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ABSTRACT

The ever-growing amount of available music induces an
increasing demand for Music Information Retrieval (MIR)
applications such as music recommendation applications or
automatic classification algorithms.

When audio-based, a crucial part of such systems are the
audio feature extraction routines. In this paper, we evalu-
ate how well a variety of combinations of feature extraction
and machine learning algorithms are suited to classify music
into perceptual categories. The examined categorizations
are perceived tempo, mood (happy / neutral /sad), emotion
(soft / neutral / aggressive), complexity, and vocal content.

The aim is to contribute to the investigation which as-
pects of music are not captured by the common audio de-
scriptors; from our experiments we can conclude that most
of the examined categorizations are not captured well. This
indicates that more research is needed on alternative (possi-
bly extra-musical) sources of information for useful music
classification.

1. INTRODUCTION

Music Information Retrieval (MIR) deals with the automatic
extraction of useful information from music that is given as
audio data. The outcome of MIR research could be use-
ful for a variety of applications; most notably, the ongoing
change in music distribution that gradually shifts sales to
online music stores makes reliable automatic music recom-
mendation and classification systems desirable. Also, MIR
algorithms could help in radio or DJ playlist generation, and
the organization of personal and public music collections.

Much research has already been done in the field of
audio-based music similarity measures, and automatic clas-
sification of music that is given as audio. Most often, these
algorithms are evaluated relative to the task of genre clas-
sification (in some publications, also other categories are
considered, e.g. if the pieces are on the same album or if
they are from the same artist). Interestingly, in most publi-
cations it is not evaluated which different aspects of music

are captured by the applied feature extraction algorithms.
In this paper, we evaluate how well several combinations of
well-known feature extraction and machine learning algo-
rithms are suited for capturing aspects of mood, emotion,
vocal content, perceived tempo, and complexity. An en-
hanced knowledge about this topic could support the devel-
opment of improved feature extraction algorithms that are
also able to describe the facets of music that are not cap-
tured by the existing ones.

2. RELATED WORK

Substantial research has recently been carried out on the
problem ofautomatic genre classification(e.g., [21, 3, 10],
to name but a few). There has even been a systematic Genre
Classification Contest at the last International Conference
on Music Information Retrieval (ISMIR’04)1. While by far
the most work has been spent on classifying music accord-
ing to genre, there have also been some isolated attempts at
applying other labellings and categorizations that are intrin-
sic to music.

An algorithm to automatically detect mood from classi-
cal music given as acoustic data is presented in [15].

[14] apply a 30-attribute set and a Support Vector Ma-
chine for classification of music into 13 emotion classes; the
system has an “overall low performance”: for example, for
micro-averaging (i.e. per-category weighted averaging) the
recall is 0.36, and the precision is 0.59.

A system that automatically learns relations between ad-
jectives and audio features is presented in [23]. The adjec-
tives are gained by crawling the web. As the web-based
data is given per artist, the audio features of several tracks
of each artist are also combined, and the associations be-
tween adjectives and audio features are made at the artist
level.

In [6], a system is presented that learns labels related to
mood and genre, and gives probabilities for the occurrence
of each label for unseen instances. This system was eval-

1http://ismir2004.ismir.net/genrecontest/index.htm



uated using one hundred different descriptive labels, with
the pieces belonging to one of the two major classesRock
or Electronica. The labellings that were obtained from the
web were also given at the artist level.

Perceived Complexity has multiple dimensions; there is
research ongoing to develop a feature extraction algorithm
that takes them into account ([20]).

In [17], an interesting approach is presented for auto-
matic development of new features that describe almost ar-
bitrary aspects of music.

In this publication, we systematically evaluate features
that are used frequently in the literature, with labels given at
the song level.

