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ABSTRACT

This paper presents a matrix factorization based feature for
audio to score alignment. We show that in combination
with dynamic time warping it can compete with chroma vec-
tors, which are the probably most frequently used approach
within the last years. A great benefit of the factorization-
based feature is its sparseness, which can be used in order
to transform it into a symbolic representation. We will show
that music to score alignments using the symbolic version
of the feature is less accurate but on the other hand reduces
the memory required for feature representation and during
the alignment process to a fraction of the original amount.
This is of special value when dealing with very long pieces
of music where the limits of default DTW are reached.

1 INTRODUCTION

The problem of audio to midi alignment is well known and
has been of broad interest within the last years. The task
is to link information from a score representation to an au-
dio recording of a certain performance of a piece of music.
Since symbolic transcriptions of a large number of classical
as well as modern pieces are available, alignment can re-
place the much more complex task of blind audio transcrip-
tion in most scenarios where the performed piece is known
in advance.

This is the case in a number of applications like in the
field of computational musicology. Performance analysis
for example relies on the exact transcription of various per-
formances in order to describe or compare the styles of dif-
ferent artists. Other applications of audio alignment are ped-
agogical systems and special query engines as well as intel-
ligent audio editors or players.

State-of-the-art approaches like [2], [4], or [12], just to
name a few, use a combination of a local distance measure
and a specific kind of dynamic time warping (DTW) or Hid-
den Markov Models (HMM) in order to find the optimal
global alignment between the score and a corresponding au-
dio file. Although the idea of calculating such alignments

SMC 2009, July 23-25, Porto, Portugal
Copyrights remain with the authors

in the symbolic domain is not new [1], modern approaches
avoid transcription of the audio data into a symbolic repre-
sentation. Instead local distances are calculated from acous-
tic features extracted from the audio signal on the one hand,
and either from a rendering or directly from the score on the
other hand.

Amongst these acoustic features chroma vectors seem to
be most frequently used. Each vector has 12 elements cor-
responding to the pitch classes (i.e. C, C#, D,. . . ). The com-
putation is based on a short time Fourier transform (STFT)
where each frequency bin is mapped to a musical note. The
notes are then folded into a single octave by calculating the
average energy of all STFT bin contributions to the same
pitch class. A more detailed description can be found in [7].
In [4] this representation was compared to others like Pitch
Histograms or MFCC based features in the context of audio
matching and alignment. It was shown that chroma vectors
perform significantly better than the other features.

Another approach is to use features composed of estima-
tions of the presence of individual pitches instead of pitch
classes. The idea of such a feature based on non-negative
matrix factorization was initially proposed in [2]. In this
work we describe a feature that also represents f0-observa-
tion probabilities for single pitches but amongst other things
differs in the optimization criterion and algorithms used in
the matrix factorization step. Whereas in [2] a qualitative
evaluation is given, we will present a quantitative evaluation
on a large data set, comparing our feature to chroma vec-
tors and show that the two features yield comparable results
when used in combination with dynamic time warping.

Although this feature is acoustic in nature it can be easily
converted into a symbolic form in order to use the advan-
tages of both representations. One could be a reduction of
computational costs since local similarities can be computed
on note events instead of the much larger number of audio
frames.

In Section 2 we will give an overview of the algorithm
used to extract the proposed feature. Section 3 then de-
scribes the global alignment using this feature in the acous-
tic domain. An evaluation and comparison with the perfor-
mance of chroma vectors is given in Section 4 before we
show and discuss an analogous alignment method in the
symbolic domain in Section 5.



2 METHODOLOGY

2.1 Pitch decomposition

A feature based on non-negative matrix factorization (NMF)
for audio alignment was originally proposed in [2]. The ba-
sic idea is that a non-negative input V of the size m × n is
decomposed into two as well non-negative output matrices
W and H of size m× r and r × n respectively, such that

V ≈W ·H (1)

The quality of a factorization is measured by a cost func-
tion over V and W · H . Common choices for these func-
tions are the Euclidean distance or the Kullback-Leibler di-
vergence. By minimizing the cost function W and H are
learned as a fixed number r of basis vectors and the aggre-
gation of their activation patterns over time.

Applying this principle to audio processing, one can use
a spectrogram, as obtained by the short time Fourier trans-
form, in order to learn a base set W of weighted frequency
groups in an unsupervised manner. In the ideal case these
would either represent single pitches played on a certain in-
strument or pitches that are often found together like the
notes of a chord.

