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ABSTRACT

Analysis and description of musical expression is a sub-
stantial field within musicology. However, manual annota-
tion of large corpora of music, a prerequisite for describ-
ing and comparing different artists’ styles, is very labor-
intensive. Therefore, computer systems are needed that
can annotate recordings of different performances auto-
matically, requiring only minimal corrections by the user.
In this paper, we apply Dynamic Time Warping for audio-
to-score alignment to extract the onset times of all indi-
vidual notes within an audio recording, and compare two
strategies for improving accuracy. The first one is based on
increasing the temporal resolution of the features used. To
cope with constraints in terms of computational costs, we
apply a divide and conquer pattern. The second strategy is
introducing a post-processing step in which the onset time
of each individual note is revised. The advantage of this
method is that, in contrast to default algorithms, arpeggios
and asynchronies can be resolved as well.

1. INTRODUCTION

An important subfield of musicology is the analysis and de-
scription of musical style and expression. However, large
corpora of annotated pieces of music played by several per-
formers are needed to extract meaningful patterns or to
support previously developed hypotheses. Such data can
be acquired by performing pieces on computer-monitored
instruments.

Despite the advantage of providing accurate and exten-
sive data, using computer-monitored instruments for data
acquisition has several substantial shortcomings. First of
all, one can assume that music students might be persuaded
quite easily to take part in such a project, but it will be
hard to persuade top-class artists to do so. Secondly, it is
not possible to analyze an artist’s expressive evolution over
long periods. And finally, research could not include artists
who, although dead, remain famous and whose music is
enjoyed by a broad audience.

Another source of data are audio recordings, which are
not only cheap but also available in an extensive variety.
However, the raw audio signal must be annotated before
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any high-level analysis can be performed, and manual an-
notation is very labor-intensive. In order to carry out re-
search on large corpora of music, automatic — or at least
semi-automatic — methods for data acquisition are needed.

The most general approach of collecting symbolic data
from audio recordings would be Automatic Music Tran-
scription. However, accuracy and robustness of state-of-
the-art transcription methods do not meet the requirements
of applications such as musical performance analysis. Es-
pecially in the context of classical music, where it can be
assumed that the piece played is known in advance, using
an audio file in combination with additional information
given by the score has therefore become a common prac-
tice. Since the notes played are known a priori, the task is
to extract the exact parameters of each note from the audio
recording.

Such parameters do not only include the timing and the
loudness of a note, but also characteristics such as its artic-
ulation or, when considering piano, pedal pressure. How-
ever, since knowing at which exact point in an audio sig-
nal a note is played is a prerequisite for estimating further
properties, most current research is focused solely on this.
The task is to temporally align or synchronize the notes
given by the score to an audio recording - a process known
as audio-to-score alignment.

In doing so, features are calculated from individual time
frames of the audio signal. There are two main state-of-the
art approaches to incorporating the score information: The
score, which is by default given in MIDI-format, is used
to either build a graphical model [1], such as an HMM, or
it is used to compute a sequence of the same features as
extracted from the audio signal [2]. Score and audio rep-
resentations are then related to each other using the Viterbi
algorithm or Dynamic Time Warping.

We use Dynamic Time Warping to compute this align-
ment. Since the algorithm is of quadratic complexity in
both time and space, the temporal resolution of the fea-
tures extracted cannot be increased arbitrarily without en-
countering limitations in terms of computational cost. One
method of reducing the complexity is to apply a divide and
conquer pattern splitting a piece into several sections us-
ing anchor notes, for which the timing is known. Dynamic
Time Warping can then be performed on these individual
sections without losing generality.

In [3], which originally introduced this approach, an-
chor notes were selected by the user. We propose a method
for extracting such anchor notes automatically. To this end,
Dynamic Time Warping is performed once, using a coarse
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Figure 1. System overview

temporal resolution. Based on this initial estimate, anchor
notes for which the timing can be extracted with relatively
high confidence are identified and their onset times are re-
vised.

Another shortcoming Dynamic Time Warping shares
with the approach based upon graphical models is that sev-
eral notes that occur simultaneously in the score, such as
the individual notes of a chord, are always aligned to the
same time frame of the audio signal. This is probably not
relevant to applications such as augmented audio players.
In performance analysis, however, this precludes the han-
dling of arpeggiations or asynchronies. Therefore, we pro-
pose a post-processing step in which the onset time of each
individual note is revised.

