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ABSTRACT

This paper presents a new method to refine music-to-score
alignments. The proposed system works offline in two
passes, where in the first step a state-of-the art alignment
based on chroma vectors and dynamic time warping is per-
formed. In the second step a non-negative matrix factor-
ization is calculated within a small search window around
each predicted note onset, using pretrained tone models of
only those pitches which are expected to be played within
that window. Note onsets are then reset according to the
pitch activation patterns yielded by the matrix factoriza-
tion. In doing so, we are able to resolve individual notes
within a chord. We show that this method is feasible of
increasing the accuracy of aligned note’s onsets which are
already aligned relatively near to the real note attack. How-
ever it is so far not suitable for the detection and correction
of outliers which are displaced by a large timespan. We
also compared our system to a reference method showing
that it outperforms bandpass filtering based onset detection
in the refinement step.

1. INTRODUCTION

Opposed to blind audio analysis there are several applica-
tions where the recording of an already known piece of
music has to be analysed. These applications range from
computational musicology, especially performance analy-
sis, and pedagogical systems to augmented audio players
and editors as well as special query engines. Knowing that
a huge number of symbolic transcriptions of classical as
well as modern pieces are publicly available, this leads to
the task of automatic music-to-score alignment.

Most current approaches are based on a local distance
measure – mainly chroma vectors or features derived from
chroma vectors – to compare the similarity between one
time frame of the audio and one time frame of the score
representation. These distances are then used by a global
optimization algorithm, usually Dynamic Time Warping
(DTW) or Hidden Markov Models (HMM), which finds
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the best matching alignment between these two feature se-
quences.

Recently much attention has been drawn on online algo-
rithms for audio-to-score alignment, also known as score
following, like described in [1]. However less work has
focused on improvements of the accuracy of offline algo-
rithms. In this paper we present ongoing work towards ac-
curate measurement of individual notes’ parameters. The
calculation of accurate alignments is not only of use for the
above mentioned applications but can also provide training
and test data for less informed tasks like blind audio tran-
scription [2].

We propose a two-pass system where in the first step a
standard alignment routine based on chroma vectors and
DTW is performed. In the second step this alignment is
refined using a non-negative matrix factorization (NMF)
approach. For each note a search window is set around
the estimated note onset. With each of theses windows
an NMF using pretrained tone models of only those notes
excepted to occur within the respective audio segment plus
a noise component is performed. In doing so, the system is
able to resolve individual note onsets within whole chords.

We will show that this method provides a good means
of refining the estimated onset times of notes that are rel-
atively well detected by standard alignment. However in
hard cases where the alignment deviates considerably from
the ground truth the method shown here is prone to errors
as well.

Section 2 is a brief overview of related work. In Sec-
tions 3 and 4 we explain the first alignment step and the
NMF-based refinement respectively. Section 5 contains a
description of the evaluation method used as well as the
experimental results before we conclude our work in Sec-
tion 6.

2. RELATED WORK

Much work, including [2–5], has focused on audio-to-score
alignment based on acoustic features and Dynamic Time
Warping (DTW). In [6] chroma vectors, Pitch Histograms,
and two Mel-Frequency Cepstrum Coefficient (MFCC) re-
lated features have been compared in the context of DTW
based audio matching and alignment. It was shown that
chroma vectors perform significantly better than the other
features.

Since DTW applied on two sequences of length n is of



complexity O(n2) in time as well as in space the resolution
of the features used is limited by runtime as well as mem-
ory constraints. One way of refining audio alignments is to
increase this resolution while keeping computational costs
within reasonable bounds. This is done by multi-scale ap-
proaches like described in [5] or [7] where the resolutions
are increased iteratively but on the other hand search paths
are constrained by tentative solutions found so far.

The resolution based refinement does not overcome an
important side effect of alignments based on dynamic time
warping. Notes that are struck together in the score, like
it is the case for chords, can not be treated independently.
This is a major drawback in applications like performance
analysis, where the accurate timing of individual chord
notes is an important expressive characteristic. [8] and [9]
use pitch specific energy levels in order to estimate the tim-
ings of individual notes.