However in the context of audio alignment, where the
piece and its score are known in advance, we assume the in-
struments used to be known as well. So there is no absolute
need for unsupervised learning of base vectors. Instead a
dictionary W of tone models, adjusted to those instruments,
can be trained in advance. This leaves us with only H being
unknown.

As described by [11] and [8] this reduces the NMF prob-
lem to the much simpler decomposition task where each col-
umn vector of V can be processed independently, such that
equation 1 resolves to

v ≈W · h (2)

where W is the fixed set of tone models. v and h rep-
resent the spectrogram of a single time frame and the pitch
activation respectively. This pitch activation h is the feature
vector describing one time frame. In order to find an optimal
h, again a cost function is needed. Throughout this work the
mean square criterion given as

f =
1
2
‖Wh− v ‖2 (3)

is chosen and optimized using a standard algorithm for
solving non-negative least square problems as described in
[6]. Reassembling the activation patterns of all time frames
results in a multiple-f0 estimation over the whole piece of
music.

On the other hand extracting feature vectors describing
the score is trivial since pitch information can be directly
taken from the midi representation.

2.2 Dictionary learning

In order to process the pitch decomposition as described
above a dictionary of tone models is required. Each of these
models represent one pitch by its weighted frequency com-
ponents. As pointed out in [8] the exactly same method as
used for pitch decomposition in the performing step can be
used for model learning in the training step.

Given a database of transcribed audio training samples,
the activation patterns of single pitches are known due to
the transcription. Therefore H in equation 1 can be fixed
to these activation patterns while now W is calculated. Us-
ing monophonic training samples where only one pitch is
present can simplify the learning step even more. On the
one handW is reduced to a vector and h becomes one scalar
at each time frame. On the other hand such training samples
can be created with minimal effort. Since the activation en-
ergy can be described by the amplitude envelope, the only
information required for each sample is the pitch as well as
the instrument that has been playing.

3 ALIGNMENT

3.1 Local Distances

Given two sequences of feature vectors a global alignment
has to be found that matches each element of one sequence
to a corresponding element within the other sequence. In
order to measure the similarity between two such elements
a local distance function is required. A common choice is
the Euclidean distance or the Kullback-Leibler divergence.
However two properties of the factorization based feature
suggest the use of another distance measure.

In the first place the feature produces a different quantity
of deletion (false negative) and insertion (false positive) er-
rors. Especially in high pitch ranges the majority of errors
is made up by spurious note detections. Therefore the two
types of errors should be treated differently.

Secondly the STFT we use here divides the spectrum into
linearly distributed frequency bins. On the contrary musical
notes follow a logarithmic frequency scale. So the deeper
a tone is, the closer in the spectrogram it is to its immedi-
ate neighbors. Additionally higher pitches also exhibit sig-
nificant energy in the lower frequency bins making it even
harder to reliably detect low notes. Therefore local distance
calculation should accommodate this fact by relatively tol-
erant penalizing of missing low notes in the audio feature.

A simple distance measure that combines these ideas and
has yielded good results during experimentation is

d(hs, hp) =
N−1∑
i=0

diff(hs
i , h

p
i ) (4)
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where hs represents a feature vector taken from the score
and hp represent one feature vector extracted from the re-
corded performance. α and β are the weights for missing
and spurious notes respectively. Throughout our work 1.2
and 2.0 have proven to yield good results.

Experiments have further shown that alignments can be
improved by ignoring missing notes lower than a threshhold
around C3 (midi pitch 48). Also taking the square root of d
turned out to be advantageous in combination with dynamic
time warping as explained in Section 3.2.

3.2 Global Optimization

Using the local distance measure a similarity matrix SM
comparing each frame of one sequence to each frame of the
other sequence can be built. Mapping corresponding frames
together is done by finding a minimal cost path through this
similarity matrix. A path through SMij is then equivalent
to the alignment of frame i of the score feature sequence to
the performance feature sequence’s frame j. Dynamic time
warping (DTW) is a well-established dynamic programming
based algorithm that finds such optimal paths. A detailed
tutorial can be found in [9].