This post-processing step resembles the one described
in [4] in both methodology and results. However, [4] used
a beta-distribution to model the expectation strength of a
note occurring at a certain point between two anchor notes.
The beta-distribution was chosen because of its restriction
to a fixed interval and the flexibility of its shape, but its use
lacks probability-theoretic justification. In this paper, we
show that comparable results can be obtained, by applying
a weighting which reflects the normally distributed errors
made by Dynamic Time Warping.

Figure 1 shows the system architecture, which is further
described below as follows. First, we give an overview of
related work in Section 2. Then, we explain the audio-
to-midi alignment using coarse and fine Dynamic Time
Warping in Section 3 and the extraction of the anchor notes
based on the coarse alignment in Section 4. Section 5 de-
scribes the post-processing step. In Section 6, an evalua-
tion of the system is presented, followed by conclusions in

Section 7.

2. RELATED WORK

In offline audio-to-score alignment, a major group of ap-
proaches is based on chroma vectors in combination with
Dynamic Time Warping (DTW) [2, 3, 4, 5, 6, 7]. This
method has proven to yield robust global alignments. How-
ever, it cannot compete with onset detection algorithms
concerning local accuracy. This was shown in [8], where,
as a consequence, the idea of chroma vectors was com-
bined with (pitch-wise) spectral flux — a feature used in
onset detection.

A way of applying machine learning techniques to re-
fine music alignments was shown in [5]: A neural network
that detects note boundaries is trained on the result of an
alignment. In an iterative process, the alignment can then
be improved using the neural network’s output, and the
training is repeated.

Another approach of improving accuracy is to increase
temporal resolution. Since DTW is of the order O(n?), this
method is constrained by computational costs. The divide
and conquer principle aside, [6] uses a multi-scale algo-
rithm where in each iteration the resolution is increased
and, at the same time, the area searched for an optimal
alignment is narrowed down.

[7] and [9] combined those two strategies in an efficient
way: Both compute an alignment based on DTW and then
refine the note onsets within a search window around the
initial estimates. Since the size of these search windows
is small, a relatively high temporal resolution can be cho-
sen. The additional features used in this post-processing
step emphasize onsets of individual pitches. In doing so,
the DTW algorithm’s problem of unresolved arpeggiations
or asynchronies becomes irrelevant. However, in contrast
to the system presented here, the method in [9] relies on
manual path initialization in the DTW step, and in [7], po-
tentially conflicting notes are not revised, only marked for
further processing.

3. AUDIO-TO-MIDI ALIGNMENT
3.1 Chroma Vectors

Chroma vectors are the feature used in most alignment sys-
tems because of their robustness to several common phe-
nomena in music, such as changing timbre or different de-
grees of polyphony. In [2], chroma vectors were shown
to outperform several other features in the context of audio
matching and alignment. They consist of a 12-dimensional
vector per time frame, in which each element represents
one pitch class (C, C#, D, ...).

When calculating chroma vectors from a midi file, the
energies (in midi terminology velocities) of all pitches be-
longing to the same pitch class are summed up. Addition-
ally, it is beneficial to also consider harmonics by adding
decreasing contributions of energies to the corresponding
pitch classes. In contrast, when considering an audio sig-
nal, the pitches of notes sounding within a certain time
frame are not known a priori. In this case, the values are



computed based on an STFT spectrogram by summing up
the energies of those frequency bins which are mapped to
the same pitch class. The mapping is done by choosing the
pitch (and the corresponding pitch class with its index 7)
with the smallest frequency deviation from a bin’s center
frequency f, according to

i = {round <1210g2 <4]:Lk()>ﬂ mod 12 €))]

Within the work reported here, we use two STFT con-
figurations: (i) a window size of 4096 samples and a hop
size of 1024 samples, referred to as moderate resolution;
and (ii) a window size 512 and a hop size 128, referred to
as high resolution.

3.2 Dynamic Time Warping

After the feature extraction step, the score and the audio
signal are both represented by a sequence of feature vec-
tors. To evaluate an alignment, a cost function must be
defined which measures the error made when aligning a
specific frame of the first sequence to the corresponding
frame of the second one. Preliminary experiments showed
that the Euclidean distance yields better results within our
framework than other functions, such as the cosine dis-
tance or the symmetric Kullback-Leibler divergence.

