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ABSTRACT

Most current audio-to-score alignment algorithms work on
the level of score time frames; i.e., they cannot differen-
tiate between several notes occurring at the same discrete
time within the score. This level of accuracy is sufficient
for a variety of applications. However, for those that deal
with, for example, musical expression analysis such micro-
timings might also be of interest. Therefore, we propose a
method that estimates the onset times of individual notes in
a post-processing step. Based on the initial alignment and
a feature obtained by matrix factorization, those notes for
which the confidence in the alignment is high are chosen
as anchor notes. The remaining notes in between are re-
vised, taking into account the additional information about
these anchors and the temporal relations given by the score.
We show that this method clearly outperforms a reference
method that uses the same features but does not differenti-
ate between anchor and non-anchor notes.

1. INTRODUCTION

There are several scenarios in which one wants to know
the exact parameters (such as onset time, loudness, and
duration) of each individual note within a musical perfor-
mance. Most of these scenarios can occur in musicology,
where data from different performances is used to extract
general performance rules or to analyze individual artists’
expressive styles. Other applications of such data are ped-
agogical systems or augmented audio editors and players.
Unless the pieces under consideration are played on spe-
cial computer-monitored instruments, audio recordings are
the only sources of data describing expression within ac-
tual musical performances.

Our aim here was to extract timing (note onset) param-
eters from a great variety of classical piano music perfor-
mances automatically. The most general method for this
would be blind audio transcription, but current state of the
art methods in this field are not reliable enough to base per-
formance analysis on their results. However, since in clas-
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sical music the piece and score corresponding to an audio
recording can be assumed to be known, we can address the
much simpler task of audio-to-score alignment.

Here, most state of the art algorithms start by extracting
features (mainly chroma vectors) from each time frame of
the audio signal as well as from the score representation.
To obtain an optimal alignment between the two feature
sequences, a distance measure between the feature vectors
is then used as input either for Dynamic Time Warping
(DTW) or for graphical models, such as Hidden Markov
Models.

However, an inherent shortcoming of these methods is
that — since only time frames are matched — they cannot
distinguish individual onsets of notes that occur simultane-
ously in the score. This impedes the analysis of expressive
elements, such as arpeggios or the asynchronies between
a pianist’s hands or within a chord. To resolve this short-
coming, the method proposed here extracts an onset time
estimation for each individual note. In order to do so, notes
for which the timing can be extracted with a relatively high
confidence level are marked as “anchor notes”. In a second
pass, the system then tries to refine the timings of the re-
maining notes by combining the expected position between
the anchors with spectral information.

Section 2 gives an overview of related work. We ex-
plain the extraction of anchor notes in Section 3, and de-
scribe the refinement method applied to the notes between
such anchors in Section 4. Section 5 presents our experi-
mental results and Section 6 provides the conclusion and
an outlook on future work.

2. RELATED WORK

Online versus offline differentiation aside, state-of-the-art
audio-to-score alignment algorithms can be clustered into
two main approaches. One is based on statistical, graphical
models built from the score, such as those in [1,2,11]. The
other one uses Dynamic Time Warping (DTW) in order to
align sequences of features calculated from both the audio
and the score representation [5, 8].

The latter method normally uses chroma vectors as fea-
ture, resulting in relatively robust global alignments. How-
ever, their temporal accuracy cannot compete with other
features which are used in onset detection. In [3], so-called
DLNCO-features were introduced, which in essence com-
bine chroma vectors and (pitch-wise) spectral flux. More-



over, a very high temporal feature resolution is used. This
is not trivial, since DTW is of complexity O(n?), and com-
putational costs constrain the number of frames that are
aligned. A multi-scale approach introduced in [8], how-
ever,allows the temporal resolution to be increased itera-
tively.

Another combination of chroma-based alignment with
onset detection was presented in [6]. Here, an initial align-
ment is used in order to train an onset detector. Results
from the onset detection are then used iteratively to re-
fine the alignment and to train a better onset detector on
this more accurate data. This allows the use of supervised
machine learning techniques without the need for external
training data.

