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ABSTRACT

In this paper we present a new method in the style of
non-negative matrix factorization for automatic tran-
scription of polyphonic music played by a single instru-
ment (e.g., a piano). We suggest using a fixed repos-
itory of base vectors corresponding to tone models of
single pitches played on a certain instrument. This as-
sumption turns the blind factorization into a kind of
non-negative matrix division for which an algorithm
is presented. The same algorithm can be applied for
learning the model dictionary from sample tones as
well. This method is biased towards the instrument
used during the training phase. But this is admissible
in applications like performance analysis of solo music.
The proposed approach is tested on a Mozart sonata
where a symbolic representation is available as well as
the recording on a computer controlled grand piano.

1 INTRODUCTION

Transcription of polyphonic music is a difficult task
even for humans after several years of musical training.
In the computational field people have been working on
the problem of extracting single note events from com-
plex music recordings for more than three decades. In
special cases like monophonic music some systems have
proven to be successful [1]. But pieces where more than
one note is present at a time are much more challenging.
Consonant tones in Western music often have frequency
relations close to simple integer ratios and therefore
cause overlapping harmonics. So when considering a
power spectrum the mapping of found energies to cer-
tain fundamental frequencies is usually ambiguous.

A review of transcription methods is given in [4] and
[5], clustering them into three main approaches. The
first systems were built on pure bottom-up principles
without considering any higher level knowledge. Al-
though these algorithms used to fit very specific cases
only, recent works like [6] or [13] show that bottom-
up methods have overcome those early restrictions. A
second group of transcription methods, like used by
[12], is based on blackboard systems. Here low-level

information gathered by digital signal processing and
frame-wise description of the auditory scene as well as
high-level prior knowledge is used to support or discard
hypotheses at multiple levels.

The third major approach to music transcription is
made up of model based algorithms. Similar to black-
board systems they also include high-level information
as well as low-level signal based features. The differ-
ence is that prior knowledge is fed into the system by
introducing a model of the analyzed data. The signal
is then processed in order to estimate the model’s pa-
rameters. The results of these methods can only be as
good as the assumed model fits the actual data. Works
like [14] or [2] are examples of this class.

During the last years the methods of non-negative
matrix factorization (NMF) [10], independent compo-
nent analysis (ICA) [9] and sparse coding [13] became
of increasing interest in audio analysis. The basic idea
is the introduction of hidden, not directly observable
atoms. The above cited methods decompose an input
matrix into two factors where one is a dictionary de-
scribing the individual atoms and the other gives the
activation of these components as a function of time.
The non-negativity constraint is derived from the areas
of application where single observations linearly add up
to the whole. For instance in audio analysis it would not
make sense to consider notes with negative loudness.
Since the only prior knowledge is the maximum num-
ber of independent components these algorithms are
part of the group of bottom-up methods as described
above.

In this paper we propose a new method where the
ideas of matrix factorization and sparse, independent
components are adapted to follow a model based ap-
proach. Studies on the human approach to music tran-
scription [5] have shown that trained musicians use lots
of background information like the style of the piece
or the instruments playing. They expect certain tim-
bres and therefore would for example never search for
distorted guitar tones in a classical piano piece. Apply-
ing this principle to the non-negative matrix factoriza-
tion, prior knowledge about the dictionary is incorpo-
rated. The activation matrix will then remain the only
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unknown component which needs an operation like a
non-negative matrix division in order to be calculated.

Section 2 of this paper focuses on the NMF and its
shortcomings in the context of transcription of solo mu-
sic as a motivation for our method that is then ex-
plained in detail. Section 3 describes how the tone
models representing a certain instrument can be ex-
tracted from sample recordings. The post processing
step transforming the activation patterns yielded by the
matrix division into discrete note events is described in
section 4. Sections on the experimentation results and
our conclusions complete the paper.

2 PITCH DECOMPOSITION

2.1 Non-negative matrix factorization

Non-negative matrix factorization as introduced in [9]
decomposes a non-negative input V of size m× n into
two non-negative output matrices W and H of size m×r
and r × n respectively, such that

V ≈ W ·H (1)

where by convention W is regarded as a set of basis
vectors and H as the aggregation of their activation
patterns.