Using this cost function, a similarity matrix .S can be
calculated. The rows of S represent the time frames of
the audio recording, while the columns represent the time
frames of the score. Each value S;; gives the cost of align-
ing frame ¢ of the audio signal to frame j of the score. All
continuous and monotonic paths through S which begin
and end at the two end-points of the main diagonal repre-
sent valid alignments. The sum of all .S;; along an align-
ment path is the respective global alignment cost.

DTW computes an optimal alignment, i.e., the one min-
imizing the global cost, in two steps. In the first one, the
optimal cost C;; of each partial alignment, ending with
frame ¢ of the audio signal being aligned to frame j of the
score representation, is calculated according to

Cli—1,j—1)+58;
C(i,5) =min{ C(i —1,5) + Sy 2)
C(i,j— 1)+ Sij

By starting at Cp 9 = Sp,0 and storing all intermedi-
ary results in a matrix C, this recursion can be calculated
efficiently.

Cn—1,m—1 is the minimal global alignment cost. How-
ever, in this application, the cost itself is not as important
as the alignment path corresponding to this optimum. This
path is obtained in the second step by backtracking based
on knowledge of which of the three options in equation
2 was used in each step. This information can easily be
stored during the forward step. For a more detailed de-
scription of the basic DTW algorithm, we refer the inter-
ested reader to [10].

3.3 Efficiency Considerations

Given two sequences of lengths IV and M, DTW is of com-
plexity O(N * M) in both time and space. This resolves
to O(N?) under the assumption that the score is stretched
to the length of the audio signal prior to the feature extrac-
tion step. This precludes aligning arbitrarily long feature
sequences and therefore limits both the lengths of pieces to
be aligned and temporal resolution.

A classical method of improving the efficiency of DTW
is to constrain the search for an optimal alignment path to
a certain area within the similarity matrix S, such as the
Itakura parallelogram or the Sakoe-Chiba band [10]. This
is based on the assumption that expressive tempo changes
will not exceed certain limits, or that the alternation of
speeding up and slowing down will prevent the alignment
path from deviating from the main diagonal by more than
a maximum offset. These approaches can reduce compu-
tational costs to the order of O(2N). However, there is the
risk that, at some point, the assumptions do not hold and
the true alignment path leaves the search area.

Other methods which share similar strengths and weak-
nesses are Path Pruning, in which only the most promising
partial paths with costs below an adaptive threshold are fur-
ther expanded, Shortcut Path, where only the alignment of
frames corresponding to note on- and offsets are consid-
ered, and multi-scale DTW [6].

A completely different approach is to perform an online
alignment — also known as score following [11]. This al-
gorithm does not consider a piece as a whole, but advances
through the audio signal incrementally. This works for ar-
bitrarily long pieces and, leaving the real-time aspect out
of consideration, arbitrarily high feature resolutions. The
drawback is that the method can only extract instantaneous
optima at each step and cannot guarantee that a global op-
timum is found.

3.4 Divide and Conquer Approach

[3] introduced a divide and conquer approach to improve
the efficiency of DTW. Given a set of anchor notes for
which the exact timing is known, solving the alignment
problem for the whole piece can be reduced to finding op-
timal alignments between each pair of consecutive anchor
notes. Given a maximal interval ¢ between two anchors,
the sub-DTWs are computed in O(c?) in both time and
space. When considering the whole piece, the space com-
plexity of O(c?)=0(1) does not change. Time complexity,
however, increases to O(c? * N/c) = O(c x N)=O(N).
Compared to the original algorithm of order O(N M),
this approach reduces complexity and guarantees that a
globally optimal alignment is found.

This increase in efficiency is countered by the additional
problem of how to identify suitable anchor notes and how
to extract their respective onset times. [3] proposed an
approach in which the user selects an anchor configura-
tion manually or verifies suggestions made by the algo-
rithm. These suggestions are established based on cues
such as pauses, long isolated fortissimo chords, or notes
with salient fundamental pitches, i.e., pitches that do not
overlap with harmonics of concurrently played notes.



4. ANCHOR EXTRACTION

In this paper, we show how anchor notes can be determined
automatically. The selection is based on a coarse DTW
computed as described above. Within a search window
around the first onset estimate of each note, a revised can-
didate is then extracted using the Pitch Activation feature
as described in [7]. Finally, all notes for which ambiguities
arise are dropped from the list of anchors.