Another method to iteratively refine audio alignments
is a bootstrap approach as described by [4]. There an au-
dio segmenter is trained on an initial alignment. This seg-
menter can produce a refined alignment which is then used
for a repeated training step. This method allows for the ap-
plication of supervised machine learning techniques with-
out the need for external training data.

Non-negative matrix factorization, as used here, was
first applied to audio alignment in [10]. There, the com-
bination of NMF and Hidden Markov Models was able to
create alignments for polyphonic instruments in realtime.

3. BASIC ALIGNMENT

3.1 Chroma Feature

In the first pass the proposed system performs a state-of-
the-art audio-to-midi alignment based on chroma vectors
and Dynamic Time Warping. Chroma vectors have 12 ele-
ments representing the single pitch classes (i.e. C, C#, D,
D#,. . . ). The values are calculated based on a short time
Fourier transform. Each frequency bin is then related to
the index i of a pitch class by

i = round
(

12 log2

(
fk

440

))
+ 9 mod 12 (1)

where fk is the center frequency of the kth bin. The
tuning frequency is supposed to be 440 Hz but can easily
be changed to any other value. The summand 9 shifts the
vector such that the pitch class C has index 0. The individ-
ual values are then obtained by summing up the energies
of all bins corresponding to a certain pitch class.

A similar feature that yields comparable results has been
suggested by [11] which on the one hand takes only bins
containing energy peaks into account but on the other hand
also considers harmonics. At the extraction of the so called
Harmonic Pitch Class Profile the energy of a frequency bin
k does not only contribute to the pitch class best matching
the center frequency fk but also to those pitch classes best
matching fk/h with h = 2, 3, 4. . . . This accommodates

for the assumption that the energy in bin k can also rep-
resent the hth harmonic of a pitch. Since the energy of a
partial decreases with the order of the harmonic, an addi-
tional weighting factor of wharm = dh−1 with 0 < d ≤ 1
is introduced.

The calculation of the chroma representation based on
a MIDI file instead of audio data is straightforward since
each MIDI event can be directly assigned to the corre-
sponding pitch class. However when using the Harmonic
Pitch Class Profile, errors are made when letting the en-
ergy of the actual f0 contribute to the pitch classes cor-
responding to f0/3, f0/5,. . . . This inexactness has to be
reproduced in order to obtain equivalent representations of
audio and score. Likewise when using default chroma vec-
tors, contributions of a note to other pitch classes than the
one corresponding to the f0 caused by harmonics can be
considered as well.

Preliminary experiments have shown that chroma vec-
tors and Harmonic Pitch Class Profiles yield comparable
results. Therefore chroma vectors have been used for the
remainder of this work due to computational advantages.

3.2 Dynamic Time Warping

Based on this chroma representation a globally optimal
alignment is calculated. Therefore a sequence of chroma
vectors for the audio file as well as for the score represen-
tation is calculated. In doing so the score MIDI is divided
into time frames such that the overall number of frames
and the overlap ratio between frames is the same as of the
STFT applied on the audio data. The Euclidean distance is
used to compute a similarity matrix SM comparing each
frame of one feature sequence to each frame of the other
sequence, after all feature vectors have been normalized.
Mapping corresponding frames to each other is the same
as finding a minimal cost path through this similarity ma-
trix. A path through SMij is then equivalent to the align-
ment of frame i of the score feature sequence to frame j of
the performance feature sequence. Dynamic time warping
(DTW) is a well-established dynamic programming based
algorithm that finds such optimal paths. A detailed tutorial
can be found in [12].

In order to get meaningful results an alignment path has
to meet several constraints.

Continuity The constraint of continuity forces a path to
proceed through adjacent cells within the similarity
matrix. Jumps would be equal to skipping frames
without considering the costs of this operation.