Since perfect factorization is not possible in almost
all cases, a solution to equation (1) with minimal error
of reconstruction is achieved by minimizing a cost func-
tion over the difference between V and W ·H. Common
such functions are the Euclidean distance E(V,WH) or
the Kullback-Leibler divergence D(V ‖ WH).

Applied to a power spectrum, as obtained by the
short time Fourier transform, the basis components in
W are weighted frequency groups that are found to
sound together. Ideally they belong either to a sin-
gle pitch played on a certain instrument or a group
of pitches that are normally played together like the
notes of a chord. If the number r of basis components
is smaller than the number of different pitches played,
some of the pitches have to be either omitted or grouped
within one atom. In the reverse case where r is suffi-
ciently large there can be atoms representing noise, or
there is more than one atom per one single pitch. Here
it is very likely that a component represents the sus-
tained part of a note whereas another maps to the note
onset with much richer harmonics. A detailed investi-
gation on these effects can be found in [13].

The component activation data in H contains the
strength of each atom at a certain time frame. Due to
the non-negativity constraint the combination is addi-
tive only. This gives consideration to the fact that there
is nothing like negative loudness of notes.

Effective algorithms for the calculation of the NNMF
have been introduced in [10]. Multiplicative update
rules are used in order to find local minima starting
form randomly initialized matrices W and H. Using
the Kullback-Leibler divergence D(V ‖ WH) as cost
function these update rules are

Haμ ← Haμ

∑
i WiaViμ/(WH)iμ∑

k Wka
(2)

Wia ← Wia

∑
μ HaμViμ/(WH)iμ∑

ν Haν
(3)

In [10] a proof for the convergence of this algorithm
towards a local minimum is given. It is shown that
the divergence is (i) non-increasing under above update
rules and (ii) invariant if and only if W as well as H
are at stationary points.

2.2 Drawbacks of NNMF

Several works like [13] or [15] have concentrated on ap-
plying matrix factorization using non-negativity and
sparseness constraints to automatic music transcrip-
tion. Although there are numerous advantages, an in-
herent problem of NMF based approaches is the de-
termination of an appropriate number r of base com-
ponents. This parameter has to be guessed since the
number of different pitches present in a piece of mu-
sic is not known in advance. An r that is too small
cannot represent each pitch individually whereas too
large values cause increased computational expenses as
well as difficulties when mapping base vectors in W to
transcribed pitches.

Another drawback is that there is no guarantee that
each played pitch is represented at all. [13] reports that
although using a more than sufficiently large number of
base vectors in an NMF as well as in two sparse coding
approaches a few notes are not represented. This is the
case when chords or certain residual noise patterns be-
come more significant than single tones that are played
only very rarely.

Thirdly learning a dictionary of independent com-
ponents while transcribing music played by a single in-
strument does not seem to be a natural way of ap-
proaching the problem. As shown in [5] humans start
by detecting the genre and style of a piece, which al-
lows them to limit the number of possible instruments
and timbres to be expected. Learning the dictionary
of independent components along with their activation
is, as pointed out above, likely to model noise as well
and therefore prone to overfitting. Restricting dictio-
nary vectors to feasible values in advance is a reasonable
means of preventing overfitting as well as unnecessary
computational costs.
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2.3 Non-negative matrix division

To overcome the above drawbacks we propose fixing the
number r of independent components to the number
of actual possibilities regarding the pitch range of the
instrument in focus, and the single atoms of the dictio-
nary W to stereotypical tone models of the correspond-
ing pitches. One approach would be to use multiplica-
tive updates on a random initialization of H applying
the rule in (2) while omitting (3) or defining constraints
on its computation like done in [16]. But exploiting the
fact that W is fixed and therefore single vectors of V
can be processed independently, equation (1) resolves
to

v ≈ W · h (4)

where W is the fixed dictionary. v and h are column
vectors representing one time frame of the spectrogram
and the pitch activation respectively. In order to mea-
sure the quality of an approximation in (4) again a cost
function is needed. A convenient measure is the mean
square criterion where

f =
1
2
‖ Wh− v ‖2 (5)

has to be minimized while regarding the constraint of
non-negativity. According to [8] this problem is solved
by an iterative algorithm as follows.