In [7] and [9], results of a DTW-based alignment are
refined in a second pass. Both approaches place a search
window around the tentative onset time of a note. This
window is then scanned for a compatible note onset. While
the first method relies on an STFT spectrogram, the latter
uses a dictionary-based decomposition of the spectrum in
order to differentiate between spectral energies induced by
individual notes.

Like the method proposed here, these two approaches
can distinguish between the onsets of notes that occur at
the same discrete time within the score. This is different
from most other systems, since it is inherent to both the
DTW algorithms and to the graphical models used in [2,
11] that they work on features representing discrete time
steps and that they cannot differentiate between two events
occurring within the same time step.

3. ANCHOR NOTE ESTIMATION

At first the anchor notes are extracted using a two-pass pro-
cedure as proposed in [9]. In the first step, a state-of-the-art
audio-to-score alignment based on chroma vectors and Dy-
namic Time Warping (DTW) is performed. Then, a dictio-
nary of tone models is used in order to extract each note’s
activation function. Notes for which a significant rise in
activation energy can be found near the corresponding es-
timated onset are selected to serve as anchors.

3.1 Chroma Features and DTW

In [5], chroma vectors were found to perform best amongst
several features in the context of audio matching and align-
ment. They consist of 12 elements per time frame corre-
sponding to the pitch classes (C, C#, D,...). The values
are calculated from an audio recording by mapping the fre-
quency bins of a short-time Fourier transform to pitch class
indices ¢ using

1= [round (1210g2 (ﬁ“{))) —1—9] mod 12 (1)

where f), represents the center frequency of the k*" bin.
The term inside the brackets gives the number of the pitch
(A4 = 0) that is nearest to fi, and applying the module
gives the pitch class. The summand 9 shifts the indices

such that ¢ = 0 corresponds to the pitch class C. The actual
values of the chroma vectors are then obtained by summing
up the energies of all bins mapped to a certain pitch class.

There are two approaches to calculating chroma fea-
tures from score representations [5]. One of them is to
render the score using a software synthesizer to reduce the
problem to the one described above. The other method
calculates the chroma vector directly from the score. Here,
the mapping becomes trivial, since the pitches are already
given. However, one must make assumptions about pitch
energies and either use constant energies or a decay model.
In our experiments, we compared both methods — the first
one using the free software synthesizer timidity ' , and the
second one using constant midi note energies. Preliminary
experiments showed that the resulting alignments did not
differ significantly between the two approaches. There-
fore, we decided to use the second one, since it is much
cheaper in terms of computational costs.

Given two sequences of feature vectors, a cost function
must be defined which accounts for the error made when
aligning one specific frame within the first sequence to an-
other specific frame within the other sequence. Our ex-
periments showed that the Euclidean distance yields bet-
ter results than other possible measures, such as the cosine
distance.

Based on the cost function, a similarity matrix SM can
be constructed. The rows of this matrix represent the time
frames of the audio recording, whereas the columns repre-
sent the time frames of the score. Hence, the value of each
cell SM;; contains the cost of aligning the it" frame of
the audio signal to the j** frame of the score. Any contin-
uous, monotonic path through this matrix that begins and
ends at the two end-points of the main diagonal represents
a valid alignment between the two sequences. The objec-
tive is to minimize the global alignment cost, i.e., the sum
of all local costs SM;; along the path through the similar-
ity matrix.

Using DTW, the optimal alignment is calculated in two
steps. The forward step starts at [0, 0] and the correspond-
ing cost S My o. Then, all other optimal partial alignments
ending with the 7*" frame of the audio recording aligned
to the j*" frame of the score are obtained by recursively
building a second matrix Accu according to

ACCU(i — 17] — 1) —+ SMZJ
Accu(i, j) = min ¢ Accu(i — 1, j) + SM;; 2)
Accu(i,j — 1) + SM;;

In the forward step, another matrix stores which of these
three options has been used in order to advance to the next
cell. As soon as the end point [N — 1, M — 1] has been
reached, this information is utilized to reconstruct the path,
i.e., the optimal alignment. A more detailed description of
the DTW algorithm is given in [10].