3. EXPERIMENTAL SETUP

To estimate which of the examined categorizations of music
are amenable to automatic classification, and which features
that can be extracted from audio are useful in this task, the
following approach is used:

First, we calculate a wide range of features that have
commonly been used in the literature on genre classifica-
tion from the songs of a music collection, which were la-
beled according to the desired categories. These features
were converted into attributes that are suited to be fed into
standard machine learning algorithms. Three different at-
tribute sets are evaluated in combination with twelve differ-
ent machine learning algorithms. From these experiments,
confusion matrices and overall classification accuracies are
assessed. Each of the steps is described in detail in the next
sections.

3.1. Song Collection and Target Categorizations

For the experiments, an in-house database consisting of 834
pieces given in mp3 format was used ([19]). The pieces
were hand-labeled into the categories given in table 1 by
one male subject. In this table, also the cardinalities of each
class are given; the fact that they are unequally distributed
is a consequence of taking a real-world song collection.

Except for genre2 and focus, the categories are based on
a common sense understanding: For example, the complex-
ity can be affected by the kind of rhythm, by the melody
line, or by the number of different instruments that appear.
We are aware that for these categorizations (including genre),
it is by no means granted that every human will categorize
each of the songs in the same way; it is even not clear if
one individual would choose the same categories when the
labeling is repeated. However, asking humans is the only
way to get the labellings.

2taken fromAll Music Guide(www.allmusic.com) and the genre de-
scriptors of theID3 tagging system(www.id3.org)

The categorizations have been chosen to reflect impor-
tant dimensions of music that are not necessarily correlated
(for example, it does not depend on the genre if a piece con-
tains vocals). For a MIR system (e.g. a music recommen-
dation system) it would be valuable to be able to distinguish
between these categories, as they are an important part of
how humans refer to music (e.g. “this band plays mostly
fast and complex instrumental music”).

Categorization Classes (# of songs in class)

mood happy (29%), neutral (50%),
sad (21%)

perceived tempo very slow (4%), slow (20%),
medium (43%), fast (24%),
very fast (5%), varying (4%)

complexity low (18%), medium (56%),
high (7%)

emotion soft (29%), neutral (44%),
aggressive (26%)

focus vocals (6%), both (69%),
instruments (26%)

genre blues (1%), classical (5%),
electronica (13%), folk (2%),
jazz (1%), new age (5%),
noise (0.1%), rock (60%),
world (10%)

Tab. 1. Categorizations of the song collection used.

3.2. Feature Extraction

To extract features from the music, each piece was con-
verted to wav format, downsampled to 11025 kHz mono,
and 30 seconds exactly from the middle of it were taken to
compute the features. For some of the features, the audio
excerpt was divided into frames of 256 samples length, that
overlapped by one half. The three tested feature sets are
described in the next sections.

3.2.1. Set from [21]

This set was a vector containing 30 components for a song;
they were implemented following the information and defi-
nitions given in [21].

• Timbral Texture Features.For each audio frame, the
following values are extracted:

– Spectral Centroid: the center of the magnitude
distribution of the spectrum.

– Spectral Rolloff: the frequency under which 95%
of the power distribution is concentrated.



– Spectral Flux, a measure of short-time changes
of the spectrum.

– Zero Crossing Rate, the number of times the
time-domain signal passes the zero-level.

– The first five MFCCs. MFCCs give an descrip-
tion of the envelope of the frame’s spectrum.

The timbral texture features are the mean and vari-
ance of these values of all frames, and Low Energy
Rate. Altogether, this results in 19 values: one value
for Low Energy Rate, two values (i.e. mean and vari-
ance) for each of Spectral Centroid, Spectral Rolloff,
Spectral Flux, Zero Crossing rates, and ten values for
the MFCCs.

• A beat histogram describes how much periodicity is
in the audio excerpt at different tempo levels; in many
cases, the most prominent peak corresponds to the
main tempo of the excerpt. TheRhythmic Content
Featuresare the following six properties of the beat
histogram of the audio excerpt (following [21], where
they are not motivated in detail):

– A0, A1: relative amplitude of the two highest
peaks (i.e. they are divided by the sum of the
histogram),

– RA:relative ratio of height of the second highest
peak to the highest peak

– P1, P2:bpm values of the two highest peaks

– SUM: sum of all histogram bins, which is an
indication of beat strength.

