplitudes, not power) which
is calculated to have a T0 of approximately 0.1 sec into cent bands that are 66.7
cent apart by a weighted sum of the corresponding FFT bins. Subsequently,
in line with previous work that use the sone scale (e.g., [Pampalk, 2001]), a
scale transform is applied to obtain values presumably more closely related
to human loudness perception. Based on the notion that over a wide range,
perceived loudness approximately doubles when the signal pressure level is
increased by 10 dB [Fastl and Zwicker, 2007], each value a in the cent-scaled
spectrogram is transformed by

aloudness = 2
log10( a

p0
)

(35)

The e�ect of changing the constant p0 is a linear scaling of aloudness (the actual
scale factor is 1

2log10(p0) )
16.

Harmonicness. When observing spectrograms, it gets apparent that tones
in the music typically appear as horizontal lines stacked above each other.
Depending on timbre and clarity, the strengths and positions of these partial
tones are di�erent. �Harmonicness17� is a feature that is designed to extract
such horizontal lines. Based on the observation that notes are typically held
for at least �ve frames, the width of the kernel is set to �ve. The actual values
of the kernel are chosen based on the observations that bands close to a partial
typically contain only little power, but that a given partial may be measured
in several (e.g., two or three) neighboring bands. After mean removal, values
are scaled so that all positive values sum up to one. The resulting kernel is
depicted in Figure 15. An example spectrogram of the e�ect of Harmonicness
�ltering and subsequent half-wave recti�cation is given in Figure 17. As can
be seen, Harmonicness is related to strength of tone harmonics.

Attackness. Attackness is a similar concept applied to the clear vertical
structures of the spectrogram, which correspond to drum and percussive-like
sounds. The kernel is based on the same as the one used to compute Har-
monicness, but rotated by 90 degrees. The focus lies on detecting onsets, i.e.,

16Note: Due to a bug in the implementation, the natural logarithm was used in the com-
putations presented here, which approximately corresponds to taking the 2.3th power of
the intended values

17We chose this rather awkward name because this feature is loosely associated with har-
monicity, but does not actually measure it exactly.
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Figure 15: Kernel used to compute Harmonicness on a cent-scaled time-
frequency resolution. Bands are 66.7 cents, and frames are 46.4 ms apart.

it is only of importance that the energy in many bands increases simultane-
ously, and not how long it remains at the higher level. Therefore, the values
in the two rightmost columns are set to zero, i.e., the values in the rightmost
frames have no e�ect on the resulting value. The resulting kernel is depicted
in Figure 16. This feature resembles Percussiveness as described in [Pampalk,
2006b]. However, it is computed not on two, but on three consecutive frames,
and assigned one particular frame (which is important for combination with
MFCCs).

Figure 16: Kernel used to compute Attackness on a cent-scaled time-frequency
resolution. Bands are 66.7 cents, and frames are 64.4 ms apart.

Combining Harmonicness and Attackness with MFCCs. Harmonicness
and Attackness are meant to complement the information contained in MFCCs,
so they are added to each frame's MFCC vector as additional components. To
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this end, all �ltered values of a frame are half-wave recti�ed and summed up
to obtain one value for the feature. The Gaussian model is then built with
the MFCC vectors enriched with two additional values. As the MFCC frames
and cent frames may have a di�erent frame size and hop size, Harmonicness
and Attackness values are interpolated appropriately. The way of comparing
Gaussians is not changed.

Harmonicness and Attackness also can be used in other ways in MIR appli-
cations. For example, they can be used to order music in a collection by the
amount of percussive drum events as opposed to the amount of melodic sounds
contained in the signal. Such a combined feature value is calculated by the
H2A Ratio

H2Aratioi =
hi

hi + ai

(36)

where hi and vi are the sum of the half-wave recti�ed Harmonicness and At-
tackness values over all frames of song i, divided by the total sum of all values in
song i's cent spectrogram. Generally, a low H2A Ratio indicates mostly percus-
sive tracks with few sustained sounds, while a high H2A Ratio indicates tracks
with mostly steady and harmonic instruments with few percussion sounds.
Ordering the tracks in a collection by H2A Ratio gives a roughly steady pro-
gression between these two extremes. An example use of this descriptor is
given in Section 7.1. It is related to Percussiveness [Pampalk, 2006b], but is
independent of the overall loudness, and measures aspects of both harmonic
and percussive elements.

2.6.2. Alternative Distance Measures between Gaussians

In this section, the evaluated distance measures between Gaussians are given.

2.6.2.1. KL Divergence In the domain of music similarity computation, the
Kullback Leibler (KL) Divergence can be regarded as the most commonly used
measure for comparing Gaussians. The (asymmetric) KL divergence between
Gaussians N1 and N2 with means µ1, µ2 and covariance matrices Σ1, Σ2 can
be computed as [Penny, 2001]

DKL(N1,N2) = 0.5 log
|Σ2|
|Σ1|

+ 0.5Tr(Σ−1
2 Σ1) (37)

+ 0.5(µ1 − µ2)
T Σ−1

2 (µ1 − µ2)−
d

2
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Figure 17: Spectrogram of a song excerpt before and after Harmonicness /
Attackness �ltering and half-wave recti�cation. The original spectrogram is
given in the center to facilitate comparison with the �ltering results. The
di�erent scales can be accounted for by multiplication with a constant factor.
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2.6 Modi�cation of the Gaussian Component

where |Σ| is the determinant of matrix Σ and d is the number of dimensions.
The constant term d

2
can be disregarded in the context considered here. A

symmetrised version is given by [Mandel and Ellis, 2005b]

D2KL (N1,N2) = Tr
(
Σ−1

2 Σ1 + Σ−1
1 Σ2

)
+ (µ1 − µ2)

T (Σ−1
2 + Σ−1

1

)
(µ1 − µ2) (38)

− 2d

In the experiments presented below, this is used as a baseline algorithm.

2.6.2.2. Alternative to symmertised KL divergence. As an alternative
to calculating the symmetrised KL divergence, we use Equation 23 with the
entropy calculated on multivariate normal distributions (cf. [Lamberti and
Majtey, 2003], �rst equation on p. 84).

DJS = H(M)− 1

2
H(N1)−

1

2
H(N2) (39)

where H denotes the entropy, and M is the GMM resulting from merging N1

andN2 with same weights. We approximate H(M) in a straightforward way by
merging N1 and N2 into a Single Gaussian [Huber et al., 2008]. Two Gaussians
are merged according to the following equations [Ma and He, 2005]:

z3 = z1 + z2

µ3 = (z1µ1 + z2µ2)/z3 (40)

Σ3 = (z1Σ1 + z2Σ2 + z1µ1µ
′
1 + z2µ2µ

′
2 − z3µ3µ

′
3)/z3

where z1 and z2 give the relative weights of N1 and N2 (0.5 in this work).

The entropy of a Single Gaussian N (µ, Σ) is given by (e.g., [Srivastava and
Gupta, 2008]):

h(X) =
d

2
+

d ln(2π)

2
+

ln |Σ|
2

(41)

We use the square root of DJS.

2.6.2.3. Mahalanobis Distance In [Xu et al., 1998], Mahalanobis distance
between two Gaussians is calculated as follows:

dis1 = (µ2 − µ1)
T Σ−1

1 (µ2 − µ1)

dis2 = (µ1 − µ2)
T Σ−1

2 (µ1 − µ2) (42)

dis = (dis1 + dis2) /2
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Note that this de�nition is di�erent from the one given in [Levy and Sandler,
2006], where instead of using the covariance matrices of the two songs directly
as above, covariance matrices were used to re�ect the variance of mean and
covariance over the whole collection. While comparison time is reported to
be magnitudes faster, this showed to produce lower accuracies than using KL
divergence.

2.6.2.4. L2 Distance The normalised L2 Distance between two Gaussians
is de�ned as [Jensen et al., 2007]

dnL2(N ′
1,N ′

2) =

∫
(p′1(x)− p′2(x))2dx (43)

where N ′ is N scaled to unit L2-norm by N ′ = p(x)/
√∫

p(x)2dx. By basic

math, Equation 43 can be reformulated as dnL2(N ′
1,N ′

2) = 2(1−
∫

p′1(x)p′2(x)dx),
which can be computed by applying formulae (5.1) and (5.2) from [Ahrendt,
2005]. [Jensen et al., 2007] report that L2 on GMMs of MFCCs is slightly in-
ferior to the KL distance with respect to genre classi�cation accuracy. Here it
is included to test its performance when other features are added.

2.6.2.5. Bhattacharyya Distance The continuous form of the Bhattacharyya
distance for normal distributions is [Fukunaga, 1997]

DB(N1,N2) =
1

8
(µ1 − µ2)

T

(
Σ1 + Σ2

2

)−1

(µ1 − µ2) (44)

+
1

2
ln

( ∣∣Σ1+Σ2

2

∣∣√
|Σ1| ·

√
|Σ2|

)

The Bhattacharyya coe�cient18 is calculated from the Bhattacharyya distance
as

ρ(a, b) = exp(−DB(a, b)) (45)

[Comaniciu et al., 2003] prove that � in contrast to the Bhattacharyya coe�-
cient itself � for the discrete case the distance

DBC(a, b) =
√

1− ρ(a, b) (46)

18see Online Encyclopaedia of Mathematics, http://eom.springer.de/default.htm, �Bhat-
tacharyya distance� http://eom.springer.de/B/b110490.htm
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2.6 Modi�cation of the Gaussian Component

is a metric. In this thesis, both DBC(a, b) and a simple variation of it is
evaluated. We merge N1 and N2 by applying Equation 40 (cf. Section 2.6.2.2
and 2.5.1.5), and sum up the distances DBC from each Gaussian to the merged
Gaussian. This distance measure is denoted JSB.

2.6.3. Evaluation: Choosing Distance Measure and Additional
Features

Evaluation is carried out as in Section 2.5. Altogether, there were 96 dif-
ferent combinations of similarity algorithms and feature sets. All these were
evaluated with 26 MFCCs including the 0th coe�cient (i.e., coe�cients 0 to
25). As a comparison to G1Cmod, also the corresponding evaluation results
for MFCCs 1 to 25 without additional features are given for the KL diver-
gence. Results for DB-MS and DB-L* are given in Figures 18 and 19. In the
evaluation on DB-MS, it turns out that the evaluated variant of the Maha-
lanobis distance (Equation 43) was signi�cantly below those of the baseline
algorithm even when adding the evaluated additional features. For better vis-
ibility, results for Mahalanobis distance are not shown in the �gure. Average
classi�cation accuracies for the evaluated Mahalanobis distance were between
52.2% (MFCCs + Delta Coe�cients + Acceleration Coe�cients) and 56.6%
(MFCCs + Harmonicness & Attackness + Spectral Contrast).

2.6.3.1. Estimating distance measure performance. On DB-MS, for any
given feature combination of those evaluated, JSB has a higher classi�cation
accuracy than all other distance measures, and L2 has a lower classi�cation
accuracy than all other distance measures. Extending this way of counting
how often similarity measures outperform other measures for a given feature
set, it is possible to create a performance ranking. As DJS outperforms B in
13 out of 16 comparisons, and B outperforms KL in 14 out of 16 comparisons,
this ranking takes the form: JSB � JS � B � KL � L2 � Mahalanobis. Based
on these results, L2 and Mahalanobis distance were not evaluated on DB-L*.
The corresponding evaluation for the remaining four distance measures based
on results obtained on DB-L* yields the same ranking.

2.6.3.2. Comparing feature performance. By counting in how many cases
classi�cation accuracy increases when a particular feature is added (as com-
pared to the analogous algorithm without this particular feature), it is possible
to create a ranking of features. On DB-MS, altogether there are 16 feature
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2 Similarity of Audio Signals

Figure 18: DB-MS: Variants for Gaussian Component. Distance measures: l2
- Euclidean Distance, kl - KL Divergence, b - Bhattacharyya Coe�cient, js
- DJS, jsb - modi�ed measure using Bhattacharyya Coe�cient. Features: d
- Delta Coe�cients, a - Acceleration Coe�cients, c - Spectral Contrast, h -
Harmonicness / Attackness
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Figure 19: DB-L*: same evaluation as in Figure 18.
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combinations (of which 8 contain a particular feature and 8 don't contain this
feature). Counting this over all 5 distance measures gives a maximum score
of 40. The only feature that scores this high on DB-MS is Harmonicness /
Attackness, i.e., adding this to any existing feature combination (and distance
algorithm) always increases classi�cation performance in the evaluations con-
ducted here. The corresponding scores for the other features were 31 (Spectral
Contrast), 25 (Delta Coe�cients) and 13 (Acceleration Coe�cients). The same
ranking is obtained on DB-L*, where the maximum possible score is 32 as L2
was not considered: Harmonicness / Attackness (32), Spectral Contrast (32),
Delta Coe�cients (18) and Acceleration Coe�cients (0). All these can be
calculated from the �gures in Appendix A.

The results considering Spectral Contrast are in line with those in [Aucouturier,
2006], i.e., there is a (slight) improvement when adding Spectral Contrast to
MFCCs.

2.6.4. Estimating the Impact of Some Simple Modi�cations

Having assessed the performance of the features in their basic form, in this
section a number of simple modi�cations are discussed, and their impact on
the overall performance is estimated.

2.6.4.1. Estimating a good number of Spectral Contrast coe�cients.
To estimate the contribution of each Spectral Contrast Coe�cient to the overall
performance, and to see if using fewer coe�cients might improve performance,
genre classi�cation experiments were conducted. The results are reported in
Figure 20.

It can be seen that on the Normalization Collection, the optimum classi�cation
accuracy is already obtained with about 10 coe�cients, and stays more or less
constant when using more coe�cients. However, on DB-MS, classi�cation
accuracy continuously increases when adding up to 25 coe�cients (which was
the maximum evaluated). When combining the Spectral Contrast coe�cients
with 25 MFCCs, di�erences become rather small, although there still seems to
be some improvement with increasing number of coe�cients. The conclusion
from these experiments seems to be that one can use all (25) coe�cients,
including the 0th, but it should also be safe to reduce the number of used
coe�cients to 10, for instance.
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2.6 Modi�cation of the Gaussian Component

Figure 20: Classi�cation accuracies (given on a scale from 0 to 1) when using
Spectral Contrast as the only feature, KL Distance. Above: Normalization
Collection, 10NN. Below: DB-MS, 20NN.

69



2 Similarity of Audio Signals

2.6.4.2. Estimating the use of 2D MFCCs. The experiments presented
above indicate that the most recommendable feature combination is MFCCs,
Spectral Contrast and Harmonicness / Attackness. The previous experiment
indicates that modifying the number of Spectral Contrast coe�cients has no
large impact on the performance. Delta and Acceleration Coe�cients are not
part of the selected feature set, and thus the set contains no feature based on
temporal succession of MFCCS.

In this section, it is examined if modeling such short-time progressions by
two-dimensional MFCCs is suited to improve classi�cation accuracy. Two-
dimensional MFCCs (cf. [Bouvrie et al., 2008]) are calculated by taking for each
MFCC frame the n next MFCC frames, and calculating the n-point DCT over
these frames for each MFCC coe�cient. When computing c MFCC coe�cients,
this procedure yields n ·c coe�cients, which are stacked into one feature vector
for the current frame. Two tracks can be compared with the Single Gaussian
approach.

For the corresponding experiments given in Figure 21, n = 3 and n = 5 were
evaluated. It can be seen that classi�cation accuracy does not exceed the
one obtained with 25 (one-dimensional) MFCCs. Consequently, in subsequent
experiments, 25 MFCCs in their basic form are used. Evaluating if in combi-
nation with other features, 2D-MFCCs perform better than basic MFCCs is
left for future work.

2.6.5. Runtimes of distance measures.

With the experiments that are presented in the previous sections, indication
is given that the techniques evaluated so far can not be improved with the
discussed simple modi�cations. As a consequence, the combined measure (and
�nal resulting algorithm of this thesis) will be built on the basic distance
measures that were evaluated in the Friedman tests presented above. Before
proceeding to combining the basic distance measures into a common measure
(to which Section 2.7 will be dedicated), the important aspect of runtime
is discussed. Figure 22 gives the results of the distance measures between
single Gaussians Features were implemented and run in Matlab. No speci�c
runtime optimizations were done except precomputation of partial results that
are needed during distance calculation (such as entropy values or matrix inverse
and determinants). The computer had a 3 GHz CPU and a usual software
setup.
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Figure 21: Classi�cation accuracies on 2D MFCCS calculated from 3 and 5
consecutive frames when all coe�cients within the matrix up to a particular
pair of indices are used. E.g., the value at position 5, 2 indicates the accuracy
based on the coe�cients in the matrix with lower left edge 1, 1 and upper
right edge 5, 2. KL Distance. Left: Normalization Collection, 10NN. Right:
DB-MS, 20NN. Above: 3 consecutive frames, below: 5 consecutive frames
(variants including more than 75 coe�cients were not computed and marked
blue). Altogether, 366 classi�cation experiments were run.
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Figure 22: Runtimes of distance measures between single Gaussians for various
dimensionalities of the feature data.

It can be seen that the evaluated variant of the Mahalanobis distance, which
was the measure with the lowest performance in the experiments, has the
fastest runtime. On the other side of the scale, the measure that performed
best (JSB) has the highest runtime. Two implementations of DJS are evalu-
ated. The �rst is to calculate and sum up the KL divergence of each Gaussian
to the merged Gaussian (denoted js), and the second is the calculation by
entropy given in Section 2.6.2.2. With the used implementations, computing
DJS based on the entropy instead of the KL divergence brings a clear perfor-
mance improvement. In these experiments, its runtime is comparable to the
basic implementation of the symmetrised KL divergence. As we see no obvious
optimization for JSB, and as DJS outperforms KL divergence in the classi�-
cation experiments, we choose DJS to be used in the �nal combined similarity
measure of this thesis.

2.6.5.1. Conclusion Combining the results from this section, it follows that
of the evaluated feature combinations, MFCCs with Spectral Contrast and
Harmonicness / Attackness performs best, which will be selected for subse-
quent evaluations. While the most recommendable distance measure is JSB,
this measure takes most time to be computed in the evaluated implementation.
Replacing it with DJS that is much faster to compute brings a minor, yet not
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signi�cant, decrease in classi�cation accuracy when using the selected feature
set. All these aspects make this combination (denoted JS-MHC) the candidate
that was �nally selected for combination experiments.

2.7. Combining the Parts into one Similarity Measure:

G1Cmod2

In the previous sections, the various basic similarity measures used in G1C /
C1Cmod are discussed, and variants are proposed and evaluated. Each of the
basic similarity measures focuses on a more or less particular aspect of the sig-
nal. To obtain one overall similarity measure, these basic similarity measures
have to be combined. In this section, various approaches to accomplish this are
discussed and evaluated. The outline is as follows. To restrict the potentially
endless space of potential experiments, �rst for each basic similarity measure,
one variant of those evaluated in the previous sections is chosen. In this choice,
various aspects are taken into consideration, including the performance of the
various variants in the previously presented experiments. Subsequent experi-
ments focus on how to combine these chosen basic measures. Generally, the
weighting of the basic measures is the same as in G1C / G1Cmod (i.e., 0.7, 0.1,
0.1, and 0.1). This weighting is adapted from [Pampalk, 2006b], and an eval-
uation of the e�ect of modifying these weights for the modi�ed features is left
for future work. From the experiments, a number of conclusions is drawn.

2.7.1. Chosen basic similarity measures.

When choosing a variant of a basic similarity measure as a building block for
a combined measure, various aspects play a role. First of all, its performance
in the previous experiments should be above the baseline (i.e., higher than
the measure used in G1C / G1Cmod). If all chosen basic similarity measures
are metrics (most notably, ful�ll the triangle inequality), then the combined
measure also might be a metric, subject to the chosen combination method.
This is a condition useful for using some fast indexing and retrieval methods,
such as M-Tree [Ciaccia et al., 1997] or FastMap [Faloutsos and Lin, 1995].
Another preferable property is that the basic similarity measure be bounded,
which can make the range of the resulting combined similarity measure more
predictable. A measure that is not bounded can be transformed to be bounded
(e.g., by applying Equation 4).
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Based on such considerations, for FPs (Section 2.5.2), D5 calculated from
unnormalised FPs was chosen. It has a high ranking on both evaluation col-
lections, it is bounded in the range [0, 1], and empirical tests indicate that it
ful�lls the triangle inequality. Furthermore it is meaningful from a conceptual
point of view. The same measure (D5 calculated from unnormalised data)
was also chosen for the FP timbre component FPT (Section 2.5.4) for similar
reasons.