Monotonicity The constraint of monotonicity in both di-
mensions guarantees that the alignment has the same
temporal order of events as the reference sequence.

End-point constraint The end-point constraint forces the
ends of the path to be the diagonal corners of the
similarity matrix. In doing so it is assured that the
alignment covers the whole sequences.

The optimal path according to DTW is calculated in two
steps. The forward step starts a partial path at the point



[0, 0] and rates it with the cost SMij . Then it calculates the
minimum path costs for all other partial alignments ending
with frame i of the score being aligned to frame j of the
recorded performance in a recursive manner according to
equation 2.

Accu(i, j) = min


Accu(i− 1, j − 1) + SMij ∗ wd

Accu(i− 1, j) + SMij ∗ ws

Accu(i, j − 1) + SMij ∗ ws

(2)
The three options correspond to partial paths ending

with a diagonal step, an upwards step, and step to the right
within the similarity matrix SM . In addition to the actual
local distances, weights wd and ws are needed to yield rea-
sonable path costs. If there were no such weights, diagonal
paths would be strongly favored over straight ones which
are twice as long. Experiments have shown that the values
1.4 and 1.0 (still giving diagonal steps a preference over
straight ones) perform well. In our implementation we do
this cost calculation in place, i.e. overwriting the values
SMij by Accu(i, j) in order to save memory space.

The backtracking step of DTW starts as soon as all val-
ues Accu(i, j) have been calculated. Accu(N −1, M −1)
is the minimal cost of a complete alignment between the
two feature sequences. Therefore the optimal path is re-
constructed starting from [N − 1, M − 1] going back to
[0, 0]. In order to be able to do so, a second matrix is built
during the forward step, memorizing whether the last step
leading to a point [i, j] was diagonal, upwards, or to the
right.

4. NMF-BASED REFINEMENT

4.1 Non-negative Matrix Factorization

Within the last few years non-negative matrix factorization
(NMF) has become of increasing interest in the domain of
blind audio transcription. The basic idea is that an input
matrix V of size m × n is decomposed into two output
matrices W and H of size m × r and r × n respectively
where the elements of all these matrices are strictly non-
negative and

V ≈WH (3)

Assuming that V represents real-world data such fac-
torizations will most likely not be perfect. The reconstruc-
tion error caused by any deviation of WH from V can be
measured by a cost for which the Euclidean distance or the
I-divergence are common choices. In minimizing this cost
function, W and H are learned as an initially determined
number r of basis vectors and their activation patterns over
time respectively.

Performing such a decomposition on a spectrogram, as
obtained by a short time Fourier transform, will result in a
dictionary W of weighted frequency groups and their oc-
currence H over time. According to the input V and the
parameter r, the base components in W will, in the ideal
case, represent models of single pitches or chords played

on a certain instrument. But due to the unsupervised nature
of the method, elements of W might as well correspond to
special frequency patterns during the attack, sustain, or de-
cay phase of a note, single partial or just noise.

However, as soon as the piece and its score are known,
as it is the case in the context of audio alignment, the in-
strument(s) used to perform the piece are most probably
known as well. So there is no need to learn a set of base
components. Instead a number r of tone models can be
trained in advance which overcomes the above mentioned
uncertainty of unsupervised learning. Also the number and
kind of tone models can be adjusted to the respective piece.

With only H being left unknown Equation 3 can be
rewritten as

v ≈W · h (4)

where W is the fixed dictionary of tone models. v and
h are single column vectors of V and H that can now be
processed independently, which leads to a much simpler
decomposition task [13]. The vectors h are very sparse in
nature and represent an f0 estimation for the corresponding
frame.

Throughout this work the mean square criterion given
as

cerr =
1
2
‖Wh− v ‖22 (5)

is used as cost measure for factorization errors since
computationally efficient algorithms for its optimization
are available [14].