In order to get meaningful results a path has to meet sev-
eral constraints. The constraint of continuity forces a path to
proceed through adjacent cells within the similarity matrix.
Jumps would be equal to skipping frames without consider-
ing the costs of this operation. The constraint of monotonic-
ity in both dimensions guarantees that the alignment has the
same temporal order of events as the reference sequence.
And finally the end-point constraint forces the ends of the
path to be the diagonal corners of the similarity matrix. In
doing so it assures that the alignment covers the whole se-
quences.

The determination of the optimal path according to DTW
works in two steps. The forward step starts at the point [0, 0]
with the cost SMij and recursively calculates the minimized
path cost of any partial alignment ending with frame i of the
score being aligned to frame j of the recorded performance
according to

Accu(i, j) = min


Accu(i− 1, j − 1) + SMij ∗ wd

Accu(i− 1, j) + SMij ∗ ws

Accu(i, j − 1) + SMij ∗ ws

(6)
The three options correspond to a diagonal step, a step

upwards, and a step to the right within the similarity matrix
respectively. Accordingly wd and ws are weights for diag-
onal and straight steps. We have chosen the values 1.4 and

Figure 1. Refinement of the global alignment: The esti-
mated path leads the search area through a similarity matrix
computed using a higher time resolution.

1.0 giving diagonal steps a preference over straight ones.
In our implementation we do this calculation in place, i.e.
overwriting the values SMij by Accu(i, j) in order to save
memory space.

Additional to the accumulated path cost a second matrix
is used in order to memorize whether the last step lead-
ing to a point [i, j] was diagonal, upwards, or to the right.
As soon as all values Accu(i, j) have been calculated this
information is used to trace the complete path back from
[N − 1,M − 1] to [0, 0].

3.3 Alignment of very long sequences

This algorithm is of complexity O(n2) in time as well as in
space. For very long pieces of music it is impossible to keep
a reasonable time resolution of features and still compute a
global alignment by DTW. Several improvements have been
proposed in order to reduce the complexity, including path
pruning where only promising partial paths with costs be-
low an adaptive threshold are further expanded or Shortcut
Path where only the alignments of frames corresponding to
note on- and offsets are stored [12]. Another approach to
handle very long pieces of music is to use online algorithms
like proposed in [3] instead of processing the whole piece at
once.

Another approach reducing time and space complexity to
O(n) is multiscale DTW ([10]). Here an initial estimation
of the optimal path is calculated using a low time resolution
and then refined iteratively. Since each iteration increases



time resolution but only considers paths near the one found
during the last step there is no guarantee that the optimal
path is really found. It may happen that low resolution fea-
tures are misleading in such a strong way that the actual
optimum is out of the search radius.

In our implementation we only use two iteration steps.
In the first one a standard DTW is computed on features ex-
tracted from a spectrogram. The window as well as the hop
size was chosen to be 4096 samples (∼93 ms). This allows
processing pieces of lengths up to more than 25 minutes.
The second step is the refinement, calculated on features
based on another spectrogram where the hop size was re-
duced to 512 samples (∼12 ms). As illustrated by Figure 1
the path estimation from the first step leads the search in
the second step so that only similarity values and path costs
within an area of radius r frames needs to be calculated.
In this way memory requirements can be kept low by just
storing similarity measures of the currently processed row
or column and path costs for the last 2r rows and columns,
leading to constant space complexity of this part of the al-
gorithm.

4 EXPERIMENTAL RESULTS

In order to evaluate the factorization based feature we test
its performance on several pieces of classical piano music.
The database used consists of 13 Mozart sonatas played by
a professional pianist on a computer monitored Bösendor-
fer SE290 grand piano, giving us a precise ground truth of
played notes in midi representation. The data set consists of
more than 100.000 notes and represents a performance time
of almost 4 hours.

The single pieces have lengths from 12 minutes up to
more than 26 minutes 1 . This is longer than test pieces used
in most other publications. On the one hand this leaves us
with issues of computational expenses, which are handled as
described in Section 3.3. On the other hand stronger devi-
ations from a strictly diagonal alignment path are expected
since the different movements of a sonata are played using
different tempi, which prohibits the use of additional align-
ment constraints like the Itakura Parallelogram [5].

The tone models used during factorization were learned
from recordings of single tones played on the same piano.
Since such a recording was only available for every fourth
midi pitch, the missing models were generated by means of
parabolic interpolation.