For the rhythm component FPR, the experiments indicated that Correlation
seems the best choice (cf. Section 2.5.3). However, it does not ful�ll the
triangle inequality. The performance of Jensen-Shannon (JS) divergence on
FPRs normalised to sum to one is not much lower (no signi�cant di�erence),
and its square root is a metric. Furthermore, the resulting values are bounded
(cf. [Briët and Harremoës, 2009]), as for a given number of bins, there is a
maximum value for the resulting entropy.

For the Gaussian component, the experiments (Section 2.6) indicate that there
is not much of a choice. As discussed in Section 2.6.3, the square root of
DJS is chosen. From [Huber et al., 2008], Theorem 3, we conclude that the
(exact) result of Equation 39 is bounded by − log 0.5. However, experiments
on the DB-Norm collection indicate that our approximation (which gives an
upper bound of the exact value, which we conclude from [Huber et al., 2008],
Theorem 4), in many cases yields values above this bound even for the closest
tracks. For example, when calculated on Gaussians calculated from MFCCs
containing coe�cients 0..25, resulting distances are larger than− log 0.5 ≈ 0.69
even in all cases, except for identity. They have an average value of 3.23, and
a maximum value of 8.1. A possible reason may be the dimensionality of the
data.

2.7.2. Pre-Normalization.

The similarity measures that are to be combined are likely to be of di�erent
magnitudes and to be di�erently distributed along their scales. An approach
to handle this is to assume a Gaussian distribution, and apply mean removal
and division by standard deviation (z-normalization19). In [Pampalk, 2006b],
normalization factors are determined over a large number of track distances,
and then kept �xed for a given basic distance measure. While the resulting
combination has the same e�ect as arithmetic weighting (as constant o�sets
do not have an e�ect on the similarity ranking), weighting factors appear as

19http://en.wikipedia.org/w/index.php?title=Standard_score&oldid=316839844
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separate terms and are more intuitively understandable (0.1, 0.1, 0.1 and 0.7,
which sum up to one). To normalize the distances of a particular track to
all other tracks in the collection by z-normalization has been proposed by
Schnitzer [Pohle and Schnitzer, 2007]. Possible alternatives to z-normalization
include those presented in [Pohle et al., 2006b].

Such normalization approaches that determine normalization factors for each
seed track separately have three aspects that need to be taken into consid-
eration. First, in most cases this invalidates the triangle inequality. Second,
when normalization factors are set for each seed track separately, then the re-
sulting similarities are not symmetric any more. This can be compensated by
summing up the calculated distances in each direction. Third, normalization
factors depend on (all) the other tracks in the music collection. This implies
that distances between tracks may change when new tracks are added to the
collection, or when tracks are removed. To avoid this, it is possible to calculate
the normalization factors not on the (whole) music collection, but rather use
a small �xed set of songs to compute the factors. Such a set is called normal-
ization collection in this work. The music contained in it could be chosen to
be representative for the music (expected to be) in the collection, or aiming to
cover a wide range of di�erent music styles.

2.7.3. Transforming Distances to Probabilities.

An alternative to such pre-normalization is to transform distances to probabil-
ities based on class membership knowledge (cf. [Mahamud and Hebert, 2003]).
A linear combination of basic distance measures assumes that the perceived
�quality� associated with the distance decreases linearly, which is unlikely to
hold. Here, an empirical approach to model how calculated distance and actual
similarity presumably are related is evaluated. Using the DB-Norm collection,
a number of (quite) optimistic assumptions is made. First, it is assumed that
all tracks within a genre (class) are �similar�, and all pairs of tracks that are
in di�erent classes are �not similar�. Furthermore it is assumed that due to
the variety of the contained music, the range of measured distances and their
distribution is what one usually could expect to observe. By Bayes' rule, the
probability that for a measured distance d between two tracks i and j the two
tracks are not in the same class y is given by [Mahamud and Hebert, 2003]

p(yi 6= yj|d) =
p(d|yi 6= yj) · p(yi 6= yj)

p(d)
(47)
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Following [Mahamud and Hebert, 2003], for the range of observed distances
d, this is modeled by kernel density estimation. The modeled distribution is
sampled at 100 equidistant values, which are stored for use by interpolation
(table lookup). While it would be possible to build elaborated combination
approaches upon this (cf. [Mahamud and Hebert, 2003]), here the interest is
rather if the transformation to probabilities is bene�cial.

Figure 23: Probability that for a given distance, two tracks that have the given
distance are in di�erent classes of DB-Norm. The highest FPR values pro-
duced a sharp decay in the curve, which is most likely due to outliers (tracks
in the same class having high distances), which was removed manually by
setting the associated probabilities to 1.0.

When transforming the distances to probabilities for the chosen basic similarity
measures, the resulting probabilities associated with each distance are given in
Figure 23. These are used to transform the occurring distances to probabilities
in some of the classi�cation experiments presented below.

2.7.4. Combination approaches.

A common and straightforward way to combine di�erent audio similarity mea-
sures is by arithmetic weighting. In [Pampalk, 2006b], it is stated that the
arithmetic weighting has the conceptual problem that a single aspect of the
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music pieces is su�cient to be considered similar by a human listener, which is
not re�ected by arithmetic weighting. Based on this concept, two algorithms
submitted to the MIREX'07 AudioSim task [Bosteels and Kerre, 2007a] com-
puted the minimum and maximum of FP and GMM distances, respectively.
Results indicate that taking the minimum value of the similarity measures
yields better results than taking their maximum similarity. However, based
on these results only, it can not be concluded that taking the minimum or
maximum outperforms arithmetic weighting.

In this thesis, a number of combination approaches is evaluated:

1. Z-Norm Global: Static normalization factors as used in G1C. Means and
variances for each basic similarity measure are determined on all pairwise
distances calculated on the current collection.

2. Z-Norm Local: This is the approach as used in G1Cmod. Normalization
factors are determined for each track based on the distance of this track
to all other songs in the collection. When two tracks are compared,
the resulting basic similarities are normalised twice (once with each set
of normalization factors belonging to each of the two tracks), and the
result is summed up.

3. Z-Norm Normcollection: Same principle as Z-Norm Local, but the nor-
malization factors associated with each track are determined by calcu-
lating the distances to a (static) normalization collection that is distinct
from the music collection, and was determined beforehand.

4. Probability-Based: Distances are transformed to probabilities as dis-
cussed above. The basic similarity measures are combined by taking
the minimum, maximum and mean of their estimated probabilities. Fur-
thermore, a simple multiplication-based weighting is evaluated. After
transforming each basic distance measure Dx to the range of 0..1, the
distance is computed as D = 1−

∏
x (1−wx ·Dx).

The approaches are evaluated on the two optimization collections. Results are
given in Figure 24.

It can be seen that the combination method is an important step, in which
potential increases in quality can be lost if the wrong method is applied. The
three top-ranked combination methods have the same ranking on both collec-
tions, indicating a certain stability of the results. When used together with
the selected basic similarity measures, they outperform the baseline algorithms
(G1C / G1Cmod) on both collections (although no signi�cance is measured
on DB-L* between G1Cmod and the global method). The experiments don't
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Figure 24: Combination approaches.

show that the probability based method is favorable, although the weighted
combination slightly outperforms G1Cmod.

The global method � although not signi�cantly better than G1Cmod on DB-
L* � has the advantages over the local methods that empirical results show
it is a metric, which is not the case for the local methods (and neither for
G1C nor G1Cmod). Using a normalization collection instead of the current
music collection to determine the normalization factors brings a slight yet not
signi�cant performance decrease as compared to the best-performing method,
local z-normalization.

To facilitate a comparison with other publications, the classi�cation accuracies
achieved with this method on DB-MS are given in Table 3. In this experiment,
classi�cation accuracies are determined di�erently than in most other exper-
iments presented in this thesis. In most other experiments, accuracies are
average percentages of tracks in the set of k closest tracks that are in the cor-
rect class. In contrast, for this experiment a majority voting is done, i.e., the
predicted class is the class to which most of the k closest tracks belong. If this
class is the correct class, then the seed track is considered as classi�ed correctly
(and gets a score of 1), otherwise not (score 0). In case of ambiguity, i.e., if
there is no clear majority voting decision, then the seed track gets a score of 1

n

if the correct class is among the n candidate classes, otherwise it gets a score
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of 0. This way of scoring simulates a very large number of experiments with
randomly assigning one of the n candidate classes.

NN 1 3 5 10 20 50
No AF 87.2% 84.8% 83.8% 81.4% 79.8% 72.8%
With AF 73.0% 73.0% 74.5% 73.6% 70.6% 67.6%

Table 3: Leave-one-out genre classi�cation of G1Cmod2 on DB-MS. Classi�-
cation is based on majority voting, in contrast to most other experiments
in this thesis, that give percentages of matching songs. With 10-fold cross
validation, the 1NN value is 72.8% with AF.

NN 1 3 5 10 20 50
No AF 83.7% 81.6% 80.2% 77.5% 74.3% 69.7%
With AF 71.6% 70.2% 70.4% 69.6% 66.6% 64.9%

Table 4: Same evaluation as in Table 3 but based on only 30 seconds from the
center of each audio �le. With strati�ed 10-fold cross validation, 1NN values
are 83.3% without artist �lter (AF) and 71.0% with AF.

In comparison with previously published approaches (most notably, G1C
[Pampalk, 2006b]), the results in Table 3 are about 5 percentage points higher.
Table 4 give the results obtained when features are extracted from 30 s (sam-
pled at 22 kHz) from the center of each audio �le, instead of using 120 s. The
obtained results are clearly above those typically found in the literature for this
algorithm. For example, also using 30 s / 22 kHz excerpts, [Moerchen et al.,
2006] report classi�cation accuracies (obtained by 10-fold cross validation) of
up to 70% based on up to tens of thousands of audio features and state-of-the-
art machinge learning algorithms. [Pohle, 2005] reports a classi�cation accu-
racy of up to 72.3% (based on 30 s excerpts sampled at 11 kHz). These results
are about 11.4 percentage points below those obtained with G1Cmod2. With
these results, it has to be kept in mind that the G1Cmod2 algorithm has been
optimised on DB-MS, so that there is the danger of over�tting. Consequently,
comparisons of this new algorithm G1Cmod2 to G1C and G1Cmod on other
music collections are carried out to estimate to which extent these results are
generalizable. These experiments are presented in the next section.

2.8. Evaluation of the Resulting Algorithm

In Figure 25, comparisons of the developed algorithm (G1Cmod2) to the base-
line algorithms (G1C and G1Cmod) are given. In the evaluation, G1Cmod2
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performs signi�cantly better than the baseline algorithms. The improvement
is 6.8 and 11.2 percentage points in comparison to G1C, and 5.8 and 10.2
percentage points in comparison to G1Cmod.

Figure 25: Evaluations on music collections that were not used for optimizing
the algorithm. Right: Average percentage of items within the 20 nearest
neighbors that have the same genre as the seed, with artist �lter.

In Table 5, genre classi�cation accuracies on DB-HOMB are listed. When
using DB-NORM for determining the normalization factors for DB-HOMB,
classi�cation accuracy drops slightly (1NN: 52.7%, 10NN: 56.1%). For this
data set, initial experiments in [Homburg et al., 2005] report classi�cation
accuracies of up to 53.23%, and [Moerchen et al., 2006] report accuracies of
up to about 55%, based on 10-fold cross validation, using feature selection
and machine learning algorithms. Usually, one would expect such algorithms
that are optimised for high classi�cation accuracy (most notably, SVM based
classi�cation algorithms) to outperform simple kNN approaches. This notion
re�ects for example the results of the MIREX'07 audio genre classi�cation
task, where only one out of seven submissions was based on a kNN classi�er,
and this submission ranked lowest20. In the MIREX 2008 Genre Classi�cation
Task no submission was based on a kNN approach.

Based on this expectation, it is surprising that the accuracies of G1Cmod2
obtained with a kNN classi�er are clearly above these previously reported
accuracies. This might be seen as an indication that the applied features are
in fact well suited to model music similarity, and that they are used in an

20http://www.music-ir.org/mirex/2007/index.php/Audio_Genre_Classi�cation_Results
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NN 1 3 5 10 20 50
G1C 45.0% 46.9% 49.4% 50.9% 51.0% 51.0%
G1Cmod 47.6% 49.7% 51.9% 53.1% 53.2% 51.9%
G1Cmod2 53.6% 56.2% 57.5% 58.6% 58.3% 56.2%

Table 5: Leave-one-out genre classi�cation on DB-HOMB. Classi�cation is
based on majority voting. No artist �lter was applied. With artist �lter
(AF), the highest accuracy drops from 58.6% to 57.7%. When using strati-
�ed 10-fold cross validation it is 58.2 (no AF).

appropriate way. Probably classi�cation accuracy can be improved further
when sophisticated machine learning algorithms are used on the features used
in this thesis. However, such experiments are not done here because the focus
of this thesis lies on music similarity, not on music classi�cation.

2.9. Conclusion

Many things have been tried to improve the canonical MFCC / GMM algo-
rithm, and there is the common assumption that there exists a glass ceiling
that can not surpassed [Aucouturier and Pachet, 2004]. The work presented in
this chapter indicates that after extensive evaluations, there was some success
in improving the overall algorithm. The resulting algorithm performs signif-
icantly better than G1C and G1Cmod on the two music collections it was
developed on, and on the two additional music collections it was tested on.

Work following the work presented in this chapter includes [Pohle et al., 2009],
where we propose modi�cations to the way Fluctuation Patterns are computed.
Combining these modi�ed Fluctuation Patterns with the Gaussian component
proposed here, we arrived at an algorithm that � relative to our evaluation
setting � performs well both in the task of rhythm similarity computation and
for general music similarity computation. We submitted this algorithm to the
MIREX'09 Audio Similarity and Retrieval task, where it ranked �rst21.

21results can be found at http://www.music-ir.org/mirex/2009/index.php/
Audio_Music_Similarity_and_Retrieval_Results
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3. Similarity of Web Pages

In Chapter 2, techniques have been discussed to estimate how similar two
music tracks sound by analyzing their audio signal. It is common sense that
there is more to music than the plain audio signal. For example, the asso-
ciations evoked by lyrics are not captured by audio analysis. Also, di�erent
kinds of popular music are commonly associated with particular subcultures.
These associations may have an impact on the user's musical taste, and may
in�uence (and thus be re�ected within) human-generated recommendations.
The Internet o�ers rich sources to obtain such recommendations, opinions and
socio-cultural information, which is for example re�ected in music reviews.
This kind of data can be retrieved (semi-)automatically (e.g., by using a search
engine, or specialised web services), and text information retrieval techniques
can be used to extract terms with associated weights. Such a vector space
of descriptive textual terms is called �community metadata� [Whitman and
Smaragdis, 2002,Whitman and Lawrence, 2002]. Community metadata can
be used to complement audio-based techniques.

This chapter starts with a review of a number of ways to obtain data relevant
for music retrieval from the Internet. Then, the focus is laid on an approach to
automatically collect information about similarity of music artists. By query-
ing a search engine, a number of web pages is collected for each artist, and
the subsequent use of text mining techniques allows for computing a similarity
score between two artists. The main contribution of this chapter is that a large
number of possible variants known from text information retrieval is evaluated
for their potential to compute an appropriate similarity score between music
artists based on this data. These experiments lay the foundation for Chapter 5,
where a step is taken into the direction of automatically deriving semantically
meaningful concepts to describe various kinds of music artists, and thus music
itself.

3.1. Approaches to Collect User-Generated Metadata

In this section, a number of approaches to collect music metadata based on
human knowledge and opinions is presented.
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3.1 Approaches to Collect User-Generated Metadata

3.1.1. Explicit Data Collection

The most straightforward way to collect information about artist similarity, or
related information such as genre, is by letting people explicitly deliver it. For
example, [Berenzweig et al., 2003] present a user survey asking people about
how similar they rate artists of a set of 400 artists.

Another explication of musical knowledge are expert opinions. For example,
on allmusic.com for an artist a list of similar artists is provided, and a list
of genres the artist is assigned to. In a number of publications, such expert
opinions have been used as ground truth to evaluate automated approaches
(e.g., [Berenzweig et al., 2003]).

In recent years, tagging has become more popular. For example, the online
music platform last.fm lets users assign tags to pieces of music, or music artists.
This tag data is made available over an API. Another approach is to collect
tags in the form of a game [Law et al., 2007,Mandel and Ellis, 2007,Turnbull
et al., 2007,Turnbull et al., 2008]. The basic principle of the game [Ahn and
Dabbish, 2004] is to present the same item (which is a song in this case) to
two di�erent people, asking them to provide tags. Points are rewarded when
both users provide matching tags. Tags that are proposed multiple times are
taken as valid annotations for the item.

3.1.2. Playlists and User Collections

While explicitly asking people can be a source of high-quality data, it is time-
consuming to participants. A less time-consuming alternative to obtain certain
types of information about music is to analyze user data, such as which music
users have in their music collection, and how often they listen to which music.
Presented in [Whitman and Lawrence, 2002], �peer-to-peer similarity� is a way
to calculate artist similarity based on the number of users that have a particular
artist in their music collection (determined via OpenNap22), compensating for
artist popularity. Alternatively, playlists can be analysed for tracks or artist
co-occurrence patterns [Logan et al., 2003,Stenzel and Kamps, 2005]. Playlists
created by human users can be obtained e.g. from artofthemix.org.

22http://opennap.sourceforge.net/
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3.1.3. Text Information (Web Pages)

Analyzing playlists and user collections can give insight about how similar two
artists (or tracks) are. Another source for similarity estimation is o�ered by
the use of text mining techniques that create a term weight vector for each
item (artist or song) that represents the weights of the terms in a dictionary.
As most of the text based work in this thesis is based on this method, the
foundations are discussed in more detail in the following.

3.2. Obtaining Community Metadata by Text

Information Retrieval

The process of obtaining community metadata by using text information re-
trieval techniques can typically be divided into three phases: data acquisition,
data analysis and usage, which are discussed in the next sections.

3.2.1. Data Acquisition.

In the �rst step, data acquisition, relevant text documents for each item are
retrieved. For example, [Baumann and Hummel, 2003,Knees et al., 2004,Whit-
man, 2005] use a web search engine to �nd relevant text documents for an item
(e.g., artist), and retrieve the top ranked documents for each item. To narrow
the search and increase the number of relevant documents, it is common us-
age to send a query string like �artist name� music review. [Whitman and
Ellis, 2004] retrieve documents from particular web sites (All Music Guide,
Pitchforkmedia.com). Such a limitation has the advantage that more assump-
tions can be made about the kind of data returned. For example, the retrieved
data can be better focused to record reviews, and speci�c assumptions about
page structure can be made which facilitates parsing of relevant information.
Limiting the data source to speci�c web sites has the potential drawback that
the chosen web sites have a focus on particular communities and thus may con-
tain biased data (record reviews written only by members of a speci�c social
group, for instance). Other potential sources include RSS feeds [Celma et al.,
2005,Celma et al., 2006], and the API o�ered by last.fm23, where for example
weighted tag lists for a query artist can be obtained.

23http://www.lastfm.com/api
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3.2.2. Text Data Analysis and Processing.