Doing this has two implications. First, basing anchor
selection on an initial alignment alters the method, shifting
it away from the original divide and conquer approach and
towards a special multi-scale DTW. Second, the algorithm
is not guaranteed to find the global optimum, since errors
in the anchor selection result in inaccurate alignments.

4.1 Pitch Activation

The feature used for revising onset candidates is pitch ac-
tivation, which is calculated by applying a modification of
non-negative matrix factorization (NMF) to audio data in
the frequency domain. NMF is the decomposition of an
input matrix V' of size n X m into two output matrices W
and H of sizes m x r and r X n such that the elements of
all these matrices are non-negative and

Va~WH 3)

The reconstruction error, i.e., the deviation of W H from
V', can be measured with several cost functions such as the
Euclidean distance or the Kullback-Leibler divergence. An
optimal factorization is calculated by minimizing this cost.

Applied to audio processing, NMF can be used to fac-
torize a spectrogram into a dictionary W of weighted fre-
quency groups and the corresponding activation energies
H of these frequency groups over time. Depending on
V' and the parameter r, the base components in W can
represent models of single tones or chords. But since the
NMF algorithm, as originally introduced in [12], is unsu-
pervised, it is more likely that some of the components also
describe single partials, special patterns during an attack,
sustain, or decay phase of a note, or even just noise. How-
ever, in the context of audio-to-score alignment, where the
piece played is known a priori, we assume the instrument
or set of instruments playing to be known as well. Thus,
tone models can also be trained using supervised methods.

Based on this assumption, a dictionary W of tone mod-
els is trained in advance ([7, 4, 13]). The training data
comprises recordings of single tones played at several de-
grees of loudness on the instrument under consideration. A
short-time Fourier transform is calculated and factorized
while exploiting knowledge of the tone samples. Since
only one tone is played in each sample, the number of com-
ponents 7 is set to one. The activation energy of this com-
ponent w over time is fixed to h and assumed to be equal
to the amplitude envelope. Equation 3 then resolves to

V ~ wh @)

By minimizing the reconstruction error, a tone model
is learned from each training sample. Since the relative
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Figure 2. Example of activation patterns: (b) shows the
first bar of Mozart’s piano sonata k279. In (a) the activation
patterns of the single pitches are plotted in ascending order.

energy of the harmonics depends on the intensity, prelimi-
nary models are trained using several degrees of loudness,
and the final model is then obtained by taking the average
weight for each frequency.

Given this fixed dictionary W, equation 3 can be rewrit-
ten as

v~ Wh 5)

where v and h are single columns of V' and H that can
now be processed independently. Since in both equation
5 and equation 4 there is only one variable left, a non-
negative least squares optimization minimizing the mean
square criterion

1
=5 I Wh-vl? ©)

can be applied instead of the original NMF methods.
This not only reduces computational costs but also, due to
the independence of individual frames, makes the pitch ac-
tivation h — a frame-wise fj estimation — a feature suitable
for online algorithms.

Figure 2 shows an example of such activation patterns.
The dictionary used for the factorization consisted of the
models describing those pitches which are expected to be
played within the time range shown only.

4.2 Anchor selection

For the anchor selection, the pitch activation feature is used
to revise the onset estimates obtained by DTW. W is com-
posed from the tone models of those pitches, expected to



be played within the search window and an additional com-
ponent modeling white noise. The new onset candidate is
set to the frame with the maximal increase of h,,, where p
is the index of the component corresponding to the pitch of
the note under consideration. In cases in which the onset
is unambiguous, these onset candidates have proven to be
very accurate. But in cases in which the same note is re-
peated several times within the search window, this method
is too simple and very likely to fail.

To solve this dilemma, notes that are expected to be
played more often than once within the search window
are disregarded as potential anchors. Also, all notes for
which the onset is ambiguous, i.e., for which the differ-
ence between the onset estimate obtained by the initial
coarse DTW and the revised onset time exceeds a certain
threshold, are dropped from the list of anchor candidates.
In doing so, the anchor selection benefits from the robust-
ness of the DTW as well as from the accuracy of the pitch
activation-based onset revision.

Although this approach is very simple, our evaluation in
Section 6 shows that by adjusting the onset times of these
anchor notes only, the overall result is improved signifi-
cantly.