4.1 Feature Evaluation

In the evaluation process an alignment was calculated for
each of the test pieces using the audio recording and a midi
file containing the mechanical score without any expressive

1 Note that we align complete sonatas. That is, the pieces were not cut
into individual movements.

timing. The resulting note onset times were compared to
the ground truth data. Sections where more than 10 consec-
utive notes had been misplaced by more than 3 seconds were
classified as ’unaligned’. Throughout the test set 31 such re-
gions were found containing 2438 notes, which accounts for
2.4% of the overall number of notes. Further investigation
showed that such regions where alignment failed are likely
to be sections played very softly and with increased use of
pedal. This causes the spectrogram that is used as basis for
the feature calculation to blur and makes it very hard to dis-
tinguish partials belonging to a certain pitch.

For the remaining aligned notes we compute the absolute
displacement relative to the ground truth data. In Table 1 we
give the median difference, the third quartile and the limit
covering 95% of all displacements.

The largest value found within the test set was an error
of 8.631 seconds. Although we counted unaligned sections
separately, sporadic values of that magnitude are plausible.
Since we are dealing with whole sonatas it can happen that
the alignment places single notes played at the end of one
movement at the beginning of the next one and inversely.
Pauses of one or more seconds between movements as well
as fermatas and long sustaining of notes at the ends of move-
ments lead to such dramatic values.

In the evaluation of onset detection algorithms, an error
threshhold of 50 ms up to which a note onset is classified as
correctly detected is quite common in literature. Therefore
we also give the percentage of notes satisfying this criterion
which is about 50% on average in Table 1.

4.2 Feature Comparison

In the context of audio matching and alignment, a compar-
ison of several acoustic features is given by Hu et al. ([4]).
They show that chroma vectors perform significantly bet-
ter than the other features including variations of an MFCC
based approach and Pitch Histograms. This is relevant to
our work since Pitch Histograms as defined in [13] also rely
on a multiple f0-estimation. However they are computed by
an algorithm based on autocorrelation.

Using the same testing environment as described above
we also compare the factorization based feature against the
performance of chroma vectors. We found that chroma vec-
tors are more robust, leaving only 687 notes unaligned which
accounts for 0.7% of the overall number of notes. However
the evaluation of the precision of all aligned notes as given
in Table 1 is comparable to the results yielded by the factor-
ization feature. Also the value of the largest absolute error
being more than 9 seconds is even worse.

The evaluation criterion used in this work was different
from the one in [4]. So the results are not directly compa-
rable. In any event, we can not confirm that chroma vectors
perform significantly better than features computed by mul-
tiple f0-estimation except for robustness, where the amount



chroma vectors factorization based
piece # notes duration

50% ≤ 75% ≤ 95% ≤ % ≤ 50ms 50% ≤ 75% ≤ 95% ≤ % ≤ 50ms
kv279 7387 16:21 35 ms 65 ms 327 ms 64.7% 32 ms 61 ms 408 ms 68.6%
kv280 6070 15:04 41 ms 75 ms 432 ms 59.7% 38 ms 69 ms 399 ms 61.6%
kv281 6395 14:37 40 ms 63 ms 193 ms 61.7% 40 ms 67 ms 169 ms 60.1%
kv282 5564 14:59 60 ms 145 ms 532 ms 41.9% 70 ms 222 ms 808 ms 38.2%
kv283 7884 17:35 38 ms 76 ms 316 ms 59.8% 40 ms 80 ms 500 ms 57.8%
kv284 12762 26:07 37 ms 65 ms 262 ms 64.1% 39 ms 65 ms 260 ms 63.2%
kv330 7589 18:36 38 ms 70 ms 262 ms 60.2% 35 ms 66 ms 358 ms 64.8%
kv331 11580 22:51 276 ms 415 ms 508 ms 9.6% 277 ms 407 ms 493 ms 10.4%
kv332 8744 18:02 51 ms 92 ms 338 ms 49.4% 52 ms 89 ms 302 ms 48.9%
kv333 8833 20:34 58 ms 89 ms 244 ms 44.1% 59 ms 93 ms 261 ms 44.0%
kv457 6915 18:22 44 ms 97 ms 525 ms 54.7% 48 ms 96 ms 919 ms 52.0%
kv475 3871 12:05 79 ms 198 ms 718 ms 32.5% 76 ms 148 ms 579 ms 32.9%
kv533 8611 22:27 46 ms 86 ms 208 ms 52.9% 47 ms 86 ms 178 ms 52.4%

all 102205 3:57:40 50 ms 106 ms 449 ms 50.0% 50 ms 104 ms 459 ms 50.2%

Table 1. Comparison between chroma vectors and the factorization based feature in combination with DTW

of aligned notes was 99.3% instead of 97.6%.