The data acquired in the previous step usually has the form of a natural lan-
guage text, or a HTML-formatted web page. In order to distill the desired
information (such as a vector space representation of items) out of this, tech-
niques of text mining and natural language processing can be applied. [Whit-
man and Lawrence, 2002] extract unigrams (single words occurring in the
texts), bigrams (pairs of words following each other in the texts), words that
are likely to be adjectives (by applying a Part-of-Speech (POS) tagger), and
noun phrases. Each of these forms a possible basis for a vector space, where
each term (e.g., bi-gram) is one dimension. In [Pampalk et al., 2005a], as an
alternative to generating the space out of the retrieved documents, a prede-
�ned dictionary of words is used that are meaningful in the music domain.
To cope with di�erent forms of the same word, a stemming algorithm can be
used [Celma et al., 2006, Schnitzer et al., 2007] at the expense of potentially
introducing ambiguities. In many cases, words that are very frequent (such as
the, I ) and thus are assumed to not carry a meaning in the particular domain
are removed by using stop word lists.

The actual value a particular artist is assigned in each dimension of the space
over the terms is obtained based on the frequency with which the term occurs in
documents related to this artist (term frequency), and typically is normalised
by the frequency the term occurs in the collection of text documents (document
frequency). The resulting vector is generally referred to as TFxIDF vector. In
Section 3.3 a number of realizations of this general scheme is listed.

The above procedure is used to create a TFxIDF vector space from the re-
trieved documents. However, there are other scenarios where other represen-
tations are used. For example, for the task of artist recommendation, in [Cohen
and Fan, 2000] lists of artists are extracted from web pages to eventually con-
struct pseudo-users for a collaborative �ltering approach. In [Pachet et al.,
2001], texts are analysed for the occurrence of track and artist names to facili-
tate co-occurrence and correlation analysis for similarity computation. [Schedl
et al., 2007] combines named entity detection and a rule-based detection ap-
proach to detect band memberships.

3.2.3. Usage.

In a number of cases, data usage is tightly coupled with the previous steps
(i.e., data retrieval and processing are chosen and designed with a particular
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application in mind). Instances of such applications have already been men-
tioned in the previous section. However, some of the data representations can
be used for a variety of applications. Most notably, if a similarity function
can be built on the extracted data, potential data usages include clustering,
classi�cation and recommendation (cf. Chapter 2). Besides genre classi�ca-
tion [Knees et al., 2004], it has been proposed to classify record reviews into
classes of like or dislike [Hu et al., 2005], which eventually could be used to
create recommendation systems with improved recommendation performance,
e.g., by using only those record reviews that are known to be in line with the
user's (dis)likes.

3.2.3.1. Combining signal based and text information retrieval tech-
niques. Audio signal analysis techniques and text information retrieval meth-
ods deliver in many ways complementary results. For example, signal-based
techniques do not capture sociocultural aspects of music, but there is no ne-
cessity for them to �rst collect review information, tags, or user ratings for a
new item before the item can be recommended (the early-rater problem [Avery
and Zeckhauser, 1997], cf. [Celma, 2008]). So it is a consequent approach to
combine both methods.

For example, work on automatically labeling previously unseen music tracks
with terms based on signal and text analysis is presented in [Whitman and
Ellis, 2004, Turnbull et al., 2006]. Eleven di�erent autotagging systems have
been evaluated in the �Audio Tag Classi�cation� task of MIREX'07. For a
brief review, see e.g. [Barrington et al., 2009].

Search Sounds [Celma, 2008] is an application that lets users search for audio
by text queries, and re�ne the query by �nding similar sounding music. The
audio was retrieved along with textual descriptions by using RSS feeds that
point to mp3 blogs, and both analysed by signal and text analysis methods.

3.3. Evaluating di�erent variants of TFxIDF and distance

measures

As outlined above, it is a common technique to obtain descriptions of artists by
analyzing the text of web pages returned by a search engine queried with the
artist name (and additional query terms to narrow the search to pages more
relevant for the domain of music). This �search engine� approach has several
advantages. For example, the obtained data can be used in di�erent ways
(similarity computation, assigning tags), and this approach does not crucially
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depend on the availability of a speci�c online platform providing the particular
type of data some approaches are built upon. Current trends in music (e.g.,
emerging genres) are likely to be re�ected in the returned pages quickly. Fur-
thermore, future advances in search engine technology (�nding more relevant
pages related to an artist) can be expected to enhance the results.

In this chapter, experiments related to this search engine based approach are
presented24. The main topic of this chapter is how di�erent algorithm variants
compare against each other for calculating artist similarity, measured by genre
classi�cation experiments (for a motivation to use genre classi�cation perfor-
mance as an indicator of similarity see Chapter 2). It is assumed that those
variants that perform well in this task capture information about the artists
in a more �meaningful� way than the other evaluated variants. Based on the
results of these experiments, a basis representation of artists in vector space
is chosen for the work presented in Chapter 5, where an approach is discussed
to automatically derive human-understandable concepts from TFxIDF vectors
to facilitate a better description and retrieval of artists.

The remainder of this Section is organized as follows. First, some exemplary
incarnations of the transformation from web pages to a vector space repre-
sentation of artists are described in Section 3.3.1. The choice of the variants
evaluated in this thesis is pointed out in Section 3.3.2. Finally, evaluations
on two di�erent sets of artist names and evaluation results are discussed in
Sections 3.3.3 and 3.3.4.

D set of documents
N number of documents
fd,t number of occurrences of term t in document d
ft number of documents containing term t
Ft total number of occurrences of t in the collection
Td the set of distinct terms in document d
fm

d the largest fd,t of all terms t in d
fm the largest ft in the collection
rd,t term frequency, see Table 7
wt inverse document frequency, see Table 8
Wd document length of d

Table 6: Denominations for terms in text information retrieval (cf. [Zobel and
Mo�at, 1998])

24This is joint work with Markus Schedl.
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3.3.1. Approaches in Previous Work

A look in the literature reveals that there exist di�erent ways the general
framework discussed in Section 3.2 is applied to transform web pages to a
vector of term weights for artists. For example, di�erences lie in the way basic
concepts of text information retrieval, most notably the concept of a document,
are transferred to music artists that are represented by a number of web pages.
In the following, we use the denominations listed in Table 6 to refer to various
terms of this domain.

[Whitman and Lawrence, 2002,Whitman, 2005] treat each artist as one docu-
ment for calculating the document frequency (ft), while term frequency (fd,t)
is the percentage of web pages containing the term. Both ft and fd,t are nor-
malised, being considered a probability density function (ft are normalised
after summing up over all artists, while fd,t are normalised for each artist),
then TFxIDF is computed and normalised for each artist individually in the
range 0..1, the smallest value being zero. Optionally, very frequent and very
infrequent terms are downweighted by a Gaussian function. The similarity
of two artist vectors is calculated by summing up the term weights of terms
occurring for both artists.

In [Baumann and Hummel, 2003, Knees et al., 2004], fd,t is the number of
occurrences of term t on the web pages related to an artist d, and the document
frequency ft is the number of web pages the term occurs on (not the number
of artists for which the term occurs).

[Baumann and Hummel, 2003] and [Knees et al., 2004] di�er in the way N
is de�ned and the TFxIDF vector is calculated, while both use the cosine
similarity measure to compare artist vectors. [Baumann and Hummel, 2003]
de�nes n as the �size of the entire artist collection�, and TFxIDF is computed
by

wd,t = fd,t · log

(
n

ft

)
(48)

In [Knees et al., 2004], N is the total number of pages that were retrieved. For
TFxIDF computation the ltc variant is used:

wd,t =

{
(1 + log2 fd,t) log2

N
ft

iffd,t > 0,

0 otherwise
(49)

The cosine similarity measure seems a commonly used way to calculate the
similarity of two artist vectors. However, as motivated in the above examples,
there is no standard way to calculate TFxIDF vectors from retrieved web
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pages, and it is unclear which way to calculate it is preferable. In the next
section, a number of variants to obtain TFxIDF vectors (and how they can be
compared) is evaluated to gain some insight into this question.

3.3.2. Evaluation Approach

To evaluate a large amount of possible ways to calculate artist TFxIDF vectors
and the similarity between them, we opt for an approach comparable to [Zo-
bel and Mo�at, 1998]. A large number of possible combinations of various
ways to compute di�erent parts of the algorithm (such as the term frequency
rd,t, the inverse document frequency wt, and the combining function Sq,d) are
evaluated. Most ways to compute the parts origin from previous work in text
information retrieval. We adopt this systematic approach at the bene�t that a
large amount of previous work in text information retrieval is incorporated in
these experiments. This goes at the expense not to exactly reproduce previous
work in the domain of Music Information Retrieval, but may deliver insights
for future work in this domain.

3.3.2.1. Document modeling. As already pointed out, the most central
step is the modeling of fundamental text information retrieval concepts such
as documents and term frequencies. Once this step is accomplished, known
methods to calculate TF and IDF can be evaluated. In a common retrieval
task, each document is considered a separate entity. In contrast, in our task
each artist is an entity which is represented by a number of documents (i.e., web
pages). There are several ways how to deal with this situation. We evaluate
�ve of them.

1. sum. All term frequencies appearing in the web pages associated with
the artist are summed up. This corresponds to a simple concatenation
of all web pages related to the artist to one long document.

2. mean. The term frequency of a term is calculated by taking its mean
over all pages. This is similar to approach 1 but with the di�erence that
it is independent of the number of web pages actually retrieved, and a
di�erent range of values which has an impact on some TF calculation
approaches.

3. max. Take the maximum of each term frequency over all retrieved web
pages.
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4. numPagesRel. Following [Whitman, 2005], the number of web pages
containing a term is used as term frequency. This number is divided by
the number of pages retrieved for the artist.

5. numPagesAbs. As approach 4, but with the absolute page count, which
has an impact on some TF calculation approaches.

We refer to the representation that results from merging a number of web
pages retrieved for an artist as virtual document.

Description Formulation

A
Formulation used for binary match.
SB = b

rd,t =

{
1 ift ∈ Td

0 otherwise

B
Standard formulation.
SB = t

rd,t = fd,t

C
Logarithmic formulation.

rd,t = 1 + loge fd,t

C2
Alternative logarithmic formulation
suited for fd,t < 1.

rd,t = loge(1 + fd,t)

C3
Alternative logarithmic formulation as
used in ltc variant.

rd,t = 1 + log2 fd,t

D
Normalized formulation.

rd,t =
fd,t

fm
d

E

Alternative normalized formulation.
As [Zobel and Mo�at, 1998] we use
K = 0.5.
SB = n

rd,t = K + (1−K) · fd,t

fm
d

F
Okapi formulation. For W we use the
vector space formulation, i.e., the Eu-
clidean length.

rd,t =
fd,t

fd,t+Wd/avd∈D(Wd)

Table 7: Evaluated approaches to calculate the term frequency rd,t, cf. [Zobel
and Mo�at, 1998].

3.3.2.2. Page length normalization. Based on the idea that web pages
with many terms (i.e., long web pages) could dominate shorter but nonethe-
less relevant web pages, additionally an optional normalization step was done
before these aggregation functions are calculated. To minimize interference
with the TF calculation approaches (that may depend on the magnitude of
the values), the number of terms in each page was normalised to the aver-
age unnormalised page length (as measured by the sum over the document's
raw term frequency count vector). This optional normalization step was done

90
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before calculation of the TFs because it intends to simulate pages of same
length.

It has to be noted that there is another interesting method to combine the web
pages of one artist. It would be possible to calculate the TFxIDF value for
each web page separately (i.e, in the initial setup, each web page corresponds to
one document), and then combine all pages belonging to one artist by a simple
aggregation function such as minimum, mean, median or maximum. We refrain
from this method because the notion our method is based on is to level out
page length. This alternative way to combine pages could rather be seen as an
attempt to level out di�erent relevances of the retrieved pages. Di�ering web
page relevance is not considered in our evaluations, as the retrieval of relevant
pages is delegated to the search engine.

3.3.2.3. Modeling Document Frequency. In the experiments, we opted to
model (inverse) document frequency ft in two ways. The �rst way is to take
the way TF is calculated as a basis (i.e, N is the number of artists, and ft is
based on the �virtual documents�, vd). The second way is to take the number
of web pages as the number N of documents, and the calculation of ft is based
on individual web pages (wp).

3.3.2.4. Calculation of TF, IDF and their combination. In our exper-
iments, eight di�erent methods for calculating the term frequency rd,t are
evaluated, as given in Table 7. Correspondingly, Table 8 gives the evaluated
methods to calculate the inverse document frequency wt. Table 9 lists the
evaluated comparison functions. It should be kept in mind that it is likely the
considered functions interfere with the (generally unknown) algorithm used
by the search engine, and probably also with the query terms (cf. [Knees and
Pohle, 2008]).

3.3.2.5. Chosen terms. In the literature, there exist a variety of ways to
de�ne the terms associated with each dimension of the vector space. To not
further complicate the experiments, we opt for using a manually de�ned dictio-
nary containing 1379 music-related terms. Assuming that the way of choosing
the dictionary avoids common stop words and such terms that appear very
infrequently, no downweighting of very frequent and very rare terms is done.
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Description Formulation

A
Formulation used for binary match.
SB = x

wt = 1

B
Logarithmic formulation.
SB = f

wt = loge

(
1 + N

ft

)
B2

Logarithmic formulation used in ltc
variant.

wt = loge

(
N
ft

)
C

Hyperbolic formulation.
wt = 1

ft

D
Normalized formulation.

wt = loge

(
1 + fm

ft

)
E

Another normalized formulation.
SB = p

wt = loge
N−ft

ft

The following de�nitions
are based on the term's
noise nt and signal st.

nt =
∑

d∈Dt

(
−fd,t

Ft
log2

fd,t

Ft

)
st = log2(Ft − nt)

F
Signal.

wt = st

G
Signal- to noise ratio.

wt = st

nt

H wt =

(
max nt′

t′∈T

)
− nt

I
Entropy measure.

wt = 1− nt

log2 N

Table 8: Evaluated approaches to calculate the inverse document frequency wt,
cf. [Zobel and Mo�at, 1998].
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Description Formulation

A
Inner product.

Sq,d =
∑

t∈Tq,d

(wq,t · wd,t)

B
Cosine measure.

Sq,d =

∑
t∈Tq,d

(wq,t·wd,t)
Wq ·Wd

E
Alternative inner product.

Sq,d =
∑

t∈Tq,d

wd,t

Wd

F
Dice formulation.

Sq,d =
2

∑
t∈Tq,d

(wq,t·wd,t)
W 2

q +W 2
d

G
Jaccard formulation.

Sq,d =

∑
t∈Tq,d

(wq,t·wd,t)
W 2

q +W 2
d−

∑
t∈Tq,d

(wq,t·wd,t)

H
Overlap formulation.

Sq,d =

∑
t∈Tq,d

(wq,t·wd,t)
min(W 2

q ,W 2
d )

I
Euclidean similarity. Dq,d =

√ ∑
t∈Tq,d

(wq,t − wd,t)
2

Sq,d = (maxq′,d′(Dq′,d′))−Dq,d

J
Je�rey divergence based simi-
larity.

Sq,d = (maxq′,d′(Dq′,d′))−Dq,d,
where D is computed according
to Equation 21.

Table 9: Evaluated combining functions Sq,d, cf. [Zobel and Mo�at, 1998].

3.3.2.6. Closest Models to Previous Work. To give a rough orientation
how the evaluated techniques are associated with previously used combina-
tions, the closest models to [Whitman and Lawrence, 2002, Baumann and
Hummel, 2003,Knees et al., 2004,Whitman, 2005] are given here:

The closest model to [Baumann and Hummel, 2003] is BB2Bvd, and the closest
to [Knees et al., 2004] is CB2Bwp, with the di�erences of a di�erent logarithm
base. Approach BCAvd is the one most similar to [Whitman and Lawrence,

2002,Whitman, 2005]. When calculating TFxIDF by
fd,t

fd
and all values are

nonnegative, then separate normalization of ft and fd is equivalent to a com-
mon normalization of the result. In [Whitman and Lawrence, 2002,Whitman,
2005] this common result is normalised again in the range [0, 1]. As we assume
that each artist has at least one term with weight zero, this is equivalent to
another scaling (to a maximum value of 1). Di�erences lie in the way terms
are de�ned, and in the formulation of the combining function (sum of term
weights vs. sum of the product of corresponding term weights).
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3.3.3. Experiments

Experiments are performed on two sets of artists. The �rst set consists of 323
names of artists that are assumed to be among the best-known artists from
their respective genre. From each genre, approximately the same number of
artists was selected.

The second set, which is more than nine times as large as the �rst set, are
3000 artist names randomly selected from 50.000 artists without considering
the number of artists per genre. Consequently, this set is assumed to contain
many artists from the �long tail�, i.e., rather unknown artists, and genre sizes
di�er largely.

It is assumed that the best performing TFxIDF approaches will do well on
both sets. This results in two stages of experiments. In the �rst stage, all
variants are evaluated on the �rst set. Only the algorithm variants found to
perform best in these experiments on the 323 artist set are then evaluated on
the larger set in the second stage.

Both sets of artists are divided into the same genre categories (the number
of artists of the two sets in each genre is given in parentheses): avant garde
(19/22), blues (20/65), celtic (12/19), classical (17/54), country (15/81), easy
listening (18/23), electronica (18/182), folk (19/66), gospel (18/118), jazz
(19/297), latin (15/137), new age (17/62), rnb (20/107), rap (20/133), reg-
gae (20/41), rock (20/1301), vocal (19/55), world (17/237).

3.3.3.1. First Stage: Evaluation on 323 artists set. We model the ex-
periments as a retrieval task. In some major aspects, we follow [Buckley and
Voorhees, 2000,Sanderson and Zobel, 2005]. Given a query artist, the task is
to �nd artists that are similar to the query artist with respect to the genre
that is assigned to each artist. We use Mean Average Precision (MAP) as the
basic performance measure. Average Precision is �the mean of the precision
scores obtained after each relevant document is retrieved, using zero as the pre-
cision for relevant documents that are not retrieved� [Buckley and Voorhees,
2000]. Following [Sanderson and Zobel, 2005], we �rst calculate MAP of each
distinct algorithm variant (i.e., considering that some combinations yield the
same results, e.g., TF_A with and without normalization of pages). These
are 9120 variants. Variants that ful�ll both of the following two conditions are
discarded:

1. there is a relative MAP di�erence of 10% or more to the top ranked
variant,
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2. and the t-test shows a signi�cant di�erence to the top-ranked variant.

When doing so, and subsequently ranking all 9120 variants according to MAP,
the top 123 variants have a relative MAP di�erence of less than 10%. The
t-test shows signi�cance for all variants except for the top 134 and the 136th
ranked variant. This sharp cuto� of non-signi�cant vs. signi�cant results
and the relatively high accordance of our two criteria (less than 10% MAP
di�erence and signi�cance) makes us con�dent that our reasoning is valid, and
that these top-ranked algorithms are those worth examining further.

Figure 26: Methods to combine terms appearing on an artist's web pages.
Only those appearing in the 135 selected top algorithms are shown, and the
number of times they appear (totaling 135).

To get more insight into which components are of high value, we look at each of
the algorithm's components separately, and examine which approaches appear
in these 135 selected algorithms, and how often they appear. First, it gets
apparent that only variants based on unnormalised web page lengths appear
in the top-ranked variants. Thus, normalization seems not to contribute to
the performance. Also, only IDF computation approaches based on virtual
documents are encountered. I.e., calculating the inverse document frequency
on web pages instead of artist level seems not bene�cial.

Figures 26 to 29 contain histograms of the other algorithm components, for
which several variants appear. They give a �rst weak insight into the relative
performance of variants. The algorithm representing the most frequently ap-
pearing variant of each component (i.e., numPagesWithTermRel � TF_C2 �
IDF_I - cosineSimilarity) is ranked top 21 in the overall ranking.

However, it can not be assumed that the shown frequencies are mutually inde-
pendent. For example, when for one algorithm part two highly similar variants
are evaluated, the other algorithm parts that perform well in combination with
these variants will appear more frequently.
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Figure 27: TF approaches appearing in the 135 selected top algorithms, and
the number of times they appear (totaling 135).

Figure 28: IDF variants appearing in the 135 selected top algorithms, and the
number of times they appear (totaling 135).