• In an analogous manner, into a pitch histogram de-
scribes how much each pitch height is present in the
audio excerpt: the unfolded pitch histogram gives these
values over the whole pitch range, while in the folded
pitch histogram, all values that lie whole octaves apart
are summed, resulting in a histogram that has 12 bins.
ThePitch Content Featuresare five properties of the
folded and unfolded pitch histograms:

– Amplitude of the highest peak of the folded his-
togram, which “will be higher for songs that do
not have many harmonic changes” ([21]).

– Pitches of the highest peaks of the folded and
unfolded histograms. For the unfolded histogram,
this indicates the octave range of the dominant
pitch of the piece; for the folded histogram, it
indicates the main pitch class.

– Interval between the two highest peaks of the
folded histogram, which is related to the main
interval region of the piece.

– Sum of all histogram bins. This value is higher
if the pitch was detected accurately.

Our results based on these features will not be directly
comparable to the results in [21], because in [21], the pro-
cedure for selecting “representative” excerpts from pieces is
not precisely specified.

3.2.2. Set made from some Mpeg7-LLDs

The Mpeg7 standard was designed to offer a comprehensive
framework for describing the content of multimedia files. It
offers techniques for metadata handling and for extracting
features from different types of multimedia files. A part of
the latter are features to describe basic properties of audio,
called Low Level Descriptors (LLDs).

From the Mpeg7 LLDs given in [1], we selected a sub-
set, as the others did not seem suitable for our specific type
of experiments. For example, the Audio Waveform Descrip-
tor was not used, as its main purpose is to support to display
the audio envelope. Also, thetimbre descriptorswere not
used, as they are best fitted to work on monophonic audio
segments. The Mpeg7 LLDs that we used in our setup were:

• Audio Power, a measure for the power that is con-
tained in the time-domain signal.

• Audio Spectrum Centroid, an analogue to the Spec-
tral Centroid, but defined on a logarithmic frequency
scale.

• Audio Spectrum Spread

• Audio Spectrum Flatness (on four bands), which mea-
sures how far the spectrum deviates from a flat curve
in the respective frequency band.

• Audio Harmonicity, consisting of three values per frame:

– Fundamental Frequency, an approximation of the
main pitch.

– Harmonicity Ratio, a measure how harmonic the
current frame sounds.

– Upper Limit of Harmonicity, i.e. the frequency
above which the sound is not harmonic anymore.

Analogous to the set from [21], the attribute values for a
song are the means and variances of the values of each time
series or band, respectively, which gives a total of 20 at-
tributes for each song.

3.2.3. “Large” set

The third set consisted of the 50 attributes from the other
two sets, and additional attributes that were derived from the
following features, because these features have been used



and reported by various authors in the context of music clas-
sification:

• a measure for the signal bandwidth of the current frame
(e.g. [13]),

• Spectral Power ([26, 16]), which is an alternative mea-
sure for the signal energy,

• First three Statistical Moments of the frequency power
distribution ([7]), with the first one being the Spectral
Centroid,

• beat tracking and beat onset features, summarized in
Inter Onset Interval Histograms (IOIHs, e.g. [9, 8]),

• a feature that estimates how “percussive” a piece is
(one value per piece);

• a monophonic melody estimation, from which the av-
erage pitch height, the standard deviation of pitch height,
the average note duration, and the relation of upward
to downward pitch changes were calculated as attributes.

From the two types of IOIHs, from the Beat Histogram,
and from the (folded and unfolded) Pitch Histograms the
mean, the maximum and the standard deviation of the val-
ues appearing in each of five quantiles were chosen as at-
tributes. From Bandwidth, Spectral Power and the Statisti-
cal Moments, mean and variance were taken as attributes.