Uhttp://timidity.sourceforge.net



3.2 NMF and Anchor Selection

The global alignment resulting from the DTW is robust.
However, local inaccuracies are inherent to the algorithm.
Therefore, an additional feature based on non-negative ma-
trix factorization (NMF) is used to reestimate the onset of
each individual note.

NMF is the decomposition of one matrix V' of size m x
n into two output matrices W and H of sizes m X r and
r X n, respectively, such that all elements of W and H are
non-negative and

Va~WH 3)

Applied to audio processing, such a decomposition of a
spectrogram results in a dictionary W of r weighted fre-
quency groups and the corresponding activation energies
H of these frequency groups over time.

Here we use a modification, as described in [12] and
[9], in which W is set to a pretrained set of tone models.
These models are computed from audio recordings of sin-
gle tones played on a piano by, in essence, taking each bin’s
weighted average energy over the time span where the tone
is sustained. The weight of a frame is the inverse of the am-
plitude envelope to compensate for different loudnesses.

Assuming a fixed W, only H is estimated. Since the
pitch described by an individual tone model is known, the
it" column of H is a feature representing the activation
energy of each pitch in time frame .

To improve the onset time estimates, a search window
of length [ is centered around the onset time ¢4, obtained
by the DTW algorithm. Within this search window a fac-
torization is performed using a dictionary W consisting of
tone models of all those pitches that are expected to be
played within that time span and an additional white noise
component in which the energies are spread uniformly over
all frequency bins. A new onset time candidate ¢, is
then obtained by choosing the time frame with the largest
increase in energy of the pitch under consideration. In con-
trast t0 tgsw, tnmys can deviate from other notes with the
same score time.

When thinking of repeated notes or of fast passages in
which a certain pitch is played several times within the
search window, it becomes obvious that this method is too
simple to yield meaningful results. However, estimating
the onsets of repeated notes is a relatively hard problem in
itself. Spectral energy of a sustained note weakens the in-
dicators for the onset of a new note if they have the same
pitch. Under these circumstances, algorithms are likely to
get mislead by onsets of other notes with overlapping har-
monics. This fact makes such notes ineligible to be anchor
notes, as a high confidence in the exact estimation of the
onset time is essential. Thus, all notes which are played
twice or even more often within the time span of the search
window, as determined from the score, are discarded from
the anchor candidates.

Likewise, all notes are dropped from the list of anchor
candidates, for which the initial onset estimate t;:,, and
the estimate given by the factorization-based feature 2,,,,
differ by more than a certain time span which could have

plausibly been caused by an arpeggio or a simple asyn-
chrony. This is justified because such a conflict decreases
the confidence in the onset estimation. Moreover, there is
no safe way to give either ¢4, Or £y, ¢ a preference over
the other. On the one hand, %4, is supposed to be more ro-
bust, since much more context information is incorporated.
On the other hand, ?,,,, ¢ is not bound by the constraints in-
herent to the DTW algorithm, and therefore able to yield
more accurate results [9].

In summary, the two times ¢4, and ¢,,,,, s are calculated
by the DTW algorithm and finding the maximum slope
within the factorization-based pitch activation. A note is
then selected as an anchor if the following two criteria are
met:

L. |tatw — tamy| < threshold

2. there are no other notes of the same pitch within
tatw l/ 2

In our experiments, we used an STFT with window and
hop sizes of 4095 and 1024 frames, respectively, to com-
pute the chroma features from the audio signal. In or-
der to extract chroma vectors from the score, window and
hop sizes had been scaled such that the overall number
of frames and the overlap ratio remained unchanged rel-
ative to the audio representation. Since the DTW mis-
places only a negligible fraction of all notes by more than
a second, we chose 2.0 seconds for the size [ of the search
window. Within this search window the hop size was de-
creased to 256 frames. The maximum difference |¢41,, —
tnm | allowed between the two onset estimates was set to
20 frames, i.e., a little more than a tenth of a second.