1. Initialize all elements of h to zero and introduce
two sets P and Z where P is empty and Z con-
tains all indices within h.

2. Compute the gradient $hf = W
T · (v − Wh)

where f is the cost function as defined in (5).

3. If Z = {} or ∀i : i ∈ Z ⇒ ($hf)i ≤ 0 then
terminate.

4. Find the maximum element of $hf and move its
index from Z to P .

5. Solve the unconstrained linear least squares prob-
lem W sub ·z = v where W sub is a copy of W where
all columns corresponding to indices in Z are set
to zeros. Within the result z only those elements
with indices contained in P are significant. The
others are set to zero.

6. If ∀i : i ∈ P ⇒ zi ≥ 0 then z is a feasible solution
to the subproblem, h is set to z and the main loop
is continued at step 2.

7. If the above condition does not hold z can only
contribute to the new temporary solution up to a
certain amount. Therefore a factor α (a learning

rate) is calculated as α = argmini(hi/(hi − zi))
where only the indices of negative elements in z
are allowed as i.

8. Calculate the new temporary solution using α
from the above step as h = h + α(z − h)

9. Move all indices for which the corresponding ele-
ment in h is zero from P to Z. Continue working
on the subproblem at step 5.

Although the result of one frame is a useful hint for
the computation of the next frame, single time frames
can now be independently processed. This makes the
method suitable for parallelization as well as online pro-
cessing.

Reassembling the results of individual frames gives
a complete activation matrix like H from equation (1)
as an optimal non-negative quotient of an input power
spectrogram V and a given tone model dictionary W .
The method can therefore be seen as a non-negative
matrix division in contrast to the uninformed matrix
factorization.

3 TONE MODEL LEARNING

The method as pointed out so far requires a given dic-
tionary of tone models that has to be learned in ad-
vance. In this work an approach is explained where
the same algorithm as for the pitch decomposition is
used. The necessary training data consists of recordings
of single pitches played on the particular instrument.
Starting from equation (1) again instead of fixing W
to a given dictionary, H is chosen to have a number of
components r = 1. This does justice to the facts that
there shall be exactly one basis vector per midi pitch
and in a single training instance there is only one tone
present. The values of H are set to the corresponding
values of the amplitude envelope expressing the current
loudness of the sound. Then the tone model is calcu-
lated as described in section 2.3 but having a fixed H
instead of a fixed W .

In cases where only recordings of some notes and not
the whole pitch range are available interpolation is ap-
plied. Given a fundamental frequency f0 for which the
tone model is not known the starting point are the two
nearest frequencies fl and fh with given energy distri-
bution such that fl < f0 < fh. The interpolation is
then done in two steps. At first for each bin’s center
frequency f within the spectrum of f0 the correspond-
ing frequency within the known models is calculated.
In the second step the energy of f ′ is estimated using
parabolic interpolation. Finally the approximations us-
ing the lower and the upper frequency model are com-
bined by taking the average.
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4 FRAME-WISE CLASSIFICATION AND
TRANSCRIPTION

The steps described in sections 2.3 and 3 lead to a
piano-roll-like representation of the activation of in-
dividual pitches given by the matrix H. In order to
close the gap between this representation and a sym-
bolic transcription in midi-format a final step of post-
processing is still needed since the activation data (i)
contains low energy noise as well as higher level outliers
and (ii) is not separated into discrete note events.

All the above calculations have been at the level of
individual frames. Since musical notes are in most cases
stable over a certain amount of time it makes sense
to use the information given within a local neighbor-
hood. We do so by applying a median filter in order to
smooth the activation curves as well es to eliminate very
short fragments. In our experiments window lengths of
around 100 ms have been found to yield good results.

Since the smoothed activation data is very sparse,
discrete note events can easily be extracted by identi-
fying segments with above zero activation while filling
out very small gaps (up to 30 ms) that might be there
even after smoothing.