So instead of analyzing the �gures more deeply, we go on by evaluating all
possible algorithms that can be created with the variants appearing in these
�gures on the second set consisting of 3000 artists. Thus, the only assumption
is that variants that do not appear in the 135 selected algorithms are not well
suited as a part of the kind of algorithm we are interested in. In detail, addi-
tionally to normalizing web page length and calculating document frequency
on the web page level, the variants that are discarded here are:

• Document modeling: max, i.e., taking the maximum number of appear-
ances over all web pages of an artist.

• TF computation: Variant A (binary match, i.e., if a term is contained in
a document or not) and variant E (�alternative normalised formulation�).

• IDF computation: Variants A, B, C, D, F, G (cf. Table 8).

• Similarity Measure: Variant A (inner product), E (alternative inner
product), H (overlap formulation), I (Euclidean similarity).
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Figure 29: Similarity measures appearing in the 135 selected top algorithms,
and the number of times they appear (totaling 135).

The remaining variants can be used to create 384 di�erent combinations of
TFxIDF approaches and similarity measures.

3.3.3.2. Second Stage: Evaluation on 3000 artists set. In the second
stage of the experiments, the 3000 artist set is used for evaluation, although
the obtained MAP values are much lower for this set (0.007 compared to 0.387
for the respective highest ranked algorithm), which presumably is an e�ect of
having less popular artists and di�erent genre cardinalities in this set. It is
evaluated if both artist sets yield a comparable ranking of the 384 algorithms of
interest, and which of these algorithms are top-ranked on both sets of artists.
To clarify the �rst aspect, Spearman's rank-order correlation coe�cient is com-
puted on the two rankings on the two artist sets. This experiment shows a
correlation coe�cient of 0.82. This relatively high value indicates that in gen-
eral, the ranking of the algorithms is not largely in�uenced by factors such as
size of artist collection, number of artists per genre, and artist popularity.

To get an insight into which out of the 384 algorithms are top-ranked on both
sets of artists, a ranked list of all algorithms is created. In this list, algorithms
are sorted based on their maximum rank in either of the two experiments. For
example, if an algorithm ranked second in the algorithm ranking based on the
set of 323 artists, and 15th on the set of 3000 artists, then the value associated
with this algorithm is 15. The full list is given in Appendix A.1.

As can be seen from the list, the TFIDF algorithm used in [Baumann and
Hummel, 2003], computed on our term data, has a maximum rank of 306.
The algorithm used in [Knees et al., 2004] does not appear in the list, as it
uses the number of web pages to determine the document frequency, which
was outside the signi�cance bounds in the �rst stage. However, approach
sum.tf_c3.idf_b2.cosSim which has a maximum rank of 15 in the two ex-
periments resembles this algorithm (counting the number of artists instead of
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counting the number of web pages a term appears on). This may be seen as
an indication that the LTC variant is a good choice for the considered area
of application, and it also shows that changing only one factor can have an
important impact on the performance of an algorithm. Based on the latter
observation, it seems no valid statement about the relative performance of
the algorithms used in [Whitman and Lawrence, 2002,Whitman, 2005] can
be made, as the exact similarity measure used there was not evaluated in our
experiments.

3.3.4. Conclusions

The experiments in this section have been conducted with two aims in mind.
First, to get insight into how artist similarity can be computed based on socio-
cultural metadata obtained from search engines, when nothing is available
but the artist name. For this application, the actual quality of the similarity
computed by an algorithm is of interest. The second aim of the work in this
section was to prepare the experiments in Section 5, where the TFxIDF vectors
are used as the starting point to create a higher-level representation of artists
that capture parts of semantic aspects. For this scenario, it is of importance
that the chosen TFxIDF representation is �robust�, which is an ill-de�ned
concept but is likely to be also re�ected in the experiments conducted here.

3.3.4.1. Conclusions Concerning Artist Similarity. The conclusions for
calculating artist similarity can be summarised as follows. A minor �nding
is that normalization of each web page so that each web page has the same
weight showed not to be of bene�t. It seems of more importance that the docu-
ment frequency for calculating IDF should be determined on virtual documents
rather than on individual web pages. The commonly used cosine similarity ap-
pears for many top-ranked algorithms.

• Factors concerning the collection such as size of collection, artist popular-
ity, and numbers of artists per genre seem to have only a minor impact
on the relative performance of the 'best' algorithms, as far as can be
concluded from the evaluated parameter ranges.

• In contrast, a small change to an algorithm (document frequency calcu-
lated on web pages or on artist level) can have an important impact on
the algorithm's (relative) performance.

The latter observation makes the future evaluation of di�erent text processing,
term selection and term weighting functions appear of importance.
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3.3.4.2. Conclusions Concerning Experiments in Section 5. It seems
reasonable to assume that a way of computing TFxIDF vectors that works
well with several similarity measures is better suited as a basis for factoriza-
tion experiments (see Section 5) than one that works only with a particular
approach of calculating the similarity. Such a representation shows to be robust
against the factor �similarity measure�, and so it also may be robust against
in�uences that are e�ects of factorization. A closer look on the list given in
Appendix A.1 reveals that the top combinations seem not to be independent of
the similarity measure. The approach that best conforms to this requirement
is numPagesRel.tf_f.idf_b2. Thus, in Section 5, this will be compared against
previously used algorithms.
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4. Higher Concepts Derived from Audio

Signals

In Chapter 2, techniques are discussed how to retrieve similar sounding music
from a music collection. These techniques are based on an implicit model of
music audio similarity. They are shown to work (and they are optimized) by
empirical experiments, not by explicitly de�ning what speci�c aspects make
two pieces be similar (or not be similar, respectively). In this chapter, which
mainly follows the contents presented in [Pohle et al., 2006a], an approach is
discussed to explicitly model the relevant content of the audio signal for simi-
larity computations. In particular, a method is examined to use a data-driven
approach applying Independent Component Analysis (ICA) to automatically
derive building blocks of song spectrograms, and describe songs by such build-
ing blocks. While the resulting accuracies are not above those obtained in the
experiments presented in Chapter 2, this approach might be a step towards
modeling the human view in a more sensible way. Preliminary experiments in-
dicate that when changing parameters such as the spectrogram representation,
and using Non-Negative Matrix Factorization (NMF) instead of ICA, results
obtained in the used evaluation setting can be improved .

4.1. Approach

The basic idea for the experiments presented in this section is adopted from
work in image similarity computation [Le Borgne et al., 2004], where images
are represented as activations of individual components. The components are
found in a data-driven way by applying an Independent Component Analysis
(ICA) algorithm on a large number of patches of size 12× 12 pixels randomly
chosen from the images. An image is analyzed by considering each of its
patches as a linear combination of those components that are most highly ac-
tivated over a large number of images, and taking the histogram of component
activations as feature data.

The authors of [Le Borgne et al., 2004] evaluate a number of methods to
calculate image similarity from this feature data. As the components found
by ICA can be assumed to be sparsely activated and uncorrelated, modeling
of the interdependencies of component activations can be disregarded.

1. Mean. The �rst approach reduces the feature data to a vector of length
n, where n is the number of considered components. The vector holds
the mean of the activation of each component over all patches of an
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image. Two vectors (i.e., images) are compared by taking the Euclidean
distance.

2. KL and KL_zero. A more �ne-grained modeling of a component's ac-
tivation is done by calculating the mean and variance of its activations
over all patches of the image. Two images are compared by taking the KL
distance between these models. To take into account the high kurtosis of
the component activation histograms, an alternative way of comparison
is to mirror the histograms at 0 and only consider the variance of the
resulting distribution (as the resulting mean is zero, this approach is here
denoted as KL_zero).

3. Spline. Finally, the authors evaluate a density estimation by B-Splines, in
which case the area common under both splines is taken as the indication
of similarity.

The similarity measures are evaluated with a nearest-neighbor approach on an
image collection consisting of 540 images divided into four categories, based
on the notion that images within a category are more similar than images
from di�erent categories. The authors obtain classi�cation accuracies of up to
87%.

4.2. Application to Audio Signals

One might hypothesize that the components found by an approach as described
above are related to meaningful building blocks underlying the observed data.
[Abdallah and Plumbley, 2001] report that ICA applied to time-domain signals
can �nd wavelet-like bases. In [Smaragdis, 2001, Abdallah, 2002] individual
frequency-domain frames have been analyzed by ICA to obtain sparse-coding
representations.

When the data is the music signal represented in a spectrogram-like form, and
patches consist of several frames [Cho et al., 2003], one can hypothesize that
such building blocks might be acoustically meaningful entities, such as percus-
sive onsets, sustained notes in various frequency bands, or noises of di�erent
shape. Detecting such entities can be useful in analyzing the audio signal, as
has already been shown in Chapter 2 for Harmonicness and Attackness. Us-
ing an automated approach to de�ne and detect such entities might result in
algorithms that outperform manually de�ned concepts such as Harmonicness
and Attackness.
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Figure 30: Components found by ICA on randomly chosen patches of length
0.15 sec with 50% PCA compression applied [Pohle et al., 2006a]

4.3. Experiments

To apply the discussed approach to audio spectrograms, it is necessary to re-
duce the number of frequencies in order to retain computational feasibility.
For the experiments in this section, the number of frequencies was reduced to
18 Mel scaled bands (cf. Figure 2). Each patch was chosen to cover all fre-
quencies. Considering the duration of quarter, 1

8
and 1

16
notes of a 4

4
th metre

played at 100 bpm, initial patch lengths were chosen to be of lengths 0.6, 0.3
and 0.15 sec. The FastICA25 algorithm was run on patches of corresponding
size. Initially, the number of calculated components is equal to the number
of input dimensions (which is number of frames × number of frequencies).
To avoid obtaining too many components, additionally PCA compression was
applied on the patches before ICA computation (cf. [Le Borgne et al., 2004]).
This is done by stacking all values of a given patch into a vector, applying PCA
on the vectors obtained from all patches, and only retaining a certain percent-
age of principal components that have the largest eigenvalues associated. ICA
is performed on this data with reduced dimensionality (thus, also the number
of calculated independent components is reduced). After computing the com-
ponents, PCA compression is inverted. Three levels of PCA compression were
evaluated: No compression (i.e., ICA was run on the original patches), 50%
and 75%. The experiments include three �avors of obtaining components:

25http://www.cis.hut.�/projects/ica/fastica/
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Figure 31: Manually de�ned components [Pohle et al., 2006a]

1. Pat-Rand Components were calculated on patches randomly chosen from
100 tracks from DB-MS.

2. Pat-Onset Components were calculated as in bullet point 1, but patches
start at positions that are likely to be onsets, as detected by a simple
onset detection algorithm. An example of the found components is given
in Figure 30.

3. Pat-Manualdef Components are not determined by ICA, but de�ned
manually, as depicted in Figure 31. These are de�ned in an ad-hoc way.
Some of the components aim to capture similar features as Harmonicness
and Attackness.

The components obtained this way are evaluated in several ways, as discussed
in the next section.

4.4. Evaluation

Three ways seem useful for evaluating how well the components from the pre-
vious section are suited to meaningfully describe aspects of music. First, from
the appearance of the components itself, one can asses the features they repre-
sent. Second, it is possible to examine which components are activated in which
tracks, and if there are obvious correlations between the activation pattern of
a particular component and certain audible events. Third, automated evalua-
tion can be done by genre classi�cation experiments. All three approaches are
discussed below.
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4.4.1. Assessing the Shape of Components

Visually inspecting the resulting components in most cases did not give clear
indication that musically meaningful entities are represented. But in some
cases, one might interpret so. For example, in Figure 30, components found
from patches with a length of 8 frames with 50% PCA compression are shown.
Some of these components seem to be related to percussive onsets (e.g., third
row, �rst, seventh and penultimate column), and resemble the Attackness �lter.
Others have a horizontal orientation (e.g., components found in row/column
1/8, 2/6, 2/7, 3/5 etc.) resemble the �lter used for Harmonicness compu-
tation. However, even in those experiments that exhibit such interpretable
components, many components do not have an obvious interpretation, e.g.,
the one depicted in row 2, column 4.

4.4.2. Activations in Tracks

Examining the activations of individual components in a particular track was
done in two ways. First, the activation of each component over time within
a track was visually inspected. This was done on a small number of tracks
expected to be suited for this task (e.g., pieces for prepared piano, that have
various types of onset sounds, and choir music that is expected to have clear
harmonics). These experiments did not reveal clear and strong relationships
of audible events and component activations. The second way to examine
component activations in tracks was to compare activation histograms. This
approach also did in general not reveal clear and meaningful relationships
between component activations and perceived audio entities. Only in few cases
is there room for such interpretations. Unfortunately, such observations remain
anecdotal.

4.4.3. Genre Classi�cation

The evaluations discussed in the two preceding sections are only based on a
small number of manually chosen tracks. To complement these experiments,
and to do an evaluation in a larger scale in an automated way, the usefulness
of the approach for music similarity computation is estimated by genre classi�-
cation experiments. In a similar way as in [Le Borgne et al., 2004], component
activation histograms are used as the basis to de�ne a similarity function, as
described in Section 4.1. Experiments were done on 30 second excerpts of
DB-MS. Using the functions mean, KL and KL_full, this yields classi�cation
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accuracies of 61.5% to 68.5% for pat-rand. When changing the way to obtain
components from pat-rand to pat-onset or pat-manualdef, results are not im-
proved [Pohle et al., 2006a]. With a basic MFCC/GMM approach, on the same
30 second excerpts, accuracies of about 72% are obtained with an equivalent
setup (30 sec excerpts from the center of each �le [Pohle et al., 2006a,Pohle,
2005]). These �gures do not indicate that when using the evaluated parameter
settings, the discussed method is suitable to give qualitatively better results
than the existing algorithms. Most notably MFCC/GMM based approaches,
such as the one developed in Chapter 2, yield higher accuracies.

4.5. Changing Parameters

In the experiments from [Pohle et al., 2006a] that have been discussed up to
this point, a variety of parameter settings have been evaluated. However, two
aspects that may be of importance were left unchanged:

• First, the spectrogram is reduced to only 18 frequency bands. This
may be too coarse a resolution to capture musically relevant structures,
such as partials that typically appear as horizontal lines in a (higher-
resolution) spectrogram.

• Second, ICA is applied to �nd components. ICA might be not the best
algorithm for this purpose.

Consequently, instead of using an 18-band mel/sone representation, here a
cent-scaled spectrogram is used, and ICA is replaced by Non-Negative Matrix
Factorization (NMF, see Section 5.2.3.3). The experiments take two directions.
Additionally to evaluating the genre classi�cation accuracy obtained with these
changed parameter settings, it is also examined if by this data-driven method,
alternatives to the Harmonicness and Attackness descriptors can be found.
This is discussed next.

4.5.1. Revisiting Harmonicness / Attackness

Seen in the context of this chapter, Harmonicness and Attackness detect spe-
ci�c features on patches of size 5 × 5. So it is of interest to examine which
decomposition is found by the data-driven algorithm for patches of this size,
when the spectrogram has similar parameters as the one used to calculate Har-
monicness and Attackness. These experiments may indicate whether there are
other features of interest that could be detected on patches of this size, besides
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Harmonicness and Attackness, such as noise spread both over frequencies and
time (i.e., oframes).

Figure 32: �Basis images� found by NMF on randomly chosen patches of size
5 × 5, based on cent spectrogram. Frequency bands are 66.7 cent apart.
Frame rate is approximately 21.5 fps

In these experiments, the parameter r that denotes the number of basis images
(or �components�) to calculate has to be set. Based on visual inspection of the
found basis images, non-systematic experiments seem to indicate that except
for horizontal and vertical lines, apparently no particular features appear. An
example with r set to 6 is given in Figure 32, calculated on randomly chosen
patches from the tracks in DB-MS. With r set to di�erent values, horizontal
and vertical lines in many cases were less clearly visible. In particular, when
setting r to values larger than e.g., 10, the tendency is observed that some
basis images rather take the form of �spots�, as e.g., in images number 2 and
4 in Figure 32. As a conclusion, these experiments do not seem to strongly
indicate that Harmonicness / Attackness can be augmented with other features
extracted from patches of the examined size.

4.5.2. Using Basis Images Found by NMF for Similarity Computation

Finally, it is of interest what basis images are found by NMF on larger patches
that span a frequency range of several octaves. To this end, the same method
as discussed above is applied. For reasons of data size, frequency bands are
chosen to be about one semi tone apart, measured on the equally tempered
scale (99.3 cent). In total, there are 86 frequency bands in the calculated
spectrogram. To allow for a certain abstraction from the actual pitches, patch
height is chosen to be 74, i.e., about one octave less than the total number of
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frequency bands in the spectrogram. The number of frames is set to 4, which
corresponds to a total patch length of about 0.18 sec.

Figure 33: �Basis images� found by NMF, based on cent spectrogram. Size of
each patch: 74×4. For display purposes, images are sorted according to the
index of the row containing the largest values.

Again, the number r of basis images to compute is a user-provided parameter.
In Figure 33, results for r = 25, computed on patches randomly chosen on
tracks from DB-NORM are shown. It can be seen that with this parameter
settings, many basis images are made up from horizontal structures (images
1 to 17) that likely correspond to partials. In particular, it is interesting to
note that images 7 to 15 seem to re�ect overtone structures. In contrast,
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images 21 to 24 seem to contain distinct vertical structures, located at each
of the four frames. Overall, compared to the components shown in Figure 30,
these basis images seem more closely related to perceptually relevant aspects.
In particular, some basis images resemble components de�ned in an ad-hoc
manner, shown in Figure 31.

We use these basis images to extract features from a piece in the following
way. We approximate26 H(W ′) = V ′, where W contains the basis images (e.g.,
those shown in Figure 33) in vector form, i.e., each column of W contains the
frames of one basis image stacked above each other to form a vector. Likewise,
each column of V is created from (e.g., four) consecutive frames of the cent
spectrogram of the piece to analyze, and each row of the resulting matrix H
contains the r feature values for one frame. Using the basis images shown in
Figure 33 to extract features from DB-MS, and comparing tracks by KL_full,
a leave-one-out genre classi�cation accuracy of 76.13% is obtained (extracting
features on the middle 30 sec of each �le as above). [Pampalk, 2006b] reports a
1-NN accuracy of 74% for the G1 algorithm when calculated on 30 sec from the
center of each �le, using a sample rate of 22 kHz as in this section. This result
indicates that these basis images may be better suited to represent aspects of
the music than MFCCs (computed frame-wise) alone. Thus, this method may
be a candidate to replace MFCCs in audio similarity computation. However,
accuracy is still clearly below the one obtained by the G1C_mod2 algorithm
reported in Table 4 (83.7%).

4.6. Conclusions

While the results from the experiments presented in [Pohle et al., 2006a] do not
give clear indication that the evaluated method performs better than existing
methods, we have shown in this Chapter that when changing parameters, re-
sults can be improved above the MFCC-only baseline (i.e., the result reported
for G1 in [Pampalk, 2006b]) in our evaluation setting. As the bases found by
this data-driven method may be associated with perceptually meaningful as-
pects of the audio signal (such as partials, see Figure 33), this method could be
considered a candidate to replace MFCCs in future audio similarity measures
that apply a more straightforward and understandable way of calculating the
similarity.

There are two future research directions we currently think of: The �rst di-
rection is to further analyse the degree to which the bases are activated over

26using the Matlab function mrdivide

108



4.6 Conclusions

time. For example, this can be done by analysing the periodicity as in Fluc-
tuation Patterns, but using a basis image decomposition instead of frequency
bands. And second, the way the basis images are de�ned can be modi�ed to
re�ect more distinct features. For example, one can think of using individ-
ual instrument samples as the input source for decomposition, such as drum
and instrument samples. De�ning basis images in such a semi-automatic way
may facilitate the creation of an algorithm that transcribes a given piece into
musically meaningful acoustic basis elements.
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5. Higher Concepts Derived from Web Pages

In Chapter 3 methods are discussed to determine the similarity of music artists
based on web pages associated with each artist. This procedure yields a �xed
similarity value for each pair of artists. Such �xed similarity values are useful
in a variety of applications such as e.g. playlist generation and clustering
of music collections. These artist-to-artist similarities implicitly are (at least
weakly) linked to an artist's characteristics, i.e., two artists that share similar
characteristics are likely to have a high similarity value associated.