S. POST PROCESSING FOR POLYPHONIC
PIECES

As pointed out before, both DTW and alignment meth-
ods based on graphical models suffer from the shortcoming
that notes which are indicated in the score as being played
simultaneously simultaneously will inherently be aligned
to the same time frame within the audio signal. Hence, in-
creasing the temporal feature resolution to arbitrary dimen-
sions as described in Section 3 benefits monophonic pieces
for which the onsets of individual notes are extracted and
pieces which are too long to be processed as a whole, even
when using moderate resolutions. However, when consid-
ering polyphonic pieces, notes which are indicated in the
score as being played simultaneously will never be played
precisely simultaneously by the performer due to arpeggia-
tions or asynchronies. Therefore, using a resolution high
enough to break a chord down into several notes and their
individual onsets results in an ambiguous onset time for
the chord as a whole. It is not clear if the estimate obtained
by DTW or the Viterbi algorithm represents the note which
is played first, the one which is played last, or some time
in between where the cumulative energy of all chord notes
has exceeded a certain threshold.

To overcome this problem, we apply a post-processing
step in which the onset times of all non-anchor notes are
revised as well. We assume that the high-resolution DTW
computed by our system yields relatively accurate estima-
tions and that deviations from the real onset times follow a
normal distribution. Therefore, on the one hand, a search
window of length 2/ centered around the initial estimate is
considered. On the other hand, feature values computed to
refine the onset time are weighted using a Gaussian win-
dow.

However, the choice of features is not trivial. Pure onset
detection functions, such as spectral flux, are not sufficient,

since, when dealing with polyphonic pieces, the onsets of
other chord notes must be expected to occur within the im-
mediate vicinity of a note. Also, the pitch activation feature
used for anchor selection is not suitable, since it performs
poorly in situations of repeated notes.

Preliminary experiments showed that, considering the
remaining non-anchor notes, the increase in the energy of
the fundamental frequency of a note is the most reliable
and accurate onset estimate. We obtain this information
from a constant Q transform with a frequency resolution
of one bin per semitone and set the revised onset candidate
to the time frame at which the maximal increase occurs.

Parameter values of around 100 ms for the search ra-
dius [ and 0.4 for the standard deviation o of the Gaussian
window have proven to yield good results. A detailed eval-
uation can be found in the next section.

6. EVALUATION
6.1 Evaluation Method

The evaluation was done using the first movements of 11
Mozart sonatas played by a professional pianist. The per-
formances were recorded on a computer-monitored Bésen-
dorfer SE290 grand piano, logging the exact onset times of
all notes. The data comprises more than 30.000 notes with
an overall performance time of more than one hour. Scores
were presented to the system in midi format.

The absolute temporal displacement between aligned
notes and the ground truth served as the main evaluation
criterion. We investigated the median absolute displace-
ment, the 75", and the 95" percentile. In our opinion,
this shows a clearer view of a system’s performance than
the mean and variance of absolute displacements, since
these values are more sensitive to outliers. When consid-
ering only mean and variance, it is difficult to distinguish
systems that yield accurate estimates for most notes but
produce a few outliers with relatively large temporal dis-
placement, from systems which are more robust but less
accurate.

In the evaluation of the whole system including the post-
processing, we include two other criteria. The long-term
goal of our research is to provide an annotation system
that detects onset times as accurately as a human. Only
a very small number of notes for which manual correc-
tion is needed should remain. [14] showed that humans do
not perceive timing deviations smaller than 10 ms. There-
fore, we also investigated the proportion of notes which are
aligned with a timing deviation below this threshold.

Furthermore, we determined the percentage of the notes
aligned with a displacement of less than 50 ms. This crite-
rion is well known from the field of onset detection. Here,
it reflects the ratio of reasonably well aligned notes to out-
liers.

6.2 Evaluation Results

Table 1 shows the accuracy of the selected anchor notes
in comparison to the non-anchor notes before and after
performing the fine resolution DTW. One can clearly see
that the anchor nodes are indeed more accurate than the



50% < x[ms] 75% < x[ms] 95% < x[ms]
piece duration | # notes | # anchors ) ) .