4.2 Tone Model Training

In order to get meaningful factorizations at least one tone
model per possible pitch has to be contained in W . Given
a set of training samples, such tone models can be trained
in advance using the same method as described above. In
the ideal case those training samples are audio recordings
of single pitches played on a certain instrument. Starting
from Equation 3 again, W and H become vectors w and h
since there is only one basis component present (r = 1).
h can further be approximated by the amplitude envelope,
leaving only w to be unknown. The actual computation is
then done by the same implementation as used during the
performing step of the algorithm.

Throughout this work we use an additional basis com-
ponent representing white noise. Experiments have shown
that such a noise model significantly improves the align-
ment results.

4.3 Local Refinement

In the first stage of the proposed system a music-to-score
alignment has already been performed. The advantage of
this alignment is that it is globally optimized and very ro-
bust. However independent from all parameters that can
be set, accuracy is limited by the fact, that such an align-
ment algorithm can never differentiate between notes that
are struck together in the score.



To overcome this limitation and still preserve high ro-
bustness we define a search window of length l around the
initially estimated onset time. Within this local context the
refinement step tries to find the exact temporal position of
each individual (chord-)note. The parameter l has been
chosen to be 2 seconds since preliminary evaluation of the
first alignment step has shown that only a marginal number
of outliers deviates from the ground truth by more than a
second.

For each such search window the contained notes and
their pitches are determined in order to define the tonal
context of the note under consideration. This information
is used to build a dictionary W local made up by tone mod-
els describing only those pitches that are present within the
local context plus an additional (white) noise component.
The resulting activation patterns H are smoothed using a
median filter and used in order to extract following features
for each time frame.

Activation energy Since activation patterns H are very
sparse in nature (even when sparsity is not enforced),
activation energies greater than zero are strong indi-
cators for note positions.

Energy slopes The first derivative of the activation energy
corresponds to energy changes. Positive slopes as
they occur at note onsets are filtered by half wave
rectification.

Relative energy slopes Since transients at note onsets are
characterized by energy burst across the whole spec-
trum, other pitches – especially ones with shared
harmonics – might show low activation energies dur-
ing such phases as well. Therefore the increases in
energy of the pitch under consideration in relation to
the overall frame energy is also taken into account.

Experiments have shown that the maxima of the deriva-
tives are good predictors for note attacks while the maxi-
mal activation energy itself has turned out to be less sig-
nificant. Comparing the slope of the absolute energy to the
one of the relative energy revealed a slight advantage of
the relative energy derivative which was therefore chosen
as onset detection criterion.

5. EXPERIMENTAL RESULTS

5.1 Evaluation Method

We limit our evaluation to classical piano music using a
database consisting of the first movements of 11 Mozart
sonatas played by a professional pianist. The performance
was done on a computer monitored Bösendorfer SE290
grand piano, producing an automatic MIDI transcription
of the exact ground truth of played notes as well as pedal
events. Aligning a single movement instead of a whole
sonata at a time is a valid simplification since individual
movements are per default separate tracks on audio CDs.
Nevertheless the overall performance time of this test set
is still about one hour containing more than 30.000 notes.

The tone models used for the NMF-based refinement
have been learned from single tones played on the same
grand piano. Since such a recording was not available for
each pitch, the missing models have been acquired by sim-
ple interpolation.

For evaluation purpose we calculated an alignment for
each piece using the audio recording of the expressive per-
formance and a mechanical score representation in MIDI
format. We compared the resulting onset times to our given
ground truth data and took the absolute displacement as
evaluation criterion. This evaluation was done for the ini-
tial alignment step only as well as for the whole system
including the refinement.

Initial alignments were done using a short time Fourier
transform (STFT) with a window length of 4096 samples
and a hop size of 441 samples, which corresponds to a time
resolution of 100 frames per second. For the refinement
step a search window of radius one second was used and
the STFT hop size was reduced to 256 samples, resulting
in time frames of a length of 5.8 ms.

First experiments with this setup have shown that al-
though the calculation of the factorization base feature is
narrowed down to a small search window as well as a small
pitch range, it is still not as robust as expected. About 10%
of the notes have not been detected by the factorization step
and therefore left unchanged during refinement.