Analogous to the approach in Chapter 4, it is in some cases favorable to have a
more meaningful insight into why a pair of artists is considered similar (or not
similar, respectively). For example, in recommender systems, it may be useful
if the user can not only enter an artist name to query for similar artists, but also
that the system allows to indicate the relative importance of aspects associated
with the artist. When used appropriately, this additional information may
help to increase the quality of the recommendations. For example, in [Lamere
and Maillet, 2008], a system is presented that allows the user to modify the
importance of individual tags for the recommendation.

In this chapter, a di�erent method of text-based access is discussed. The idea
is to automatically derive higher-level concepts from web pages associated with
the artists. Such concepts are derived by applying dimensionality reduction
techniques (most notably, Non-Negative Matrix Factorization (NMF)) to the
TFxIDF vectors to reduce their length to a number r of few dimensions (e.g.,
r = 16) that are likely to represent meaningful �concepts�. Such a resulting
low-dimensional vector describes the degree to which the artist is associated
with each of the r concepts.

Once artists are described by their association with di�erent concepts, this
association can be used in a variety of ways. One obvious use would be to
search for artists by means of concepts, i.e., the user indicates which concepts
he is interested in, and the system determines the artists most �similar� to
this given constraint. Another use of concept annotation is to label individual
artists that are unknown to the user with the most activated concepts to
facilitate a quick impression about this artist. Also, given two artists, it is
possible to automatically determine which concepts they share, and in which
way they di�er (by means of concept annotations).
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5.1. Approach to Obtain �Artist Topics�

The TFxIDF vectors and the measures to calculate their similarity that are de-
scribed in Chapter 3 are useful for determining the similarity of artists, but the
high dimensionality of TFxIDF vectors sometimes hinders other usages. For
example, the high-dimensional TFxIDF vectors facilitate a query-by-example
(�suggest artists that are similar to the given artist�), but having a more de-
tailed in�uence on the query would be desirable. Such an in�uence may be
achieved by allowing the user to adjust the weight (or importance, respectively)
of each term in the vector manually, so that she can determine how much she
is interested in each term. A vector modi�ed this way can be assumed to bet-
ter re�ect the user's query when used to determine similar vectors. However,
selecting the subjective importance of each individual term in the TFxIDF
vector is likely to be ine�ective. For example, going through a vector of length
2000 would take about 15 minutes when on average two terms per second are
set. This is clearly unfeasible.

To reduce the e�ort, the TFxIDF vectors can be reduced to a small number
r (e.g., r = 16) of ideally meaningful dimensions by applying dimensionality
reduction techniques. The user then can interact with such a vector in the com-
pressed domain. Obviously, it is of importance that each of the r dimensions
has a clear meaning, or concept, associated.

A number of dimensionality reduction techniques have been proposed in the
past. Among these are Principal Component Analysis (PCA), Independent
Component Analysis (ICA, cf. Chapter 4), and Non-Negative Matrix Fac-
torization (NMF) [Lee and Seung, 1999]. We follow the approach from [Xu
et al., 2003], where NMF was applied to cluster documents according to the
contained topics.

NMF seems a good choice for this application because of the non-negativity
of the factors. This seems to be a more natural representation than allowing
for negative weighted terms (such as in PCA and ICA), as the negative weight
does not have an immediately intuitive explanation. When applying NMF,
both �concept� bases and the resulting compressed artist vectors have only non-
negative weights. This allows for comparing (and querying, cf. Section 7.3)
artists in the compressed domain, e.g. by the cosine similarity measure.

As presented in [Pohle et al., 2007a], we adopt the method presented in [Xu
et al., 2003] by clustering artist TFxIDF vectors instead of document TFxIDF
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vectors. Consequently, in our method, the found topics do not describe docu-
ments, but artists. NMF is done by �nding an approximate decomposition

V ≈ W ·H (50)

of the non-negative matrix V into non-negative matrices W and H. V contains
the artist TFxIDF vectors, i.e., it is of size n × m with n being the number
of terms, and m is the number of artists in the collection. W is of size n × r
and is interpreted as a codebook containing r �topics�. Thus, each column of
W describes the strengths of the associations of all terms with the topic that
this column represents. H contains the �encodings� of each artist by means of
how much each artist is associated with the respective topic.

The number r of topics is an important factor. While there exist methods
to determine it in a data-driven way such as the Akaike Information Crite-
rion (AIC) and the Bayesian Information Criterion (BIC), in the experiments
reported here the number of components is �xed to 16, assuming that this cor-
responds roughly to the upper bound that humans easily can keep an overview
of. It is assumed that if there are actually fewer topics in the data, then some
of them will be split up to highly similar topics, or sub-topics.

5.2. Experiments

To examine the potential of the approach to describe artists, a number of ex-
periments is conducted with varying parameters (three di�erent dimensionality
reduction methods, four di�erent approaches to calculate TFxIDF vectors, and
two variants of term dictionary / search engine combinations). These param-
eters are discussed in the following sections.

The di�erent variants are evaluated by genre classi�cation accuracy, and by
manually inspecting the terms with highest weight in the found basis vectors.

The use of genre classi�cation accuracy as an evaluation criterion is based
on the assumption that very similar artists are in the same genre, and that
very similar artists share the most meaningful concepts. Thus, genre classi�-
cation experiments are assumed to indicate how well the respective projection
is suited to �nd similar artists. If accuracy is high, and additionally the found
concepts make sense, it is assumed that a good low-dimensional representation
is found.

112



5.2 Experiments

5.2.1. Chosen TFxIDF Algorithms

To get some indication of the in�uence of the way to calculate TFxIDF vectors,
four methods are compared in the experiments presented in this section. Based
on the insights gained in Chapter 3, except for the �robust� variant, we use as
term frequency fd,t the sum of the occurrences of a term over all web pages
retrieved for an artist, and for the document frequency rd,t of a term the number
of artists on whose web pages the term occurs. The evaluated methods are:

• TF. Using the term frequency fd,t [Lee and Seung, 1999].

• Like [Xu et al., 2003]. [Xu et al., 2003] use fd,t · log( N
rd,t

). Each TFxIDF

vector is normalised to have a Euclidean length of 1.0. [Xu et al., 2003]
reports improved results when using the NC weighted form NCW [Shi
and Malik, 2000]. In [Xu et al., 2003], NCW is calculated by transforming
the input matrix X to X ′ by D = diag(XT Xe) and X ′ = XD−1/2, with
e = [1, 1, ..., 1]T .

• LTC. Adapting the LTC variant [Salton and Buckley, 1988] used in
[Knees et al., 2004], considering the concatenated web pages of an artist
as one document [Pohle et al., 2007a]. This variant ranked high in
the experiments presented in Chapter 3 when vectors are compared
by cosine similarity, Dice formulation or Jaccard formulation (denoted
sum.tf_c3.idf_b2 in Appendix A.1).

• �Robust�. Finally, we take what appeared to be the most robust ap-
proach against the change of the similarity function, which is variant
numPagesRel.tf_f.idf_b2 in Appendix A.1.

5.2.2. Approaches to Obtain Terms and Term Weights

We compare two methods to de�ne term dictionaries and estimate the asso-
ciated term weights. We use a subset of the artist names contained in the
C19959g collection [Schedl, 2008].

1. TD-EXA The �rst method uses the search engine Exalead and the mu-
sic dictionary from [Schedl, 2008], which consists of about 1400 music-
related terms and was compiled from various sources [Schedl, 2008].
The corresponding full inverted index from [Schedl, 2008] created using
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Lucene27 was used. Only the artist names from the C19959g collection
that were contained in this index were kept.

2. AS-GO The second method is the one followed in [Pohle et al., 2007a],
where the search engine Google28 is used, and web pages are searched
for terms obtained from Audioscrobbler29.

For comparability, the same set of artists was considered in the two cases. 292
terms are the same in both dictionaries (i.e., exact matches). The data was
cleaned up by removing terms that occur for less than 2 artists and for more
than 95% of the artists. For method 1, 1281 terms remained after this step.
For method 2, 2045 terms remained.

5.2.3. Dimensionality Reduction Methods

Finally, three methods to reduce the vector length are compared against each
other by comparing their classi�cation performance, and by comparing it to
the classi�cation performance as obtained by the full-length TFxIDF vectors.
For all these comparisons, cosine similarity is used as the similarity measure
between vectors. The compared methods are clustering by linkage, PCA and
NMF, as discussed next. All three methods are applied to compress the TFx-
IDF vectors to a length of 16.

5.2.3.1. Clustering by Linkage. The �rst (and probably most obvious)
method to reduce the length of the TFxIDF vectors is to use a clustering
algorithm. Each term is represented by its TFxIDF values over all artists.
Based on this information, the clustering algorithm determines 16 clusters of
terms and assigns each term to one of these clusters. An artist TFxIDF vector
is projected to 16 dimensions by calculating for each cluster the mean of the
TFxIDF values of terms belonging to the given cluster. To �nd the clusters, a
deterministic procedure was chosen to avoid multiple runs. Based on prelim-
inary experiments conducted for NMF initialization, the following procedure
was adapted. A hierarchical cluster tree was created30 and clusters were com-
bined bottom-up until only 16 clusters remained. This procedure was repeated
several times with di�erent similarity measures and cluster methods, and the
result was selected that produced clusters with highest entropy of cluster sizes

27http://lucene.apache.org/java/
28http://www.google.com
29http://www.audioscrobbler.net/
30we used the Matlab function linkage
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(i.e., the optimum is obtained when cluster sizes are of same size). The applied
similarity measures were cosine, Euclidean, and correlation. Cluster methods
were complete link, average link, single link, and weighted average distance.

5.2.3.2. PCA PCA was performed as usual, using the 16 eigenvectors with
highest eigenvalues for projection of the data after mean removal. Each of
the kept eigenvectors represents a basis in the low-dimensional term space.
(Transposing the input matrix before PCA did not consistently increase or
decrease classi�cation accuracies.)

5.2.3.3. NMF To calculate NMF a number of algorithms have been pro-
posed [Lee and Seung, 1999, Lee and Seung, 2000]. For the experiments, we
use the implementation associated with [Hoyer, 2004] without sparseness con-
straints (i.e., the usual multiplicative update rules with square of the Euclidean
distance as cost function). Based on the observation that when initializing H
and W in a random manner, classi�cation accuracies have a rather large vari-
ance, we replace the initialization method. Both W and H are initialised with
the deterministic clustering method described above (Section 5.2.3.1), i.e., for
initialization, H is initialised by clustering term vectors (containing the val-
ues of a given term over all artists), and W is initialised by clustering artist
vectors (containing the values of a given artist over all terms). This initial-
ization seems to improve the obtained results, although the �nal cost was not
always lower than the cost obtained with random initialization. In most cases,
the combination of correlation distance measure and complete linkage was the
method that yielded highest entropy of clusters sizes both during initializa-
tion of H and W . In [Xu et al., 2003], each codebook vector is normalised
to have a Euclidean length of 1.0. We adapt this normalization step. (In
general, instead of normalising each codebook vector, normalizing each basis
of the low-dimensional artist space to a Euclidean length of one did decrease
accuracies in our experimental setup.)

5.2.4. Classi�cation Results

In Table 10, results obtained based on the TD-EXA data are listed. For
better visibility, the highest accuracy obtained for each method to compute the
TFxIDF vector is printed in bold letters. The corresponding values obtained
for AS-GO are listed in Table 11.
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Full TFxIDF Linkage PCA NMF
Raw TF 66.8% 59.0% 55.7% 52.3%

(56.2%) (64.9%) (62.8%)
like [Xu et al., 2003] 67.6% 65.5% 78.8% 77.5%

82.5% (NCW) 83.3% (NCW)
�Robust� 82.8% 76.3% 89.4% 88.2%

(77.4%) (89.7%) (89.6%)
LTC 87.2% 80.6% 89.5% 89.7%

(82.1%) (89.7%) (90.0%)

Table 10: TD-EXA: 1NN classi�cation accuracy for various methods to calcu-
late TFxIDF vectors and various projection methods. Vectors are compared
with cosine similarity after projection to 16 clusters (full TFxIDF: no pro-
jection). In parentheses: normalizing each (unprojected) TFxIDF vector to
have a Euclidean length of 1.0.

5.2.4.1. Comparison of Methods to Calculate TFxIDF. When compar-
ing Tables 10 and 11, it can be seen that using the raw TF generally yields
the lowest accuracies, and using the LTC like variant yields the highest. When
using the AS-GO data, after projection the variant like in [Xu et al., 2003]
produces higher accuracies than the �robust� variant, while this is vice versa
when using the TD-EXA data.

Additionally, the impact a change of the term dictionary and of the used
search engine have seem to be di�erent for the di�erent methods. In all cases,
accuracies are higher when calculated on the AS-GO data instead of the TD-
EXA data. However, the raw TF method seems most a�ected (i.e., there is
a larger di�erence of classi�cation accuracy when the data is changed from
AS-GO to TD-EXA), and the �robust� and the LTC like variant seem least
a�ected. These results indicate that the LTC variant is a good choice for this
kind of experiments.

5.2.4.2. Comparison of Clustering Methods. It can be seen that when
reducing the length of the TFxIDF vectors to 16 by applying bottom-up clus-
tering by linkage, the accuracies obtained typically are constantly below those
obtained when using full TFxIDF vectors on the TD-EXA data. The di�erence
is in the range from 2.1 to 10.6 percentage points, with an average decrease
of 6.1 percentage points. However, the corresponding results for AS-GO show
that this is changed when using a di�erent search engine and term dictionary.
In the latter case, accuracies are increased in two cases, with the increase be-
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Full TFxIDF Linkage PCA NMF
Raw TF 87.8% 85.5% 86.1% 85.6%

(84.7%) (88.2%) (86.7%)
like [Xu et al., 2003] 86.0% 87.9% 91.2% 90.6%

91.3% (NCW) 91.5% (NCW)
�Robust� 87.0% 87.8% 90.2% 90.1%

(86.4%) (90.9%) (90.5%)
LTC 91.7% 90.8% 92.6% 93.5%

(89.4%) (93.1%) (92.9%)

Table 11: AS-GO: 1NN classi�cation accuracy obtained when vectors are com-
pared with cosine similarity after projection (full TFxIDF: no projection).
16 cluster. In parentheses: normalizing each TFxIDF vector to have a Eu-
clidean length of 1.0 before calculating the projection. Normalization does
not have an in�uence on the full TFxIDF vectors as cosine similarity is used.

ing 0.8 and 1.9 percentage points, respectively. Also, the maximum decrease
is lower, i.e., 3.1 percentage points.

For PCA and NMF, results are more conclusive. Except for the �Raw TF�
method, accuracies are increased when similarities are calculated on the 16
dimensional vectors instead of the high-dimensional TFxIDF vectors. We see
this as an indication that the projection can provide a �meaningful� abstraction
from the original data by combining related terms. One might tend to explain
the low performance after projection of raw TF vectors by an inappropriate
scaling of raw term frequencies, i.e., this scaling might be not suited for meth-
ods that model data points as linear combinations of a set of bases. Without
examining this in detail, this notion is not supported by a simple experiment.
If instead of the raw term frequency, the logarithm is used, accuracy obtained
by the full vectors is 88.9%, while it decreases to 86.6% after PCA projection
when using the TD-EXA data and artist vectors are normalised to 1.0.

5.2.5. Assessing the Found Concepts

In the experiments presented above, 56 di�erent combinations are evaluated.
As it is infeasible to show all concepts found by these di�erent methods, here
only some of them that are likely to be among the most interesting ones are
shown. To evaluate which methods produce the most meaningful concepts,
a user study could be of interest. While a user study is not conducted in
the course of this thesis as it is time and cost intensive, we argue that those

117



5 Higher Concepts Derived from Web Pages

projections that produce highest classi�cation accuracies are those that are
of most interest. Thus, in the following, the concepts found by the various
projection methods for the LTC-like variant on the AS-GO data are shown
and discussed.

0.90 muddy waters 0.91 columbia 0.90 death metal
0.87 delta blues 0.90 1950s 0.89 thrash
0.87 electric blues 0.90 new orleans 0.88 metal bands
0.86 slide guitar 0.89 1960s 0.88 power metal
0.85 blues guitar 0.88 ballads 0.87 pantera
0.86 hardcore 0.93 ny 0.89 traditional country
0.82 punk rock 0.92 french 0.88 bluegrass
0.81 weird 0.92 european 0.87 alan jackson
0.80 emo 0.91 research 0.87 garth brooks
0.80 progressive 0.91 nights 0.87 americana
0.82 my stu� 0.93 oldies 0.86 techno
0.82 favourite 0.90 gospel 0.85 remix
0.80 playlist 0.89 60s 0.84 electro
0.79 australian 0.89 christmas 0.84 beats
0.73 britain 0.88 favorites 0.81 electronica
0.83 classic rock 0.95 the jazz 0.84 james brown
0.82 sucks 0.95 saxophone 0.83 motown
0.80 420 0.94 pianist 0.79 funk
0.80 berlin 0.94 trumpet 0.77 soulful
0.79 get more 0.94 bop 0.77 funky
0.80 black death metal 0.94 melodic 0.85 disco
0.77 death thrash 0.93 experimental 0.83 ct
0.76 melodic death metal 0.93 complex 0.83 worldwide
0.76 progressive metal 0.93 noise 0.83 bookmark
0.75 dark metal 0.92 intense 0.80 bt
0.82 dub
0.77 ska
0.74 dancehall
0.74 jamaica
0.70 conscious

Table 12: Clusters found by linkage algorithm (correlation / complete link).
Top �ve terms with highest cosine similarity to cluster centers shown. Clus-
ter centers are means of all term vectors that make up a cluster.

5.2.5.1. Low-dimensional Representation found by Linkage. Table 12
lists the concepts that are found by the linkage clustering algorithm. The
actual algorithm was to use correlation as a distance measure and combining
clusters by complete link, as this produced the highest entropy of cluster sizes.
Some of the terms closest to the cluster centers represent a music-related se-
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mantic concept. For example, the terms at (1, 1) are related to blues music,
and those at (1, 3) and (5, 1) are related to metal music. Other term lists
however seem not to be linked to consistent musical concepts. Cluster (2, 2)
seems to be linked to geographic terms (which is a phenomenon that was al-
ready observed in [Pohle et al., 2007a]), while clusters (4, 1) and (5, 3) might
represent no clear concepts. Thus, there may be room for improving upon this
method.

5.2.5.2. Low-dimensional Representation found by PCA. The low-di-
mensional bases found by PCA are illustrated in Table 13. As each basis also
contains negative values, the three terms with highest positive and the three
terms with highest negative weight are shown for each basis. Looking at the
terms in the table, it becomes apparent that while some term combinations are
clearly related to musical concepts, in general this way of representing concepts
does not support understandability. In particular, when assessing the e�ect of
combining bases, one has to consider that positive and negative weights may
cancel out to a certain extent when they represent similar concepts.

5.2.5.3. Low-dimensional Representation found by NMF. In Table 14,
the factors found by NMF based on the LTC variant are listed. Most term
groups are closely linked to a musical concept. In many cases, the terms are
genre names, or names of bands that are associated with a certain style of
music. In two cases, this seems not immediately obvious. The terms ranked
two to �ve for basis (3, 3) are bands that are commercially successful. A
hypothetical explanation for the term �class a1� is that such artists might be
considered �rst-class artists. The terms for basis (4, 1) are genres at least
weakly linked to punk rock and punk metal31. Overall, the bases found by
NMF seem to be more clearly linked to musical concepts than those found by
linkage or PCA.