5 EXPERIMENTAL RESULTS

5.1 Tone model learning

As our prime test environment we have chosen solo pi-
ano music. In order to learn the dictionary for our ex-
periments we took recordings of single tones played on
a computer controlled Bösendorfer SE290 grand piano
like they were also used by Goebl [3]. Recordings were
available for every fourth midi pitch at different veloc-
ity levels. The power spectrum was computed using
a short time Fourier transform with a window length
of 4096 samples and a hop size of 441 frames or 10 ms
when having input data sampled at a rate of 44.1 kHz.
Additional zero padding by a factor of 2 was used in or-
der to get narrower frequency bins. The window used
was a Hamming window.

The resulting spectrum was then preprocessed in two
steps. At first a silence detector sets all frames which
have a total energy below a certain threshold to ze-
ros. Then in order to further suppress noise as well
as to remove the bias due to the tone model learned
from one specific instrument, magnitude warping and
spectral average subtraction as described in [7] is per-
formed. The spectrum X(k) of the signal is assumed to
be a combination of S(k) representing the sound that is
originally excited, H(k) being the frequency response of
the environment like the instrument body and an addi-
tional noise component N(k), giving the decomposition

X(k) = H(k)S(k) + N(k) (6)

In order to equalize the factor H(k) the power spec-
trum X(k) is magnitude warped by applying

Y (k) = ln
(

1 +
1
g
X(k)

)
(7)

The purpose of the term g is to normalize the spec-
trum such that the level of the noise N(k) is close to
one whereas the spectral peaks are much larger. As-
suming that the major part of X(k) is just noise floor
and the peaks of H(k)S(k) are quite sparse any outlier
resistible average measure can be taken in order to find
a feasible g. In our tests just using the minimum of
X(k) gave satisfying results as well. Due to this warp-
ing the influence of H(k) is reduced.

The additive noise is suppressed by subtraction of a
moving average N(k) within the logarithmic scale. The
size of the sliding window has a width of 100 Hz but in-
creases at higher frequency bands such that it always
covers at least a range of ±4 semitones with regard to
the currently processed coefficient k. The moving aver-
age N(k) representing the noise floor is then subtracted
from Y (k) leaving the preprocessed spectrum Z(k) as

Z(k) = max
{
0, Y (k)−N(k)

}
(8)

According to [7] using the logarithmic scale gives
clearly better results than the linear scale.

The preprocessed recordings of the single tones are
then passed to the model learner as described in sec-
tion 3. Recordings were available for every fourth pitch
using velocities of 30, 50, 70, 90 and 110. The influence
of loudness of the training data is weakened by its ex-
plicit consideration during the learning algorithm. But
since individual harmonics fade out unequally the ini-
tial loudness still influences the resulting model. We
overcome this effect by taking into account the models
learned from all different velocities and calculating a
final one by taking the average spectral power at each
frequency bin. To complete the dictionary containing
all midi pitches from 21 to 108, which constitutes the
whole pitch range of the piano, the missing tone models
were interpolated.

5.2 Transcription

As test data we use the recording of Mozart’s sonata
KV279 played by a professional pianist on a computer
monitored Bösendorfer SE290 grand piano, giving us
a precise ground truth of played notes in a midi-like
format. The test set of 10.000 time frames contains
1087 keystrokes and continuous pedal events that are
known as well. Although this covers only less than the
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first two minutes of the piece it is a respectable basis
for cross validation experiments as will be described in
this section.

The data was converted to be monaural and trans-
formed into the frequency domain using the same pa-
rameters and preprocessing as used for the dictionary
learning. The only difference was that the upper half
of the frequency bands were dropped in order to re-
duce computational costs on further operations. Tests
have shown that this reduction of data causes hardly
any loss of quality. The power spectrum was then pro-
cessed using the non-negative matrix division approach
including smoothing of the result as well as the extrac-
tion of discrete note events. First tests have shown that
the resulting set of identified notes includes 1077 out of
the 1087 present notes, missing less than 1%. However
the amount of spurious events being more than three
times as high as the number of correct notes was unac-
ceptable and made further post-processing necessary.