Concerning the remaining notes it turned out to be the
best strategy to only modify those notes where the initial
alignment position and the timing resulting from refine-
ment are approximately consistent. This is the case for
about half of the overall number of notes. In situations
where these two onset candidates differ by more than 20
frames (i.e. 116 ms) a conflict is detected – although its
resolution has been left to future work. One cause for such
conflicts are repeated notes which cannot be handled by
the simple detection mechanism as described above.

5.2 Evaluation Results

In Table 1 the limits of the quartiles as well as the 95th

percentile are given. Within the first three quartiles the
refinement has improved results for each individual piece.
However concerning notes that are displaced by more than
100 ms in the initial alignment tend to be displaced even
further by the refinement step.

For most applications a transcription is good as soon as
a human listener can not distinguish it from the original.
This implies that in the context of music-to-score align-
ment a note can be counted as correctly aligned if its devi-
ation from the ground truth is less than the just noticeable
difference of the human perception. In an experimental
environment, where listeners were asked to adjust the tim-
ing of one tone within a series, such that the inter-onset
intervals became perfectly regular, this just noticeable dif-
ference was investigated [15]. It was found to be around
10 ms for notes shorter than 250 ms and about 5% of the
note duration for longer ones.

Therefore an evaluation based on this criterion was done
as well. In Table 2 the amount of notes with a time dis-



25% < x 50% < x 75% < x 95% < x
piece # notes duration

bas. ref. bas. ref. bas. ref. bas. ref.
kv279-1 2803 4:55 7 ms 5 ms 16 ms 12 ms 30 ms 27 ms 103 ms 101 ms
kv280-1 2491 4:48 11 ms 5 ms 23 ms 14 ms 42 ms 34 ms 126 ms 127 ms
kv281-1 2648 4:29 12 ms 6 ms 24 ms 15 ms 42 ms 36 ms 114 ms 112 ms
kv282-1 1907 7:35 10 ms 6 ms 23 ms 15 ms 53 ms 44 ms 337 ms 380 ms
kv283-1 3304 5:22 7 ms 5 ms 15 ms 12 ms 27 ms 26 ms 62 ms 65 ms
kv284-1 3700 5:17 7 ms 6 ms 15 ms 13 ms 31 ms 29 ms 97 ms 98 ms
kv330-1 3160 6:14 7 ms 5 ms 15 ms 11 ms 28 ms 24 ms 118 ms 124 ms
kv332-1 3470 6:02 9 ms 7 ms 20 ms 18 ms 39 ms 37 ms 138 ms 147 ms
kv333-1 3774 6:44 8 ms 5 ms 16 ms 13 ms 29 ms 20 ms 79 ms 80 ms
kv457-1 2993 6:15 10 ms 6 ms 19 ms 15 ms 37 ms 35 ms 214 ms 257 ms
kv475-1 1284 4:58 13 ms 11 ms 30 ms 24 ms 78 ms 75 ms 360 ms 393 ms

all 31534 1:02:39 8.3 ms 5.6 ms 18 ms 14 ms 35 ms 32 ms 132 ms 137 ms

Table 1. Comparison between accuracy after the basic alignment step (bas.) and the additional refinement (ref.)

x < 10 ms x < 50 ms
piece

bas. ref. bas. ref.
kv279-1 33.8% 43.2% 88.2% 88.4%
kv280-1 22.4% 42.5% 81.5% 85.0%
kv281-1 20.1% 38.5% 80.4% 83.4%
kv282-1 25.3% 39.2% 73.7% 76.8%
kv283-1 36.2% 44.2% 92.6% 92.2%
kv284-1 34.6% 41.7% 86.9% 87.2%
kv330-1 35.5% 46.7% 89.9% 89.7%
kv332-1 27.1% 32.5% 83.0% 82.7%
kv333-1 31.5% 42.2% 90.1% 90.1%
kv457-1 27.3% 35.9% 82.5% 83.2%
kv475-1 20.0% 23.6% 63.9% 66.8%

all 29.6% 40.0% 84.8% 85.6%

Table 2. Comparison between accuracy after the basic
alignment step (bas.) and the additional refinement (ref.)

placement less than 10 ms is shown for the initial and the
refined alignment. According to the chosen STFT time
resolution this corresponds to a deviation of one frame at
maximum. In addition the number of notes having a dis-
placement error less than 50 ms is given as well since this
is a common evaluation criterion in onset detection.