5.2.5.4. Comparison to Other NMF Variants. The variants discussed
above are all based on AS-GO data and the LTC-like variant. To get some
insight into what concepts are found by NMF on di�erent TFxIDF variants,
four additional term tables are listed in Appendix A.2, Tables 16 to 19. These
are the NCW variant calculated like [Xu et al., 2003] on AS-GO, NMF on

31cf. http://en.wikipedia.org/wiki/Punk_metal and http://en.wikipedia.org/wiki/Punk_rock,
both pages retrieved 31.07.2009
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0.50 alan jackson 0.33 black metal 1.00 real country
0.48 real country 0.32 power metal 0.92 alan jackson
0.48 power metal 0.28 death metal 0.80 honkytonk
−0.85 keith jarrett −0.83 garth brooks −0.84 northern soul
−0.88 blue note records −0.98 real country −0.84 rasta
−1.00 hard bop −1.00 alan jackson −0.91 roots reggae
1.00 delta blues 1.00 roots reggae 1.00 roots reggae
0.98 electric blues 0.93 rasta 0.88 rasta
0.92 jump blues 0.84 rastafari 0.80 rastafari
−0.46 garth brooks −0.67 northern soul −0.30 paul oakenfold
−0.57 alan jackson −0.80 quiet storm −0.30 detroit techno
−0.67 real country −0.82 slow jams −0.30 deep house
1.00 northern soul 1.00 east coast rap 0.93 progressive rock
0.86 prog 0.91 jamband 0.88 whitesnake
0.82 slow jams 0.85 contemporary classical 0.83 dokken
−0.59 30s −0.88 grp records −0.68 real country
−0.65 hardcore rap −0.95 deep house −0.71 hardcore rap
−0.94 east coast rap −0.97 progressive house −1.00 east coast rap
0.52 blue note records 1.00 peter white 1.00 dokken
0.49 jump blues 0.94 je� lorber 0.89 ratt
0.44 real country 0.91 jazz-fusion 0.82 whitesnake
−0.36 medieval −0.56 girl groups −0.66 auf der maur
−0.90 classic folk −0.57 oldies but goodies −0.76 70s music
−1.00 folk revival −0.65 beach music −0.91 transplants
1.00 grp records 1.00 folk revival 0.97 essential jazz
0.86 east coast rap 0.80 classic folk 0.63 progressive rock
0.82 classic folk 0.25 american roots 0.58 hard-bop
−0.77 ashanti −0.47 prog −0.56 dave grusin
−0.84 transplants −0.49 jump blues −0.69 peter white
−0.90 class a1 −0.50 progressive rock −1.00 xd
1.00 xd
0.49 beach music
0.20 pat metheny group
−0.32 russ freeman
−0.36 grp records
−0.37 jazz instrumental

Table 13: Components found by PCA based on LTC variant. Artist vectors are
normalized before PCA. Term dictionary from Audioscrobbler. For display
purposes, each factor is normalized to have a maximum absolute value of
1.0. Only the three terms with highest and the three terms with lowest
weight are shown. Components are sorted by descending importance from
left to right and from top to bottom.
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0.40 roots reggae 0.37 progressive rock 0.30 east coast rap
0.36 rasta 0.33 prog 0.21 hardcore rap
0.32 rastafari 0.23 progressive metal 0.20 west coast rap
0.25 rocksteady 0.23 avant-prog 0.17 old school rap
0.24 ragga 0.22 space rock 0.17 gangsta rap
0.24 dokken 0.18 black metal 0.27 je� lorber
0.20 ratt 0.16 power metal 0.25 peter white
0.19 tesla 0.16 century media 0.25 larry carlton
0.19 whitesnake 0.15 morbid angel 0.23 david sanborn
0.18 hair metal 0.15 doom metal 0.23 spyro gyra
0.49 folk revival 0.26 hard bop 0.21 class a1
0.34 classic folk 0.26 blue note records 0.21 transplants
0.19 american roots 0.23 hard-bop 0.19 ashanti
0.14 folk rock 0.20 post-bop 0.16 boyz ii men
0.13 folk blues 0.19 hardbop 0.16 snoop dogg
0.14 pop punk 0.28 electric blues 0.33 real country
0.14 metalcore 0.27 delta blues 0.32 alan jackson
0.14 math rock 0.25 blues guitar 0.27 garth brooks
0.13 emo 0.25 british blues 0.26 classic country
0.12 death metal 0.24 classic blues 0.25 honkytonk
0.19 deep house 0.27 northern soul 0.18 vocal jazz
0.18 progressive house 0.22 slow jams 0.18 30s
0.18 detroit techno 0.21 southern soul 0.18 grp records
0.17 acid house 0.21 beach music 0.18 classic jazz
0.17 breakbeat 0.20 classic soul 0.16 jump blues
0.20 sun ra
0.19 contemporary classical
0.18 ecm
0.17 free jazz
0.17 jamband

Table 14: Factors found by NMF based on LTC variant (with normalization
of artist vectors). Term dictionary from audioscrobbler, search engine is
Google.

121



5 Higher Concepts Derived from Web Pages

�robust� variant on AS-GO, NMF on LTC-like variant on TD-EXA, and NMF
on �robust� variant on TD-EXA.

Table 16 shows the bases calculated by our adaptation of the NCW variant
(with which the highest classi�cation accuracy based on our implementation
of the variants from [Xu et al., 2003] is obtained in the results reported in
Tables 10 and 11). While in general the terms form meaningful groups, it
becomes obvious that two bases contain only one term: �ihs� and �tag 1�. This
may be an artifact resulting from our way of initializing the NMF algorithm.

Replacing AS-GO with TD-EXA, the terms associated with the bases found
by NMF on the LTC-like variant become less easily interpretable, as can be
seen in Table 18. This shows that the robustness against changing the term
dictionary and/or search engine is limited. The assessment of the in�uence
each of the two factors has on the quality is left for future work.

A comparison of the results from calculating the NMF on the LTC-like variant
and the �robust� variant (Table 17) shows that when using the �robust� variant,
also easily understandable concepts are found. Considering that the obtained
accuracies are only slightly below those obtained with the LTC-like variant, the
�robust� variant may be also a good choice. However, another consideration
should be kept in mind: As the �robust� variant is based on the relative number
of web pages a term occurs on, the algorithm used by the search engine might
have an even larger in�uence on the results than when using the LTC-like
variant, which is based on the number of occurrences of a given term on all
web pages retrieved for an artist.

5.3. Comparison to Other Work

In [Pohle et al., 2007a], we applied NMF on the AS-GO data and the LTC like
variant. In [Pohle et al., 2007a], genre classi�cation accuracies after projection
are lower than for full TFxIDF vectors. We see a likely reason for this in the
di�erent initialization step in the NMF algorithm (random instead of clustering
as done here). Based on the found low-dimensional artist representations, we
presented an application for artist recommendation (cf. Chapter 7, [Pohle
et al., 2007b]).

[Levy and Sandler, 2008] apply Latent Semantic Analysis (LSA) and Proba-
bilistic Latent Semantic Analysis (PLSA) to TFxIDF vectors constructed from
last.fm tags and the last.fm tag frequencies on the track level. A detailed com-
parison of the di�erences arising from track level vs. artist level, and setting
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term frequencies by last.fm frequencies vs. web text counts is yet to be done.
While [Gaussier and Goutte, 2005] point out that NMF is PLSA with KL Di-
vergence, the e�ect of the change of distance function in the update rule is
another unexamined parameter.

5.4. Conclusions

Not considered in the experiments above is the parameter �text processing�
(e.g., stemming), and the experiments are only based on one set of artists.
Thus, there are some parameters that have not been examined, and that may
have a certain in�uence. Keeping this in mind, a number of observations can
be made from our experiments.

• In a number of cases, classi�cation accuracy improved when calculating
similarity based on vectors projected by PCA and NMF, instead of using
full-length TFxIDF vectors. We see this as an indication that the found
clusters support a meaningful abstraction from the original data.

• Normalizing each TFxIDF vector to an Euclidean length of 1.0 before di-
mensionality reduction constantly led to improved classi�cation accuracy
for PCA, and in most cases also of NMF.

• The choice of term dictionary and way to estimate term weights has a
clearer impact on some of the TFxIDF approaches (raw TF, like [Xu
et al., 2003]), while the di�erence in classi�cation accuracy is lower for
other TFxIDF approaches (�robust�, �LTC�).

For the better-performing methods, accuracies are quite high, and the found
concepts seem reasonable. Although this renders further improvements ques-
tionable, for completeness it would be possible to conduct experiment series as
done in Chapter 2 to optimize di�erent parameter settings yet unexplored.
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6. Combining Audio and Web Based Data

In the previous chapters, methods to obtain relevant information from the
audio signal and from textual artist descriptions have been discussed. Obvi-
ously, it is of interest to asses whether these two sources of information can be
combined to obtain a more robust overall recommendation technique.

Following the previously presented reasoning, in this chapter we assess if an
improved artist similarity measure can be created by applying simple methods
to combine a text based and an audio based artist similarity measure. In
these experiments, we take into consideration a possible di�culty: we assume
that for each considered artist, there are music tracks available, but that for
some of them, text-based information may be not available. This re�ects a
user collection that contains both music from well-known artists, and music
by unknown artists. Obviously, for the latter it may be di�cult to obtain a
su�cient amount of textual information from the Web.

6.1. Introduction

As discussed in the previous chapters, artist similarity measures are an impor-
tant part of many MIR systems. In this chapter, a method to combine two
commonly used sources to automatically compute artist similarity is discussed
and evaluated. The �rst source are texts (e.g., web pages, tags, and song
lyrics), as described in Chapters 3 and 5. One problem that may occur with
such data is that the data is not available for all artists (or tracks, respectively).
There usually is not much information about very unknown artists available
on the Internet: the artist is only mentioned on few (if any) web pages, and
there are likely not su�ciently many human-assigned tags available.

The second source to compute artist similarity is the audio signal of music
by the artists. To do so, the techniques used to compute song-to-song simi-
larity (see Chapters 2 and 4) are extended to the artist level. For example,
in [Berenzweig et al., 2003], an artist is represented by building a common
model over all pieces. The similarity of two artists is calculated by comparing
their models.

Here, we investigate if these two sources for artist similarity measures � au-
dio and text data � can be combined to create an improved measure. [Li and
Ogihara, 2004] present an approach to train artist classi�ers with such het-
erogeneous data from lyrics on the one hand and sound on the other hand.
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In contrast, in this chapter, we present a way to build a combined similarity
measure (not a classi�er), and evaluate it with partly missing data.

The remainder of this chapter is organized as follows. Section 6.2 presents
the basic idea. The data and similarity measures investigated are described
in Section 6.3. Results for the combination of both measures with full data
coverage are shown in Section 6.4, while the method is extended to partly
missing data in Section 6.5. Finally, Section 6.6 concludes the chapter.

6.2. Basic Idea

The basic idea for combining the two di�erent similarity measures is to treat
each of them as a black box, and only combine their output. Assuming that
both measures re�ect a di�erent aspect of similarity, and that both of these
aspects are basically of same importance to an overall measure, the main task
is to create a common �vote� for the best-matching artists. Several methods
are evaluated: the simple ones are taking the minimum, mean, and maximum
of both measures.

Based on the idea that the two measures produce di�erently scaled outputs,
but the ranking of their output seems of more importance, the output of both
similarity measures is then replaced by the respective ranking (details will
be explained in Section 6.3.3). Using these rankings as a basis makes the
combination of the measures more intuitively meaningful.

In particular, a main motivation for this work is the following idea. By taking
the maximum of the two rank-based distance measures32, it becomes possible
to �lter out �bad� matches from one measure M1 even if the other measure M2

does not cover all artists, but rather is only calculated on a subset of the artists
covered by M1. This could be done, for instance, by taking the maximum
distance calculated by the two measures, where both measures are available.
Distances involving artists only covered by M1 could be left unchanged.

Although the idea is based on taking the maximum rank of the two rank based
measures, the minimum and mean functions are also evaluated for complete-
ness. The detailed setup is presented in the next section.

32The terms distance measure and similarity measure are used interchangeably here. The
term similarity measure re�ects that only the top-ranked artists are of importance, while
for the computation it is of importance that distances are used in the rank-based method.
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6 Combining Audio and Web Based Data

6.3. Experimental Setup

We used a collection of music by 3818 artists assigned to 45 genres by expert
opinion. The largest genres pop, r'n'b and pop/rock contained 182, 178 and 172
artists, respectively, while the smallest genre gangsta rap contained 4 artists.
Songs by all artists are given as 30 second excerpts. There are 37, 110 excerpts
in the collection, with a median value of 3 excerpts per artist.

In our experimental setup, we use the genre labels as ground truth. Assuming
that for a better similarity measure, more of those artists that are ranked
closely are in the same genre as the seed artist than for an inferior similarity
measure, we use k-NN genre classi�cation as a quality indication. On our data,
the baseline accuracy for this method is 4.77% for an algorithm that classi�es
all items as belonging to the largest class.

6.3.1. Audio Similarity

For determining the audio similarity of music, we apply the widely used MFCCs.
All MFCCs of a piece (or all MFCCs of all pieces by a particular artist) are
combined into a single Gaussian model. Two models can be compared by the
KL distance. The resulting values are scaled, thus the resulting distances are
in the unit interval [Mandel and Ellis, 2005a].

We tried di�erent methods to compute the distance between two artists. On
the one hand, we tried methods based on the pairwise distance between tracks
by two artists, and on the other hand, we evaluated building a combined
MFCC model for each artist. For combining the pairwise track distances of
tracks by two artists into one common measure, we tried min, mean, median
and max functions on all pairwise distances (cf. [Logan, 2004]), and a number
of slightly more complicated asymmetric methods. We found the method to
build one common GMM for an artist to work best. Probably this is due
to the short duration of 30 seconds for each individual clip. Thus, in the
experiments presented here, we use this method. It turns out that about
61% of all pairwise audio based artist distances have a value of 0.99 to 1.0.
Classi�cation accuracies obtained with this measure can be found in Table 15
(denoted Audio).
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6.3 Experimental Setup

Figure 34: Values of web-based artist distance vs. audio-based artist distance
for 1 million randomly chosen artist pairs.

6.3.2. Web-Based Similarity

To compute the text based artist similarity, the search engine Exalead33 was
queried for web pages containing the artist names. Returned documents were
retrieved from the web and concatenated into one text per artist. After stem-
ming, these texts were scanned for a dictionary of 7570 music-related stemmed
tags. Tags were retrieved from the Ausdioscrobbler34 web service. The occur-
rences were counted and used to construct a TFxIDF vector for each artist.
The similarity between two artists is computed by calculating the cosine simi-
larity between their vectors. Classi�cation accuracies obtained with this mea-
sure are also given in Table 15 (denoted Web).

6.3.3. Combined Similarity Measure

In Figure 34, audio and web based distances are plotted against each other for
1 million randomly chosen artist pairs. It can be seen that the two measures
are not highly interdependent (i.e., knowing the value of one measure does

33www.exalead.com
34www.audioscrobbler.net
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not give very much information about the value of the other). Also, for both
measures, there are only few values that are small (i.e., artists that have a high
similarity value).

To combine both measures, in a �rst experiment simply their output values
are combined by taking their minimum, mean and maximum values, respec-
tively. However, as indicated in Figure 34, the distributions the output values
take di�er, thus such a direct combination might be not the best combination
method. As in the scenario discussed here, it is rather of importance which
artists are ranked highest by a measure, we replace each of the calculated dis-
tances with the rank. For this operation, for a seed artist, all distances to
all other artists are calculated and sorted. Then the distance to each artist is
replaced by the resulting rank. This is done for both measures independently.
The n-th closest artist is assigned number n. This way, the output of a measure
is transformed into a more directly interpretable value. Most importantly, the
outputs of both measures can be combined based on this new measure. Once
again, they are combined into one common measure by taking their minimum,
mean and maximum value. We did not try a parametric method due to po-
tential over�tting to the used music collection. Results are given in the next
section.

1-NN 3-NN 5-NN 10-NN 20-NN
Audio 15.8% 14.6% 13.6% 12.4% 11.2%
Web 17.1% 15.5% 14.6% 13.5% 12.1%
Min 19.0% 16.9% 16.0% 14.6% 13.0%
Mean 19.0% 17.1% 15.8% 14.8% 13.4%
Max 15.7% 13.5% 12.5% 11.2% 9.9%
Minr 16.2% 15.6% 15.1% 14.0% 12.8%
Meanr 21.5% 18.4% 17.0% 15.0% 13.0%
Maxr 20.4% 17.7% 16.2% 14.4% 12.3%

Table 15: Leave-one-out classi�cation accuracies for the various approaches
when both audio and web data is available for all artists.

6.4. Results

Table 15 shows the accuracies obtained for the basic audio and web based
distance measures, as well as the various evaluated combinations of both. The
obtained accuracies are low compared to those found in the literature, which
may be due to the high number of 45 genres (resulting in a baseline of 4.77%;

128



6.5 Missing Data

a purely random distance measure produces about 3% accuracy). As measure
of accuracy, accA (Equation 3, page 28, i.e., the fraction of nearest neighbors
considered that was in the same class as the test item) was taken as a measure
for accuracy, because we consider this as a more exact measure than a majority
vote.

It can be seen that taking the simple minimum and mean of the two basic
measures yields an improved measure when considering the closest neighbors.
This may be corresponding to the assumption �if one measure outputs a very
small distance, then the artist is indeed a good match�. In line with this, using
the maximum decreases performance. For the rank-based measures (denoted
as Minr, Meanr and Maxr, respectively), it can be seen that Meanr yields the
best overall results. From Table 15 it can be seen that this common measure
produces better results for up to 10 NN than each of the underlying measures
alone, and also better results than the reported non-rank-based combination
variants.

6.5. Missing Data

If a music collection contains music by very unknown artists, for the unknown
artists there likely is only the music available but not community-based meta-
data or lyrics. To see if the method also can be used to handle such missing
data, we conducted experiments with some of the artist web data intentionally
left out. While audio-based distances are available for all artists, for left out
artists no web-based distance data is available. Consequently, when computing
the rank-based distances between artists, the maximum rank between artists
is lower for the web-based measure than for the audio based measure.

Measures were combined by taking again the minimum, mean and maximum of
both distances where both distances are available, and simply taking the audio
based distance where only the audio based distance is available. During the
experiments, it was assumed that a di�erent fraction of the web-based artist
data was available, ranging from 0% (corresponding to the purely audio-based
measure) and 100% (corresponding to the results presented in Section 6.4).
Missing artists were chosen randomly.

The results presented in Figure 35 indicate that such a combination of partial
data results in a decreased accuracy for the maximum and the rankbased min
methods when only 10% of the artists have web data associated. However,
somewhat surprisingly, when using the other methods for such a combination,
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Figure 35: Partly missing artist data. Artists with missing data are chosen
randomly. Results averaged over 10 runs.
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the average performance of the audio-based measure is increased with all pa-
rameter settings examined here. However, considering each of the ten runs
separately, it turns out that when less than 30 per cent of the artists had web
data associated, performance decreased slightly in some cases for all methods.
From the results, it follows that using the rank-based mean combination seems
the best method. It is particularly interesting that the fraction of available web
based artist distances seems to be almost linearly associated with an increased
overall performance.

6.6. Conclusion

In this chapter, we presented a method to combine a web based and an audio
based artist similarity measure into an improved common similarity measure.
The experimental results indicate that the method can also be applied to obtain
an improved measure when web data is missing for some of the artists.

These experiments point the direction to future extensions. For example, there
is an obvious method to combine this method with the �topic� based search
discussed in Chapter 5. To do so, the artist representations can be replaced
by the low-dimensional representation, and the artist ranking produced by the
text-based part is replaced by the low-dimensional similarity to the (possibly
user-modi�ed) low-dimensional query vector. Such an integration can even be
made in a more seamless manner by allowing the user to adjust the weight of
the topic based artist measure and the audio based artist similarity measure by
determining the relative weights of the two measures, which then are combined
by a weighted sum.
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7. Applications

In this chapter, a number of example applications is outlined that can make
use of the techniques described and evaluated in this thesis. The �rst scenario
(Section 7.1) is the enrichment of existing audio players with functionality
based on audio features. The second scenario (Section 7.2) comprises a distinct
concept for audio players, where music is accessed by turning a wheel. A third
application scenario (Section 7.3) is the use of higher-level artists concepts to
o�er controllable artist recommendations. The chapter concludes by drafting
further possible application scenarios.