An evaluation of the extraction of anchor notes is pre-
sented in Section 5.

4. NOTE REFINEMENT

After extracting the anchor notes, the remaining notes must
be revised. For each of them (with the exception of notes
played before the first or after the last anchor notes) the
span of time during which it can be played is clearly con-
strained by the preceding and the successive anchor.

4.1 Beta distribution

In addition to a new search window, bounded by the near-
est anchors, rhythmic information in the score can be used
to make even more detailed predictions on where to look
for an onset. Therefore, the numbers or fractions of beats
between the anchor notes and the note under considera-
tion are extracted and their relation is transferred onto the
timescale of the audio recording. To account for inex-
actnesses of the anchor extraction and expressive tempo
changes, the “expectation strength” of the onset occurring
at time ¢ is modeled by a beta distribution > . The beta dis-
tribution is defined continuously on the interval [0, 1] and

2 The beta distribution was chosen for pragmatic reasons (the flexibil-
ity of its shape and its restriction to a fixed interval) rather than for precise
probability-theoretic reasons.



zero outside this range. Depending on the values of its
parameters « and 3, the density function can take several
forms, for example, that of a uniform distribution, it can
be strictly increasing or decreasing, U-shaped, or — as in
our case — it is unimodal (&« > 1 and 5 > 1). Its density
function is defined as

1 1 _
T)ap = ——x (1 —2)! 4)
f(@)a,p B, B) ( )
where B is the beta function
w/2
B(a, 8) =2 / cos>* 1 9sin®’ 1 9 de (5)
0

Mode # and variance o2 of the distribution are therefore
given by

R a—1
o= - ) ©6)
o = o ™)
(a+BPla+B+1)

In our application, we set the parameters « and [ by
fixing a mode # and a variance o2. The former is assumed
to be at the onset time we expect according to score and
anchor notes. Since the density function is only defined
on [0, 1], we use a linear projection to convert between the
domain of the beta distribution and the score time.

The variance is chosen such that it allows for expres-
sive variations and inexactnesses of the anchor extraction,
but prevents notes from being placed at rhythmically un-
reasonable timings. Experiments showed that the value
min(&, 1—7)/20 results in plausible expectation strengths.

Two such functions are depicted in Figure 1. The up-
per plot shows the onset likelihood for the onset time of
the third note, assuming that the first and fifth note are an-
chors. The time span between the anchor comprises three
beats. Since the note should be played after the first out
of these three beat-to-beat intervals, the function is clearly
skewed. This is desirable because a musician’s freedom of
expressive timing is greater when the score calls for longer
inter-onset intervals. The second function is the likelihood
of the fourth note’s onset time given notes number one and
six as anchors. The function is now symmetric, since the
onset time given by the score is exactly half the time span
(two out of four beat-to-beat intervals).

In order to transfer these expectation strength functions
from the score into the audio domain, another linear pro-
jection is applied.

4.2 Onset estimation

To extract revised onset estimates for non-anchor notes, we
calculate the constant Q spectrogram over the time span in
which the onset likelihood as described above is greater
than zero. The parameters of the constant Q spectrogram
are chosen such that each energy bin corresponds to a spe-
cific pitch. The hop size is set to 256 frames, resulting in a
very high overlap ratio at the lower bins.
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Figure 1. Onset expectation strength for the 3"¢ and 4"
note.

For the purpose of onset detection, energy changes are
calculated and half-wave rectified. In order to incorporate
the score information, the result is then weighted by the
expectation strength. The final onset is set to the time cor-
responding to the maximum of this detection function.

5. EXPERIMENTAL RESULTS
5.1 Evaluation Method

Since this work was done in the context of musical perfor-
mance and style analysis, we used classical (polyphonic)
piano music to evaluate our system. The test data con-
sisted of the first movements of 11 Mozart sonatas played
by a professional pianist. The overall performance time
amounted to more than one hour, comprising more than
30.000 notes. The instrument used for the performance
was a computer-controlled Bosendorfer SE290 grand pi-
ano, which enables exact logging of all events such as keys
being hit or released and changes in pedal pressure.