anch. | orig. | new | anch. | orig. | new | anch. | orig. | new
K.279-1 4:55 2803 885 6.0 | 157 | 158 | 133 | 29.6 | 29.8 | 43.7 | 127 | 128
K.280-1 4:48 2491 987 57 (232 (229| 12.1 | 446 | 446 | 435 | 165 | 165
K.281-1 4:29 2648 954 6.6 | 252 | 251 | 133 | 473 | 472 | 47.8 | 137 | 138
K.282-1 7:35 1907 513 7.8 | 26.8 | 267 | 145 | 64.0 | 642 | 80.8 | 388 | 389
K.283-1 5:22 3304 875 81 | 155|154 | 144 | 278 | 27.8 | 409 | 67.8 | 68.2
K.284-1 5:17 3700 853 70 | 152 | 153 | 159 | 30.6 | 30.7 | 623 | 108 | 107
K.330-1 6:14 3160 888 6.0 | 16.0 | 159 | 105 | 294 | 293 | 379 | 148 | 146
K.332-1 6:02 3470 844 115 | 228 | 229 | 19.0 | 42.1 | 423 | 613 | 167 | 168
K.333-1 6:44 3774 1122 80 | 17.1 | 17.1 | 144 | 30.3 | 304 | 42.1 | 105 | 105
K.457-1 6:15 2993 885 92| 213|213 | 163 | 40.5 | 403 | 59.8 | 267 | 267
K.475-1 4:58 1284 371 154 | 363 | 363 | 237 | 920|925 | 794 | 270 | 270

Table 1. Comparison between accuracy (median, 75" percentile, and 95" percentile) of the anchor notes (anch.), the non-
anchor notes computed by the coarse DTW (orig.), and the non-anchor notes after performing the fine DTW implementing

the divide and conquer pattern (new)

50% < z[ms] 75% < x[ms] 95% < x[ms]
piece | # notes . . .

orig. | anch. | new || orig. | anch. | new || orig. | anch. | new

K.279-1 | 2803 15.7 | 112 | 11.8 || 30.0 | 24.5 | 25.7 103 101 | 103
K.280-1 | 2491 236 | 127 | 134 || 419 | 32.0 | 32.8 126 127 | 126
K.281-1 | 2648 242 | 152 | 16.1 || 424 | 36.5 | 36.9 114 114 | 114
K.282-1 | 1907 235 | 187 ] 19.6 || 53.7 | 472 | 48.1 354 | 354 | 354
K.283-1 | 3304 146 | 127 | 12.8 || 27.1 | 245 | 248 || 62.0 | 60.8 | 60.9
K.284-1 | 3700 154 | 125 | 13.1 || 31.0 | 269 | 274 || 96.8 | 98.0 | 98.0
K.330-1 | 3160 149 | 114 | 11.8 || 27.7 | 24.0 | 24.7 118 118 | 115
K.332-1 | 3470 205 | 184 | 18.6 || 38.6 | 35.6 | 36.3 138 140 | 138
K.333-1 | 3774 162 | 129 | 134 || 293 | 258 | 264 || 79.6 | 758 | 76.4
K.457-1 | 2993 194 | 157|162 || 369 | 33.5 | 342 || 204 | 203 | 202
K.475-1 | 1284 29.7 | 245 | 250 || 68.4 | 655|659 || 224 | 224 | 224
all 31534 || 184 | 14.1 | 147 || 352 | 30.1 | 30.8 130 131 | 131

Table 2. Overall accuracy (median, 75" percentile, and 95" percentile) of the divide and conquer DTW (new) compared
to the coarse DTW with the anchor notes revised (anch.) and the coarse DTW without anchor note revisions (orig.)

remaining notes. However, it is remarkable that the high-
resolution DTW implementing the divide and conquer prin-
ciple does not improve the results obtained by the original
implementation using a moderate temporal resolution. A
discussion on this issue is given in the next section.

It is worth mentioning that, due to the semi-automatic
nature of the anchor selection, only a very small number
of anchors was used in [3]. In our approach, the number
of anchors is much larger, as shown in Table 1. Qualitative
analysis of single passages showed that there are “easy”
sections, in which no ambiguities occur and almost every
single note is chosen to serve as anchor, whereas there are
“difficult” sections within a piece in which only few an-
chors are found. Although not required, the high number
of anchor notes is desirable, since, in contrast to [3], the
objective here was not only efficiency, but also to investi-
gate accuracy aspects. This approach to anchor selection
clearly outperforms the DTW variant in terms of accuracy.

Recalling the whole system’s architecture, as depicted
in Figure 1, Table 2 compares the results after the indi-
vidual stages - the coarse DTW, the coarse DTW with re-
vised anchor notes, and the high-resolution DTW exploit-
ing these anchor notes. It is even more apparent that, while

the revision of anchor notes improves the result signifi-
cantly, the additional high-resolution DTW even decreases
the overall accuracy very slightly.