7.1. Using Linear Descriptors by Functionality Injection

Considering the results presented in Chapters 2 and 4, it becomes apparent
that the most intuitively understandable audio descriptors developed in the
course of this work are Harmonicness and Attackness. They aim to describe
the amount of harmonic and percussive structures in a cent-scaled spectro-
gram that is level-adapted to better match human loudness perception. While
horizontal and vertical structure in principle are not necessarily related to
each other (e.g., a high Harmonicness value does not imply a low Attackness
value), combining them into the one common value H2A Ratio (Equation 36)
yields an intuitively understandable single scalar descriptor. In general, a low
H2A Ratio indicates dominance of drum-like elements, while a high H2A Ratio
usually is assigned to pieces with mainly sustained sounds and few percussive
elements.

A simple yet e�ective way to use such linear audio descriptors in conjunction
with existing audio players (software or hardware based) is to write the de-
scriptor value as a string at the beginning of the �le name, or into a metadata
�eld of the track. Depending on the actual player used, such data can then
be processed by the player's built-in functionality. We refer to this method as
Functionality Injection.

For example, the H2A ratio can be written into the Comment �eld of each
music �le. To facilitate string comparison and sorting, the descriptor value
can be represented by three digits in the range from 000 to 999. When loading
this collection into a software music player that supports the sorting of the
currently selected tracks according to the string written into the comment
�eld, it is possible to sort the current tracks according to H2A Ratio without
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having modi�ed the player application, by simply sorting them according to
the text written into the comment �eld.

In principle, this basic concept can be also used on mobile players. The actual
usage depends on the capabilities of the player. For example, if a player does
not support reading of mp3 tags, but allows for sorting according to the �le
name, �le names can be renamed to start with the respective feature name
and feature value.

7.2. �The Wheel Player�

While Functionality Injection allows to use linear audio descriptors in conjunc-
tion with existing audio players, the methods described in this thesis can also
be applied to create novel music player concepts. Such a concept is the wheel
player which we �rst introduced in [Pohle et al., 2005b].

7.2.1. Basic Idea

The basic idea behind the wheel player is to arrange all the music into one
circular playlist containing regions of similar music, and to o�er the user a
way to quickly jump into any position of the playlist. Once the user knows in
what region to expect which music, it becomes easier to select a certain type
of music. Furthermore, once a piece is selected, the player goes on by playing
similar music that is next in the playlist. Such an application can be useful
when there should only be little attention paid to the audio player, e.g., during
workout.

To quickly jump to a region of the playlist, an interface consisting of a wheel can
be used, as drafted in Figure 36. Grouping of similar music can be achieved
by a number of di�erent approaches. The most simple one is to use only
audio similarity [Pohle et al., 2005b]. More advanced methods also take into
consideration web based information [Schedl et al., 2006,Knees et al., 2006a,
Pohle et al., 2007,Schnitzer et al., 2007], as discussed next.

7.2.2. Audio Based Algorithms

As presented in [Pohle et al., 2005b], the wheel player's playlist can be created
by calculating the audio similarity between each pair of tracks in the collection,
converting these into distances, and then calculating a Traveling Salesman
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Figure 36: Idea for an audio player. All available music is arranged around the
wheel. The aim is to arrange the music in such a way that similar music
forms clustered regions around the wheel, so that a music style can easily
be selected (cf. [Pohle et al., 2005b,Pohle et al., 2007]).

Problem (TSP) algorithm on these distances. A number of TSP algorithms
have been evaluated in [Pohle et al., 2005b] by considering genre labels of
songs as an evaluation criterion. Regions of similar songs are assumed to
contain only a small number of di�erent genres. In this evaluation it turned
out that a SOM-based algorithm and a Minimum Spanning Tree algorithm
seem to be better suited for the task than a simple greedy method and an
elaborated algorithm. We assume that improvements of the underlying audio
similarity (cf. Chapter 2) measure will result in improved playlists.

7.2.3. Improvement with Web Based Data

When constructing the playlist based only on audio data, it can be observed
that in some cases various regions that are apart contain similar music. Two
methods to use web based data have been proposed to reduce this.
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7.2.3.1. Distance penalties. In [Pohle et al., 2007] it is proposed to use
web-based artist data for modifying the pairwise track distances so that the
TSP algorithm is forced to preferably use transitions between tracks of similar
artists. To this end, similar artists (as determined by a similarity measure
based on data obtained from the web, also cf. Chapter 3) are clustered by
using a Self-Organizing Map (SOM). Distances between tracks of artists that
are not in the same cluster are increased by a penalty term before the TSP
algorithm is computed.

7.2.3.2. Labeled clusters. To o�er faster insight into which music is con-
tained in which region, techniques such as the one discussed in Chapter 5 can
be used to build and label the playlist. To this end, as described in [Schnitzer
et al., 2007], a number r of clusters is created by running a NMF algorithm
with r factors on those artists in the collection that have term vectors asso-
ciated. An artist cluster is created from a factor by assigning all artists to it
that have the largest association to this factor. The cluster is described by
the n top weighted terms associated with the factor. Tracks by artists that
have no TFxIDF vectors associated are assigned to the clusters by searching
for the track in the clusters that has the minimum audio distance to the given
unlabeled song. An overall playlist is created from this cluster data in a two-
step procedure. First, all tracks within a cluster are arranged in a circular
manner by calculating a TSP on them. Second, these playlists are combined
by breaking each playlist up at the longest distance, and combining the (now
linear) playlists in a greedy manner into one long circular playlist. This long
playlist can be displayed in an iconic way (e.g., as a bar) along with the cluster
labels at appropriate positions. Such a demonstration application is presented
in [Schnitzer et al., 2007].

While the results in [Schnitzer et al., 2007] show that NMF can be used for
this algorithm, it also turns out that a more simple binning method performs
comparably to the more advanced NMF approach. A reason for that the sim-
pler algorithm performs comparably may be that the description of the cluster
centers is of interest, and not the degree to which instances are associated
with individual clusters. An application that makes use of such information is
presented next.
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7.3. Artist Browser

In Chapter 5 it is discussed how NMF can be used to compress long TFxIDF
vectors to few (e.g., r = 16), ideally meaningful concepts. This allows to
represent each artist by the degree to which the artist is associated with each
of these concepts. The low-dimensionality artist representations then can be
used to de�ne (or re�ne) queries for artists that have certain characteristics.
Two example applications are introduced in [Pohle et al., 2007a] and [Pohle
et al., 2007b]. Both work by the same basic principle. The user �rst selects
a seed artist out of a drop-down list. This triggers a lookup of the selected
artist's representation in the compressed domain. The corresponding values
(i.e., degree to which this artist is associated with each of the r concepts) are
transferred to r sliders that are displayed in the user interface, and labeled with
descriptions of the corresponding concepts. These labels can either simply be
the n (e.g., n = 3) top terms in each cluster [Pohle et al., 2007a], or assigned
manually during program design [Pohle et al., 2007b].

Figure 37 shows this state in the application from [Pohle et al., 2007a] for the
artist Miles Davis. It can be seen that this artist is most associated with the
concept that has the most highly weighted terms hard bop, blue note, modern
jazz, but Miles Davis is here also associated with the concepts funky soul (...)
and jazz vocals (...).

Internally, the slider positions are linked with a query vector of length r that
is used to determine the most similar artists in the collection by determining
the cosine similarity of each compressed artist vector and the query vector.
The most similar artists are shown in the list at the right hand along with the
cosine similarity value with respect to the query vector.

When the slider positions are changed, a new query with the modi�ed query
vector is triggered, and the artist list is updated with the artists most similar
to the modi�ed query vector. An example of updating the concepts is given for
the application presented in [Pohle et al., 2007b], which is a similar application
but also displays the last.fm page of the best-matching artist. Figure 38 shows
the command section of this artist browser.

In the example, �rst with the �Quick Selection� drop-down list the seed artist
Beatles was selected. The system then transferred the internal representation
of the Beatles (i.e., the concept vector of length 16) to the sliders. All sliders
are left untouched in this example, except for the slider labeled �Punk�. From
the picture, it can be seen that the system associates the Beatles mainly with
�Classic Oldies�, but also � to a much lesser extent � they are associated with
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Figure 37: Artist Browser [Pohle et al., 2007a]

Figure 38: Music Service Browser [Pohle et al., 2007b]
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the �Singer / Songwriter� and �80s Wave� categories. When the user increases
the value of the �Punk� slider slightly, �Iggy Pop� is suggested. Increasing it
more (as shown in the picture), the Sex Pistols are the artist whose internal
description best matches the modi�ed query vector.

7.4. Further Potential Applications

The presented example applications motivate that the methods developed in
the course of this thesis might be useful for improving existing music retrieval
systems to allow for a more convenient and more intuitive interaction. To
conclude this chapter, two further potential application scenarios are drafted
here, without presenting actual implementations of the concepts. These are
a constrained random play function called DendrogRandom and a method to
automatically update the music on a mobile player according to the user's
taste.

7.4.1. DendrogRandom: Constrained Random Play Function

The method discussed in Chapter 5 is designed to �nd topics associated with
the music. In the Artist Browser application discussed in Section 7.3 these
topics are collocated in a nonhierarchical manner. As each topic is represented
by a vector, it is possible to de�ne a similarity between topic vectors by e.g.
calculating their cosine similarity. Based on the distances between topics, a
dendrogram can be calculated with bottom-up clustering. Figures 39 and 40
show the dendrograms based on the data used in the artist browser applica-
tions.

The nodes of the resulting dendrogram are automatically annotated in a bottom-
up manner. Leaf nodes are assigned the vectors of the respective factors. Each
node is annotated with the three terms with highest weight associated, with
terms scaled according to their weights. The vectors associated with inner
nodes are created by normalizing the vectors associated with the two next
lower nodes, and summing them up. It can be seen that in many cases the
overall hierarchy re�ects intuitive aspects. We give two examples how such
a dendrogram can be used in an audio player, dendrogram zooming and a
constrained random play function we call DendrogRandom.
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Figure 39: Dendrogram based on the artist data from [Pohle et al., 2007a],
cosine similarity and average linkage algorithm.

7.4.1.1. Dendrogram zooming. The hierarchy re�ected in a dendrogram
can be used in user interfaces to reduce the information displayed when zoom-
ing out of visual representations of the music collections. For example, in an
application context like [Schnitzer et al., 2007], this method allows to give
only coarse descriptions of the regions of the bar representing the music on
the player, together with a color representation of their (relative) sizes. When
zooming into a particular region, this region can be split up and more �ne-
grained labels can be shown. This zooming can also be done seamlessly, as
two levels of abstraction may be shown simultaneously.

7.4.1.2. Constrained Random Play Function. On mobile devices having
displays with limited screen resolution, the hierarchical dendrogram structure
may be used to quickly browse the collection based on a meaningful organiza-
tion. I.e., instead of an artist / album / track browsing procedure, the selection
would take place top-down, narrowing the kind of music the listener wants to
listen to at the moment. She can stop the procedure at any time, and all tracks
that are contained under the current position in the tree may be played, e.g.
in a random manner. For example, in a hierarchy as in Figure 40, the user
may choose to play just pop music by browsing to the branch labelled with
�80, pop, classic�. Obviously, this method to access only a particular kind of
music can be also used in software players, and combined with other search
and access methods. For example, the selected music can be further narrowed
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Figure 40: Dendrogram based on the artist data from [Pohle et al., 2007b],
cosine similarity and average linkage algorithm.

by a metadata search for only allowing music from a given decade.

7.4.2. Automatically Keeping the Collection Up-To-Date

Another potential application scenario is assessed in [Pohle et al., 2008]. The
idea in this scenario is to exploit information about the user's listening be-
havior to automatically update the music she has on her mobile player. It is
assumed that the number of times a track is listened to or skipped contains
information about the user's preferences. While such a scenario is di�cult
to evaluate due to the large number of rather unpredictable in�uences on the
actual usage behavior, the conducted experiments show that combining statis-
tics about listening and skipping songs with an audio similarity measure can
potentially be used to support the user in �nding new music she likes. As such
a recommender system is independent of metadata and artist popularity this
is an example of a system that is able to deliver music from the long tail.
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7.5. Conclusions

In the �nal chapter of this thesis, a number of example applications has been
presented that can make use of the methods discussed and evaluated in the
previous chapters. They motivate a number of alternative ways to interact
with music collections, and maybe, these example applications even give a
�rst taste of the way music is consumed in the future.
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A. Experimental Results

A.1. Sorted List of TFxIDF Approaches

Below, the sorted list of TFxIDF approaches discussed in Section 3.3 is listed.
The number gives the maximum rank of the approach based on the 323a set
and the 3000a set. Entries have the form <PageAggregationFunction>.
<TF-Approach>.<IDF-Approach>.<SimilarityMeasure>.

6. numPagesAbs.tf_c3.idf_h.cosSim
7. numPagesAbs.tf_c2.idf_h.cosSim
10. mean.tf_f.idf_e.je�
11. mean.tf_c2.idf_e.je�
11. numPagesAbs.tf_c.idf_h.cosSim
12. sum.tf_c2.idf_b2.cosSim
15. sum.tf_c3.idf_b2.cosSim
31. numPagesAbs.tf_c3.idf_b2.cosSim
32. sum.tf_c2.idf_h.cosSim
42. mean.tf_f.idf_b2.je�
43. sum.tf_c3.idf_h.cosSim
44. mean.tf_c2.idf_b2.je�
44. numPagesRel.tf_f.idf_b2.cosSim
45. numPagesRel.tf_f.idf_b2.dice
45. sum.tf_c3.idf_b2.dice
46. numPagesRel.tf_f.idf_b2.jacc
46. sum.tf_c3.idf_b2.jacc
47. numPagesRel.tf_f.idf_h.dice
48. numPagesRel.tf_f.idf_h.jacc
48. sum.tf_c.idf_b2.cosSim
49. numPagesRel.tf_f.idf_i.dice
50. numPagesRel.tf_f.idf_i.jacc
51. numPagesRel.tf_c2.idf_b2.cosSim
54. numPagesAbs.tf_b.idf_h.cosSim
55. numPagesAbs.tf_d.idf_h.cosSim
57. sum.tf_c2.idf_b2.jacc
58. sum.tf_c2.idf_b2.dice
60. sum.tf_c.idf_b2.dice
61. sum.tf_c.idf_b2.jacc
62. sum.tf_c.idf_h.cosSim
67. numPagesAbs.tf_b.idf_e.je�
68. numPagesAbs.tf_d.idf_e.je�
68. sum.tf_c2.idf_i.cosSim

69. numPagesRel.tf_b.idf_e.je�
70. numPagesRel.tf_d.idf_e.je�
71. numPagesAbs.tf_c2.idf_b2.cosSim
71. numPagesRel.tf_f.idf_h.cosSim
72. numPagesRel.tf_c2.idf_e.je�
75. numPagesAbs.tf_b.idf_b2.cosSim
76. numPagesAbs.tf_d.idf_b2.cosSim
76. numPagesRel.tf_c2.idf_h.dice
77. numPagesRel.tf_b.idf_b2.cosSim
77. numPagesRel.tf_c2.idf_h.jacc
78. numPagesRel.tf_d.idf_b2.cosSim
78. numPagesRel.tf_f.idf_i.cosSim
80. numPagesRel.tf_b.idf_i.cosSim
81. numPagesRel.tf_c2.idf_i.dice
82. numPagesRel.tf_c2.idf_i.jacc
83. numPagesRel.tf_d.idf_i.cosSim
84. numPagesRel.tf_b.idf_h.cosSim
85. numPagesAbs.tf_b.idf_h.je�
85. numPagesRel.tf_d.idf_h.cosSim
86. numPagesAbs.tf_d.idf_h.je�
87. numPagesRel.tf_c2.idf_i.cosSim
88. numPagesRel.tf_c2.idf_h.cosSim
89. sum.tf_c3.idf_i.cosSim
90. numPagesAbs.tf_c2.idf_i.cosSim
91. numPagesRel.tf_f.idf_e.je�
98. mean.tf_f.idf_h.je�
99. numPagesAbs.tf_d.idf_h.dice
100. numPagesAbs.tf_d.idf_h.jacc
101. numPagesRel.tf_c2.idf_b2.dice
102. numPagesRel.tf_c2.idf_b2.jacc
103. sum.tf_c.idf_i.cosSim
105. mean.tf_f.idf_b2.cosSim
105. numPagesAbs.tf_c.idf_i.cosSim
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109. numPagesAbs.tf_c3.idf_i.cosSim
110. numPagesRel.tf_d.idf_h.dice
111. numPagesRel.tf_d.idf_h.jacc
112. numPagesRel.tf_d.idf_i.dice
113. numPagesRel.tf_d.idf_i.jacc
115. numPagesAbs.tf_c.idf_h.dice
116. numPagesAbs.tf_c.idf_h.jacc
118. numPagesRel.tf_b.idf_i.dice
119. numPagesAbs.tf_c3.idf_h.dice
119. numPagesRel.tf_b.idf_i.jacc
120. numPagesAbs.tf_c3.idf_h.jacc
120. numPagesRel.tf_b.idf_h.dice
121. numPagesAbs.tf_d.idf_b2.je�
121. numPagesRel.tf_b.idf_h.jacc
122. mean.tf_f.idf_i.je�
122. numPagesRel.tf_b.idf_b2.je�
123. numPagesAbs.tf_c.idf_b2.cosSim
123. numPagesRel.tf_d.idf_b2.je�
124. numPagesAbs.tf_b.idf_b2.je�
126. mean.tf_f.idf_b2.dice
127. mean.tf_f.idf_b2.jacc
128. sum.tf_c3.idf_e.dice
129. numPagesAbs.tf_c2.idf_h.dice
129. sum.tf_c3.idf_e.jacc
130. numPagesAbs.tf_c2.idf_h.jacc
130. sum.tf_c2.idf_e.dice
131. sum.tf_c2.idf_e.jacc
134. sum.tf_c2.idf_e.cosSim
135. sum.tf_c3.idf_e.cosSim
136. mean.tf_b.idf_e.je�
137. mean.tf_d.idf_e.je�
137. sum.tf_c2.idf_h.dice
138. sum.tf_b.idf_e.je�
138. sum.tf_c2.idf_h.jacc
139. sum.tf_d.idf_e.je�
142. numPagesRel.tf_b.idf_b2.dice
143. numPagesRel.tf_b.idf_b2.jacc
143. sum.tf_c3.idf_h.dice
144. sum.tf_c3.idf_h.jacc
145. sum.tf_c.idf_h.dice
146. numPagesAbs.tf_d.idf_b2.dice
146. sum.tf_c.idf_h.jacc
147. numPagesAbs.tf_d.idf_b2.jacc