Altogether, this resulted in 146 attributes that were cal-
culated from this “large” feature set.

3.2.4. Proposed Algorithm from [3]

Additionally, the algorithm described in [2, 3] was used with
the parameter set proposed in [3]. As this algorithm is a sim-
ilarity function (i.e. its result is a distance measure rather
than a set of attributes), onlyK-Nearest Neighbors classifi-
cation was used for each of the categorizations. Calculation
of this algorithm was done with the MA-Toolbox ([18]).

3.3. Machine Learning Algorithms

To evaluate the amount of information that is captured by
the features, we use the feature data (features) to train (re-
spectively apply) machine learning algorithms. Machine
learning algorithms are built to “discover” the underlying
structure in the feature data, and to extract information from
it that is useful for the classification task at hand; so the rate
of their success is an indicator for the quality of the fea-
tures. The rate of success can be drawn from the average
classification accuracy, which should be clearly higher than
the baseline (which is the classification accuracy that is ob-
tained when always the most frequent class is assigned).

As different machine learning algorithms use different
approaches, they do not work equally well on all kinds of
data; that is the reason why we used twelve variations of
machine learning algorithms (all from the machine learning
toolbox WEKA [25]):

• K-Nearest Neighbors, withK ∈ {1, 3, 5, 10},

• Näıve Bayes, additional with a kernel estimation al-
gorithm,

• the C4.5 algorithm (a decision tree learner),

• a Support Vector Machine (SVM),

• AdaBoost with C4.5 and with Decision Stump,

• Classification via Regression, applying M5 and linear
regression.

Evaluation was done using a 10-fold cross validation (i.e.,
the machine learning algorithm was trained using the known
class membership of 90% of the pieces in the collection,
and the trained algorithm was used to classify the remaining
10%; this procedure was repeated ten times, so that each
piece has been classified once).

4. RESULTS

Altogether, 240 combinations of attribute set / learning al-
gorithm and categorization were evaluated. To get an over-
all picture of the results, for each categorization only the
average classification accuracy of the best performing learn-
ing algorithm is given in the respective table, and only the
interesting confusion matrices are depicted.

4.1. Focus

For thefocuscategorization, in most experiments the overall
accuracy was below the baseline; table 2 shows that also the
best classification accuracies do not indicate that the tested
descriptor sets are suited for detection of vocals.

Focus Classification Results
Baseline 68.92 %
Set from [21] 71.08 %
Some Mpeg7 LLDs 70.00 %
“Large” set 71.20 %
Best from [3] 75.18 %

Tab. 2. Best classification accuracies for the focus cate-
gories (vocals / both / instruments).

In only four experiments the confusion matrices indi-
cated an ability to distinguish betweenvocalpieces and pieces



that had the focusboth (two of them are depicted in fig-
ure 1). Interestingly, each descriptor set was represented
in these cases, and in all cases the learning algorithm was
Naive Bayes (which produced classification accuracies be-
low the baseline in all cases).
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Fig. 1. Confusion matrices for the focus classes (voc - vo-
cal, bth - both,nst - instrumental): each row gives the per-
centages of pieces belonging to the “true” category that are
classified into the “predicted” categories. “True” categories
are denoted at the left, “predicted” categories at the bottom.
Left figure: Naive Bayes classification for the set made from
Mpeg7-LLDs and for the set consisting of all implemented
descriptors; for comparison, the right figure shows the con-
fusion matrix of the best method from [3], which achieved
the highest overall accuracy.

This outcome could be explained by the fact that no
dedicated vocal feature was used; presumably, the use of
a dedicated vocal detection algorithm (such as e.g. pro-
posed in [5, 11]) would yield better results, especially for
the discrimination between instrumental pieces and pieces
that contain both instruments and vocals.

4.2. Complexity

For complexity, classification results are similar to thoseof
the focus categorization: in most experiments, the baseline
is not reached, and also the highest accuracies (summarized
in table 3) are only somewhat over the baseline.