Again it is shown that the refinement improves those
notes already aligned relatively close to their real onset.
The amount of notes with displacement errors less than
10 ms was increased from about 30% to 40% while the
number of notes with errors below 50 ms was only mod-
erately changed from 84.8% to 85.6%.

5.3 Feature comparison

From the list of related work presented in section 2, [8] is
the one that presents the approach which is most similar to
the system proposed here. There onset detection by selec-
tive bandpass filtering is described in the context of score
supported audio transcription. According to this method a
note is found by summing up the energy in all frequency

fact. s.b.f.
25% < x 5.6 ms 10.0 ms
50% < x 14 ms 20 ms
75% < x 32 ms 40 ms
95% < x 137 ms 128 ms
x < 10 ms 40.0% 24.9%
x < 50 ms 85.6% 81.3%

Table 3. Comparison between refinement based on fac-
torization (fact.) and based on selective bandpass filtering
(s.b.f.) [8]

bands corresponding to the f0 as well as the harmonics of
a pitch and then finding a maximum in the derivative of
this indication function. In order to avoid the influence of
other pitches with overlapping harmonics, partials that col-
lide with those of an other note struck at the same time are
neglected.

We have compared our system to an own implemen-
tation of this approach. In doing so, we used the same
computational framework and only exchanged the factor-
ization feature in the refinement step by this onset detector
based on selective bandpass filtering. The accumulated re-
sults on the whole test set are shown in Table 3. It demon-
strates that bandpass filtering yields results less accurate
than those produced by NMF, and mostly even less accu-
rate than those achieved by the alignment based on chroma
vectors. A possible reason is that the STFT based ver-
sion of selective bandpass filtering relies on just a few fre-
quency bins while NMF takes the whole spectrogram into
account.

6. CONCLUSION AND FUTURE WORK

We have introduced a new method to increase accuracy of
music-to-score alignments by a two-pass system. Whereas
the first step consists of a state-of-the-art alignment using
chroma features and dynamic time warping the second step
is a refinement based on non-negative matrix factorization.



We have shown that this refinement step performs very
well on notes which have already been detected relatively
close to their real onset time by the alignment step. The
number of notes placed with a time deviation below the
just noticeable difference according to [15] of 10 ms has
been increased from about 30% to 40%. This is remark-
able since so far only those notes without any conflicting
features have been modified.

However the method does not bring any improvements
for notes where the deviation of the initial alignment from
the ground truth is large. On one hand the refinement step
only works within a search window which should be kept
as small as possible. Notes that are misaligned such that
the actual onset is out of this window can never be cor-
rected by the method described here. On the other hand
chroma features as well as factorization based pitch sepa-
ration rely on prominent energy peaks in the spectrogram.
If the spectrogram is blurred due to heavy use of pedal or
very rich polyphony both approaches are prone to errors.

This clearly dictates future work to concentrate on the
problem of detecting and handling possible outliers and
’hard’ regions. The most obvious approach is to develop
a method of handling conflicting features as this is the case
for about 40% of all notes. We think that introducing a
tempo model and enforcing reasonable inter-onset inter-
vals entails the potential of further improvements.

Also the 10% of notes that have not been covered by
the factorization based feature are worth being reconsid-
ered. Standard STFT favors the detection of higher pitches
due to its linear frequency scale. Additional spectral trans-
formations like multi-rate filterbanks or a constant-Q trans-
form could help to enhance the note detection, especially
within low pitch ranges.
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