148. numPagesAbs.tf_c2.idf_b2.dice
148. numPagesRel.tf_d.idf_b2.dice
149. numPagesAbs.tf_c2.idf_b2.jacc
149. numPagesRel.tf_d.idf_b2.jacc
150. numPagesAbs.tf_c3.idf_e.cosSim
151. sum.tf_c.idf_e.dice
152. numPagesAbs.tf_c3.idf_b2.dice
152. sum.tf_c.idf_e.jacc
153. numPagesAbs.tf_c3.idf_b2.jacc
153. sum.tf_c.idf_e.cosSim
154. numPagesRel.tf_c2.idf_b2.je�
154. numPagesRel.tf_f.idf_e.cosSim
155. mean.tf_c2.idf_h.je�
155. numPagesAbs.tf_c.idf_b2.dice
156. numPagesAbs.tf_c.idf_b2.jacc
156. numPagesRel.tf_f.idf_e.dice
157. numPagesRel.tf_f.idf_b2.je�
157. numPagesRel.tf_f.idf_e.jacc
158. numPagesAbs.tf_c3.idf_e.dice
159. numPagesAbs.tf_c3.idf_e.jacc
162. numPagesAbs.tf_c2.idf_e.cosSim
163. numPagesRel.tf_c2.idf_e.cosSim
164. mean.tf_c2.idf_i.je�
165. numPagesRel.tf_b.idf_i.je�
165. sum.tf_c3.idf_e.je�
166. numPagesAbs.tf_c2.idf_e.dice
166. numPagesRel.tf_d.idf_i.je�
167. numPagesAbs.tf_c2.idf_e.jacc
168. numPagesRel.tf_c2.idf_e.dice
169. numPagesRel.tf_b.idf_h.je�
169. numPagesRel.tf_c2.idf_e.jacc
170. numPagesAbs.tf_c.idf_e.cosSim
170. numPagesRel.tf_d.idf_h.je�
171. sum.tf_c2.idf_e.je�
175. numPagesAbs.tf_c.idf_e.dice
175. numPagesRel.tf_c2.idf_i.je�
176. numPagesAbs.tf_c.idf_e.jacc
176. numPagesRel.tf_c2.idf_h.je�
177. mean.tf_f.idf_h.cosSim
178. mean.tf_f.idf_i.cosSim
178. sum.tf_c.idf_i.dice
179. numPagesAbs.tf_d.idf_e.cosSim
179. sum.tf_c.idf_i.jacc
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180. numPagesRel.tf_b.idf_e.cosSim
180. numPagesRel.tf_f.idf_h.je�
181. numPagesRel.tf_d.idf_e.cosSim
181. numPagesRel.tf_f.idf_i.je�
182. numPagesAbs.tf_b.idf_e.cosSim
182. sum.tf_c2.idf_i.dice
183. sum.tf_c2.idf_i.jacc
187. sum.tf_c3.idf_i.dice
188. sum.tf_c3.idf_i.jacc
190. sum.tf_c3.idf_b2.je�
191. numPagesAbs.tf_c3.idf_e.je�
191. numPagesAbs.tf_d.idf_e.dice
192. numPagesAbs.tf_d.idf_e.jacc
192. numPagesAbs.tf_f.idf_h.cosSim
193. numPagesRel.tf_d.idf_e.dice
194. numPagesRel.tf_d.idf_e.jacc
195. numPagesRel.tf_b.idf_e.dice
195. sum.tf_c2.idf_b2.je�
196. numPagesRel.tf_b.idf_e.jacc
197. mean.tf_f.idf_i.dice
198. mean.tf_f.idf_i.jacc
198. sum.tf_c2.idf_h.je�
199. mean.tf_f.idf_h.dice
199. sum.tf_c3.idf_h.je�
200. mean.tf_f.idf_h.jacc
203. sum.tf_c.idf_e.je�
205. numPagesAbs.tf_b.idf_h.dice
206. numPagesAbs.tf_b.idf_h.jacc
206. numPagesAbs.tf_c3.idf_h.je�
207. numPagesAbs.tf_f.idf_i.cosSim
208. numPagesAbs.tf_f.idf_h.dice
209. mean.tf_f.idf_e.cosSim
209. numPagesAbs.tf_f.idf_h.jacc
211. numPagesAbs.tf_c3.idf_b2.je�
212. numPagesAbs.tf_c2.idf_h.je�
214. numPagesAbs.tf_c2.idf_e.je�
216. sum.tf_c.idf_b2.je�
218. sum.tf_c.idf_h.je�
219. mean.tf_c2.idf_b2.cosSim
219. numPagesAbs.tf_c2.idf_b2.je�
220. numPagesAbs.tf_c.idf_e.je�
223. numPagesAbs.tf_c.idf_h.je�
226. sum.tf_f.idf_h.cosSim

227. mean.tf_b.idf_b2.je�
227. numPagesAbs.tf_f.idf_i.dice
228. mean.tf_d.idf_b2.je�
228. numPagesAbs.tf_f.idf_i.jacc
229. numPagesAbs.tf_c.idf_b2.je�
229. sum.tf_b.idf_b2.je�
230. numPagesAbs.tf_d.idf_i.dice
230. sum.tf_d.idf_b2.je�
231. numPagesAbs.tf_d.idf_i.jacc
233. mean.tf_c2.idf_b2.dice
234. mean.tf_c2.idf_b2.jacc
234. sum.tf_f.idf_i.cosSim
237. numPagesAbs.tf_c.idf_i.dice
238. numPagesAbs.tf_c.idf_i.jacc
239. sum.tf_c3.idf_i.je�
239. sum.tf_f.idf_b2.dice
240. sum.tf_c2.idf_i.je�
240. sum.tf_f.idf_b2.jacc
241. numPagesAbs.tf_c2.idf_i.dice
241. numPagesAbs.tf_f.idf_b2.dice
242. numPagesAbs.tf_c2.idf_i.jacc
242. numPagesAbs.tf_f.idf_b2.jacc
243. mean.tf_f.idf_e.jacc
243. sum.tf_f.idf_b2.cosSim
244. mean.tf_f.idf_e.dice
244. numPagesAbs.tf_f.idf_b2.cosSim
245. numPagesAbs.tf_b.idf_b2.dice
245. sum.tf_f.idf_e.dice
246. numPagesAbs.tf_b.idf_b2.jacc
246. sum.tf_f.idf_e.jacc
247. sum.tf_f.idf_e.cosSim
247. sum.tf_f.idf_h.dice
248. numPagesAbs.tf_f.idf_e.dice
248. sum.tf_f.idf_h.jacc
249. numPagesAbs.tf_f.idf_e.jacc
250. numPagesAbs.tf_f.idf_e.cosSim
253. numPagesAbs.tf_d.idf_i.je�
254. numPagesRel.tf_c.idf_i.dice
255. numPagesRel.tf_c.idf_h.dice
255. numPagesRel.tf_c.idf_i.jacc
256. numPagesAbs.tf_f.idf_e.je�
256. numPagesRel.tf_c.idf_h.jacc
257. numPagesAbs.tf_b.idf_i.je�
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267. numPagesAbs.tf_b.idf_e.dice
268. numPagesAbs.tf_b.idf_e.jacc
269. numPagesAbs.tf_f.idf_h.je�
270. numPagesAbs.tf_c3.idf_i.dice
271. numPagesAbs.tf_c3.idf_i.jacc
272. numPagesAbs.tf_d.idf_i.cosSim
273. numPagesAbs.tf_b.idf_i.cosSim
274. sum.tf_c.idf_i.je�
275. numPagesRel.tf_c.idf_h.cosSim
276. numPagesRel.tf_c.idf_i.cosSim
277. mean.tf_c2.idf_h.cosSim
278. mean.tf_c2.idf_i.cosSim
279. mean.tf_c2.idf_h.dice
280. mean.tf_c2.idf_h.jacc
280. numPagesAbs.tf_f.idf_b2.je�
281. mean.tf_c.idf_h.je�
281. sum.tf_f.idf_i.dice
282. mean.tf_c2.idf_i.dice
282. sum.tf_f.idf_i.jacc
283. mean.tf_c2.idf_i.jacc
283. sum.tf_f.idf_e.je�
288. mean.tf_c.idf_i.je�
288. numPagesAbs.tf_c2.idf_i.je�
289. mean.tf_b.idf_h.je�
289. numPagesAbs.tf_c3.idf_i.je�
290. mean.tf_d.idf_h.je�
291. sum.tf_b.idf_h.je�
292. mean.tf_c2.idf_e.cosSim
292. sum.tf_d.idf_h.je�
293. mean.tf_c.idf_b2.je�
293. numPagesAbs.tf_c.idf_i.je�
296. mean.tf_b.idf_i.je�
296. sum.tf_f.idf_b2.je�
297. mean.tf_d.idf_i.je�
297. numPagesRel.tf_c3.idf_h.cosSim
298. numPagesRel.tf_c3.idf_i.cosSim
300. mean.tf_c3.idf_h.je�
301. sum.tf_b.idf_i.je�
302. sum.tf_d.idf_i.je�
303. mean.tf_c.idf_h.cosSim
304. mean.tf_b.idf_b2.cosSim
305. mean.tf_d.idf_b2.cosSim
305. numPagesAbs.tf_f.idf_i.je�

306. sum.tf_b.idf_b2.cosSim
307. sum.tf_d.idf_b2.cosSim
307. sum.tf_f.idf_h.je�
308. mean.tf_c2.idf_e.dice
308. mean.tf_d.idf_b2.dice
309. mean.tf_c2.idf_e.jacc
309. mean.tf_d.idf_b2.jacc
310. sum.tf_d.idf_b2.dice
311. sum.tf_d.idf_b2.jacc
312. mean.tf_b.idf_b2.dice
313. mean.tf_b.idf_b2.jacc
314. mean.tf_c.idf_h.dice
315. mean.tf_c.idf_h.jacc
315. sum.tf_f.idf_i.je�
316. mean.tf_c3.idf_i.je�
317. mean.tf_c.idf_i.cosSim
319. numPagesRel.tf_c3.idf_h.dice
320. mean.tf_c.idf_i.dice
320. numPagesRel.tf_c3.idf_h.jacc
321. mean.tf_c.idf_i.jacc
321. numPagesRel.tf_c3.idf_i.dice
322. mean.tf_c3.idf_h.cosSim
322. numPagesRel.tf_c3.idf_i.jacc
323. mean.tf_c3.idf_b2.je�
324. mean.tf_c3.idf_h.dice
325. mean.tf_c3.idf_h.jacc
325. numPagesRel.tf_c.idf_i.je�
326. mean.tf_c3.idf_i.cosSim
326. numPagesRel.tf_c.idf_h.je�
327. mean.tf_c3.idf_i.dice
327. sum.tf_b.idf_e.cosSim
328. mean.tf_b.idf_e.cosSim
328. mean.tf_c3.idf_i.jacc
329. mean.tf_d.idf_e.cosSim
330. sum.tf_d.idf_e.cosSim
331. numPagesRel.tf_c.idf_b2.dice
332. numPagesRel.tf_c.idf_b2.jacc
332. sum.tf_b.idf_b2.dice
333. numPagesRel.tf_c.idf_b2.je�
333. sum.tf_b.idf_b2.jacc
334. mean.tf_c.idf_b2.dice
335. mean.tf_c.idf_b2.jacc
336. mean.tf_b.idf_e.dice
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336. numPagesRel.tf_c3.idf_b2.dice
337. mean.tf_b.idf_e.jacc
337. numPagesRel.tf_c3.idf_b2.jacc
338. mean.tf_c.idf_b2.cosSim
338. mean.tf_d.idf_e.dice
339. mean.tf_d.idf_e.jacc
339. numPagesRel.tf_c.idf_b2.cosSim
340. sum.tf_d.idf_e.dice
341. mean.tf_c3.idf_b2.dice
341. sum.tf_d.idf_e.jacc
342. mean.tf_c3.idf_b2.jacc
343. mean.tf_c3.idf_b2.cosSim
344. numPagesAbs.tf_b.idf_i.dice
344. numPagesRel.tf_c3.idf_b2.cosSim
345. numPagesAbs.tf_b.idf_i.jacc
346. numPagesRel.tf_c3.idf_h.je�
347. numPagesRel.tf_c3.idf_i.je�
347. sum.tf_d.idf_h.dice
348. numPagesRel.tf_c3.idf_b2.je�
348. sum.tf_d.idf_h.jacc
349. mean.tf_b.idf_h.cosSim
349. sum.tf_b.idf_e.dice
350. mean.tf_d.idf_h.cosSim
350. sum.tf_b.idf_e.jacc
351. sum.tf_b.idf_h.cosSim
352. sum.tf_d.idf_h.cosSim
353. mean.tf_b.idf_h.dice
354. mean.tf_b.idf_h.jacc
355. mean.tf_d.idf_h.dice
356. mean.tf_d.idf_h.jacc
357. sum.tf_b.idf_h.dice

358. sum.tf_b.idf_h.jacc
359. mean.tf_d.idf_i.jacc
360. mean.tf_d.idf_i.dice
361. mean.tf_b.idf_i.cosSim
362. mean.tf_d.idf_i.cosSim
366. sum.tf_b.idf_i.cosSim
367. mean.tf_b.idf_i.dice
367. sum.tf_d.idf_i.cosSim
368. mean.tf_b.idf_i.jacc
369. sum.tf_d.idf_i.dice
370. sum.tf_d.idf_i.jacc
374. mean.tf_c3.idf_e.cosSim
374. mean.tf_c3.idf_e.dice
375. mean.tf_c3.idf_e.jacc
375. numPagesRel.tf_c3.idf_e.dice
376. mean.tf_c.idf_e.cosSim
376. numPagesRel.tf_c3.idf_e.jacc
377. mean.tf_c.idf_e.dice
377. numPagesRel.tf_c3.idf_e.cosSim
378. mean.tf_c.idf_e.jacc
378. numPagesRel.tf_c.idf_e.dice
379. numPagesRel.tf_c.idf_e.jacc
381. mean.tf_c.idf_e.je�
381. numPagesRel.tf_c.idf_e.cosSim
382. mean.tf_c3.idf_e.je�
383. numPagesRel.tf_c.idf_e.je�
383. sum.tf_b.idf_i.dice
384. numPagesRel.tf_c3.idf_e.je�
384. sum.tf_b.idf_i.jacc
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A.2. Term Clusters

Here, some more concept decompositions as created by the methods discussed
in Chapter 5 are listed.
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0.85 progressive rock 0.32 real country 0.24 kyuss
0.26 prog 0.30 alan jackson 0.19 danzig
0.13 avant-prog 0.28 garth brooks 0.16 stonerrock
0.11 progressive metal 0.24 alt country 0.15 pantera
0.09 dream theater 0.23 classic country 0.15 sevendust
0.25 northern soul 0.27 dokken 0.98 noisepop
0.23 slow jams 0.26 aor 0.14 swedish music
0.22 beach music 0.24 ratt 0.07 delta blues
0.21 motown 0.21 hair metal 0.05 tribal metal
0.19 philly soul 0.19 melodic rock 0.04 r n b
0.33 black metal 0.20 blue note 1.00 ihs
0.27 death metal 0.17 big band 0.03 reggie
0.22 blackmetal 0.17 bebop 0.02 westcoast
0.18 century media 0.14 hard bop 0.02 muusika
0.18 power metal 0.14 tenor sax 0.01 jackson family
0.30 free jazz 0.88 classic folk 0.46 rasta
0.26 sun ra 0.30 folk revival 0.40 roots reggae
0.24 ecm 0.10 celtic 0.29 jamaican
0.18 avant-garde 0.08 american roots 0.29 jah
0.16 archie 0.08 folk rock 0.25 dancehall
0.98 tag 1 0.27 tresor 0.34 muddy waters
0.08 fucking awesome 0.25 detroit techno 0.31 delta blues
0.05 non-japanese 0.21 deep house 0.29 blues guitar
0.05 current 93 0.18 progressive house 0.27 electric blues
0.05 favourite jazz 0.17 techno 0.19 slide guitar
0.34 east coast rap
0.22 classic hip hop
0.20 old school rap
0.19 hardcore rap
0.17 big daddy kane

Table 16: AS-GO: Concepts found by the method like [Xu et al., 2003], NCW.
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0.18 funkmaster �ex 0.27 classic reggae 0.14 progressive house
0.16 lox 0.24 rastafari 0.14 detroit techno
0.15 method man 0.23 roots reggae 0.13 deep house
0.14 gza 0.23 contemporary reggae 0.13 acid house
0.14 east coast rap 0.22 conscious reggae 0.13 dnb
0.24 real country 0.10 team sleep 0.23 british blues
0.21 hot country 0.10 cky 0.21 soul-blues
0.21 honkytonk 0.10 melodic rock 0.20 downhome
0.18 modern country 0.09 hair band 0.18 old blues
0.18 outlaw country 0.09 josh homme 0.18 classic blues
0.25 indie rap 0.17 contemporary classical 0.29 classic folk
0.24 good rap 0.15 jamband 0.27 folk revival
0.24 hip hop and rap 0.15 avantgarde 0.16 new riders of

the purple sage
0.24 music to download 0.14 mike patton 0.12 woman singer
0.23 russian rock 0.13 achim 0.11 traditional pop
0.18 grp records 0.10 candlemass 0.21 the vibrators
0.16 jazz vocals 0.10 blackmetal 0.20 atmos
0.16 the forties 0.10 extreme metal 0.20 outlawz
0.15 rat pack 0.09 goth metal 0.20 t power
0.13 jazz trumpet 0.09 doom metal 0.19 shanice
0.20 essential jazz 0.20 philly soul 0.33 avant-prog
0.20 jazz master 0.19 pop-soul 0.28 kraut
0.19 great jazz musicians 0.18 smooth soul 0.24 progressive metal
0.15 good jazz 0.17 soul artists 0.24 space rock
0.14 hard-bop 0.17 psychedelic soul 0.18 dream theater
0.23 je� lorber
0.18 peter white
0.18 spyro gyra
0.17 dave grusin
0.17 jazz-funk

Table 17: AS-GO: �Robust� method, NMF, each artist vector normalized to
have an Euclidean length of 1.0 before NMF calculation.

149



A Experimental Results

0.34 scienti�c 0.42 recorder 0.31 garth
0.25 organic 0.40 oboe 0.30 honky
0.19 echo 0.32 harmonica 0.30 tonk
0.18 industrial 0.26 trombone 0.26 nashville
0.16 sampler 0.25 clarinet 0.22 brooks
0.24 aphex 0.30 dancehall 0.27 slayer
0.22 daft 0.29 ska 0.25 sabbath
0.22 downtempo 0.26 calypso 0.21 sepultura
0.21 breakbeat 0.24 marley 0.20 anthrax
0.19 kraftwerk 0.24 tosh 0.19 megadeth
0.28 synthpop 0.33 passive 0.30 gaye
0.28 eurodance 0.31 archaic 0.30 temptations
0.26 goa 0.26 blocks 0.30 aretha
0.25 gothic 0.26 silly 0.25 cooke
0.24 grunge 0.25 trad 0.24 redding
0.29 accordion 0.52 seeger 0.34 dre
0.26 choral 0.36 baez 0.33 gangsta
0.24 tuba 0.24 townes 0.28 notorious
0.24 patriotic 0.23 zandt 0.21 missy
0.21 xylophone 0.21 joan 0.20 ghetto
0.30 brahms 0.24 bebop 0.58 evergreens
0.29 mozart 0.24 bop 0.55 hardrock
0.26 beethoven 0.22 sextet 0.49 cabaret
0.24 haydn 0.21 alto 0.13 disco
0.23 bach 0.19 afro 0.11 techno
0.37 mayall
0.30 muddy
0.30 hooker
0.29 broonzy
0.25 otis

Table 18: TD-EXA: LTC variant, NMF after normalizing each artist's TFxIDF
vector to an Euclidean length of 1.0.
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0.39 recorder 0.56 hong 0.38 muddy
0.38 oboe 0.56 kong 0.31 broonzy
0.31 harmonica 0.41 worldwide 0.29 otis
0.28 trombone 0.14 dynamics 0.28 mayall
0.27 clarinet 0.11 ideal 0.25 hooker
0.49 bop 0.27 eurodance 0.35 gangsta
0.37 bebop 0.27 grunge 0.34 dre
0.26 tenor 0.27 synthpop 0.31 notorious
0.20 alto 0.25 goa 0.24 ghetto
0.18 sextet 0.23 rave 0.20 enemy
0.72 seeger 0.41 honky 0.54 dixieland
0.33 baez 0.39 tonk 0.31 orleans
0.20 dylan 0.35 nashville 0.26 armstrong
0.17 joan 0.26 hank 0.22 ellington
0.15 revival 0.25 garth 0.21 ragtime
0.58 evergreens 0.31 wop 0.13 joseph
0.55 hardrock 0.30 gaye 0.13 fusion
0.49 cabaret 0.30 cooke 0.12 improvisation
0.17 disco 0.29 temptations 0.12 college
0.14 techno 0.28 aretha 0.12 improvised
0.32 sabbath 0.58 archaic 0.45 dancehall
0.27 slayer 0.46 silly 0.40 ska
0.25 thrash 0.37 blocks 0.31 marley
0.23 priest 0.23 garage 0.30 calypso
0.20 megadeth 0.19 randy 0.25 dub
0.21 breakbeat
0.21 aphex
0.21 downtempo
0.20 ambient
0.19 experimental

Table 19: TD-EXA: �Robust� method with NMF, after normalizing each
artist's TFxIDF vector to an Euclidean length of 1.0.
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