The evaluation was done using mechanical scores rep-
resented in MIDI format and the real audio recording from
the performances as input data. The data recorded by the
Bosendorfer SE290 served as ground truth. The main eval-
uation criterion was the absolute timing displacement be-
tween aligned notes and the ground truth.

On the one hand, robustness and a high overall accu-
racy are important issues. On the other hand, our work
is directed towards providing methods for semi-automatic
audio annotation. One objective of such a system must
be to minimize human input. In post-processing, the user
must correct the onset time as soon as there is a notice-
able error. Therefore, we investigated not only the median
and percentile errors, but also how many of the notes were
detected well enough for a human to accept it.

In [4], listening tests showed that the human hearing
system does not detect timing variations of up to 10 ms in
sequences of short notes, and even greater displacements
in sequences of very long notes. Therefore, our evaluation
criteria were the proportions of notes aligned with a dis-
placement of less than 10 ms and 50 ms respectively. The
50 ms tolerance was included because it is a common mar-
gin in onset detection.




50% < x[ms] | 75% < z[ms] | 95% < x[ms] max [ms]
piece duration | # notes | # anchors

non.a. | anch. | non.a. | anch. | non.a. | anch. | non.a. | anch.
K.279-1 4:55 2803 1136 15.2 5.5 29 11 138 37 879 494
K.280-1 4:48 2491 1257 23.2 54 45 11 165 46 687 664
K.281-1 4:29 2648 1235 23.7 6.1 48 12 176 48 993 442
K.282-1 7:35 1907 705 23.8 6.9 60 13 439 72 | 4805 | 3008
K.283-1 5:22 3304 1130 16.2 7.9 28 13 75 34 673 467
K.284-1 5:17 3700 1223 15.2 6.1 31 14 120 71 1000 502
K.330-1 6:14 3160 1176 16.3 5.6 30 10 179 35 960 835
K.332-1 6:02 3470 1017 232 | 11.8 42 19 171 82 857 632
K.333-1 6:44 3774 1471 17.8 7.5 31 13 132 38 941 404
K.457-1 6:15 2993 1086 22.0 8.9 42 16 317 62 1773 | 1787
K.475-1 4:58 1284 483 384 | 16.3 98 24 304 115 | 4471 | 2663

Table 1. Comparison between accuracy (median, 75" percentile, 95" percentile, and maximum) of the anchor notes

(anch.) and the non-anchor notes (n.a.)

piece | #non-anchors || 50% < z[ms] | 756% < xz[ms] | 95% < z[ms] | max [ms]
K.279-1 1667 9.1 28 127 879
K.280-1 1234 9.2 24 147 706
K.281-1 1413 11.2 31 187 1035
K.282-1 1202 159 42 432 4822
K.283-1 2174 12.0 21 92 464
K.284-1 2477 9.0 26 125 1004
K.330-1 1983 9.6 21 134 835
K.332-1 2453 18.0 30 175 781
K.333-1 2303 12.1 22 93 1000
K.457-1 1907 16.5 37 246 1790
K.475-1 812 24.1 49 398 4377

Table 2. Accuracy of non-anchor notes after the refinement step (median, 7

5.2 Evaluation Results

Table 1 presents the results of the anchor detection step.
About a third of the overall notes were chosen as anchors.
Although this seems to be a very large fraction, it is justi-
fied by the high accuracy of the selected notes. For half of
the pieces, the 95" percentile still met the 50 ms criterion
used for the evaluation of onset detection algorithms.

However, for each piece a small number of outliers were
picked as well. Some of them are due to our trade-off
between a small search window at the NMF calculation
and computational costs. Notes for which the initial align-
ment deviates from the real onset by more than a second
are post-processed using a time frame that does not even
contain the correct onset.

Table 2 shows that, in comparison to Table 1, a major-
ity of non-anchor notes were improved by the refinement
step. Both the median deviation and the 75" percentile im-
proved for all the pieces. Only the accuracy of the outliers
decreased further in some cases. This might be due to poor
anchor notes, which mislead onset detection.