The data showed that the higher the pitches, the
higher are the activation levels of occurring spurious
events. A reason might be that due to the disregard of
the higher half of the spectrum the higher notes within
the dictionary are only represented by the fundamental
frequency and the first one or two harmonics. Such a
base vector is more likely to match a noise pattern than
one containing the whole range of harmonics as is the
case with models of lower pitches.

For this reason it is not adequate to use a single
magnitude threshold on the activation data in order
to distinguish correct note events from spurious ones.
Instead we applied a very simple rule based classifier
(RB) that has one magnitude threshold per frequency
band as the only rules.

We compared this classifier to a second, instance
based, one. We decided to use a nearest neighbor algo-
rithm (IB) having a broader basis of decision-making.
The features used were pitch, length, maximum energy
and the sum of energy of a note. A 10-fold cross vali-
dation on our data set was done to test the ability of
these two classifiers to separate correct notes from spu-
rious ones. The results are listed in table 1 showing
that the instance based classifier clearly outperforms
the rule based one on all measures defined as

precision =
TP

TP + FP
(9)

recall =
TP

TP + FN
(10)

f = 2 · precision · recall

precision + recall
(11)

where TP are the correctly found notes, FN are the
missed and FP the spurious notes. A note event is

precision recall f
raw data 21.8% 99.1% 0.357
classifier (RB, notes) 85.9% 85.4% 0.856
classifier (IB, notes) 95.6% 88.1% 0.917
classifier (frames) 42.3% 68.8% 0.524

Table 1. Classification results on solo piano music

counted as correct if the transcribed and the real note
do overlap. Cases where the sustain pedal is used are
handled in the way that notes are allowed to last as long
as the pedal is pressed but they do not need to since
the actual length of the note cannot be told exactly.

Determining note onsets and offsets by just consid-
ering if the activation is above zero is simple. However
this usually leads to transcriptions into notes that are
longer than the original ones. To overcome this draw-
back we applied another classifier to the raw activation
data in order to decide whether a pitch is played or not
for each frame individually. In our test set of 10.000
frames containing 88 pitches each, this leaves us with
880.000 instances with more than 20.000 instances be-
longing to an actually played note. The features given
to the, again instance based, classifier were the ones
used for note-wise processing with addition of the cur-
rent activation of each instance.

The result is again shown in table 1. The recall
means that almost 70% of the original sound is cov-
ered in the transcription. 42% of the play time within
the result match with a real note whereas the remain-
der of 58% is made up by erroneous note elongations
and spurious notes.

6 CONCLUSIONS

In this work we have proposed a modification to exist-
ing transcription approaches using non-negative matrix
factorization. Instead of tackling the problem in an un-
informed way the new method makes use of an a pri-
ori learned dictionary of base vectors or tone models.
This transforms the problem from general factorization
to a division problem. The methods for the calcula-
tion of activation magnitudes can also be applied to the
initial model learning in order to yield an appropriate
dictionary. An advantage over uninformed matrix fac-
torization is that single time frames can be processed
independently - a fact that can be utilized to reduce
computational complexity.

Applied to solo piano music, the raw resulting acti-
vation patterns contained more than 99% of the origi-
nal notes but more than three times as many spurious
notes as well. A post processing step with quite simple
classifiers achieved an overall f-value of about 90% for
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note-wise detection of played notes. In comparison, the
frame wise classification yields an f-value of about 0.5
which is significantly less accurate.

We believe that additional information like high-level
musical knowledge could help to improve the final step
of picking correct notes while neglecting spurious ones.
Also the information from an additional onset detection
could benefit the frame-wise detection accuracy. Steep
slopes can be observed at the beginning of connected
parts within the activation data. Yet their reliability
for onset detection has not been investigated.

Another aspect that has not been considered yet is
how to cope with situations where there is more than
one instrument present, or pieces where the playing in-
strument is not known a priori. Although the prepro-
cessing that was applied in the test environment does
some spectral whitening and therefore reduces the in-
fluence of timbre we still expect the timbral correlation
between the instrument used for the dictionary learning
and the one that shall be transcribed to be essential.
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