Complexity Classification Results
Baseline 75.66 %
Set from [21] 76.63 %
Some Mpeg7 LLDs 76.14 %
“Large” Set 76.87 %
Best from [3] 78.55 %

Tab. 3. Best classification accuracies for the complexity
categories (low / medium / high).

The confusion matrices confirm the impression of poor
performance: only pieces that belonged to the most frequent
complexity class (medium) were correctly classified with
high accuracy, which could easily be achieved by guess-
ing the most frequent class. In all experiments, pieces with

low andhighcomplexity were more often misclassified than
correctly classified, and no indications for class separability
abilities are given.

The notion of ‘complexity’ as used here is probably too
ill-defined to be acquired by a machine learning algorithm.

4.3. Perceived Tempo

For the tempo classification accuracies, the same picture ap-
pears (table 4): only in few cases the baseline is reached,
and also the best accuracies are not much higher than the
baseline.

Perceived Tempo Classification Results
Baseline 42.53 %
Set from [21] 42.53 %
Some Mpeg7 LLDs 43.13 %
“Large” Set 44.70 %
Best from [3] 48.67 %

Tab. 4. Best classification accuracies for the perceived
tempo categories (very slow / slow / medium / fast / very
fast / varying).

All but two confusion matrices indicate that the most
frequent class can not be clearly discriminated from the other
classes with the respective attribute set / learning algorithm
combination.

The two confusion matrices that do not show a dark row
at the position of the most frequent class are depicted in fig-
ure 2. With the set containing all implemented descriptors,
Naive Bayes is able to classify pieces withvery slow, very
fast, andvaryingperceived tempo more accurately than the
other learning algorithms. Pieces withslow, mediumand
fastare likely to be confused withvaryingperceived tempo.
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Fig. 2. Confusion matrices for Naive Bayes classification of
the tempo classes (vsl - very slow,sl - slow,med- medium,
fst - fast,vfs- very fast,var - varying) for the set consisting
of all descriptors, and for the set from [21].

When only the descriptors contained in the set from [21]
are used, the confusion matrix has confusions appearing



most frequently between neighboring classes (except for the
varyingclass).

Maybe the perceived tempo depends on a rather com-
plicated combination of several aspects: e.g. if the overall
ground beat is slow, the perceived tempo could nonetheless
be high, if only one instrument plays a quick melody; it also
might depend on the “groove”.

4.4. Emotion

From table 5, it can be seen that the best overall accura-
cies for the “emotion” categorization were achieved with
the method from [3]. For the other descriptor set / learn-
ing algorithm combinations, overall accuracies were below
the baseline in most cases, and also the highest accuracies
that they achieved were clearly below the accuracies of the
method from [3].

Emotion Classification Results
Baseline 44.46 %
Set from [21] 45.06 %
Some Mpeg7 LLDs 46.75 %
“Large” Set 47.47 %
Best from [3] 57.95 %

Tab. 5. Best classification accuracies for the emotion cate-
gories (soft / neutral / aggressive).

The main difference between the method from [3] and
the other algorithms is that the method from [3] primarily
aims at modeling timbral similarity, while the other meth-
ods incorporate concepts that are meant to describe also
other aspects of music, such as melodic or harmonic con-
tent. Thus, the results suggest a high correlation of the
“emotion” categoriessoft, neutral, andaggressivewith tim-
bre. In addition, a low correlation of other aspects of music
(e.g. harmony, melody, rhythm) with these categories can
be supposed, as different interpretations of the same piece
can be soft or aggressive.

4.5. Mood

From table 6, it can be seen that the examined descriptor
sets seem not to be suited for distinguishing betweenhappy,
neutralandsadsongs.