The overall result as given by Table 3 shows the poten-
tial of the proposed method. It clearly outperformed the
reference algorithm from [9] in which the initial alignment
and the factorization-based post-processing were done in
a similar way but without using score information to re-
fine critical notes. Especially the proportion of note on-

Sth Sth

percentile, 95*" percentile, and maximum)

sets identified with a deviation of less than 10 ms — i.e.,
the threshold of human perception, according to [4] — was
increased significantly from 40.0% to 49.8%. This is im-
portant for the construction of data acquisition tools which
are able to extract descriptions of musical expression from
audio recordings semi-automatically.

6. CONCLUSION AND FUTURE WORK

We have proposed a multi-pass method for the accurate
alignment of musical scores to corresponding audio record-
ings. The main contribution is the introduction of an ex-
pectation strength function modeling the expected onset
time of a note between two anchors. Although results are
encouraging, there are specific circumstances where the al-
gorithm fails, i.e., temporal displacement of notes is large.

One class of such errors are poor alignments at a piece’s
ending. There, two disadvantageous factors coincide. On
the one hand, there is no additional subsequent note which
could serve as hint for the alignment or as anchor in the
post-processing. On the other hand, a high degree of poly-
phony in combination with long and soft notes is to be ex-
pected at endings. Such passages are inherently difficult to
handle from a signal processing point of view.

An interesting example of such an error can be found
in the sonata K.282, in which one note was even wrongly
picked as an anchor although it was out of place by more



50% < x[ms] || 75% < x[ms] || 95% < x[ms] x < 10ms z < 50ms
piece | # notes
ref. new || ref. new || ref. new ref. new ref. new
K.279-1 | 2803 12 7.2 27 18 || 101 103 || 43.2% | 61.7% || 88.4% | 90.2%
K.280-1 | 2491 14 7.1 34 16 || 127 93 || 42.5% | 63.1% || 85.0% | 90.8%
K.281-1 2648 15 8.5 36 19 || 112 114 || 38.5% | 56.8% || 83.4% | 89.9%
K.282-1 1907 15 11.8 44 27 || 380 378 || 39.2% | 43.5% || 76.8% | 83.2%
K.283-1 | 3304 12 10.2 26 18 65 70 || 44.2% | 49.1% || 92.2% | 92.4%
K.284-1 | 3700 13 8.0 29 21 98 110 || 41.7% | 58.2% || 87.2% | 87.7%
K.330-1 | 3160 11 7.6 24 15 || 124 103 || 46.7% | 61.0% || 89.7% | 91.2%
K.332-1 3470 18 16.0 37 27 || 147 148 || 32.5% | 29.7% || 82.7% | 87.9%
K.333-1 | 3774 13 9.9 20 18 80 68 || 42.2% | 50.5% || 90.1% | 92.8%
K.457-1 | 2993 15 13.4 35 26 || 257 183 || 35.9% | 38.2% || 83.2% | 84.8%
K.475-1 1284 24 20.1 75 37 || 393 376 || 23.6% | 22.5% || 66.8% | 78.6%
all 31534 14 10.1 32 21 || 137 121 || 40.0% | 49.8% || 85.6% | 88.9%

Table 3. Overall accuracy of the proposed anchor-based method (new) compared to the reference method as described

in [9] (ref.)

than three seconds. The explanation is, that the last two
chords of this piece differ by only one single note (bb-ab-
d-f and eb-ab-d-f, respectively). The algorithm was not able
to distinguish the two chords. As a consequence, the notes
of the last chord were aligned to the onset of the preced-
ing chord as well. The resulting temporal displacement of
about three seconds is slightly shorter than the duration of
the first of these chords.

This clearly leads further work towards the issues of im-
proved mechanisms for anchor detection and the handling
of inherently “difficult* passages, such as the endings. An
approach that could benefit both fields is the introduction
of a more sophisticated local confidence or fitness measure
for arbitrary sections of an alignment.

Another aspect which has not been considered yet is the
detection of deviations from the score, such as when the
pianists adds ornamentations or playing errors occur.
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