The overall accuracy of the whole system including the
post-processing step is listed in Table 3. According to
our evaluation criteria, more than 90% of all notes were
aligned reasonably well, i.e., such that evaluation frame-
works used in onset detection would classify them as cor-
rect. Almost half of the notes were aligned with an er-
ror small enough not to be perceived by a human listener.
Comparing the percentiles to the ones given in Table 2
clearly proves the benefit of the post-processing step.

Since the high-resolution DTW did not improve the re-
sults, the question arises if the system performed better
without this step. Applying the post-processing method
directly to the results of the anchor selection yielded sim-
ilar results as the whole system. The overall number of
notes with a temporal displacement of less than 10 ms in-
creased slightly to 49.2%, while the number of notes with
an alignment error of less than 50 ms decreased to 88.9%.



piece | #notes || 50% < z[ms] | 75% < x[ms] | 95% < z[ms] || x < 10ms | x < 50ms
K.279-1 2803 7.7 20.3 93.3 59.4% 90.7%
K.280-1 2491 7.3 16.0 79.0 62.0% 91.5%
K.281-1 2648 9.1 21.8 112 53.4% 89.8%
K.282-1 1907 114 22.0 258 44.3% 85.9%
K.283-1 3304 10.1 17.6 51.7 49.3% 94.8%
K.284-1 3700 8.1 20.1 78.5 57.7% 90.4%
K.330-1 3160 8.0 16.0 66.3 58.8% 93.5%
K.332-1 3470 15.8 25.8 106 31.6% 90.0%
K.333-1 3774 10.4 19.0 60.3 48.5% 93.3%
K.457-1 2993 13.4 25.1 164 37.6% 86.1%
K.475-1 1284 19.0 30.0 359 24.7% 85.6%
all 31534 10.3 21.3 92.6 49.0% 90.7%

Table 3. Overall accuracy after post-processing

7. CONCLUSIONS

We have described two strategies to improve the accuracy
of offline audio-to-score alignments. One is to apply a
higher feature resolution. In order not to be constrained
by computational costs, a divide and conquer approach ex-
ploiting selected anchor notes was used.

The second strategy is to include a post-processing step
which works on the level of individual notes. Here, we
have proposed an approach that combines the robustness
of DTW with the accuracy of a special onset feature by
weighting the feature values using a Gaussian window cen-
tered around the onset estimate obtained by DTW. In [4],
which introduced a very similar post-processing method,
the analog weighting of feature values was done based on
a beta-distribution, which was used for pragmatic reasons
only. In contrast, the Gaussian window applied in our ap-
proach is justified by the actual data.

Our evaluation showed that the largest improvement is
due to the revision of the anchor notes. Based on this step,
increasing the temporal resolution does, remarkably, not
yield higher, but even slightly lower overall accuracy. A
possible explanation is that, on the one hand, errors caused
by arpeggiations or asynchronies cannot be eliminated by
DTW or related algorithms, independently of the temporal
resolution. On the other hand, the same features — chroma
vectors — were used for the initial coarse alignment and
the high-resolution DTW. In cases in which chroma vec-
tors, despite their advantages, are not powerful enough to
represent all information that would be needed, the feature
resolution becomes irrelevant.

Also, only notes for which the revised onset obtained
by the pitch activation feature was near the initial estimate
were chosen as anchors. This was necessary to exclude
ambiguous cases. However, the revised anchors themselves
never deviate from the initial alignment path by more than
a small threshold. Therefore, the additional information
produced by theses corrections is limited.

The post-processing step, in contrast, improved the re-
sult of the DTW including the revision of anchor notes sig-
nificantly. We attribute this to the same factors as men-
tioned above. First, a new feature which is independent
of the ones used previously is introduced to the system
and therefore adds new information. Also, since the post-

processing steps work at the level of independent notes,
asynchronies can now be resolved.

We conclude that the DTW algorithm using features of
moderate resolution works with high robustness and sat-
isfactory accuracy. Improvements of the algorithm which
can exploit features with higher temporal resolution did not
improve the overall results. We will therefore concentrate
our future work on more advanced post-processing meth-
ods, since this is the area where we see the largest potential
for improvements.
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