5 THE SYMBOLIC DOMAIN

Most current methods for audio to score alignment includ-
ing the approaches described above work in the acoustic do-
main, avoiding the step of explicitly transcribing the audio
data. Such a transcription would bring some benefits.

• Whereas acoustic features will result in large arrays of
data, symbolic representations are much more com-
pact, using just a small fraction of the original mem-
ory space.

• While computing alignments using DTW-like algo-
rithms the number of frames per sequence can be dra-
matically reduced from a fixed ratio of frames per
time unit to one frame each time a note onset or offset
occurs.

• Using a transcription in midi format obvious errors
of the feature extraction process can be recognized
and handled prior to the actual alignment step. Exam-
ples for such obvious errors are detected notes with
pitches never played during the current piece or de-
tected chords that are never used. This might also
eliminate incorrect notes played by the performer in
certain cases.

We have also done experiments using the same factoriza-
tion method as described above to extract an audio feature in
midi-format by just setting a note on-event each time the ac-
tivation energy hp

i of pitch i becomes greater than zero and
setting a note off-event each time hp

i falls back to zero. This

50% ≤ 75% ≤ 95% ≤ % ≤ 50ms
acoustic 32 ms 61 ms 408 ms 68.6%
symbolic 205 ms 370 ms 905 ms 18.9%

Table 2. Comparison of alignments using the factorization
based feature in its original version and pruned to a symbolic
representation

is not just exploiting the sparseness of the factorization re-
sult but also strong pruning since note velocities are set to a
default value and the actual values of the activation patterns
during the note sustain time are dropped.

Applied to the recording of Mozart’s piano sonata kv279
the resulting midi representation contains 6275 notes using
less than 150 kB of memory. This is a little more than 7.5%
of the space needed to store the chroma vectors calculated
at a time resolution of 50 frames per second. For the orig-
inal acoustic representation of the factorization result this
relation is even more drastic. The activation patterns of 58
pitches (concerning to the pitch range used in the kv279)
require 11MB of memory which is more than 70 times the
space needed for the symbolic version of the feature.

The actual alignment is again done using dynamic time
warping. In doing so from the score as well as the audio
feature slices containing unchanged numbers of notes are
extracted (i.e. splitting the piece at each note on- and offset).
The resulting number of feature vectors are comparable to
those obtained in the first estimation step of our multiscale
DTW implementation as described in section 3.3. For the
piece kv279 there were no unaligned regions for both fea-
ture representations. But as can be seen from Table 2, the
accuracy yielded by the symbolic feature can not compete



with the original version. However, a maximum displace-
ment error of 7.95 seconds indicates that stability is not de-
creased.

A deterioration of accuracy by a factor 7 (concerning the
median displacement) may be an acceptable compromise, at
least in some applications. It has to be considered that the
compactness of feature representation was increased by a
factor of 70 and the time of computation in the costly align-
ment step was reduced to about one tenth because, because
no refinement step is needed.

6 CONCLUSIONS

In this paper we have explained a way to extract f0-estima-
tion features from spectrograms. We then used dynamic
time warping in order to align such feature sequences to
midi representations of the corresponding score. Since we
used whole piano sonatas for our experiments a multiscale
DTW approach had to be used in order to tackle complex-
ity issues. Evaluations showed that the extracted feature can
compete with other state-of-the-art features.

The actual benefit of the feature described here as well as
the one proposed by [2] is that unlike others they are very
sparse in nature. So they can easily be converted into a sym-
bolic representation. Using additional pruning the accuracy
is reduced significantly but on the other hand data reduc-
tion concerning the feature representation as well as during
the alignment process is remarkable. Since we have demon-
strated the capabilities of our original feature, the modifica-
tion can be seen as a tradeoff between accuracy and compu-
tational costs.

A median displacement error of about 200 ms is too much
for applications like performance analysis. But applications
like content query engines might profit from such compact
features. Especially in the context of huge databases fast and
memory-saving routines can be of advantage over methods
yielding the highest accuracy.
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