Also, most confusion matrices show the black row indi-
cating a lack of class separation ability; the two that deviate
most from this appearance are again confusion matrices of
Naive Bayes classifications (given in figure 3). They indi-
cate that it might be possible to distinguish betweensadand
happysongs to some extent. As they are based on the set
from [21] and on the set made from Mpeg7-LLDs, a feature
selection might be interesting also in this case.

Mood Classification Results
Baseline 50.00 %
Set from [21] 50.00 %
Some Mpeg7 LLDs 50.00 %
“Large” Set 51.08 %
Best from [3] 50.24 %

Tab. 6. Best classification accuracies for the Mood cate-
gories (happy / neutral / sad).
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Fig. 3. Confusion matrices for Naive Bayes classification of
the mood classes (hap - happy,neu- neutral,sad- sad) for
the set made from Mpeg7-LLDs, and for the set from [21].

Presumably, the categorization intohappy, neutral and
sadpieces is too abstract and too subtle to be recognized by
an algorithm.

4.6. Genre

The best genre classification accuracies for each descriptor
set are given in table 7. These results are difficult to com-
pare to those found in the literature, as the databases are
different; but in consideration of the unequally distributed
classes (and a high baseline of 60.48 %), they seem to be
reasonable.

Genre Classification Results
Baseline 60.48 %
Set from [21] 65.66 %
Some Mpeg7 LLDs 64.94 %
“Large” Set 69.52 %
Best from [3] 70.84 %

Tab. 7. Best classification accuracies for the nine genre
categories.



5. CONCLUSIONS

The most important observations are:

• Overall results were hardly over the baseline for most
of the feature set / learning algorithm combinations
for most of the examined categorizations.

• In all cases, the best accuracy values obtained from
the proposed algorithm from [3] were better than the
best accuracy values obtained from the other three
feature sets.

• From the examined categorizations, the algorithms
generally seem to work best for theGenrecatego-
rization, which is the categorization that is most fre-
quently used in the literature. An exception is the pro-
posed algorithm from [3] which also worked compa-
rably for theEmotioncategorization.

In more detail, for the individual categorizations we got the
following results:

• No indication was found that the most commonly used
audio features are useful for classification of pieces
into theComplexityclasses.

• For theFocus, Perceived Tempo, andMood catego-
rizations, overall classification accuracies were mostly
below the baseline. Nevertheless, some confusion
matrices indicate that the examined features might
capture some aspects of these categorizations.

• The preliminary experiments seemed to point out that
the Emotionclass (i.e. soft, neutral, aggressive) is
predominantly correlated with timbre, suggesting that
the improvement of timbre similarity measures could
also improve classification accuracies for this catego-
rization.

There are a number of possible explanations for these
results. As already mentioned, the training data might be
inconsistently labeled, as some of the categorizations are
ill-defined and could also depend on the current mood of the
listener. Also, although there are some features that capture
temporal aspects of the pieces, most of the features only de-
scribe short-time properties of the music. As the change in
time is important in music, the time-independence of most
features might also play a role. Generally, the acoustic as-
pect is only one side of music. It is also very important how
the acoustical events are combined; this is the “meaning”
and semantic part of music. For this part, also socio-cultural
aspects are very important, which can not be inferred from
the audio signal.

Our results seem to confirm the (negative) results of
[3], who mention the probable existence of a “glass ceil-
ing”, i.e. an upper bound on the performance of audio-only

based similarity (or classification) algorithms. Maybe the
development of dedicated features or attributes for some
of the categories discussed here could contribute to the re-
search for improved music audio features that enable us to
get closer to this upper bound.

But generally, the results presented in this paper give
further indication that for a holistic algorithm-based view on
music, it is necessary to acquire information on the pieces
from several sources: Besides audio description techniques,
also extra-musical information may be important; that in-
cludes cultural aspects, usage patterns and listening habits,
and - of course - the lyrics of musical pieces. There is quite
some research currently going on on the automatic extrac-
tion of cultural meta-data about music from the web ([22,
24, 4, 12]), and combining this information with audio-based
features in an effective way will be the next challenge.
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